Magnetic-Induction, Vibration
Energy Harvesting Device

A Zachary Trimble



Outline and Objectives

* Project Motivation
— So we’re all on board

* Planer/annular prototype
— Informative

» Central prototype
— Design group input



Self-Powered Vibration Monitoring
System

drill bit self-powered receiver unit at the

/ / / vibration sensors top of the K
' : ¢ "

sensors sending signals optional: information
BHA in chaotic whirl about vibrations transmitted to surface



Key Idea: Combine Harvesting and
Sensing

*Drilling Vibrations contain ENERGY and INFORMATION
*Knowledge of the dynamic characteristics of the vibration harvesting
device reveals information about the vibrations itself - REDUCE
COMPLEXITY

*Individual tuned mass-spring systems
*Mechanical frequency spectrum analysis
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Functional Requirements
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Electrical Extraction Methods

— Power Needs
— Range of Motion

Electromagnetic Induction

Variable Capacitance

Piezo Material

Magnetic Induction

Power generation
Vibration amplitude
Driving frequency
Ease of system design
Cost

Lifetime

W
fm
Any range
Difficult
High
Low

W-W
fm
Tens of Hz
Basy
High
High

mW-kW
mi-cm
Any range
Basy
Modest
High

Table 2.3: Comparison of energy harvesting strategies.

Jonnalagadda, Aparna S, (2007), "Magnetic Induction Systems to Harvest Energy from Mechanical Vibrations", MIT SM Thesis,

January 2007.




Overview
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First Order Model
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Details

First Order Model

Governing Equation:

mZ(t)+ (b +b,)2(t)+ kz(t) = -my(t)

Z(t) +20,(g; +6.)2(t) + @7 z(t) = —§(t)

Equation:
N\ J (o)
* Assume harmonic input: yit)= IC"Y
Resonant Solution: 2(t) = pl(@nt=7)
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Matched Damping
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Electromagnetic Induction

Geometry
[~ gty et maters |

Coils
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— A= Agsin (7wz,)



Theory
Coil Design: Damping Factor

| 2022 N
Pma,z(; — 3)32“) — uSRO;[T/Q ZQ(Yf) for N > 2
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Theory

Electromagnetic Voltage/Power
Cd\ dhdz d),

V=—=——=—%(t
TR TR , R
R mazx total — n; A Rn
l VW T
) g V2
\/R\'}a\d/\ Prar = 1R,
/ 2
Vi = bl P:VL°1LZE



Theory
FEA verification

Out of plane motion minimal—sets air gap



Existing Prototype
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Electromagnetic Coil Geometry

Individual
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Voltage vs Time

Time [s]



Results

Voltage/Power
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Self-Powered Vibration Monitoring
System

drill bit self-powered receiver unit at the

/ / / vibration sensors top of the K
' : ¢ "

sensors sending signals optional: information
BHA in chaotic whirl about vibrations transmitted to surface



*Design a Vibration Energy
Harvesting Device that will
fit in the space and size
allocation shown, and
provide as much power as
possible when subjected to
accelerations similar to
those provided by the
Stonehouse facility.

Review

Space and Size Allocation

J1.26"

5.5"
13.97cm

Maximum Harvester
size including all
circuitry and casings

Not to Scale

Expected harvester
location in the center
of the pipe/tool.



Small Intermission for
REALITY



First Order Power Estimate
Vibration Input

« Data is not aligned
with typical (r,0,z)
coordinates

 To improve estimate
rotate coordinate
system 22°

— Rotation angle is

deernned oy A ) A2

measurement on the A = A, sin(22°)+ A cos(22°)
shown scale drawing



Acceleration [G]
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e 3-axis aclaaaat@nﬁ@émm@d on Nissan

Altima car door
f_' Ww;« -

Accelerom
oter

3 MIT/NISSAN Research
Confidential Sep 8, 2006



Acceleration Data — Up and

Arcelerstion Data for city diving

Accelerstion Data st 25 mph
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Acceleration Data — Side to side

Arcceleration Data far city driving

Acceleration Data at 55 mph
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Provided Data Channels
All charmels ‘5-:'II'I'IF|I':U a1 1kHz

= Acceleration [g]

= X, - "tangential”
» X5 - "tangential”
Y = "radial”

» £ — axial

+ Downhole Pressure [psi]
» Waight on bit [kibf]
+ Torque on bit [fi-104)]

« Magnealometer

Not to Scale

Atcaleromeiers

4B 38mm :

Data

Data is taken on two different tools
(Labeled BAF and DBSEIS)

— For BAF tool data is taken in 36s
intervals

— For DBSEIS tool data is taken in 27s
intervals
The data is a combination of
resting, rotating but no
downpressure, and drilling
(rotating and downpressure).

For future simulations, the “active”
sections of data were extracted
from the complete records

zjacceleration IS measured
directly

Tangential acceleration () is
calculated as (where r=48.35mm)

X, + X
o = 1 2
2r
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Models

bbb Ko
—— Mass (m)or X+ X+ X:_y
Inertia (J) m m

) Mass (m) p_ (be)x).(z

| %

X K bi be

y @F . (b+b,), . K, .
Y, ¢+ 3] ¢+T¢:_‘9

P = (be)¢¢2



Parameters

* Density/Inertia of
moving mass is
combination of steel

e core and magnets

* p(steel)~7.8g/cc
« p(magnet)~7.4g/cc

— www.kjmagnetics.com




Raw Data
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Rotational vs Linear
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Power Rotational

Comparison over all traces
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s = number of
current pole pairs

p = number of
magnet pole pairs

0 = rotational
coordinate
(measured from
the x-axis

® = rotor position

|ldeal Mode

y




Simplification — Surface Current
and Magnetic Charge

—lg,
,_current 1 1 s
" length 3 o7/ 3ar,
S
Surface Current L
Magnetization
k 27Z(i —2)
(—1)( )cos{s(Zk —1)(6’—)} :
4, 3 4 sin[s(2k —1)(@—¢)]
=K 2k — 1 M_ZM‘); 2k -1

| represents the phase



Governing Equations

Ampere’'sLaw  YXH =J =0 H=-Vogp
_ _ =

Gauss’'law  V-B=VyH =0 V2(0 =0  Laplace’s equation
Boundary Conditions: Solution:

1 Op (Y (e Y|
R T T uEg

rOC r=foc (0 = I<Oroc - S S
r=r, He‘r:r- =0 (r _[ﬁcj

¢ | Fic Foc ]

sin(s @)



Y Coordinate [mm]

Verify Fields with FEA

Surface-Wound PMSM FEA Mesh - One Pole Pair Surface-Wound PMSM FEA B-Field Lines - One Pole Pair
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Torque Laplace Solution = 8.3mNm
Torque FEA = 8. 1mNm



Torque

27 vl h 40 s must equal p for efficient
= r r :
mQJ;O“O ‘r:r"l Oy © ] generation
(rm _ ric) *® = should maximize the
I, r i— : : _
a2 M K st | el AT sin{s(¢+2ﬁ(l Z)H sin function (P=90deg as
(foc B rj 3 often as possible)
B ric roc i
Single phase 3 phase
1 / | | 1 ‘ ‘ ‘ ‘ ;PhaseA‘
—Phase B
0.5 4 05k Phase C |
Vibration "
-0.5r 1 -0.5¢
Range
o 20 30 20 50 80 70 80 o 10 0 10 20 30 40
phi [deg] phi [deg]

s should be chosen based on the number of phases in a single phase

machine it is best to operate near the peak of the torque curve, but in a
multi-phase machine s should allow operation over a full pull so as not
to leave a weak phase which wastes potential current carrying material



Phases and Poles

5 V2 Three Phase

Single Phase _4R
Ll ve T(Ho Rit v

— NN I ~$

R WF vi=Tw=P N— e
S

*To select the number of phases and the number of poles, use a passive control
model (resistor), T = bw, and estimate the response of the system

*From the estimated response determine the appropriate number of poles based
on the expected displacement as a function of the number of phases (operating
over at least a pole pitch for a multi-phase machine or operating near the peak
in a single-phase machine)

*Estimate the resistance in the coil based on the area and number of phases

«Calculate the voltage and subsequently the approximate power output as a
function of the number of phases



Number of Phases

Single representative acceleration
Trace used with the output power

* s single phase =8

— Magnet width ~0.125"
* s multi-phase = 30

— Magnet width~0.05"
* This immediately

suggests that a single

phase system is
better for this limited
displacement
application.

(P=b®2) optimized as a
Kandb

function of

il

il W

\
\

5 20 25 30 35

Time [s]



Models

bbb Ko
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Inertia (J) m m
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Parameters

* Density/Inertia of
moving mass is
combination of steel

e core and magnets

* p(steel)~7.8g/cc
« p(magnet)~7.4g/cc

— www.kjmagnetics.com




Power Rotational

Comparison over all traces
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H

Ref |Part Oty | Notes
A Upper Cap 1 Custom Manufacture
B Casing 1 Custom Manufacture
C Steel Core 1 Custom Manufacture
D Lower Cap 1 Custom Manufacture
E Magnet 48 |www.magnetdless com # NBO30
E Torsion Rod 1 www. limesavers.com
G |TranTorgue MINI 1 McMaster Part # 5926K12
H Bearing 2 1/mm X 9mm McMaster 7804K 148
I Spring Washer 2 McMaster Part # 97 14K26
J Split Collar 1 McMaster Part #9961K 11
K 4-40 screws 2 McMaster Part # 91253A110
L Split Sleeve 2
M [Winding 1
(c)

Part Name

Rotary Prototype Assembly

Contact

Zac Trimble atrimble@mit.edu
801-547-7795







0="-25
p

\/ e /

*EDM copper

Need about 30 *Radial Kerf = 0.004”
turnstoget 1V -Tangential Kerf = 0.0055”
*Tech-Etch

*Radial Kerf = 0.004”
*Tangential Kerf = 0.002”

\ 5=0.1826 / *Magnet wire

*|[nsulation Thickness ~0.002”

Compaction Factor = Copper Area/Total Area (Total Area = 0.0117 in"2)

EDM = 0.61 Predicted Coil Resistance = 11 ohm
Tech = 0.78 Predicted Coil Resistance = 6 ohm
Wire = 0.66 Predicted Coil Resistance = 10 ohm (Measured 18 ohm)



Hand wound coll




Prototype Performance

*Predicted voltage is 11%
different than predicted.

*Most likely cause is
the winding

] ﬂQ T
manufacture [\ r\ /
*Other possible ‘

causes to explore are S o1
end effects and eddy
current losses.

P
L N

——————_ 5
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Water Jet laminations

Water jet cut laminations
as winding pattern

Outer diameter of slots is
1.020 inner diameter of
stator core is 1.050

Inner diameter of slots
0.965 outer diameter of
rotor is 0.913

Inner hole is 0.22




Ream center holes

e Ream holes to 0.251
for assembly on
mandrel




Slot end laminations

« Slot the end laminations to contain the end turns
so the end turns are contained and don’t get hit
In post processing




Laminations Glued together
Wires hand wound

 Laminations are glued together on a
mandrel to maintain concentricity.

— Unwound mass 48.08¢g
* Wires are then hand wound on the
laminations
— 20 turns
— 14 ohm
— Wound mass 56.59¢g
— Compaction factor = 22.4%



Potting

* Coll is placed into a
pvc “mold” and
vacuum potted Iin
epoxy.




Coil post potting

* pvc split by hack saw
and sperated.




Turn outside to correct diameter

 Turn outside to 1.048
to fit the inside stator.




Drill and bore inner diameter

 Drill and bore inner
diameter to 0.950




Existing Prototype

Existing Prototype
Vary Frequency Increase Power
w?'} - %"1 [& X h(g Rz-vg maz — AIJ)»ZCJ

— 10’s Hz
— vary h — 1ncrease m

—<10 Hz — increase ()
— vary m




Floating Frequency Peak

« Spectrogram

— Black lines = Device
half power band
width

— Blue Line = Maximum
amplitude

* Non-stable
frequency peak

%O 60 70 80 90 100 110 120 130 140 150
Frequency



Current Work

* Lyapunov

transformation model | ———

— stochastic, statistical i

state-space model

PSD

« characterize expected
response as a function of
N

the band-width of the input, R \
and the relative magnitude \/WU/ W W\ W

of the surrounding noise. Freauely
« Current Harvester used - \
. . Relative Input
to verify numerical Noise Acceleration

results Magnitude Band Width



Current Work

*Modeling and testing of input signal

*Modeling of input signal to
determine the input characteristics,

thus identifying which challenge is
most restrictive (possibly reword)

Is the signal inherently wide H \ x .
band? o
) ] Coloring Filter :
*Is the signal narrow band with st Ej
npu
a unsteady phase? o
*Is the underlying signal steady Aftcos(w(tft
W|th an On/Off meChanIC8| Where: A(t) and w(t) Harvester
no | se ,) are random variables
] Completed Work
*Testing

Comparison of manufactured
signal to measured acceleration
data



“Slug” Damper

* Eliminate Spring
— Allow mass to move in

free space”, but Maintain only

constrain to near “structural” springs
elastic collisions at SO mass essential
floats

displacement limits

Return Springs



“Piano Key” Fingers

Set of spring-mass-damper
resonators in parrallel set up to
resonate over a broad band of

frequencies

*Multiple resonators each tuned to a
different frequency in the design range
so that the entire bandwidth is covered

‘VFW Sping-mass-damper resonator

*Research questions

Sping-mass-damper resonator

How many resonators

Can each resonator be
isolated —

Vibration is passed to the damper
without affecting the other
resonators

]
i

Sping-mass-damper resonator

&ﬂ% &ﬂ% &ﬂ%
|




Higher Order System

Schematically understood as a series arrangement
of resonators whose governing differential equation

is tunable to a larger band-width

Set of spring-mass-damper resonators in series set up to resonate over a broad

~ band of frequencies

Sping-mass-damper

Sping-mass-damper

Sping-mass-damper

resonator resonator resonator
7 7 |
.| .| ]
]
]

Damping associated with energy harvesting




Mechanical Rectifier

« Connect the harvester to the vibrating
environment through a mechanical rectifier that
passes a periodic signal

— Band pass filter
— Periodic Impulse filter

(] '
\(

Mechanical Rectifier




Frequency Tracking

« Change the harvester
frequency by
changing the effective
spring constant to
follow a variable
frequency input.

Time

Frequency (Hz)

wn<t>=w/%



Energy Harvesting Update
5/28/2009

Zac Trimble MIT Ph.D. candidate

Jahir Pabon SDR

Alex Slocum MIT Professor — Mechanical Engineering
Jeff Lang MIT Professor — Electrical Engineering

Computer Science



Future Work

e Controls

— Apply optimal control solutions to optimize the
performance over a wider bandwidth.

* Mechanical tracking

 Ratchets/Clutches.

— One of the advantages of a rotational system
is the potential for greater



Problem Formulation

*General Problem Statement:

*Given a known acceleration input to a vibrating reference frame, determine the
maximum amount of power that can be extracted from the given vibration.

Vibrating Reference Frame

*Problem assumptions/specifics
*To extract power, a proof mass is
Mass (m) assumed to be attached to the
reference frame by a force F
‘ *An additional force, Fi, associated
with unavoidable internal losses
X g% = g% = also connects the proof mass to the

reference frame.

| *Using an optimal control approach,
y determine the force that will extract the
most power from the relative motion

iz Rosotelinettial Ground 7777722 petween the reference frame and proof

Mass.




Optimization Solution

Since the maximum is a limiting case of F, find F* by looking at the boundaries.

Hw*,p*.F*.t) > H((v",p*. F.t)

P . [ Fi P . Fi

(tz"‘ — p) F*-p ( + u) (t:’*‘ — p) F —p ( + a)
m m m m

(,L, o 1”_ ) F-‘k
m

Thus, the optimal control is a “bang-bang” control where the force is always set to
the maximum possible in the direction defined by Sienum [a - f]

[V

1V
T

|..
s =

=S

T

F* = F.x SICNUM [t;* — f—]



Controls Summary

« Additional optimization schemes that
iInvolve models of the signal.

* For new data check if signal “tracking” can
be incorporated



Ratchet/Clutch

* Design is modular and is set up to
Incorporate a clutch or ratchet to force

continuous rotation
— Eliminate reversal points
— Maximize average velocity

* Develop ratchet design and model



Mechanical tracking

* Finish modeling of possible mechanical
tracking
— Actively changing stiffness by adjusting spring
variables

— Passively change stiffness by incorporating
stiffening/relaxing springs



Additional Future Work

» Additional prototype testing
— Rotational shaker

* New “Gyro” data
» Refine power prediction model



Questions

Ref [Part Qty [Notes
A Upper Cap 1 Custom Manufacture
B Casing 1 Custom Manufaciure
C Steel Core 1 Custom Manufacture
D Lower Cap 1 Custom Manufacture
E Magnet 48 [www.magnetdless.com # NBO30
F Torsion Rod 1 www timesavers.com
G [TranTorgue MINI 1 McMaster Part # 5926K12
H Bearing 2 17mm X 9mm McMaster 7804K 148
| Spring Washer 2 McMaster Part # 97 14K26
J Split Collar 1 McMaster Part #9396 1K 11
K 4-40 screws 2 McMaster Part # 91253A110
L Split Sleeve 2
i [Winding 1
()

OIRG

'\ﬁ Part Name

Rotary Prototype Assembly

Contact Zac Trimble atrimble@mit edu
801-547-7795




Optimal Control
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Accel [m/sz]

Velocity [m/s]

Harmonic Reference Input

Reference Frame

Disp [m]

| | | |
0.01 0.02 0.03 0.04

| | —
0.05 0.06 0.07

§(t) = Re|Ae |

y(t) = Re{_Aej“’t}
jo

A
t)=R gl
YO {(jw)z }

A=1g
w= 30Hz



Viscous Damping Baseline

P(t) = F(OX(®) =bx*() output = 1,161 Nesim

Fmax = 0.04805 N
Pmean= 0.9 mW

nnnnnn
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Numerical Force

Numerically determining the optimal force no assumptions other than
abs(F)<Fmax where Fmax is the same as before.

Note: due to solution method, only 8 cycles are counted (sampling frequency
1000Hz)

Pmean = 1.5 mW =167% of viscous damper

ref velocity and Force
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I
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Viscous Damper Plus Spring

Resonant spring system:
w = 30Hz

wn =29.99Hz I 1 /p\ L1 /p\ Y
o087 il \ IR \ i \ |
Fmax damper = 1.47 N / | /\ / | /\/

Fmax damper + spring = 73.58 N / \/ \ / / \/ \ / / \
Power =152 W il \/\/ | U \/”\/ I




Numerical Simple plus spring

Fmax =147 N

Power =47.1 mW
= 2.4% of smd

ref velocity and Force
0.06

Fmax =73.58 N

Power =2.28 W
=119% of smd

ref velocity and Force
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Numerical Continuous

Pavg = 160.8 mW

=5 N

Fmax

ref velocity and Force
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Numerical Forced Binary

Fmax =5 N; Pavg = 158.7 mW




Numerical Forced Phase

Fmax =5 N; Pavg = 165 mW
Phase = pi;




Numerical Forced 20,30 Hz sin

Fmax =5 N; Fmax=5N
Pavg = 262 mW, Pavg = 281 W

ref velocity and Force

! I I I I i I I I
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Numerical Forced 20,30 Hz sin

b =0.3 N-s/m; Pavgb = 94 mW;
K =5329 N/m; Pavgt =7 W;
Pavg = 3.16 W,

Fb=1.5 ref velocity and Force
JFt =141 0.2
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Viscous Damper Plus Spring

Resonant spring system:
w = 30Hz

wn =29.99Hz I 1 /p\ L1 /p\ Y
o087 il \ IR \ i \ |
Fmax damper = 1.47 N / | /\ / | /\/

Fmax damper + spring = 73.58 N / \/ \ / / \/ \ / / \
Power =152 W il \/\/ | U \/”\/ I




Spring + Optimal Force

Fmax =1.5N;
K =5330 N/m;
P=3.87W;




Straight numerical

« P=797mW

0.06 I I
I |
[] | |
I I
I I
I I
I




Optimal Control Estimate

The following documents the process used to produce a best case
estimate for power output from the provided acceleration inputs
using an optimal control approach.



timal Control Pro

. The opt|mal contraproblem seeks to m Ximize a erformance functional, J, by controlling a

trajectory, x, with control input u.

Governing Equation: x = f(x,u,t) with IC  x(ty) = xq

" ngn ‘fl
Definition of I_:’erformance J(u) = K[x(t1)] + / LIx(t),u(t), t]dt
Functional: Jto

To find the value of u which maximizes J subject to the governing equation, define the
Hamiltonian of the system. (Where p is the costate, and <> denotes inner product)

Hamiltonian: H(x,p,u,t) = L(x,u,t) + (p, f(x,u,t))

The optimal control input u* which will maximize J must then satisfy the following conditions.

OH OH
©) ()p X' (to) 0 du |,
1. OH OK
" p = — -_ « P t = A (}2
p(t) ox "’ p(t1) ox 3. J I_}I is negative definite
ou® |,




senera Proveirab@lem Formulation

*Given a known acceleration input to a vibrating reference frame, determine the
maximum amount of power that can be extracted from the given vibration.

Vibrating Reference Frame

Mass (m)

A

<R

A
y

*Problem assumptions/specifics
*To extract power, a proof mass is
assumed to be attached to the
reference frame by a force F
*An additional force, Fi, associated
with unavoidable internal losses
also connects the proof mass to the
reference frame.

*Using an optimal control approach,
determine the force that will extract the
most power from the relative motion
between the reference frame and proof

\//// //// 4Absolute/lnertialGround 7 //// /// mass.

This formulation looses generality by assuming a zero impedance source



<Earmulation of Governing.fquation

governing equation of motion for the proof mass.

0 = Fz'.?w?‘t-ial + Finl‘.e-rnai + F
12 Mass (m)
0 = -'r'n..ﬁ (z+y)+ F, + F
d?x 1 d?y Ig I— |>
—s = —— (F+F)—-—3 ¢z g2 d3
dt? m ( ) dt2 8 3 85 3 §
., 1 . .
() = —E(FiJrF)—y J' y J'
1
v = ——(F,+F)—a FBD
m
Where, J ¢ =Y -Define the state variable of the system
V=1 to be the relative velocity between the

proof mass and reference frame, v

*Define the control variable as the
applied force, F



Definition of the Performance
Functional and subsequent Hamiltonian

*The goal of any energy harvester is to extract the maximum amount of
power from the environment possible. Thus, the performance functional for
the system is the total power extracted over a given time span from 0—T

I T o
Power, ,, = — / Fodt = / —dt
A £ o 1
Fv

K [.{(Tﬂ =0 and, L ['L’(t)‘. F(t), ﬂ _ T

*Thus,

eand,



total power

Optimization Solution
-Condition 1

Equation 1

Equation 2

Note, dimensionally, the physical interpretation of the
costate is force.



total power

Optimization Solution
-Condition 2

The chosen performance functional is linear with respect to F, thus, the second
condition for optimality is independent of the input,

This suggests that the optimal costate
is physically related to the relative
momentum of the proof mass divided
by time.

Since the second condition is independent of the control input, the control input that
will maximize the performance functional must be a limit or boundary of the input.

This changes the final condition to a straight inequality to determine which limit
maximizes H.



total power

Optimization Solution
-Condition 3

Since the maximum is a limiting case of F, find F* by looking at the boundaries.

Thus, the optimal control is a “bang-bang” control where the force is always set to
the maximum possible in the direction defined by



General Questions

* \What would be an appropriate modification
to the performance functional to ensure
the prediction of a resonant solution?

— A penalty on small x?



Definition of the Performance
Functional and subsequent Hamiltonian
total power

*The goal of any energy harvester is to extract the maximum amount of
power from the environment possible. Thus, the performance functional for
the system is the total power extracted over a given time span from 0—T

T
Powerioia = / Fuodt
0

*Thus,
Kv(T) =0 and. Lv(t), F(t),t] = Fuv

eand,

m T

H("{J?p,F,t) = (-’u — ﬁ) F—p (5 + a)

Question: Is the proper performance metric the average power or the
total power?



Equation 1

Equation 2

Optimization Solution
-Condition 1

P

OH
(4_— (v, p", F* 1)
dp
1 .
oH . . _.
—ﬁ(i p L EFT )
F:k _I)# ()Fz
m ov
'_'* )FI
P2 p
m ov

total power

Note, dimensionally, the physical interpretation of the

costate is momentum.



total power

Optimization Solution
-Condition 2

The chosen performance functional is linear with respect to F, thus, the second
condition for optimality is independent of the input,

OH D
OF |, m

mv" = p° This suggests that the optimal costate
is physically related to the relative

momentum of the proof mass.

Since the second condition is independent of the control input, the control input that
will maximize the performance functional must be a limit or boundary of the input.
This changes the final condition to a straight inequality to determine which limit
maximizes H.



total power

Optimization Solution
-Condition 3

Since the maximum is a limiting case of F, find F* by looking at the boundaries.

Hw*,p*.F*.t) > H((v",p*. F.t)

P . [ Fi P . Fi

(tz"‘ — p) F*-p ( + u) (t:’*‘ — p) F —p ( + a)
m m m m

(,L, o 1”_ ) F-‘k
m

Thus, the optimal control is a “bang-bang” control where the force is always set to
the maximum possible in the direction defined by Sienum [a - f]

[V

1V
T

|..
s =

=S

T

F* = F.x SICNUM [t;* — f—]
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