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Exercise 9.1 (1 Point): Determine i(t) and v(t) for t ≥ 0+ in the network shown below.
Note that the inductor and capacitor both have nonzero states at t = 0, and that both sources are
impulse sources. Hint: use superposition to establish initial conditions at t = 0+.

Qδ(t)

L i(t)

Λδ(t)C

+
v(t)
−

v(0) = V i(0) = I

Exercise 9.2 (1 Point): Shown below is a parallel resistor-inductor-capacitor network. Also
shown below is a graph of the common network voltage v(t) as a function of time; the voltage
is the homogeneous response of the network to some set of initial conditions. From the voltage
graph, determine the inductance of the inductor and the capacitance of the capacitor given that
the resistance of the resistor is 600 Ω. Note: the next to last page of this problem set contains a

larger graph of the common voltage. It can be turned in with your problem set solutions.
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Homogeneous Response: Common Voltage



Problem 9.1 (2 Points): This problem studies the sinusoidal-steady-state response of a
resistor-inductor network, both experimentally and theoretically, in three parts. First, you will de-
termine the theoretical response of the network. Next, you will measure the response of the network
at different frequencies using the ELVIS iLab. Finally, through a comparison of the theoretical and
experimental responses, you will determine the inductance and parasitic resistance of the inductor.

The network, shown below, consists of a real inductor in series with a 100-Ω measurement resistor,
RM. The real inductor is modeled as an ideal inductor, L, in series with a parasitic resistor, R,
which models the resistance of the winding in the real inductor. This network is fed by a voltage
source, vIN, and the output voltage vOUT is measured across RM.

vIN(t)

L R
+
vOUT(t)
−

RM = 100 Ω

Real Inductor

When dealing with a sinusoidal signal, one must be careful to distinguish between its frequency f
measured in Hz, or cycles per second, and its frequency ω measured in rad/s. The two are related
through ω = 2πf . Often we simply refer to “frequency” in general. However, the units of that
frequency make it perfectly clear which frequency is under discussion, and you should be aware of
this at all times to avoid confusion. In this problem, the theoretical analysis is carried out using
the frequency ω, while the experiments on the ELVIS iLab are carried out using the frequency f .

(A) Consider first the theoretical analysis of the sinusoidal-steady-state response. To begin, let
vIN(t) = Vin sin(ωt). Correspondingly, let vOUT(t) = Vout sin(ωt+φ). Now, determine Vout and
φ as functions of ω through the following steps.

(1) Express vIN and vOUT in the form of the complex exponentials Vine
jωt and V̂oute

jωt, re-
spectively.

(2) For the network shown above, derive a differential equation for vOUT driven by vIN.

(3) Using the complex-exponential forms for vIN and vOUT from Step (1), solve the differential
equation from Step (2), and derive an expression for the complex amplitude V̂out in terms
of Vin, ω, and the values of the network elements.

(4) From the result of Step (3), express the real amplitude Vout, and the phase φ, of vOUT in
terms of Vin, ω, and the values of the network elements.

(5) Finally, sketch and clearly label two plots. The first plot is Vout/Vin on a logarithmic
scale versus ω on a logarithmic scale. The second plot is φ on a linear scale versus ω on
a logarithmic scale. Identify the low-frequency and high-frequency asymptotes on these
plots.

(B) Consider next the experimental characterization of the network using the ELVIS iLab. To do
so, take the following steps.



(1) Log in to iLab, and select the ELVIS Lab Client in the usual manner. When you launch
the lab client, you will see the network on the canvas.

(2) First, select the signal generator (FGEN), and set its parameters to WaveForm = SINE,
Amplitude = 1 V, and Offset = 0 V. With these common settings, you will carry out
measurements as a function of frequency. Take measurements at two frequencies per
decade from 10 Hz to 100 kHz. That is, take measurements at 10 Hz, 30 Hz, 100 Hz, 300
Hz, 1 kHz, and so on. This corresponds to measurements at a total of nine frequencies;
feel free to take more measurements if you want. For each frequency, you must select
the output measurement unit (SCOPE) and specify a suitable sampling rate that will
allow you to see at least one full cycle of the output waveform with adequate resolution.
Remember that the system will only allow you to take a maximum of 201 data samples
at the output. When you are set, run each experiment. When the data returns, select vIN

for the Y1 axis and vOUT for the Y2 axis, and use linear axes for both. You should obtain
a nice sinusoidal signal for both vIN and vOUT.

(3) For each experiment at a given frequency of the input signal, you must extract three
parameters. Organizing these parameters in a table will be helpful.

First, read the amplitude of the vIN and vOUT sinusoids. Notice that even though you
have set the amplitude of vIN to 1 V, what actually shows up at the network input can be
different due to imperfections in the instrument. So, read the amplitude of both vIN and
vOUT. The easiest way to do this is to keep the autoscale boxes checked for both axes,
and subtract the bottom of each range from the top of that range, and then divide the
difference by two.

Second, read the phase of vOUT with respect to vIN, and express this phase in degrees. To
do so, first calculate the common period of the vIN and vOUT waveforms. Next, measure the
difference in time between two consecutive zero crossings of the vIN and vOUT waveforms.
Since the period corresponds to 360 degrees, the time difference divided by the period,
then multiplied by 360 degrees, is the phase shift between vIN and vOUT in degrees. Make
sure that the sign of the result is consistent with the definition of φ.

(4) From the measured data, graph the amplitude ratio and the phase shift as functions of
frequency. For the first plot, graph the amplitude ratio on a logarithmic scale versus the
frequency ω on a logarithmic scale. Notice that you will need to translate the frequency
f used by the ELVIS iLab into the frequency ω, as discussed above. For the second plot,
graph the phase difference on a linear scale versus the frequency ω on a logarithmic scale.
Comment on the results.

(C) Compare the model of the network derived in Part (A) to the experimental characterization
acquired in Part (B), and determine the inductance L and parasitic resistance R of the inductor.
Explain how you do this and give the parameter values.



Problem 9.2 (2 Points): This problem concerns the sinusoidal-steady-state behavior of the
networks shown below, both of which have two ports.

+
Port #1

−

C
L

+
Port #2

−
R1 R2

+
Port #1

−

R1 R2
+

Port #2
−

L C

(A) Determine the impedance of each network as viewed into Port #1 under the assumption that
Port #2 is open.

(B) Assume that Port #1 of each network is driven in sinusoidal steady state by the voltage
V1 cos(ωt), and that Port #2 is open. Determine the current into the positive terminal of each
network at Port #1. Express the current in the form I1 cos(ωt + φ1) where I1 is an amplitude
and φ1 is a phase angle.

(C) Assume that Port #1 of each network is again driven in sinusoidal steady state by the voltage
V1 cos(ωt), and that Port #2 is again open. Determine the voltage that appears at Port #2.
Express the voltage in the form V2 cos(ωt + φ2) where V2 is an amplitude and φ2 is a phase
angle.



Problem 9.3 (2 Points): A two-port network is fabricated using two resistors and one
capacitor as shown below. For vIN(t) = Vin cos(ωt), it is desired that vOUT(t) = VinA(ω) cos(ωt +
φ(ω)), where A(ω) is as shown graphically below. Determine the topology of the network, and,
assuming that the capacitor is a 0.1-µF capacitor, determine the resistances of the two resistors.
Also, determine φ(ω). Note: the last page of this problem set contains a larger graph of A(ω). It

can be turned in with your problem set solutions.
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Problem 9.4 (2 Points): This problem explores the Thevenin and Norton equivalence of
networks operating in sinusoidal steady state. All networks considered here are comprised of linear
resistors, capacitors and inductors, and voltage and current sources all operating at the same
frequency ω. Therefore, all branch currents and voltages operate at the frequency ω.

ℜ{Ṽ ejωt}

L
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+
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−
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+
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−
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i
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#1 #2

(A) Determine the relations between ṼT, ZT, ĨN and ZN which must exist for the i-v relations
at the terminals of Networks #1 and #2 to be identical when operating in sinusoidal steady
state.

(B) Review the arguments for networks involving only linear resistors and sources, and then briefly
explain why Networks #1 and #2 may serve as the Thevenin and Norton equivalents, respec-
tively, of an arbitrary linear network operating in sinusoidal steady state.

(C) Determine ṼT and ZT in the Thevenin equivalent of Network #3.

(D) Suppose ZT in Part C is implemented with Network #4 or #5. Determine RT and CT in
Network #4, and RT and LT in Network #5, in terms of R, L, C and ω. Under what
circumstances is Network #4 preferred over Network #5, and vice versa?



Exercise 9.2
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Problem 9.3
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