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Abstract

We study in this thesis online learning and optimization problems in operations man-
agement where we need to make decisions in the face of incomplete information and
operational constraints in a dynamic environment.

We first consider an online matching problem where a central platform needs to
match a number of limited resources to different groups of users that arrive sequen-
tially over time. The platform does not know the reward of each matching option and
must learn the true rewards from the matching results. We formulate the problem as
a Markovian multi-armed bandit with budget constraints, and propose an innovative
algorithm that is based on assembling the policies for each single arm. We prove the
algorithm’s worst-case performance guarantee, and numerically show the algorithm’s
robust performance compared to alternative heuristics.

We next consider a revenue management problem with add-on discounts where a
retailer offers discounts on selected supportive products (e.g. video games) to cus-
tomers who have also purchased the core products (e.g. video game consoles). When
the products’ demand functions are unknown, we propose a UCB-based learning al-
gorithm that uses the an FPTAS optimization algorithm as a subroutine to determine
the prices of different types of products. We show that the algorithm can converge to
the optimal full-information pricing policy. We also conduct numerical experiments
with real-world data to illustrate the performance of our algorithm and the advantage
of using the add-on discount strategy in practice.

We last consider a network revenue management problem where a retailer aims
to maximize revenue from multiple products with limited inventory. The retailer
does not know the demand of different products, and must learn demand from the
sales data. To optimize the pricing decisions, we propose an efficient algorithm that
combines the Thompson sampling technique and the online gradient descent method
with a primal-dual framework. In comparison to traditional algorithms that are based
on frequently solving linear programs, our algorithm does not need to solve any linear
program, and therefore, has the advantage in computational efficiency. We analyze
the performance guarantee of our algorithm, and show the algorithm’s fast running
time through numerical experiments.
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Chapter 1

Introduction

1.1 Motivation

Operations Management is concerned with the decision-making process that aims to

increase the efficiency of business operations and the production of goods or services.

With the increase of data availability and advance of information technologies, modern

operations management has been increasingly relied on data-driven decision-making

systems, and one of the key challenges in designing such systems is to develop good

operational policies in the face of uncertainty. For example, when an online retailer

determines the prices of products, she faces the uncertainty of customer demand un-

der different prices; when an online ad allocation platform decides the selection of ads

shown to each user, the platform faces the uncertainty of the user’s click response to-

wards different ads. The omnipresence of uncertainties in these applications motivates

the study of algorithms that can learn through interactions with the environment and

optimize operational decisions in an online fashion.

When developing online algorithms for operations management problems under

uncertainty, one faces the classic trade-off between exploration and exploitation. Here,

exploration describes the process of trying different actions to gain more knowledge

about the uncertain factors so as to improve future decisions, and exploitation de-

scribes the process of taking the action that optimizes the system based on the knowl-

edge obtained so far. In practice, the total planning horizon is usually limited. If
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a policy spends too many time periods on exploration, the time left for exploitation

will be very limited, and if a policy uses very few periods for exploration, the esti-

mation accuracy of the unknown factors will be low and affect the decisions in the

exploitation phase. In both scenarios, the policy cannot achieve a good performance.

One classic tool to study this exploration-exploitation trade-off is the multi-armed

bandit model. Specifically, in a multi-armed bandit problem, each action is modeled as

an arm, and every time an agent pulls the arm, the agent observes a random reward

that follows certain probability distribution. The agent does not know the reward

distribution of each arm, and therefore, needs to learn the knowledge by sequentially

experimenting different arms. The agent’s goal is to maximize the total expected

reward.

The multi-armed bandit model and its many variants have been studied exten-

sively in the literature over the past decade, and they have been applied to diverse do-

mains ranging from medical trials, to communication networks, to online advertising

and revenue management. For example, in clinical trials, we can model experimental

treatments as "arms" and use bandit algorithms to investigate the effects of different

treatments with the goal of minimizing patient losses; in routing, we can model route

choices as "arms" and apply bandit algorithms to adaptively optimize the routing

solution in order to minimize delays in a network; and in online advertising, we can

model selections of ads as "arms" and use bandit algorithms to find the optimal ad

allocations to different types of web users so that the total number of ad clicks is

maximized.

The growing interest to use multi-armed bandit techniques to solve online decision-

making problems under uncertainty has also been seen in the Operation Management

literature, where researchers focus on studying dynamic pricing, inventory control

and assortment optimization problems under unknown demand or unknown choice

models. Simultaneously, the operational constraints and practical restrictions one

faces in solving these real-world problems, such as constraints on resource inventory

and restrictions on switching decisions, have also reversely motivated new research

directions for bandit algorithms and have made a big impact on the development of
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the bandit literature.

In this thesis, we study several operations management problems with a uncertain

decision-making environment. We adopt the learning techniques from multi-armed

bandit models to address the exploration-exploitation trade-offs in these problems.

More importantly, we focus on incorporating the learning tasks into more complicated

optimization systems to solve real-world problems that take into account practical

constraints and operational limitations.

1.2 Overview

An overview of the works in this thesis is as follows.

In the first work, we study an online matching problem where a central platform

needs to match a number of limited resources to different groups of users that arrive

sequentially over time. The reward of each matching option depends both on the

type of resource and the time period the user arrives. The matching rewards are

assumed to be unknown, but drawn from probability distributions that are known a

priori. The platform then needs to learn the true rewards online based on real-time

observations of the matching results. The goal of the central platform is to maximize

the total reward from all the matching results without violating the resource capacity

constraints.

We formulate the matching problem with Bayesian rewards as a Markovian multi-

armed bandit with budget constraints, where each arm corresponds to a pair of a

resource and a time period. We devise our algorithm by first finding policies for each

single arm separately via a relaxed linear program, and then "assembling" these poli-

cies together through judicious selection criteria and well-designed pulling orders. We

prove that the expected reward of our algorithm is at least (
√

2−1)/2 of the expected

reward of the optimal algorithm. In particular, in the single-resource case, we prove

the ratio is at least
√

2− 1. We also design numerical experiments to verify our algo-

rithm’s performance guarantee, and compare the algorithm with alternative heuristics

to illustrate the algorithm’s good and robust performance in various settings.
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In the second work, we study a revenue management problem with add-on dis-

counts. The problem is motivated by the practice in the video game industry, where

a retailer offers discounts on selected supportive products (e.g. video games) to cus-

tomers who have also purchased the core products (e.g. video game consoles). We

formulate this problem as an optimization problem to determine the prices of dif-

ferent products and the selection of products with add-on discounts. To address the

computational challenge of this optimization problem, we propose an efficient FPTAS

algorithm that can solve the problem approximately to any desired accuracy.

Additionally, we consider the revenue management problem in the setting where

the retailer has no prior knowledge of the demand functions of different products.

To solve this problem, we propose a UCB-based learning algorithm that uses the

FPTAS optimization algorithm as a subroutine. We show that our learning algorithm

can converge to the optimal algorithm that has full information of the true demand

functions, and we prove that the convergence rate is tight up to a logarithmic term.

We conduct numerical experiments with the real-world transaction data we collect

from a popular video gaming brand’s online store on Tmall.com. The numerical

results illustrate our learning algorithm’s robust performance and fast convergence

to the optimal algorithm in various scenarios. Moreover, the results show that our

learning algorithm can outperform the optimal policy that does not use any add-on

discounts, which illustrates the advantages of using the add-on discount strategy in

practice.

In the third work, we consider a canonical price-based network revenue manage-

ment problem where a retailer with the goal of maximizing revenue needs to decide

the prices of multiple products with limited inventory over a finite selling season.

The demand of different products, as functions of prices, contain parameters that are

unknown, and therefore, the retailer needs to learn these parameters from the sales

data. In addition, we assume that the demand parameters are drawn from certain

probability distributions that are known as prior knowledge.

In the presence of inventory constraints, the retailer faces the trade-off between

exploring different prices to learn demand and exploiting the price that maximizes
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revenue based on the current estimations. To tackle this challenge, we propose in this

work a novel primal-dual algorithm that uses the Thompson sampling algorithm to

learn the unknown demand parameters, and uses the online gradient descent algo-

rithm to learn the unit value of inventory. Compared to traditional algorithms that

are based on solving linear programs (LP) to optimize price in each selling period, our

algorithm does not solve any LP, and therefore, has the advantage in computational

efficiency.

In this work, we provide the optimality performance guarantee of our primal-

dual algorithm, which illustrates the algorithm’s convergence to the optimal pricing

algorithm that knows the true demand parameter. We also show by numerical exper-

iments that our algorithm has an outstanding performance in both optimality and

computation time in comparison to other algorithms in the literature. Moreover,

we discuss extensions of our primal-dual algorithm framework, and show that the

framework can be conveniently adapted to a variety of different problem settings.

The remainder of this thesis is organized as follows. In Chapter 2, we consider

the online matching problem with Bayesian rewards. We formulate the problem as a

Markovian multi-armed bandit with budget constraints and pulling order restrictions.

We develop an innovative algorithm that is based on the idea of "assembling" single-

arm policies, and provide the algorithm’s worst-case performance guarantee.

In Chapter 3, we consider the add-on discount problem with unknown demand

functions. We first develop an efficient FPTAS approximation algorithm to solve

the problem under full demand information, and then develop a UCB-based learn-

ing algorithm that uses the FPTAS optimization algorithm as a subroutine to solve

the problem under unknown demand. We also conduct numerical experiment based

on real-world data to show the advantage of using the add-on discount strategy in

practice.

In Chapter 4, we consider the online network revenue management problem with

unknown demand parameters. We develop a novel primal-dual algorithm that uses

Thompson sampling to learn demand and uses online gradient descent to learn the

unit value of product inventory. We numerically show that our algorithm has the
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advantage in computational efficiency compared to other LP-based dynamic pricing

and learning algorithms in the literature. We also provide the performance guarantee

of our algorithm through an intuitive primal-dual analysis framework, and discuss

extensions of our algorithm to a variety of dynamic pricing settings.

Finally, in Chapter 5, we conclude the thesis with discussions on further research

directions and extensions based on the problems and algorithms we study in each

chapter. The technical proofs for each chapter are included in the appendices.
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Chapter 2

Online Matching with Bayesian

Rewards

2.1 Introduction

In many real-world resource allocation problems, such as online ad allocation (see

Mehta Panigrahi (2012), Mehta et al. (2013)) and appointment scheduling (see

Truong (2015)), the central task is to effectively match a number of resources with

limited capacities to heterogeneous customers that arrive sequentially over time, with

the goal of maximizing a certain notion of total reward (e.g. total revenue or customer

utility) from all the matching results.

For a concrete example, consider the following online traffic allocation problem

faced by the central platform of a large e-commerce company. When a user visits

the e-market, the platform may display a banner ad on the mobile app or the web

page. Such ads come from different channels such as a live web-streaming platform, a

coupon delivery system, or a product recommendation system, etc. Each ad is linked

to a specific item that the channel itself selects for recommendation. The central

platform needs to route online traffic (i.e., impressions) to all of these channels. In

this traffic allocation scheme, each channel provides an estimate of the number of

impressions it would like to receive. The central platform then needs to globally

maximize the total number of clicks on the displayed ads from all the channels.
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Figure 2-1: A canonical matching problem for online traffic allocation platforms.

Figure 2-1 illustrates the dynamics of a canonical matching problem faced by such

an online traffic allocation platform. There are a number of different recommenda-

tion channels. Each channel corresponds to a resource associated with a "budget"

value. The budget represents the number of impressions that the channel expects to

receive. The central platform may not satisfy these expectations from all the channels

(i.e., may not use up all the budget). Instead, it tries to meet the expectations by

maximizing the total reward collected from the budget of these channels.

The total time horizon is divided into several discrete time periods, and in each

time period, a group of users arrive at the central platform sequentially. When a user

arrives, the platform needs to match the user to one of the channels. The reward

of each matching option is measured by the user’s click probability for that channel,

which is also known as the channel’s click-through rate. These click-through rates

depend not only on the recommendation channel, but also the time period the user

arrives. For instance, the click-through rate of a live web-streaming channel in the

morning could be dramatically different from that in the evening. In addition, in this

research, we do not consider the central platform’s ability to estimate personalized

click-through rates, as in practice some channels require the composition of the flow of

impressions to remain unchanged. Nevertheless, the central platform has the ability

to adjust over time the size of the impression flow that each channel receives.

Suppose the central platform knew the click-through rates of all the channels

in all time periods. In order to maximize the total number of clicks, the platform

needs to solve a global optimization problem to make allocation decisions. A common
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reward-maximization strategy is to solve a relaxed linear program

max
x

∑︁
𝑖,𝑗

𝑝𝑖,𝑡𝑥𝑖,𝑡

s.t.
∑︁
𝑡

𝑥𝑖,𝑡 ≤ 𝐵𝑖, ∀𝑖

∑︁
𝑖

𝑥𝑖,𝑡 ≤ 𝐷𝑡, ∀𝑡

x ≥ 0,

where 𝑝𝑖,𝑡 is the click-through rate for channel 𝑖 in period 𝑡, 𝐵𝑖 is the total budget

of channel 𝑖, and 𝐷𝑡 is the number of users in period 𝑡. Then the central platform

would allocate approximately 𝑥𝑖,𝑡 users to channel 𝑖 in period 𝑡.

Unfortunately, in practice, it is usually a challenging task for the central platform

to accurately estimate these click-through rates because of many real-world compli-

cations. First, for online platforms, click-through rates are often estimated by deep

learning models. The estimation results are refreshed from time to time (depending

on the availability of computational resources), which causes drastic changes in the

predictions of future click-through rates. Second, different user types may arrive in

different time periods, so a channel’s click-through rate during the day can be very

different from that during the evening. Due to such variations, the estimation of a

channel’s click-through rate in a certain time period may not be useful for future time

periods.

Motivated by these challenges in estimating click-through rates, we study in this

paper an online matching problem with unknown rewards. Specifically, the rewards of

matching options, as shown in Figure 2-1, are not known a priori. In this setting, the

central platform needs to decide which type of resource to allocate to each arriving

user, while learning the reward of each matching option on the fly based on real-time

observations of the matching results. Given the limited number of allocations both

from each resource and in each time period, the central platform faces the trade-

off between "exploiting" the matching options with demonstrably high rewards and
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"exploring" the options with uncertain reward estimations. More importantly, as

future click-through rates may change according to the way each channel updates

its recommendation strategy (e.g., applies a new dataset for training deep learning

models), and because user types vary with time periods, the rewards of allocating

the same resource in different time periods can be very different. This fact raises an

additional challenge that the knowledge about the rewards of matching options the

platform learns from one time period can hardly be applied to the next.

Our model features a Bayesian learning setting. That is, we assume the rewards

of matching options, although unknown, are drawn randomly from certain known

prior probability distributions. With such prior information, the central platform can

make preliminary decisions regarding the allocation of each resource’s budget across

different time periods. The platform can then adjust these decisions adaptively as it

gains more information about the true rewards online.

The reasons for adopting a Bayesian learning setting in our problem are as follows.

First, in practice, the central platform can always obtain such prior knowledge of a

channel’s click-through rate by analyzing the channel’s click history or from other

similar channels. Second, for our matching problem, a Bayesian setting is less con-

servative than a non-Bayesian setting where no prior information is provided. In the

latter setting, all click-through rates are totally unknown. Ball Queyranne (2009)

and Ma Simchi-Levi (2019) have shown that in such a non-Bayesian environment, it

might be difficult to design an online matching algorithm with a strong performance

guarantee. 1

The main contribution of this paper is that we propose an algorithm with a strong

performance guarantee for the matching problem with Bayesian rewards. In partic-

ular, the optimal algorithm for the problem can be found via a dynamic program.

However, such an approach suffers from the curse of dimensionality, and is thus

computationally infeasible. We show in this paper that our matching and learning al-

gorithm can obtain at least a constant fraction of the expected reward of the optimal

1Here, an algorithm’s performance is measured by competitive ratios. Ball Queyranne (2009)
and Ma Simchi-Levi (2019) have shown that it is impossible to obtain a constant competitive ratio
when there exists arbitrarily many reward levels for each single resource.
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algorithm. We state our main theoretical result in Theorem 2.4. This main result

is based on an interesting analysis of a special case of the model that we present in

Section 2.3.2. Besides technical analysis, we also numerically compare our algorithm

against several other heuristics that are motived by the algorithms in Guha Muna-

gala (2013). The numerical results show that our algorithm obtains around twice the

expected reward of the randomized heuristic in all test cases, and outperforms the

benchmark heuristic in the worst-case scenarios. The comparison results demonstrate

our algorithm’s good and robust performance in various settings.

2.1.1 Literature Review

This paper is related to two main streams of research topics in the literature: online

resource allocation and online learning.

Online Resource allocation

The online resource allocation literature considers the problem of matching resources

with limited capacities to customers that arrive sequentially over time. A major

focus of the research papers in this area is to develop optimal allocation algorithms

under different assumptions of customer arrival sequences. One of the classic settings

assumes stochastic arrivals, where the reward associated with each arriving customer

is assumed to be drawn i.i.d. from a known distribution. For a brief overview of the

celebrated results in this setting, see Feldman et al. (2009), Feldman et al. (2010),

Jaillet Lu (2012) and Jaillet Lu (2013). In another classic setting, the customer

arrival sequence is assumed to be a random permutation of a unknown sequence, and

a summary of the main results in this setting can be found in Goel Mehta (2008),

Devanur Hayes (2009), Mahdian Yan (2011) and Agrawal et al. (2014).

We highlight the online matching setting that assumes arbitrary arrivals. In this

setting, the central platform has no predictability in the types of customers that will

arrive in the future. In this line of research, Ball Queyranne (2009) study an on-

line booking problem. That paper considers a single resource that generates different
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rewards when allocated to different customers. Mehta et al. (2005) and Buchbinder

et al. (2007) study the Adwords problem. Golrezaei et al. (2014) study a personal-

ized online assortment problem. These papers consider multiple resources, and each

resource generates the same reward rate when allocated to different customers. Ma

Simchi-Levi (2019) generalize these two scenarios and study the problem that involves

multiple resources with each resource having multiple reward rates.

The performance of algorithms in the arbitrary arrival setting is usually measured

by competitive ratio, which is defined as the ratio between the reward of an algorithm

and the reward of the optimal algorithm that knows the arrival sequence in advance.

In the problem that considers multiple reward rates, Ball Queyranne (2009) and Ma

Simchi-Levi (2019) show that the best competitive ratio an algorithm can achieve is

dependent on the values of rewards, which means no algorithms can obtain a constant

competitive ratio for arbitrary arrival sequences.

A recent stream of the research has been focusing on incorporating online learning

into resource allocation problems where the rewards for the allocation decisions are

unknown and the central platform has to learn these rewards online. In the setting

of stochastic arrivals, the problem is closely related to the “bandits with knapsacks"

problem that studies stochastic bandits with resource constraints. The bandits with

knapsacks model is introduced in Slivkins (2019), and then followed by a stream of

work, such as Agrawal Devanur (2014a), Agrawal Devanur (2016) Agrawal et al.

(2016b), in which the authors extend the model to allow more generalized forms of

rewards and constraints, and Ferreira et al. (2018), in which the authors extend the

model to the Bayesian setting and study a personalized dynamic pricing problem.

In the setting of arbitrary arrivals, Cheung et al. (2018) study a general resource

allocation problem with unknown rewards. That paper provides a powerful algorithm

framework that integrates the inventory balancing techniques for online matching

problems with a broad class of online learning algorithms.

Building on this recent stream of work, we study in this paper an online re-

source allocation model with unknown rewards. Specifically, our model considers

non-stationary customer arrivals, which means the rewards of allocation decisions in
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different time periods are different. This setting is less conservative than that in Ma

Simchi-Levi (2019) and Cheung et al. (2018), and more flexible than that in Ferreira

et al. (2018). Both our model and Ferreira et al. (2018) adopt a Bayesian learning

setting. The difference is that Ferreira et al. (2018) provides a sub-linear regret as

the algorithm’s performance measure, which makes sense in the asymptotic regime as

the number of time periods or users grows large. In this paper, we aim to develop an

algorithm with a performance guarantee for all problem instances. Therefore, instead

of providing a sub-linear regret, we show that our algorithm can obtain a constant

fraction of the optimal algorithm’s reward.

Online learning

The online learning literature focuses on sequential decision-making problems under

unknown rewards, and the general approach is to formulate the learning (exploration)

and earning (exploitation) trade-off in the decision-making process as a multi-armed

bandit problem. Specifically in the Bayesian learning setting, the problem is usually

formulated as a Markovian multi-armed bandit, where each arm is associated with a

Markov decision process (MDP).

In Markovian bandit problems, the rewards and transition probabilities at each

state of the MDPs are given as input, and therefore, the major challenge is compu-

tational. In the infinite-horizon setting with discounted rewards, the problem can

be solved by the celebrated Gittins index policy. The books Gittins Jones (1979)

and Gittins et al. (2011) have provided an in-depth treatment of such index-based

policies.

Note that the Markovian bandit problem is different from the stochastic bandit

problem. Specifically, the objective of the latter is to minimize regret, which is defined

as an algorithm’s reward loss relative to the optimal policy of a clairvoyant that knows

the true rewards of each arm. For a comprehensive review on the stochastic bandit

problem and its many variations, see Bubeck et al. (2012) and Slivkins (2019).

Building on the traditional Markvoian bandit model, a recent line of research has

been focusing on studying the finite-horizon version of the model with extra opera-
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tional constraints. In such cases, the optimal policy is computationally intractable, so

an algorithm’s performance is measured by the ratio between the expected reward of

the algorithm and the expected reward of the optimal algorithm. For example, Farias

Madan (2011) study an irrevocable multi-armed bandit model where revisiting to an

arm that was pulled but then stopped is disallowed. The model is motivated by ap-

plication scenarios in which such revisit actions are either unacceptable or too costly.

Farias Madan (2011) propose an algorithm for the problem by drawing intuitions

from the packing heuristic, and show that the algorithm has a constant performance

guarantee.

Following this line of work, Guha Munagala (2013) propose an algorithm for

the general finite-horizon Markovian bandit problem. The algorithm satisfies the

irrevocability restrictions and obtains a 1/2 performance ratio guarantee. Later, Ma

(2018) proposes a generalized model that bridges the finite-horizon Markovian bandit

problem with the stochastic knapsack problem in Dean et al. (2008). That paper

provides an algorithm for the generalized model, which also obtains a 1/2 ratio under

the restrictions of irrevocable policies.

Another line of work on Markovian bandit problems focuses on studying restric-

tive bandit policies under various types of budget constraints. For instance, Guha

Munagala (2009) consider a Markovian bandit model where both the action of pulling

an arm and the action of switching between arms incur costs, and these two types of

costs are respectively bounded by different budgets. Moreover, that paper considers

two types of objectives: maximizing total accumulative reward (past utilization) and

identifying the best arm (future utilization). The authors provide algorithms with

constant performance ratios in both cases.

Guha Munagala (2013) then summarize a series of budget-constrained Markovian

bandit models in Guha Munagala (2007), Guha Munagala (2008) and Guha Muna-

gala (2009). More importantly, that paper proposes a general algorithm framework

for solving finite-horizon Markovian bandit problems with various side constraints.

In one of the restrictive settings, one has to pull the arms irrevocably and follow the

order that is arbitrarily fixed at the beginning. In this setting, that paper provides
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an algorithm that can always obtain at least 1/4 the expected reward of the optimal

policy.

This paper considers a Markovian bandit model where each arm corresponds to a

pair of a resource and a time period. Specifically, in each time period, pulling an arm

represents matching a resource to a customer that arrives in this period. In addition,

the matching decision in each time period is modeled as a set of independent arms.

It is worth mentioning that our model with a single time period corresponds to the

model in Farias Madan (2011) without irrevocability constraints. Moreover, due to

the nature of the matching process, our model with a single resource corresponds to

the restrictive setting in Guha Munagala (2013) where the order of pulling different

arms is arbitrarily fixed at the beginning. We consider our model a generalization

of these two models to multiple resources and multiple time periods. Furthermore,

in the single-resource case, we devise an innovative algorithm that improves the 1/4

ratio provided in Guha Munagala (2013). In the generalized case, we integrate this

algorithm with the algorithm for the single-period model, and provide a powerful

algorithm with a strong performance guarantee.

The Markovian bandit model in this paper also features a non-stationary learning

environment where the actions of matching the same resource in different time periods

are formulated as independent arms. This setting is less conservative than that of

the "restless bandits" where an arm’s state keeps evolving regardless of the arm’s

being pulled or not. We refer the readers to Whittle (1980), Bertsimas Niño-Mora

(2000), Nino-Mora (2001) and Guha et al. (2010) for a detailed treatment of the

restless bandit problem. In addition, our non-stationary setting is different from the

setting in Besbes et al. (2014), Besbes et al. (2015) and Cheung et al. (2019). In

those papers, the authors consider a non-stationary reward structure for stochastic

bandits, in which the variation of the arms’ mean rewards over the entire time horizon

is bounded by a variation budget. In this paper, we assume no such variation budgets.

In fact, in our model, the rewards of each resource’s associated arms in different time

periods can vary dramatically. This corresponds to the observation in practice that

the popularity of a live web-streaming channel in the evening is significantly higher
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than that in the morning. We show in this paper that our algorithm’s performance

guarantee applies to all levels of reward variations.

2.2 Model Formulation

Motivated by the online traffic allocation problem, we consider an online matching

model with a Bayesian learning environment. Throughout this paper, we use [𝑘] to

denote the set {1, 2, . . . , 𝑘} for any positive integer 𝑘.

2.2.1 Online Matching Process

We need to match 𝑁 resources to users arriving in 𝑇 time periods. Each resource

𝑖 ∈ [𝑁 ], as illustrated in Figure 2-1, has a budget 𝐵𝑖 that specifies the maximum

number of users (i.e., impressions) it can receive across the horizon. In practice, this

number of impressions is given to the central platform from the beginning, and hence

we assume each resource 𝑖’s budget 𝐵𝑖 is known a priori.

We consider each time period 𝑡 ∈ [𝑇 ] as a period of time in a day or a week. For

example, to model a daily traffic allocation task, we can divide a day into three time

periods: morning, afternoon and evening. With such division of time periods, our

model can capture the possible variations of each channel’s click-through rate during

a day. In each time period, a group of 𝐷𝑡 users arrive sequentially. Given that the real

traffic volume in each time period is high, the central platform can usually estimate

the value of 𝐷𝑡 accurately, i.e., with small variances. Therefore, we assume that 𝐷𝑡

is known for all 𝑡 ∈ [𝑇 ] at the beginning.

The reward of resource 𝑖 in period 𝑡 is denoted by 𝑝𝑖,𝑡 ∈ [0, 1], which corresponds

to the click-through rate of channel 𝑖 in period 𝑡. For each arriving user, we need to

match her to one of the resources, or irrevocably reject her (by not displaying any ad

or recommendation to her in order to save budgets for future periods 2). When we

2It is not practical to reject users as it wastes valuable impressions. In practice, there are often
resources with large budget but small reward values. Then we can always replace the "reject" option
by matching users to those resources. Nevertheless, we keep the "reject" option so that the model
is clean.
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match a user to resource 𝑖 in period 𝑡, we earn reward 𝑝𝑖,𝑡 in expectation if resource

𝑖 still has a positive remaining budget. After that, the budget value of the matched

resource is depleted by one, regardless of whether it is clicked or not. The goal is to

maximize the total reward collected from all the users and resources.

2.2.2 Bayesian Online Learning

Due to the challenges of estimating click-through rates in practice, we assume in our

model that the reward values 𝑝𝑖,𝑡 ∈ [0, 1] are unknown from the beginning. We assume

𝑝𝑖,𝑡 are drawn from certain probability distributions, and we know these distributions

a priori. We then need to learn the true reward values on the fly from real-time obser-

vations of users’ clicks. Each time we match a user to a resource, we can immediately

observe an independent Bernoulli response of the user, which in practice corresponds

to the click or no-click action. The success rate of the Bernoulli random variable is

𝑝𝑖,𝑡 for resource 𝑖 in period 𝑡.

We assume that all the 𝑝𝑖,𝑡 are independent of each other, because as mentioned

in the introduction, the estimation models (e.g., deep learning models) implemented

by the traffic allocation platform may refresh the estimation results from time to

time using new datasets. Consequently, we can view the combination (𝑖, 𝑡) of each

resource 𝑖 ∈ [𝑁 ] and time period 𝑡 ∈ [𝑇 ] as an “arm”. Pulling arm (𝑖, 𝑡) corresponds

to matching a user to resource 𝑖 in period 𝑡. After each pull of arm (𝑖, 𝑡), we update

the posterior probability distribution of 𝑝𝑖,𝑡 based on the corresponding Bernoulli

outcome.

For each arm (𝑖, 𝑡), we can use a Markov decision process (MDP) to describe the

updating procedure of the posterior distribution of 𝑝𝑖,𝑡 and the associated decision-

making process. Since 𝑝𝑖,𝑡 is a Bernoulli success rate, we can use two numbers (𝑎, 𝑏),

which denote respectively the number of successes and failures we have observed, to

represent the current state, i.e., knowledge of 𝑝𝑖,𝑡. Let 𝑆𝑖,𝑡 denote the state space for

(𝑎, 𝑏). The initial state of the MDP is (0, 0). For each state 𝑢 = (𝑎, 𝑏) ∈ 𝑆𝑖,𝑡, let

𝜃
(𝑢)
𝑖,𝑡 (·) denote the density function of the posterior distribution of 𝑝𝑖,𝑡 in state 𝑢, and

𝑝
(𝑢)
𝑖,𝑡 the expected value of 𝑝𝑖,𝑡 in state 𝑢. Given the posterior probability distribution
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of 𝑝𝑖,𝑡, we know

𝑝
(𝑢)
𝑖,𝑡 :=

∫︁ 1

0

𝑝 · 𝜃(𝑢)𝑖,𝑡 (𝑝) 𝑑𝑝.

Let 𝑞
(𝑢,𝑣)
𝑖,𝑡 denote the transition probability from state 𝑢 to state 𝑣 when the arm is

pulled in state 𝑢. Given 𝑢 = (𝑎, 𝑏), we have

𝑞
(𝑢,𝑣)
𝑖,𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝
(𝑢)
𝑖,𝑡 , 𝑣 = (𝑎 + 1, 𝑏)

1− 𝑝
(𝑢)
𝑖,𝑡 , 𝑣 = (𝑎, 𝑏 + 1)

0, otherwise.

At the beginning of each period 𝑡, the MDPs of arms (1, 𝑡), (2, 𝑡), . . . , (𝑁, 𝑡) are in

state (0, 0), as we have not collected any online information about 𝑝1,𝑡, 𝑝2,𝑡, . . . , 𝑝𝑁,𝑡.

For no more than 𝐷𝑡 times in period 𝑡, we need to pull one of the arms (1, 𝑡), (2, 𝑡),

. . ., (𝑁, 𝑡) with positive remaining budget. Each time we pull an arm (𝑖, 𝑡), we collect

reward 𝑝
(𝑢)
𝑖,𝑡 in expectation. Then the MDP of arm (𝑖, 𝑡) moves from the current state

𝑢 ∈ 𝑆𝑖,𝑡 to a new state 𝑣 ∈ 𝑆𝑖,𝑡 according to transition probability 𝑞
(𝑢,𝑣)
𝑖,𝑡 . For the arms

that are not pulled, their MDPs stay at the same state with probability one and the

central platform collects no reward from these arms.

As a summary of the model description, we remark that we can make every match-

ing decision based on the current states of the all the MDPs. The estimation of 𝑝𝑖,𝑡

becomes more accurate as we allocate more users to resource 𝑖 in period 𝑡. After

making a matching decision in period 𝑡 and observing the corresponding Bernoulli

response, we need to make a choice among the following decisions:

1. match the same resource to the next user in period 𝑡;

2. match another resource to the next user in period 𝑡;

3. reject all remaining users in period 𝑡 and save the budgets of all resources for

future time periods.

The central platform’s learning and decision-making process characterizes the fol-

lowing challenges. First, the platform faces the classic trade-off between learning

(i.e., exploration) and earning (i.e., exploitation) in each time period. Specifically,

the platform needs to balance the number of displays between the matching options
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with established high rewards (exploitation) and the matching options whose rewards

are potentially high but still uncertain (exploration). Second, the platform needs to

decide how to allocate each resource’s budget among different time periods. The de-

cision on whether to allocate the budget to the current time period or save the budget

for future time periods reinforces the importance of the balance between exploitation

and exploration.

Performance guarantee. In principle, we can use a dynamic program to find

the optimal algorithm for maximizing the total expected reward, on the joint state

space of the 𝑁 × 𝑇 arms. Unfortunately, this approach suffers from the curse of

dimensionality. Thus, in this paper, we aim to design an approximation algorithm

with a provable performance guarantee.

To be more precise, consider a problem instance ℐ, which specifies the number

of resources 𝑁 , the number of time periods 𝑇 , budget constraint 𝐵𝑖, demand size

𝐷𝑡, and the prior distribution 𝜃𝑖,𝑡 of reward 𝑝𝑖,𝑡, for each arm (𝑖, 𝑡) with 𝑖 ∈ [𝑁 ] and

𝑡 ∈ [𝑇 ]. Let ALG(ℐ) denote the expected reward of our algorithm for problem instance

ℐ, and OPT(ℐ) the expected reward of the optimal algorithm. (The expectations are

taken over the randomness in the MDP transitions and an algorithm’s decisions.) We

propose and analyze online algorithms with the following strong guarantee:

ALG(ℐ) ≥ 𝛼 · OPT(ℐ) for all ℐ (2.1)

where 𝛼 is a constant to be proved.

LP relaxation. To provide an analytical benchmark in place of OPT, we formu-

late a linear program relaxation of the Markovian problem.

In this formulation, 𝑦(𝑢)𝑖,𝑡 ∈ [0, 1] represents the probability that the MDP of arm

(𝑖, 𝑡) ever "enters" state 𝑢; 𝑥(𝑢)
𝑖,𝑡 ∈ [0, 1] represents the probability that the MDP of

arm (𝑖, 𝑡) ever enters state 𝑢 and an algorithm pulls arm (𝑖, 𝑡) while its corresponding

MDP is in state 𝑢. More specifically, for arm (𝑖, 𝑡), 𝑦(𝑢)𝑖,𝑡 is defined on states 𝑢 ∈ 𝑆 ′′
𝑖,𝑡

where 𝑆 ′′
𝑖,𝑡 = {(𝑎, 𝑏) | 𝑎 + 𝑏 ≤ min{𝐵𝑖, 𝐷𝑡}}, and 𝑥

(𝑢)
𝑖,𝑡 is defined on states 𝑢 ∈ 𝑆 ′

𝑖,𝑡 where

𝑆 ′
𝑖,𝑡 = {(𝑎, 𝑏) | 𝑎 + 𝑏 < min{𝐵𝑖, 𝐷𝑡}}. Constraints (2.4) and (2.5) describe the bud-
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get constraints and group-size constraints. Constraint (2.8) ensures that each MDP

starts from the initial state 𝜌 := (0, 0); constraint (2.9) ensures that the transition

probabilities in each MDP are valid following our definition of 𝑥(𝑢)
𝑖,𝑡 and 𝑦

(𝑢)
𝑖,𝑡 .

LP := max
𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

∑︁
𝑢∈𝑆′

𝑖,𝑡

𝑝
(𝑢)
𝑖,𝑡 𝑥

(𝑢)
𝑖,𝑡 . (2.2)

s.t. 0 ≤ 𝑥
(𝑢)
𝑖,𝑡 ≤ 𝑦

(𝑢)
𝑖,𝑡 , ∀ 𝑢 ∈ 𝑆 ′

𝑖,𝑡 𝑡 ∈ [𝑇 ] 𝑖 ∈ [𝑁 ] (2.3)
𝑇∑︁
𝑡=1

∑︁
𝑢∈𝑆′

𝑖,𝑡

𝑥
(𝑢)
𝑖,𝑡 ≤ 𝐵𝑖, ∀ 𝑖 ∈ [𝑁 ] (2.4)

𝑁∑︁
𝑖=1

∑︁
𝑢∈𝑆′

𝑖,𝑡

𝑥
(𝑢)
𝑖,𝑡 ≤ 𝐷𝑡, ∀ 𝑡 ∈ [𝑇 ] (2.5)

𝑥
(𝑢)
𝑖,𝑡 ∈ [0, 1], ∀ 𝑢 ∈ 𝑆 ′

𝑖,𝑡 𝑡 ∈ [𝑇 ] (2.6)

𝑦
(𝑢)
𝑖,𝑡 ∈ [0, 1], ∀ 𝑢 ∈ 𝑆 ′′

𝑖,𝑡 𝑡 ∈ [𝑇 ] (2.7)

𝑦
(𝜌)
𝑖,𝑡 = 1, ∀ 𝑡 ∈ [𝑇 ] 𝑖 ∈ [𝑁 ] (2.8)

𝑦
(𝑣)
𝑖,𝑡 =

∑︁
𝑢∈𝑆′

𝑖,𝑡

𝑥
(𝑢)
𝑖,𝑡 𝑞

(𝑢,𝑣)
𝑖,𝑡 , ∀ 𝑣 ∈ 𝑆 ′′

𝑖,𝑡 ∖ {𝜌} 𝑡 ∈ [𝑇 ] 𝑖 ∈ [𝑁 ] . (2.9)

This linear program provides an upper bound on the expected reward of the

optimal algorithm. We state this result in Theorem 2.1. We use LP to denote both

the linear program and its optimal value. A similar linear program formulation is

also proposed in paper Farias Madan (2011) and Guha Munagala (2013).

Theorem 2.1. The expected reward of the optimal algorithm is upper-bounded by LP.

2.2.3 Preliminaries

We introduce in this section the basic technical details for designing our algorithm

and proving the algorithm’s performance guarantee. These technical details are based

on the results developed in Guha Munagala (2013).

Notice that the solution to LP does not directly correspond to an algorithm for

our model since the decision variables do not capture the joint evolution of the states
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of different arms. Nevertheless, the solution can be used to construct a collection of

"de-coupled policies" for each single arm, and the ideas of Guha Munagala (2013)

for devising approximation algorithms are based on “assembling” these de-coupled

policies into online algorithms. Our novel algorithms in Section 2.3 and Section 2.4

are also built upon assembling such de-coupled policies.

We call the decoupled policies single-arm policies. Specifically, for each arm (𝑖, 𝑡),

we denote the arm’s single-arm policy as 𝒫𝑖,𝑡(x𝑖,𝑡,y𝑖,𝑡, 𝐾) and it has the following

parameters:

∙ feasible solution x𝑖,𝑡 = {𝑥(𝑢)
𝑖,𝑡 , 𝑢 ∈ 𝑆 ′

𝑖,𝑡}, y𝑖,𝑡 = {𝑦(𝑢)𝑖,𝑡 , 𝑢 ∈ 𝑆 ′′
𝑖,𝑡} to LP;

∙ allowed number of pulls or “budget" parameter 𝐾.

The single-arm policy 𝒫𝑖,𝑡(x𝑖,𝑡,y𝑖,𝑡, 𝐾) for each arm (𝑖, 𝑡) specifies a (randomized)

mapping from each state 𝑢 = (𝑎, 𝑏) in 𝑆𝑖,𝑡 with 𝑎 + 𝑏 < 𝐾 to one of the decisions: (i)

pull the arm, or (ii) stop. Formally, we define 𝒫𝑖,𝑡(x𝑖,𝑡,y𝑖,𝑡, 𝐾) as follows.

Single-arm policy 𝒫𝑖,𝑡(x𝑖,𝑡,y𝑖,𝑡, 𝐾)

Initialization: set 𝑎 = 𝑏 = 0 and state 𝑢 := (𝑎, 𝑏)

While 𝑎 + 𝑏 < 𝐾:

Choose 𝑤 ∈ [0, 𝑦
(𝑢)
𝑖,𝑡 ] uniformly at random:

(a). If 𝑤 ∈ [0, 𝑥
(𝑢)
𝑖,𝑡 ], then pull the arm (𝑖, 𝑡).

Observe a transition of the MDP from 𝑢 to 𝑣 := (𝑎′, 𝑏′).

Set 𝑢← 𝑣, 𝑎← 𝑎′, 𝑏← 𝑏′.

(b). If 𝑤 ∈ (𝑥
(𝑢)
𝑖,𝑡 , 𝑦

(𝑢)
𝑖,𝑡 ], then stop.

Return 𝑎 + 𝑏.

We can interpret single-arm policies as stopping trials. For each arm (𝑖, 𝑡), we

keep pulling the arm until the number of pulls reaches budget 𝐾, or until we observe

𝑤 ∈ (𝑥
(𝑢)
𝑖,𝑡 , 𝑦

(𝑢)
𝑖,𝑡 ] in state 𝑢. The policy then returns the total number of pulls as a

result.

Let ℛ(·) and 𝒦(·) be the expected reward and expected cost (i.e., number of pulls)

functions of a single-arm policy, respectively. Given single-arm policy 𝒫𝑖,𝑡(x𝑖,𝑡,y𝑖,𝑡, 𝐾),
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we have

ℛ(𝒫𝑖,𝑡(x𝑖,𝑡,y𝑖,𝑡, 𝐾)) :=
∑︁

𝑢:(𝑎,𝑏)∈𝑆′
𝑖,𝑡

𝑝
(𝑢)
𝑖,𝑡 𝑥

(𝑢)
𝑖,𝑡 1(𝑎 + 𝑏 < 𝐾), (2.10)

𝒦(𝒫𝑖,𝑡(x𝑖,𝑡,y𝑖,𝑡, 𝐾)) :=
∑︁

𝑢:(𝑎,𝑏)∈𝑆′
𝑖,𝑡

𝑥
(𝑢)
𝑖,𝑡 1(𝑎 + 𝑏 < 𝐾). (2.11)

The summations in (2.10) and (2.11) are taken over the states (𝑎, 𝑏) in 𝑆 ′
𝑖,𝑡 where

𝑎 + 𝑏 < min{𝐵𝑖, 𝐷𝑡}.

Now we consider the "assembling procedure" that runs a collection of single-arm

policies according to a pre-specified order and an adaptively updated budget param-

eter. This assembling procedure defines a general algorithm framework for design-

ing algorithms with single-arm policies, and we will frequently use this framework

throughout this paper. To illustrate the idea of this general framework, we consider

𝑀 arms, with each arm having a budget parameter 𝑈𝑚. In addition, these 𝑀 arms

share a common budget 𝑊 .

The assembling procedure takes the following components as inputs:

∙ single-arm policies: 𝒫𝑚(x𝑚,y𝑚, ·) for 𝑚 ∈ [𝑀 ];

∙ an order of pulling the 𝑀 arms (i.e., running the corresponding single-arm

policies): 𝐼(1), . . . , 𝐼(𝑀), which is a permutation of 1, . . . ,𝑀 .

The framework is formally defined as follows. Note that the algorithm framework

is a central component for developing the algorithms for our problem where each

coupling constraint (with respect to 𝐵𝑖 or 𝐷𝑡) corresponds to an assembling procedure.

Specifically in our problem, for each period 𝑡 ∈ [𝑇 ], we have 𝑁 arms (1, 𝑡), . . . , (𝑁, 𝑡)

sharing budget 𝐷𝑡, and for each resource 𝑖 ∈ [𝑁 ], we have 𝑇 arms (𝑖, 1), . . . , (𝑖, 𝑇 )

sharing budget 𝐵𝑖. Therefore, given single-arm policies 𝒫𝑖,𝑡(x𝑖,𝑡,y𝑖,𝑡, ·), we can devise

our algorithm by applying Framework to the single-arm policies of these different sets

of arms.

In the algorithm framework, we keep updating the budget parameter of each

single-arm policy. Given single-arm policy 𝒫𝑚(x𝑚,y𝑚, 𝐾), when its budget parameter

is reduced to 𝛽𝐾 with 𝛽 ∈ [0, 1], we provide in Theorem 2.2 the relationship between

36



𝒫𝑚(x𝑚,y𝑚, 𝐾) and 𝒫𝑚(x𝑚,y𝑚, 𝛽𝐾) in terms of their expected rewards and expected

costs. Based on this result, we show in Proposition 2.1 a lower bound of the expected

reward of any algorithm that fits into Framework.

Framework

Input: single-arm policies 𝒫𝑚(x𝑚,y𝑚, ·), 𝑚 ∈ [𝑀 ];

order 𝐼(1), ...., 𝐼(𝑀).

Initialization: set 𝑊 ′ = 𝑊 .

For 𝑘 = [1, . . . ,𝑀 ]:

𝑛← 𝒫𝐼(𝑘)(x𝐼(𝑘),y𝐼(𝑘),min{𝑈𝐼(𝑘),𝑊
′});

𝑊 ′ ← 𝑊 ′ − 𝑛.

Theorem 2.2. Given single-arm policy 𝒫𝑚(x𝑚,y𝑚, 𝐾) with budget parameter (i.e.,

allowed number of pulls) 𝐾, if 𝐾 is reduced to 𝛽𝐾 where 𝛽 ∈ [0, 1], then we have

(𝑖) ℛ (𝒫𝑚(x𝑚,y𝑚, 𝛽𝐾)) ≥ 𝛽 · ℛ (𝒫𝑚(x𝑚,y𝑚, 𝐾)) ,

(𝑖𝑖) 𝒦 (𝒫𝑚(x𝑚,y𝑚, 𝛽𝐾)) ≤ 𝒦 (𝒫𝑚(x𝑚,y𝑚, 𝐾)) .

Proposition 2.1. Consider 𝑀 arms that share budget 𝑊 , and each arm 𝑚 ∈ [𝑀 ]

has budget 𝑈𝑚. Given single-arm policies 𝒫𝑚(·, 𝐾𝑚) with budget parameter 𝐾𝑚 =

min{𝑈𝑚,𝑊} for each 𝑚 ∈ [𝑀 ], expected reward ℛ′
𝑚 = ℛ(𝒫𝑚(·, 𝐾𝑚)) and expected

cost 𝒦′
𝑚 = 𝒦(𝒫𝑚(·, 𝐾𝑚)) then the expected reward of any algorithm that runs these

single-arm policies with Framework in the order 𝐼(1), . . . , 𝐼(𝑀) is at least

∑︁
𝑘∈[𝑀 ]

(︃
1− 1

𝑊

∑︁
𝑗<𝑘

𝒦′
𝐼(𝑗)

)︃
ℛ′

𝐼(𝑘). (2.12)

2.3 Algorithms for Two Special Cases

We consider in this section two special cases of the online resource allocation problem,

where we assume 𝑇 = 1 (i.e., single time period) and 𝑁 = 1 (i.e., single resource),

respectively. The algorithms for these two special cases are both based on Framework.
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More importantly, the design of these two algorithms motivate the idea for devising

the algorithm for the general problem where 𝑇 and 𝑁 can be any positive integers.

The single-period problem where 𝑇 = 1 has been well studied in Farias Madan

(2011) and Guha Munagala (2013). For convenience of discussion, we restate the

algorithm using Framework and provide the main results from Guha Munagala (2013)

in Section 2.3.1.

The single-resource problem where 𝑁 = 1 is the major focus of our paper. In

this problem, we cannot decide the order of pulling different arms, but have to follow

the time order, and therefore, the algorithm for the 𝑇 = 1 model cannot be applied.

To tackle this challenge, we propose a novel algorithm that judiciously allocates the

budget between the “good" arms that have relatively high rewards and the “bad"

arms that have relatively low rewards. We present the development of the algorithm

and the algorithm’s performance guarantee in Section 2.3.2.

2.3.1 Single time period and multiple resources

In the case of 𝑇 = 1, we have 𝑁 arms sharing budget 𝐷 (subscript 𝑡 omitted), and

each arm 𝑖 has budget 𝐵𝑖 for 𝑖 ∈ [𝑁 ]. Given single-arm policy 𝒫𝑖(·) := 𝒫𝑖(x
*
𝑖 ,y

*
𝑖 , ·)

with optimal solution x*
𝑖 , y*

𝑖 to LP, letℛ𝑖 and 𝒦𝑖 be the expected reward and expected

cost of the policy 𝒫𝑖(min{𝐵𝑖, 𝐷}) with budget parameter min{𝐵𝑖, 𝐷}.

To solve this problem, we follow the "greedy" approach proposed in Farias Madan

(2011) and Guha Munagala (2013) that runs single-arm policies 𝒫𝑖(·) for 𝑖 ∈ [𝑁 ]

with Framework in a decreasing order of their "reward-to-cost ratios". We refer to the

algorithm as Greedy, and describe its detailed procedure as follows.

We obtain from Guha Munagala (2013) that

∑︁
𝑘∈[𝑁 ]

(︃
1− 1

𝐷

∑︁
𝑗<𝑘

𝒦𝐼(𝑗)

)︃
ℛ𝐼(𝑘) ≥

1

2

∑︁
𝑖∈[𝑁 ]

ℛ𝑖. (2.13)

By Proposition 2.1, we know the left-hand side of (2.13) is a lower bound of the

expected reward of algorithm Greedy. In addition, by Theorem 2.1, we know that
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∑︀
𝑖∈[𝑁 ]ℛ𝑖 = LP ≥ OPT, where OPT denotes the expected reward of the optimal

algorithm for the problem. Let ALG denote the expected reward of algorithm Greedy,

and we obtain the performance guarantee ALG ≥ 1
2
OPT.

Greedy

Input: single-arm policies 𝒫𝑖(·) for 𝑖 ∈ [𝑁 ];

order 𝐼(1), ...., 𝐼(𝑁) such that

ℛ𝐼(1)

𝒦𝐼(1)

≥
ℛ𝐼(2)

𝒦𝐼(2)

≥ . . . ≥
ℛ𝐼(𝑁)

𝒦𝐼(𝑁)

.

Initialization: set 𝐷′ = 𝐷.

For 𝑘 in [1, . . . , 𝑁 ]:

𝑛← 𝒫𝐼(𝑘)(min{𝐵𝐼(𝑘), 𝐷
′});

𝐷′ ← 𝐷′ − 𝑛.

2.3.2 Single resource and multiple time periods

In the case of 𝑁 = 1, we have 𝑇 arms sharing budget 𝐵 (subscript 𝑖 omitted), and

each arm 𝑡 has budget 𝐷𝑡. This problem is much more challenging than the previous

one due to an additional restriction that we must pull the arms according to the time

order 1, . . . , 𝑇 . Hence the previous greedy algorithm, in which we have the freedom

of choosing the order of pulling different arms, cannot be applied to this case.

To tackle this challenge raised by the time order restriction, we develop in this

paper an innovative algorithm that differentiates the allocation of each arm’s budget

based on the arm’s relative reward levels. The outline for developing the algorithm is

as follows. First, we describe the worst-case input order for any algorithm that uses

Framework. Then with this worst-case order, we separate the set of high-rewarding

arms and the set of low-rewarding arms by judiciously selecting a threshold value of

the single-arm policy’s reward-to-cost ratio. Last, we modify each arm’s single-arm

policy with differentiation based on the set each arm belongs to. We propose the

algorithm that runs these modified policies with Framework in the fixed time order,
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and we prove our algorithm’s performance guarantee by establishing a condition that

is similar to (2.13).

Worst-case Order

The worst-case order for any algorithm that runs under Framework is defined in terms

of the lower bound of the algorithm’s expected reward, and its formal definition is

provided in Proposition 2.2.

Proposition 2.2. The lower bound (2.12) shown in Proposition 2.1 is minimized

when the order 𝐼(1), . . . , 𝐼(𝑀) is such that

ℛ′
𝐼(1)

𝒦′
𝐼(1)

≤
ℛ′

𝐼(2)

𝒦′
𝐼(2)

≤ . . . ≤
ℛ′

𝐼(𝑀)

𝒦′
𝐼(𝑀)

. (2.14)

We refer to the order 𝐼(1), . . . , 𝐼(𝑀) that satisfies (2.14) as the worst-case order.

In particular, given single-arm policy 𝒫𝑡(·) := 𝒫𝑡(x
*
𝑡 ,y

*
𝑡 , ·), expected reward ℛ𝑡

and expected cost 𝒦𝑡 of the policy 𝒫𝑡(min{𝐵,𝐷𝑡}), consider the algorithm that runs

single-arm policies 𝒫𝑡(·) with Framework in order 𝑡 = 1, . . . , 𝑇 . By Proposition 2.2,

in the worst case, the reward-to-cost ratios of these single-arm policies increase in 𝑡,

namely, ℛ1/𝒦1 ≤ . . . ≤ ℛ𝑇/𝒦𝑇 , and the value of the lower bound (2.12) is now

∑︁
𝑡∈[𝑇 ]

(︃
1− 1

𝐵

∑︁
𝑠<𝑡

𝒦𝑠

)︃
ℛ𝑡. (2.15)

We illustrate the lower bound for the worst-case order in Figure 2-2. We observe

that the value of (2.15) is equivalent to the area of the highlighted rectangles in the

figure. We can also lower-bound this value by the area under the piecewise-linear

curve where the slope of the 𝑡-th line segment is given by 𝐵 · (ℛ𝑡/𝒦𝑡). Specifically in

Figure 2-2, from bottom to top, the area of the first rectangle is ℛ1, and the second

(1−𝒦1/𝐵)ℛ2, etc. In addition, the total accumulative height of the rectangles is

equal to
∑︀

𝑡∈[𝑇 ]ℛ𝑡, so is the total area of the underlying region.

With abuse of notations, let OPT denote the expected reward of the optimal algo-

rithm for this single-resource problem, and ALG the expected reward of the algorithm
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that runs 𝒫𝑡(·) with Framework. By Theorem 2.1, we know
∑︀

𝑡∈[𝑇 ]ℛ𝑡 = LP ≥ OPT.

The algorithm’s performance guarantee in terms of ALG/OPT is hence lower-bounded

by the ratio between the total area of the rectangles (or the area under the piecewise-

linear curve) and the area of the underlying region.

Suppose in the worst-case order, the reward-to-cost ratio ℛ𝑇/𝒦𝑇 , is much larger

than the ratios of the other single-arm policies. Then in Figure 2-2, the slope of

piecewise-linear curve is small for the first 𝑇 − 1 segments, and then increases sig-

nificantly for the 𝑇 -th segment. Correspondingly, the area under the curve would be

very small, and it is thus difficult to find a constant that lower-bounds the algorithm’s

performance guarantee ALG/OPT. In other words, the algorithm would use most of

the budget pulling the less rewarding arms, and such inefficient use of the budget

makes it difficult to establish a condition similar to (2.13).

Figure 2-2: A pictorial explanation of the lower bound of an algorithm’s expected
reward under Framework.

Cutting Point

We differentiate the arms by selecting a threshold value of the reward-to-cost ratios

of their single-arm policies.

We re-arrange the arms according to the worst-case order shown in (2.14). For

simplicity, we assume without loss of generality that ℛ1/𝒦1 ≤ . . . ≤ ℛ𝑇/𝒦𝑇 . Let

𝑅* :=
∑︀

𝑡∈[𝑇 ]ℛ𝑡. We construct function 𝐹 (𝑥), which describes the piecewise-linear
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curve shown in Figure 2-2, with the 𝑦-axis scaled by 1/𝑅*:

𝐹 (𝑥) =
1

𝑅*

∑︁
𝑠<𝑡

ℛ𝑠 +
ℛ𝑡/𝑅

*

𝒦𝑡/𝐵

(︃
𝑥− 1

𝐵

∑︁
𝑠<𝑡

𝒦𝑠

)︃
for 𝑥 ∈

[︃
1

𝐵

∑︁
𝑠<𝑡

𝒦𝑠,
1

𝐵

∑︁
𝑠≤𝑡

𝒦𝑠

]︃
.

(2.16)

We decide the threshold value of the reward-to-cost ratios by finding a “cutting"

point on the function curve of 𝐹 (𝑥). In particular, we observe that the slope of each

line segment of 𝐹 (𝑥), namely, (ℛ𝑡/𝑅
*) / (𝒦𝑡/𝐵), is proportional to each single-arm

policy’s reward-to-cost ratio. Let 𝐹 ′(𝑥) denote the set of sub-gradients of function

𝐹 (·) at value 𝑥. The cutting point (𝑥*, 𝑦*) with 𝑦* := 𝐹 (𝑥*) is subject to the condition

1− 𝐹 (𝑥*) ∈ 𝐹 ′(𝑥*). (2.17)

The condition (2.17) characterizes a judicious rule for selecting the cutting point.

Consider an algorithm that saves the budget for the high-rewarding arms by reducing

the budget of the low-rewarding arms. Given cutting point (𝑥*, 𝑦*), if 1 − 𝐹 (𝑥*) <

𝐹 ′(𝑥*), then due to the fact that 𝐹 (𝑥) and 𝐹 ′(𝑥) both increase in 𝑥, most arms would

be divided into the set of high-rewarding arms. In this case, the algorithm’s budget

allocation scheme would fail to distinguish the arms by their reward levels. On the

other hand, if 1−𝐹 (𝑥*) > 𝐹 ′(𝑥*), then most of arms would be divided into the set of

low-rewarding arms. In this case, the allocation scheme would reserve the budget to

only a few arms, and such a conservative allocation would also result in an inefficient

use of the total budget. Therefore, the condition 1 − 𝐹 (𝑥*) ∈ 𝐹 ′(𝑥*) finds a perfect

balance between the previous two scenarios.

We can use line search methods to find the cutting point that satisfies (2.17). We

show in Lemma 2.1 that the cutting point is guaranteed to exist and is unique. The

claim is due to the facts: i) 𝐹 (𝑥) and 𝐹 ′(𝑥) are both continuous in 𝑥; ii) 1− 𝐹 (𝑥) is

strictly decreasing in 𝑥; and iii) 𝐹 ′(𝑥) is non-decreasing in 𝑥.

Lemma 2.1. Given function 𝐹 (𝑥) as defined in (2.16), the cutting point (𝑥*, 𝑦*) that

satisfies (2.17) is guaranteed to exist and is unique.

As shown in Figure 2-3, the cutting point defines three different sets of arms.
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We denote them as 𝐺0, 𝐺1 and 𝐺2, respectively. Set 𝐺0 contains the arms whose

corresponding line segments are below the cutting point, namely,

𝐺0 :=

{︂
𝑡 :
ℛ𝑡/𝑅

*

𝒦𝑡/𝐵
< 𝐹 ′(𝑥*)

}︂
,

where 𝐹 ′(𝑥*) denotes the minimum sub-gradient in set 𝐹 ′(𝑥*). Set 𝐺1 contains the

arm whose corresponding line segment is exactly on the cutting point, namely,

𝐺1 :=

{︂
𝑡 :
ℛ𝑡/𝑅

*

𝒦𝑡/𝐵
= 1− 𝐹 (𝑥*)

}︂
.

If the cutting point happens to be a breakpoint of the piecewise linear function 𝐹 (𝑥),

then 𝐺1 is empty. Set 𝐺2 contains the arms whose corresponding line segments are

above the cutting point, namely,

𝐺2 :=

{︂
𝑡 :
ℛ𝑡/𝑅

*

𝒦𝑡/𝐵
> 𝐹

′
(𝑥*)

}︂
,

where 𝐹
′
(𝑥*) denotes the maximum sub-gradient in set 𝐹 ′(𝑥*).

Figure 2-3: Sets of arms divided by the cutting point: 𝐺0(I), 𝐺1(II), 𝐺2(III).

Prophet Policy

We modify each arm’s single-arm policy with differentiations based on the set each

arm belongs to. For the arms in set 𝐺0, since their single-arm policies have low reward-

to-cost ratios, they are “discarded” from the beginning, meaning their single-arm

policies are stopped from the root state of their MDPs. For the arms in set 𝐺2, since
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their single-arm policies have high reward-to-cost ratios, they are pulled according to

𝒫𝑡(·) with no modifications. For the arm in set 𝐺1 (if it is not empty), since its single-

arm policy’s reward-to-cost ratio is in-between, the arm is either discarded from the

beginning or pulled with a certain probability. Let 𝜇 denote the probability that the

arm in 𝐺1 is pulled. We define 𝜇 := 𝑙0/𝑙1, where

𝑙0 =
1

𝐵

∑︁
𝑡∈𝐺0

𝒦𝑡 +
1

𝐵

∑︁
𝑡∈𝐺1

𝒦𝑡 − 𝑥*, (2.18)

𝑙1 =
1

𝐵

∑︁
𝑡∈𝐺1

𝒦𝑡. (2.19)

Essentially, given the piecewise linear function curve of 𝐹 (𝑥) and cutting point 𝑥*,

the value of 𝜇 measures the portion of the arm’s corresponding line segment that is

above the cutting point. See Figure 2-3 for a detailed illustration.

We call these modified single-arm policies prophet policies, and denote them as

𝒫𝑡(̃︀x𝑡, ̃︀y𝑡, ·) following the definition of single-arm policies in Section 2.2.3. The feasible

solution ̃︀x𝑡 and ̃︀y𝑡 in ̃︀𝒫𝑡(̃︀x𝑡, ̃︀y𝑡, ·) is modified based on x*
𝑡 and y*

𝑡 , i.e., the optimal

solution to LP. The detailed procedure is described as follows.

Prophet Policy ̃︀𝒫𝑡(·):

Fix x𝑡 = x*
𝑡 and y𝑡 = y*

𝑡 .

(a). If 𝑡 ∈ 𝐺0: define ̃︀x𝑡 = 0;

define ̃︀𝑦(𝑢)𝑡 = 0 for all state 𝑢 in 𝑆 ′
𝑡 ∖ {𝜌}, and ̃︀𝑦(𝜌)𝑡 = 1.

(b). If 𝑡 ∈ 𝐺1: define ̃︀x𝑡 = 𝜇 · x𝑡 where 𝜇 = 𝑙0/𝑙1 is calculated by

(2.18) and (2.19);

define ̃︀𝑦(𝑢)𝑡 = 𝜇 · 𝑦(𝑢)𝑡 for all state 𝑢 in 𝑆 ′′
𝑡 ∖ {𝜌}, and ̃︀𝑦(𝜌)𝑡 = 1.

(c). If 𝑡 ∈ 𝐺2: define ̃︀x𝑡 = x𝑡, and ̃︀y𝑡 = y𝑡.

Return 𝒫𝑡(̃︀x𝑡, ̃︀y𝑡, ·)

Given prophet policy ̃︀𝒫𝑡(·) := ̃︀𝒫𝑡(̃︀x𝑡, ̃︀y𝑡, ·), let ̃︀ℛ𝑡 and ̃︀𝒦𝑡 denote the expected re-

ward and expected cost of the policy ̃︀𝒫𝑡(min{𝐵,𝐷𝑡}) with budget parameter min{𝐵,𝐷𝑡}.

By definition (2.10) and (2.11), we obtain i) ̃︀𝒦𝑡 = 0 and ̃︀ℛ𝑡 = 0 for arm 𝑡 in set 𝐺0,
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ii) ̃︀𝒦𝑡 = 𝜇 ·𝒦𝑡 and ̃︀ℛ𝑡 = 𝜇 ·ℛ𝑡 for arm 𝑡 in set 𝐺1, iii) ̃︀𝒦𝑡 = 𝒦𝑡 and ̃︀ℛ𝑡 = ℛ𝑡 for arm 𝑡

in set 𝐺2. With prophet policies, we observe that the cost of the low-rewarding arms

in 𝐺0 is reduced to zero, and the total budget is thus reserved for the high-rewarding

arms in 𝐺1 and 𝐺2.

We propose algorithm Prophet that runs prophet policies ̃︀𝒫𝑡(·) with Framework.

The detailed procedure of the algorithm is described as follows.

Prophet

Input: prophet policies ̃︀𝒫𝑡(·) for 𝑡 ∈ [𝑇 ];

order 𝐼(1), ...., 𝐼(𝑇 ) with 𝐼(𝑡) = 𝑡

Initialization: set 𝐵′ = 𝐵.

For period 𝑡 in [1, . . . , 𝑇 ]:

𝑛← ̃︀𝒫𝐼(𝑡)(min{𝐵′, 𝐷𝐼(𝑡)});

𝐵′ ← 𝐵′ − 𝑛.

Performance Analysis

By Proposition 2.2, we know it suffices to analyze the worst-case order to show the

performance guarantee of any algorithm that runs a collection of single-arm policies

with Framework. Therefore, in the following analysis, we assume that the time order,

i.e., the fixed order of pulling the 𝑇 arms 𝐼(𝑡) = 𝑡, follows the definition of the

worst-case order shown in (2.14).

Let ALG be the expected reward of algorithm Prophet. We analyze the perfor-

mance guarantee of algorithm Prophet by establishing the equivalence between the

area under the truncated function curve of 𝐹 (𝑥) and a lower bound of the ratio

ALG/OPT. More specifically, by Proposition 2.1, we know that the performance

guarantee ALG/OPT for algorithm Prophet is lower-bounded by

∑︁
𝑡∈[𝑇 ]

(︃
1− 1

𝐵

∑︁
𝑠<𝑡

̃︀𝒦𝑠

)︃ ̃︀ℛ𝑡/𝑅
*. (2.20)

Following the discussion of Figure 2-2, in the worst-case order, this value is lower-
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bounded by the area under the truncated function curve of 𝐹 (𝑥), as shown in Figure 2-

4, and furthermore, lower-bounded by the total area of a triangle and a rectangle.

Let 𝑒1 denote the area of the triangle and 𝑒2 the area of the rectangle. Given

cutting point (𝑥*, 𝑦*), where 𝑦* = 𝐹 (𝑥*), we can calculate 𝑒1 and 𝑒2 as follows.

Triangle: 𝑒1 =
1

2
(1− 𝑥*)2 · 𝐹 ′

(𝑥*). (2.21)

Rectangle: 𝑒2 = 𝑥* · (1− 𝐹 (𝑥*)). (2.22)

We show in Lemma 2.2 that the sum of 𝑒1 and 𝑒2 is lower-bounded by a con-

stant. Based on this result, we provide in Theorem 2.3 the performance guarantee of

algorithm Prophet.

Figure 2-4: A pictorial explanation of the performance guarantee of algorithm
Prophet.

Lemma 2.2. Given function 𝐹 (𝑥) as defined in (2.16), cutting point (𝑥*, 𝐹 (𝑥*)) as

defined in (2.17), and 𝑒1 and 𝑒2 as defined in (2.21) and (2.22), we have 𝑒1 + 𝑒2 ≥
√

2− 1.

Theorem 2.3. Given prophet policies ̃︀𝒫𝑡(·), expected reward ̃︀ℛ𝑡 and expected cost ̃︀𝒦𝑡

of the prophet policy ̃︀𝒫𝑡(min{𝐵,𝐷𝑡}) with budget parameter min{𝐵,𝐷𝑡} for 𝑡 ∈ [𝑇 ],

the expected reward of algorithm Prophet is lower bounded by

∑︁
𝑡∈[𝑇 ]

(︃
1− 1

𝐵

∑︁
𝑠<𝑡

̃︀𝒦𝑠

)︃ ̃︀ℛ𝑡,
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which is at least
√

2− 1 the expected reward of the optimal algorithm. That is,

∑︁
𝑡∈[𝑇 ]

(︃
1− 1

𝐵

∑︁
𝑠<𝑡

̃︀𝒦𝑠

)︃ ̃︀ℛ𝑡 ≥
(︁√

2− 1
)︁∑︁

𝑡∈[𝑇 ]

ℛ𝑡.

Therefore, for algorithm Prophet, we have

ALG ≥
(︁√

2− 1
)︁

OPT.

2.4 Algorithm for the General Problem

We present in this section our algorithm for the general problem that is stated in

Section 4.2.1, where the number of resources 𝑁 and the number of time periods

𝑇 can be any positive integers. In fact, we can decompose the problem into two

dimensions. In the time dimension, for each time period 𝑡 ∈ [𝑇 ], given demand size

𝐷𝑡, we have 𝑁 arms (·, 𝑡) sharing budget 𝐷𝑡. In the resource dimension, for each

resource 𝑖 ∈ [𝑁 ], given resource budget 𝐵𝑡, we have 𝑇 arms (𝑖, ·) sharing budget 𝐵𝑡.

Both dimensions of the problem, as special cases, have been discussed in Section 2.3,

and our development of the algorithm for the general problem is based on integrating

the algorithms for these two special cases with Framework.

The general problem combines the challenges in both dimensions. Due to budget

limit 𝐵𝑖 and demand size 𝐷𝑡, the learning and earning trade-off appears both for each

resource 𝑖 ∈ [𝑁 ] and in each time period 𝑡 ∈ [𝑇 ]. More importantly, for each 𝑖 ∈ [𝑁 ],

the order of pulling arms (𝑖, 𝑡) has to follow the time order 𝑡 = 1, . . . , 𝑇 . Based on the

discussion in Section 2.3.2, we know that this restrictive order raises extra difficulties

for designing an algorithm with a strong performance guarantee.

To tackle the challenges from both problem dimensions, we divide our algorithm

into two stages and conquer each dimension of the problem separately.

In the first stage, we implement a budget allocation scheme for each resource

by preparing the prophet policies, as discussed in Section 2.3.2. Given single-arm

policy 𝒫𝑖,𝑡(·) := 𝒫𝑖,𝑡(x
*
𝑖,𝑡,y

*
𝑖,𝑡, ·), as defined in Section 2.2.3, we obtain expected reward
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ℛ𝑖,𝑡 := ℛ(𝒫𝑖,𝑡(min{𝐵𝑖, 𝐷𝑡})) and expected cost 𝒦𝑖,𝑡 := 𝒦(𝒫𝑖,𝑡(min{𝐵𝑖, 𝐷𝑡})) of the

policy 𝒫𝑖,𝑡(min{𝐵𝑖, 𝐷𝑡})) with budget parameter min{𝐵𝑖, 𝐷𝑡}), as defined in (2.10)

and (2.11).

We re-arrange the set of arms (𝑖, ·) according to the worst-case order for each

𝑖 ∈ [𝑁 ]. For simplicity, we assume that ℛ𝑖,1/𝒦𝑖,1 ≤ . . . ≤ ℛ𝑖,𝑇/𝒦𝑖,𝑇 . Let 𝑅*
𝑖 :=∑︀

𝑡∈[𝑇 ]ℛ𝑖,𝑡. We construct function 𝐹𝑖(𝑥) for each 𝑖 ∈ [𝑁 ] as shown in (2.16), namely,

𝐹𝑖(𝑥) :=
1

𝑅*
𝑖

∑︁
𝑠<𝑡

ℛ𝑖,𝑠 +
ℛ𝑖,𝑡/𝑅

*
𝑖

𝒦𝑖,𝑡/𝐵𝑖

(︃
𝑥− 1

𝐵𝑖

∑︁
𝑠<𝑡

𝒦𝑖,𝑠

)︃
for 𝑥 ∈

[︃
1

𝐵𝑖

∑︁
𝑠<𝑡

𝒦𝑖,𝑠,
1

𝐵𝑖

∑︁
𝑠≤𝑡

𝒦𝑖,𝑠

]︃
.

(2.23)

Let 𝐹 ′
𝑖 (𝑥) denote the set of sub-gradients of function 𝐹𝑖(·) at value 𝑥. Following

condition (2.17), we find cutting point (𝑥*
𝑖 , 𝑦

*
𝑖 ) with 𝑦*𝑖 := 𝐹𝑖(𝑥

*
𝑖 ) on the function curve

of 𝐹𝑖(𝑥), which satisfies

1− 𝐹𝑖(𝑥
*
𝑖 ) ∈ 𝐹 ′

𝑖 (𝑥
*
𝑖 ). (2.24)

For each 𝑖 ∈ [𝑁 ], the cutting point divides the arms (𝑖, ·) into three sets: (i)

the set of low-rewarding arms 𝐺𝑖,0 = {(𝑖, 𝑡) : (ℛ𝑖,𝑡/𝒦𝑖,𝑡) · (𝐵𝑖/𝑅
*
𝑖 ) < 𝐹 ′

𝑖(𝑥
*
𝑖 )} , where

𝐹 ′
𝑖(𝑥

*
𝑖 ) denote the minimum sub-gradient in set 𝐹 ′

𝑖 (𝑥
*
𝑖 ); (ii) the set of arms on the

cutting point 𝐺𝑖,1 = {(𝑖, 𝑡) : (ℛ𝑖,𝑡/𝒦𝑖,𝑡) · (𝐵𝑖/𝑅
*
𝑖 ) = 1− 𝐹𝑖(𝑥

*
𝑖 )} ; (iii) the set of high-

rewarding arms 𝐺𝑖,2 =
{︁

(𝑖, 𝑡) : (ℛ𝑖,𝑡/𝒦𝑖,𝑡) · (𝐵𝑖/𝑅
*
𝑖 ) > 𝐹

′
𝑖(𝑥

*
𝑖 )
}︁
, where 𝐹

′
𝑖(𝑥

*
𝑖 ) denote

the maximum sub-gradient in set 𝐹 ′
𝑖 (𝑥

*
𝑖 ).

We obtain prophet policies ̃︀𝒫𝑖,𝑡(·) via the following modifications.
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Prophet Policy ̃︀𝒫𝑖,𝑡(·):

Define 𝜇𝑖 := 𝑙𝑖,0/𝑙𝑖,1 where

𝑙𝑖,0 = 1
𝐵𝑖

∑︀
𝑡∈𝐺𝑖,0

𝒦𝑖,𝑡 + 1
𝐵𝑖

∑︀
𝑡∈𝐺𝑖,1

𝒦𝑖,𝑡 − 𝑥*
𝑖 ,

𝑙𝑖,1 = 1
𝐵𝑖

∑︀
𝑡∈𝐺𝑖,1

𝒦𝑖,𝑡.

Fix x𝑖,𝑡 = x*
𝑖,𝑡 and y𝑖,𝑡 = y*

𝑖,𝑡.

(a). If 𝑡 ∈ 𝐺𝑖,0: define ̃︀x𝑖,𝑡 = 0;

define ̃︀𝑦(𝑢)𝑖,𝑡 = 0 for all state 𝑢 in 𝑆 ′
𝑖,𝑡 ∖ {𝜌}, and ̃︀𝑦(𝜌)𝑖,𝑡 = 1.

(b). If 𝑡 ∈ 𝐺𝑖,1: define ̃︀x𝑖,𝑡 = 𝜇𝑖 · x𝑖,𝑡;

define ̃︀𝑦(𝑢)𝑖,𝑡 = 𝜇𝑖 · 𝑦(𝑢)𝑖,𝑡 for all state 𝑢 in 𝑆 ′′
𝑖,𝑡 ∖ {𝜌}, and ̃︀𝑦(𝜌)𝑖,𝑡 = 1.

(c). If 𝑡 ∈ 𝐺𝑖,2: define ̃︀x𝑖,𝑡 = x𝑖,𝑡, and ̃︀y𝑖,𝑡 = y𝑖,𝑡.

Return 𝒫𝑖,𝑡(̃︀x𝑖,𝑡, ̃︀y𝑖,𝑡, ·)

The seconds stage of the algorithm takes place after the matching process starts.

Given the division of arms, we know the arms in set 𝐺𝑖,0 are discarded from the be-

ginning. In addition, let 𝐵𝑖(𝑡) be the remaining budget of resource 𝑖 at the beginning

of time period 𝑡. In each period 𝑡 ∈ [𝑇 ], the algorithm only needs to consider pulling

the set of active arms (𝒬𝑡, 𝑡), where 𝒬𝑡 is given by

𝒬𝑡 := {𝑖 | 𝐵𝑖(𝑡) > 0 and 𝑡 ∈ 𝐺𝑖,1 ∪𝐺𝑖,2} . (2.25)

Since we can freely choose the order of pulling the arms (·, 𝑡) in each time period 𝑡 ∈

[𝑇 ], we can implement algorithm Greedy, as defined in Section 2.3.1, to run the prophet

policies of the arms in (𝒬𝑡, 𝑡) with Framework. More importantly, in determining

the greedy order of running these policies, we need to consider the updated budget

parameter min{𝐵𝑖(𝑡), 𝐷𝑡}. Given arm (𝑖, 𝑡), let ℛ′
𝑖,𝑡 and 𝒦′

𝑖,𝑡 be the expected reward

and expected cost of the prophet policy ̃︀𝒫𝑖,𝑡(min{𝐵𝑖(𝑡), 𝐷𝑡})) with budget parameter

min{𝐵𝑖(𝑡), 𝐷𝑡}. We have

̃︀ℛ′
𝑖,𝑡 := ℛ

(︁ ̃︀𝒫𝑖,𝑡(min{𝐵𝑖(𝑡), 𝐷𝑡})
)︁
, ̃︀𝒦′

𝑖,𝑡 := 𝒦
(︁ ̃︀𝒫𝑖,𝑡(min{𝐵𝑖(𝑡), 𝐷𝑡})

)︁
. (2.26)

We refer to our two-stage algorithm as TS-Prophet, and present its detailed pro-
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cedure as follows.

TS-Prophet

Input: prophet policies ̃︀𝒫𝑖,𝑡(·).

Initialization: set 𝐵𝑖(1)← 𝐵𝑖 for 𝑖 ∈ [𝑁 ].

For period 𝑡 in [1, . . . , 𝑇 ]:

1. find the set of active arms (𝒬𝑡, 𝑡) as defined in (2.25); set 𝑄𝑡 ← |𝒬𝑡|;

2. calculate expected reward ̃︀ℛ′
𝑖,𝑡 and expected cost ̃︀𝒦′

𝑖,𝑡 as defined in (2.26);

3. specify the order 𝐼(1), . . . , 𝐼(𝑄𝑡) of pulling the 𝑄𝑡 arms such that

̃︀ℛ′
𝐼(1),𝑡̃︀𝒦′
𝐼(1),𝑡

≥ . . . ≥
̃︀ℛ′
𝐼(𝑄𝑡),𝑡̃︀𝒦′
𝐼(𝑄𝑡),𝑡

. (2.27)

For 𝑘 in [1, . . . , 𝑄𝑡]:

𝐷′ ← 𝐷𝑡;

𝑛← ̃︀𝒫𝐼(𝑘),𝑡

(︀
min{𝐵𝐼(𝑘)(𝑡), 𝐷

′}
)︀
;

𝐵𝐼(𝑘)(𝑡 + 1)← 𝐵𝐼(𝑘)(𝑡)− 𝑛;

𝐷′ ← 𝐷′ − 𝑛.

Performance analysis. The performance analysis of algorithm TS-Prophet can

also be decomposed into two dimensions.

Let ALG(𝑡) be the expected reward of TS-Prophet in each time period 𝑡 ∈ [𝑇 ]. We

learn from Section 2.3.1 that by using the greedy approach, the value of ALG(𝑡) is at

least 1/2 of the total expected reward of the prophet policies ̃︀𝒫𝑖,𝑡(min{𝐵𝑖(𝑡), 𝐷𝑡}) for

𝑖 ∈ 𝒬𝑡, namely,

ALG(𝑡) ≥ 1

2

∑︁
𝑖∈𝒬𝑡

̃︀ℛ′
𝑖,𝑡. (2.28)

Additionally, for each resource 𝑖 ∈ [𝑁 ], we learn from Section 2.3.2 that by running

the prophet policies ̃︀𝒫𝑖,𝑡(·) with Framework, the algorithm obtains the performance
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guarantee

∑︁
𝑡∈[𝑇 ]

̃︀ℛ′
𝑖,𝑡 ≥ (

√
2− 1)

∑︁
𝑡∈[𝑇 ]

ℛ𝑖,𝑡. (2.29)

By integrating the results (2.28) and (2.29), we show in Theorem 2.4 that algo-

rithm TS-Prophet can obtain a strong performance guarantee in terms of the ratio

ALG/OPT, which is at least

(
√

2− 1)/2 ≈ 0.21 .

The detailed proof of the theorem is provided in the Appendix.

Theorem 2.4. The expected reward of algorithm TS-Prophet is at least (
√

2 − 1)/2

the expected reward of the optimal algorithm. That is, for algorithm TS-Prophet, we

have

ALG
OPT

≥ 1

2
(
√

2− 1). (2.30)

2.5 Numerical Experiments

In this section, we present the results of our numerical experiments to verify the per-

formance guarantee of algorithm TS-Prophet, as shown in Theorem 2.4. In addition,

we compare the performance of algorithm TS-Prophet with another two algorithms:

the benchmark algorithm Benchmark and the randomized algorithm Random.

2.5.1 Alternative algorithms

Algorithms Benchmark and Random both have a two-stage structure similar to algo-

rithm TS-Prophet. When the matching process starts, all these algorithms run the

(modified) single-arm policies with Framework using the greedy approach.

The difference of the algorithms lies in the preparation stage. Specifically, algo-

rithm Benchmark makes no modifications of the single-arm policy 𝒫𝑖,𝑡(·) that is based

on the optimal solution to LP. Based on our discussion in Section 2.3.1, in the worst-
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case order, the algorithm would use most of the budget pulling the less rewarding

arms, and thus the algorithm can hardly obtain a strong performance guarantee.

Algorithm Random implements the randomized policy that runs single-arm policy

𝒫𝑖,𝑡(·) with probability 1/2 and discards the policy, otherwise. The formal definition

of the randomized policy is provided as follows.

Randomized Policy 𝒫 ′
𝑖,𝑡(·):

Fix x𝑖,𝑡 = x*
𝑖,𝑡 and y𝑖,𝑡 = y*

𝑖,𝑡.

Define ̃︀x𝑖,𝑡 = 1
2
· x𝑖,𝑡;

Define ̃︀𝑦(𝑢)𝑖,𝑡 = 1
2
· 𝑦(𝑢)𝑖,𝑡 for all state 𝑢 in 𝑆 ′

𝑖,𝑡 ∖ {𝜌}, and ̃︀𝑦(𝜌)𝑖,𝑡 = 1.

Return 𝒫𝑖,𝑡(̃︀x𝑖,𝑡, ̃︀y𝑖,𝑡, ·)

By using these randomized policies, Random uniformly reduces the expected costs

of all the single-arm policies by 1/2, and hence achieves balanced budget allocations.

Compared to Benchmark, in the worst-case order, this balanced allocation increases

the probability of the high-rewarding arms being pulled, and therefore, Random can

obtain a good performance guarantee. Guha Munagala (2013) have shown that in the

case of 𝑁 = 1, the expected reward of Random is at least 1/4 the expected reward of

the optimal policy. Using similar analysis techniques as in TS-Prophet, we can easily

generalize this result to the case where 𝑁 can be any positive integer, and show that

the expected reward of Random is at least 1/8 the expected reward of the optimal

policy.

2.5.2 Experiment setup

The setting of our numerical experiments involves the following parameters: the

number of resources 𝑁 , the number of time periods 𝑇 , budget 𝐵𝑖 for resource 𝑖,

group size 𝐷𝑡 for time period 𝑡, and the prior probability distribution 𝜃𝑖,𝑡 of reward

𝑝𝑖,𝑡, for all 𝑖 ∈ [𝑁 ] and 𝑡 ∈ [𝑇 ].

To test the performance of the algorithms in different settings, we first fix the

values of 𝑁 , 𝑇 , 𝐵, and then change the value of 𝐷 to different scales. In addition,
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we compare two settings of prior distributions. In the first setting, for each 𝑖 ∈ [𝑁 ],

the prior distributions 𝜃𝑖,𝑡 for 𝑡 ∈ [𝑇 ] have similar mean values. In the second setting,

for each 𝑖 ∈ [𝑁 ], the mean value of 𝜃𝑖,𝑡 spikes at 𝑡 = 𝑇 . This setting simulates the

scenario for the worst-case order, as described in Proposition 2.2.

More specifically, we set 𝑁 = 5, 𝑇 = 6, 𝐵𝑖 = 20 for all 𝑖 ∈ [𝑁 ], 𝐷𝑡 = 10, 30, 50

for all 𝑡 ∈ [𝑇 ], respectively. We use Beta(a,b) as the prior distributions whose mean

values are given by 𝑎/(𝑎 + 𝑏). In the first setting, i.e., Setting 1, for all 𝑖 ∈ [𝑁 ] and

𝑡 ∈ [𝑇 ], we set 𝑎 = 𝑏 = 100 + rand(1 : 5), where rand(1 : 5) generates a random

number from {1, 2, . . . . , 5}. In the second setting, i.e., Setting 2, for 𝑖 ∈ [𝑁 ] and

𝑡 ∈ [𝑇 − 1], we set 𝑎 = 1 + rand(1 : 5), 𝑏 = 100 + rand(1 : 5); for 𝑖 ∈ [𝑁 ] and 𝑡 = 𝑇 ,

we set 𝑎 = 1000 + rand(1 : 5), 𝑏 = 100 + rand(1 : 5).

In each experiment setting, we calculate an algorithm’s reward by repeatedly

running the algorithm multiple times and then averaging the rewards from all these

runs. Specifically, after setting up the parameters, we solve the linear program to

obtain the optimal solution and the corresponding single-arm policies. Next, during

each run, we first draw values of 𝑝𝑖,𝑡 from their prior distributions, and then run the

algorithms TS-Prophet, Benchmark, Random to obtain each algorithm’s corresponding

reward. We repeat this process a total of 10, 000 times, and calculate the average of

each algorithm’s rewards in all these runs.

2.5.3 Experiment results and analysis

We report the ratio between an algorithm’s average reward and the optimal value of

the linear program as the algorithm’s performance. The results of different algorithms’

performances in different settings are presented in Table 2.1 and Table 2.2.

Table 2.1: Comparison of algorithms under Setting 1

Demand

10*ones(T) 30*ones(T) 50*ones(T)

Benchmark 0.79 0.75 0.77
Random 0.45 0.43 0.44

TS-Prophet 0.78 0.75 0.77
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Table 2.2: Comparison of algorithms under Setting 2

Demand

10*ones(T) 30*ones(T) 50*ones(T)

Benchmark 0.84 0.66 0.78
Random 0.45 0.40 0.44

TS-Prophet 0.80 0.77 0.86

First of all, we observe from the numerical results that the performance guarantees

of algorithms Random and TS-Prophet are verified: Random can always obtain a ratio

of at least 1/8, and TS-Prophet a ratio of at least (
√

2 − 1)/2 ≈ 0.21. The ratios

shown in these numerical results are much higher than the corresponding theoretical

lower bounds, since the lower bounds present the performance guarantees in the worst

cases.

Second, we observe that Benchmark and TS-Prophet outperform Random in all

test settings. To explain this observation, we notice from the design of Random that

the algorithm uniformly reduces the expected costs and expected rewards by 1/2 of

all the single-arm policies. Although this uniformly randomized approach provides a

balanced budget allocation scheme and a worst-case performance guarantee, it loses a

large portion of the reward, and therefore results in the algorithm’s poor performance

in practice.

Last, we observe that algorithms Benchmark and TS-Prophet have comparable

performances in Setting 1, while in Setting 2, TS-Prophet outperforms Benchmark. In

fact, in Setting 1, since all the arms have similar reward levels, the budget allocation

schemes of both algorithms work similarly. However, in the Setting 2, since the

rewards of the arms in the last time period are much higher than those of the rest of

the arms, the difference between the two algorithms becomes significant. Specifically,

Benchmark does not reserve the budget for the high-rewarding arms in the last period,

while TS-Prophet does, and such a difference contributes to the superior performance

of TS-Prophet.

The results in Table 2.3 to Table 2.6 further break down an algorithm’s per-

formance by presenting the average numbers of pulls from different sets of arms.
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Specifically, for Setting 1, Table 2.3 shows the number of pulls in each time period,

namely, from arms (·, 𝑡), and Table 2.4 shows the number of pulls from each resource,

namely, from arms (𝑖, ·). Similarly, for Setting 2, Table 2.5 shows the number of pulls

in each time period and Table 2.6 shows the number of pulls from each resource. The

results in these tables are from the setting where 𝐷𝑡 = 50 for all 𝑡 ∈ [𝑇 ], and hence

the budgets are tight relative to the sizes of demand groups.

In Setting 1, we observe that algorithm Random has the least number of pulls on

average. The algorithm only makes a few pulls (i.e., rejects a large percentage of the

users) in each time period, as shown in Table 2.3, and only uses a small fraction of

each resource’s budget, as shown in Table 2.4. Since all the arms have similar reward

levels, this inefficient use of the limited number of pulls explains the algorithm’s bad

performance, as shown in Table 2.1. On the other hand, algorithms Benchmark and

TS-Prophet both use around 75% of the total budget
∑︀

𝑖∈[𝑁 ] 𝐵𝑖 = 100 on average, so

these algorithms perform better than Random.

In Setting 2, we observe that algorithms Random and TS-Prophet both use a small

fraction of the total budget on average. The difference, as shown in Table 2.5, is

that TS-Prophet makes fewer pulls in the first 𝑇 − 1 time periods in order to save the

budget for the last period, while algorithm Random uniformly reduces the number of

pulls in all time periods. Since the arms in the last period are much more rewarding,

TS-Prophet obtains a better performance than Random. In addition, we observe that

algorithm Benchmark has the highest number of pulls on average. However, most of

these pulls are from the less rewarding arms in the first 𝑇 − 1 periods. According to

Table 2.5, Benchmark uses fewer pulls in the last period than algorithm TS-Prophet,

and this explains the performance gap between Benchmark and TS-Prophet, as shown

in Table 2.2.

We can further understand the performance comparison between TS-Prophet and

Benchmark by visualizing the process of finding the cutting points in TS-Prophet.

Figure 2-5 and Figure 2-6 present the function curves of 𝐹𝑖(𝑥) for all 𝑖 ∈ [𝑁 ] in the

two settings of prior distributions.

In Setting 1, as shown in Figure 2-5, since all arms have similar reward levels, the
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Table 2.3: Average number of pulls from each period in Setting 1

Time period 𝑡

1 2 3 4 5 6 Total

Benchmark 10.086 26.053 5.099 14.882 9.450 9.377 74.947
Random 4.971 13.795 2.768 9.302 6.253 6.774 43.863

TS-Prophet 10.173 26.029 5.087 14.771 9.412 9.350 74.821

Table 2.4: Average number of pulls from each resource in Setting 1

Resource 𝑖

1 2 3 4 5 Total

Benchmark 14.789 14.637 15.841 14.935 14.746 74.947
Random 8.608 8.746 9.034 8.820 8.656 43.863

TS-Prophet 14.695 14.581 15.909 14.928 14.708 74.821

line segments in each function curve 𝐹𝑖(𝑥) have similar slopes, which is approximately

1. In such cases, the cutting points, as defined by condition (2.17), are close to the

origin, and all arms will be divided into the high-rewarding set. In addition, the

prophet policies ̃︀𝒫𝑖,𝑡(·) are very similar to the original single-arm policies 𝒫𝑖,𝑡(·), and

therefore TS-Prophet and Benchmark have comparable performances.

In Setting 2, as shown in Figure 2-6, the slopes of the line segments in 𝐹𝑖(𝑥)

demonstrate significant differences. This is due to the high rewards of arms (·, 𝑇 )

and the associated high reward-to-cost ratios of single-arm policies 𝒫𝑖,𝑇 (·) for 𝑖 ∈ [𝑁 ].

Specifically in this case, for resource 𝑖 = 2, 3, 5, the corresponding cutting points sep-

arate the arms into sets with significantly different reward levels, i.e., a low-rewarding

set and a high-rewarding set. Based on such separation and the associated modifica-

tions of the single-arm policies, the judicious budget allocation scheme in algorithm

TS-Prophet can reserve the budget for the high-rewarding arms. This explains the

differences in the number of pulls, as shown in Table 2.5, and also, the outstanding

performance of algorithm TS-Prophet, as shown in Table 2.2.
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Table 2.5: Average number of pulls from each time period in Setting 2

Time period 𝑡

1 2 3 4 5 6 Total

Benchmark 10.393 20.362 0.000 8.221 5.058 37.106 81.141
Random 5.222 10.619 0.000 4.117 2.936 21.750 44.644

TS-Prophet 0.016 0.013 0.000 0.003 0.000 44.337 44.369

Table 2.6: Average number of pulls from each resource in Setting 2

Resource 𝑖

1 2 3 4 5 Total

Benchmark 15.374 19.424 15.155 15.349 15.839 81.141
Random 8.733 9.683 8.577 8.780 8.871 44.644

TS-Prophet 6.919 14.992 3.980 9.127 9.350 44.369

Figure 2-5: Function curves of 𝐹𝑖(𝑥) for 𝑖 ∈ [𝑁 ] in Setting 1

Figure 2-6: Function curves of 𝐹𝑖(𝑥) for 𝑖 ∈ [𝑁 ] in Setting 2
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Chapter 3

Online Learning and Optimization for

Add-on Discounts

3.1 Introduction

The video game industry has been growing fast and steadily in the past two decades.

According to reports, in 2018, the U.S. video game industry matches that of the U.S.

film industry on basis of revenue, making around 43 billion USD, and according to

research by market analysts Newzoo, in 2018, the global games market value across

all platforms is around 135 billion USD. The huge growth potential of the video game

industry is also shown by the rapid sales increase during the coronavirus (COVID-19)

pandemic. According to the weekly sales data from GSD, 4.3 million games are sold

globally during the week of March 16, 2020, which amounts to a rise of 63% over the

week prior.

Major platforms for video games include PCs, mobile phones, video game consoles

and virtual reality (VR) headsets. Unlike PCs and mobile phones, video game consoles

and VR headsets mainly support game functions. A unique structure for purchasing

games for these devices is that customers have to first commit to the hardware,

which is usually expensive, and then purchase the games, which are cheaper but

include a large number of selections. For retailers, this unique structure motivates a

creative add-on discount strategy for sales promotion, where a retailer offers customers
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discounts on a number of selected games after the customer makes a purchase of

a video game console or a virtual reality headset. Figure 3-1 shows an example

of this strategy from Gamestop Corp., a major game retailer in the U.S. In this

example, customers enjoy discounts on certain types of games if they purchase the

games together with a game console.

Figure 3-1: Add-on discount example from Gamestop Corp, retrieved on 2019-08-18.

The add-on discount strategy is different from product bundling. With add-on

discounts, customers can make free selections from the offered set of add-on prod-

ucts, while with product bundling, customers can select only from fixed bundles of

products. Moreover, although retailers can offer every possible product combination

with add-on selection as a product bundle and decide each bundle’s price individually,

such a strategy is not efficient in practice, and more importantly, might cause price

inconsistencies. Figure 3-2 shows an example of price inconsistency. In this example,

consider a customer who wants to buy a game console, an extra controller and a

certain game. If the customer chooses combination 1, which contains a game and a

console-controller bundle, the final price would be $335.87. However, if the customer

chooses combination 2, which contains a controller and a console-game bundle, the

final price would be $281.98. This significant price difference for the same selection

of products results in an inconsistent environment, which not only creates bad shop-

ping experience for customers, but also financially damages the retailer’s business in
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the long run. In contrast, for the add-on discount strategy, price inconsistency does

not exist because the final price always equals the sum of the prices of the selected

products, and is thus independent from the way the products are combined.

(a) Combination 1.

(b) Combination 2.

Figure 3-2: Example of price inconsistency for the same selection of products. Re-
trieved on 2019-10-23 from Amazon.com.

The add-on discount structure exploits the complementary effects between prod-

ucts, and thus adds new dimensions to the traditional pricing problem. Specifically,

in addition to deciding the original prices of different products, retailers now also need

to the decide the selection of add-on products, as well as their add-on discounts. From

the basic principle of optimization, we know that adding new dimensions enlarges the

feasible region of a problem, and hence leads to better decisions. Therefore, by using

the add-on discount strategy, a retailer can expect a higher revenue than using the

same pricing strategy with no add-on discounts.

Regardless of the advantages of the add-on discount strategy, retailers may be

hesitant to implement the strategy in practice due to the following challenges. One

of the challenges is to limit the number of add-on discounts. For example, when

61



retailers show discount offers via pop-up messages on the customer’s checkout page,

there is usually a space limit on the total number of displayed offers. In addition,

if a retailer offers too many add-on discounts, other retailers might take this as an

arbitrage opportunity by purchasing the products with discounts and selling them

elsewhere at the original prices. In these cases, retailers need to take space constraints

into account, and the constraint increases the complexity of the problem. Another

challenge that might hold retailers back is the lack of past experience or historical

data. In the scenario where retailers have no knowledge of the demand information,

blindly offering discounts with the add-on structure would harm the total revenue.

Hence retailers need to implement a learning algorithm together with the add-on

discount strategy to learn the unknown parameters on the fly, and such design of the

learning algorithm also increases the complexity of the problem.

Our Contributions. In this paper, we study the revenue management problem with

add-on discounts. To the best of our knowledge, this is the first paper that formally

studies this problem. In particular, we consider a joint learning and optimization

problem, where the retailer does not know the demand functions of different products

a priori, and has to learn the information on the fly based on real-time observations of

customers’ purchases. Our formulation of the problem incorporates both the primary

demand for products at their original prices and the add-on purchases for products

with selected discounts. We also consider a space limit constraint on the total number

of add-on discount offers.

Our contributions in this paper can be summarized as follows.

We formulate the revenue management problem with add-on discounts as an op-

timization problem with mixed binary decision variables. In the offline setting where

the retailer has access to all the demand information, we develop an approximation

algorithm that can solve the problem to any desired accuracy. We also show that the

algorithm is a Fully Polynomial-Time Approximation Scheme (FPTAS).

In the online setting where the retailer has no knowledge of the demand informa-

tion, we develop an efficient UCB-based learning algorithm that uses FPTAS opti-

mization algorithm as a subroutine. We show that the learning algorithm outputs a
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policy that converges to the offline optimal policy with a fast rate. We also show that

the convergence rate is tight up to a certain logarithmic term.

We conduct numerical experiments based on the real-world transaction data we

collect from Tmall.com. Based on our numerical results, we observe that our UCB-

based learning algorithm has a robust performance and fast convergence rate in var-

ious test scenarios. In addition, we observe that the learning algorithm can quickly

outperform the optimal policy that does not use add-on discounts. These observa-

tions illustrate the efficiency of our learning algorithm, as well as the advantages of

using the add-on discount strategy in practice.

3.1.1 Literature Review

To the best of our knowledge, the add-on discount strategy has not been formally

studied in the the Operations Management (OM) literature, despite the fact that the

strategy has been a common practice in the video game industry. Chen et al. (2019c)

study a similar but different model. In that paper, the authors’ focus is to figure

out what products to recommend to a customer at the checkout stage, given the

customer’s primary purchase and each product’s remaining inventory. We highlight

the difference between that paper and our paper as follows: (1) In Chen et al. (2019c),

the focus is on the checkout stage, and they assume that customers’ primary purchases

are exogenous and not affected by the decision-maker. In contrast, in our model, the

retailer controls both the primary purchase and the add-on purchase. (2) In their

model, they assumed that when making the add-on recommendation for a certain

products, there are two possible strategies: one is at the original price, and the other

one is at a certain pre-determined discount price. In our model, we are not restricted

to two alternatives. (3) In their model, they consider a fixed starting inventory. In

our model, we do not include inventory. (4) From the methodology perspective, they

focus on a competitive ratio analysis, and we consider the regret minimization.

Our work is also related to different areas of the literature: assortment planning,

product bundling, multi-armed bandit problems and UCB algorithms. Due to space

limitation, we do not provide an exhaustive review of the literature and only provide
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a brief literature review as follows.

Assortment Planning. The assortment planning problem models a customer’s

choice over a set of different products and focuses on finding the profit-maximizing

assortment subject to various resource and capacity constraints. The problem has

been studied extensively in the revenue management literature. In particular, in

the offline setting where the underlying choice models are known, Talluri Van Ryzin

(2004) propose an efficient algorithm for the single-resource assortment problem. Gal-

lego et al. (2004), Liu Van Ryzin (2008), and Zhang Adelman (2009) then extend

the choice-based models to network revenue management problems. Other works that

study assortment algorithms under cardinality constraints, personalized decisions and

various choice models can also be found in Kök et al. (2008), Davis et al. (2013), Gol-

rezaei et al. (2014), Cheung Simchi-Levi (2016), Feldman Topaloglu (2017) and the

references therein.

Recent research on assortment planning problems also focuses on the online set-

ting where the parameters of the underlying choice models, such as multinomial logit

(MNL), are not known and need to be learned online. In this line of work, Rus-

mevichientong et al. (2010), Agrawal et al. (2016a), Agrawal et al. (2017), Agrawal

et al. (2019), and Miao Chao (2017) study the problem where every customer follows

the same choice model; Kallus Udell (2016), Cheung Simchi-Levi (2017b), Bernstein

et al. (2018), Miao et al. (2019), and Miao Chao (2019) study the problem where

each customer follows a personalized choice model.

Different from the assortment planning problems that mainly focus on how cus-

tomers select one product from a set of alternatives, our model emphasizes customers’

add-on purchase dynamics.

Product Bundling. Both the add-on discount strategy and the bundling strat-

egy are motivated by the complementary effects between products. There exist vari-

ous product bundling strategies in the literature, such as pure bundling in which the

retailer sells different products in a comprehensive bundle for a fixed price (Bakos

Brynjolfsson (1999)), mixed bundling in which the retailer offers all possible product

bundles alongside individual products (Chu et al. (2011a)), and customized bundling
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in which the retailer allows the customer to choose a certain quantity of products from

a large pool of products for a fixed price (Hitt Chen (2005) and Wu et al. (2008)).

We refer the readers to some recent papers (Ma Simchi-Levi (2015), Abdallah et al.

(2017) and Abdallah (2019)) for a more in-depth review of the bundling literature.

As mentioned in the example in Figure 2, add-on discounts and bundling are

different. The add-on discount strategy facilitates the customer’s decision process,

because with add-on discounts, the final price is only dependent on the set of products

to purchase, not on how the bundles are formed.

Multi-Armed Bandit (MAB) problems and UCB algorithms. The multi-

armed bandit problem is a useful tool to study sequential decision-making problems

under unknown rewards, and there exist a large number of papers studying this

problem in the online learning literature. For a comprehensive review of the classic

MAB algorithms and their performance analysis, see Bubeck et al. (2012) and Slivkins

(2019).

One of the classic multi-armed bandit models is the stochastic bandit, where the

reward for pulling each arm is assumed to be i.i.d. drawn from an unknown probability

distribution. In the seminal paper Auer et al. (2002), the authors provide an algorithm

that keeps updating the estimation of upper confidence bound (UCB) of each arm’s

mean reward, and show that such an algorithm can obtain an accumulative regret of

𝑂(
√
𝑇 log 𝑇 ) in 𝑇 rounds. The UCB-type algorithm is widely used in various bandit

settings, such as linear bandits (Rusmevichientong Tsitsiklis (2010), Abbasi-Yadkori

et al. (2011), Chu et al. (2011b)), combinatorial bandits (Cesa-Bianchi Lugosi (2012),

Jin et al. (2019)), and bandits with resource constraints (Badanidiyuru et al. (2013),

Agrawal Devanur (2016)).

In the OM literature, recent research papers have also been focusing on problems

under uncertain environments and applying bandit algorithms or other learning algo-

rithms to tackle the exploration-exploitation tradeoffs in learning tasks. This includes

dynamic pricing problems (Besbes Zeevi (2009), Besbes Zeevi (2012), Wang et al.

(2014), Besbes Zeevi (2015), Ferreira et al. (2018), Gao et al. (2018)) and inventory

control problems with unknown demand distributions (Zhang et al. (2017), Zhang
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et al. (2019), Chen et al. (2019a), Yuan et al. (2019)), assortment optimization prob-

lems with unknown purchase probabilities (Cheung Simchi-Levi (2017a), Agrawal

et al. (2019)), online matching and resource allocation problems with unknown re-

ward distributions (Cheung et al. (2018)).

3.2 Model

We present in this section the formulation of the revenue management problem with

add-on discounts.

Consider a retailer managing two types of products: core products (e.g., different

variants of a video game console from the same brand) and supportive products (e.g.,

video games for the same brand of video game consoles). Let 𝑁 denote the number

of core products, indexed by {1, . . . , 𝑁}, and 𝑀 the number of supportive products,

indexed by {1, . . . , 𝑁}. For each core product 𝑛 = 1, . . . , 𝑁 , we assume that its price

𝑝𝑛 is selected from set Ω𝑐 := {𝑞1𝑐 , 𝑞2𝑐 , ..., 𝑞
𝜁(𝑐)
𝑐 }, and for each supportive product, 𝑚 =

1, . . . ,𝑀 , we assume that its price 𝑝𝑁+𝑚 is selected from set Ω𝑠 := {𝑞1𝑠 , 𝑞2𝑠 , ..., 𝑞
𝜁(𝑠)
𝑠 }.

Let the binary variable 𝐼𝑁+𝑚 ∈ {0, 1} with 𝑚 = 1, . . . ,𝑀 denote whether or not we

offer an add-on discount for supportive product 𝑚. Denote the add-on discount price

for product 𝑚 as 𝑝′𝑁+𝑚, and we assume 𝑝′𝑁+𝑚 is selected from Ω𝑎 := {𝑞1𝑎, 𝑞2𝑎, ..., 𝑞
𝜁(𝑎)
𝑎 }.

In addition, as we discuss in Section 3.1, the retailer cannot offer too many add-on

discounts. Thus, we consider in our model an additional space constraint that limits

the total number of add-on discounts to be within 𝑆, i.e.,
∑︀𝑀

𝑚=1 𝐼𝑁+𝑚 ≤ 𝑆.

On the demand side, there exist two types of purchases, differentiated by whether

or not a customer has already owned a core product before they arrive at the retailer’s

online store. Since we consider the core product as a prerequisite for using supportive

products (e.g., video game console for video games), we assume that customers will

not consider purchasing any supportive product without owning or purchasing a core

product first. This condition results in two types of purchases: A) purchases from

customers that do not own a core product, and B) purchases from customers that have

already owned a core product. For type A purchases, customers will first purchase
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a core product, and then they may or may not continue to purchase supportive

products with or without add-on discounts. For type B purchases, customers will

only consider purchasing supportive products without any add-on discounts. The

purchase dynamics are further illustrated in Figure 3-3. In addition, we partition the

purchases into two categories: primary demand and add-on purchase, as indicated by

the colors of the arrows in the figure.

Core 1

Core 2

Core 3

Supportive
1

Supportive
2

Supportive
3

Supportive
4

With or without add-on discount

Primary demand
interested in this product

Add-on purchase

Type A

Type B

Figure 3-3: Illustration of a customer’s purchase dynamics.

The entire selling horizon is divided into discrete time periods. We assume that

each time period is short enough so that the primary demand for each core and each

supportive product is a Bernoulli random variable. In particular, we use 𝛼𝑛(𝑝𝑛) to

denote the primary demand for core product 𝑛 = 1, . . . , 𝑁 , and 𝛼𝑁+𝑚(𝑝𝑁+𝑚) the

primary demand for supportive product 𝑚 = 1, . . . ,𝑀 .

The add-on purchase category involves purchases both with and without discounts,

depending on if we are offering add-on discount for each product, and we differentiate

them as follows.

∙ Let 𝛽′
𝑁+𝑚(𝑝′𝑁+𝑚) be the probability that a customer continues to purchase prod-

uct 𝑁 + 𝑚 under discount price 𝑝′𝑁+𝑚, after she purchases one core product.

∙ Let 𝛽𝑁+𝑚(𝑝𝑁+𝑚) be the probability that a customer continues to purchase prod-
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uct 𝑁 + 𝑚 under original price 𝑝𝑁+𝑚 , after she purchases one core product.

We also assume that all demand parameters are independent across different prod-

ucts. We will discuss these model assumptions in detail in Section 3.5.

Let ℛ denote the expected revenue per time period (each time period is identical).

Given the retailer’s goal of maximizing the total expected revenue, we can formulate

the revenue management problem as:

max
𝑝𝑛,𝑝𝑁+𝑚,𝑝′𝑁+𝑚,𝐼𝑁+𝑚

ℛ :=
𝑁∑︁

𝑛=1

𝛼𝑛(𝑝𝑛)𝑝𝑛 +
𝑀∑︁

𝑚=1

𝛼𝑁+𝑚(𝑝𝑁+𝑚)𝑝𝑁+𝑚

+

[︃
𝑁∑︁

𝑛=1

𝛼𝑛(𝑝𝑛)

]︃
·

𝑀∑︁
𝑚=1

[︁
𝐼𝑁+𝑚 · 𝛽′

𝑁+𝑚(𝑝
′

𝑁+𝑚) · 𝑝′

𝑁+𝑚

]︁
+

[︃
𝑁∑︁

𝑛=1

𝛼𝑛(𝑝𝑛)

]︃
·

𝑀∑︁
𝑚=1

[(1− 𝐼𝑁+𝑚) · 𝛽𝑁+𝑚(𝑝𝑁+𝑚) · 𝑝𝑁+𝑚]

s.t.
𝑀∑︁

𝑚=1

𝐼𝑁+𝑚 ≤ 𝑆,

𝑝′𝑁+𝑚 < 𝑝𝑁+𝑚 for 𝑚 = 1, . . . ,𝑀,

𝑝𝑛 ∈ Ω𝑐 for 𝑛 = 1, . . . , 𝑁,

𝑝𝑁+𝑚 ∈ Ω𝑠, 𝑝
′
𝑁+𝑚 ∈ Ω𝑎, 𝐼𝑁+𝑚 ∈ {0, 1} for 𝑚 = 1, . . . ,𝑀.

(3.1)

In this optimization problem, the set of decisions include: the original price for

each core product, the original and add-on discount price for each supportive product,

and the binary indicator on whether or not to select each supportive product for add-

on discount. The first term inℛ corresponds to the primary demand for core products,

and the second term corresponds to the primary demand for supportive products. The

third and fourth terms correspond to the add-on purchases for supportive products

with and without add-on discounts, respectively. The first constraint sets the space

constraint (upper bound) on the total number of add-on discounts. The second

constraint requires that the discount price is less than the original price.

We observe from the formulation that the optimization problem is difficult to

solve because the problem contains 1) discrete decision variables and 2) products of
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decision variables. In addition, the total number of feasible solutions is exponentially

large, which makes the enumeration method intractable. Therefore, instead of finding

the exact optimal solution, we propose in this paper an approximation algorithm that

can solve the problem to any desired accuracy. We also show that the algorithm is

an FPTAS, which means the running time of the algorithm is polynomial in both the

problem size and the approximation error.

The optimization problem provides solutions to the revenue management problem

in the offline setting where the demand functions 𝛼𝑛(·), 𝛼𝑁+𝑚(·), 𝛽𝑁+𝑚(·) and 𝛽′
𝑁+𝑚(·)

are known. However, in practice, this information may not be available to the retailer

due to the lack of historical transaction data, and the retailer then needs to learn the

parameters online. In the following sections, we first present our solution to the offline

optimization problem in Section 3.3. Then in Section 3.4, we propose a UCB-based

learning algorithm that uses the offline optimization algorithm as a subroutine to

solve the problem in the online setting.

3.3 Optimization Subroutine

In this section, we propose an approximation algorithm that can solve the offline

optimization problem (3.1) to any desired accuracy, and show that the algorithm is

an FPTAS.

As discussed in Section 3.2, the optimization problem is challenging due to the

existence of discrete decision variables and products of decision variables. To resolve

these challenges, we reformulate the original problem into two parts that separate the

purchase of core products and the purchase of supportive products. We refer to these

two problems as the master problem and the subproblem, respectively.

In the decomposed formulation, we replace the term
∑︀𝑁

𝑛=1 𝛼𝑛(𝑝𝑛) with 𝛾, which

represents the demand of core products per period. In addition, we introduce function

ℛ𝑠(𝛾) to denote the optimal revenue from the purchase of supportive products, which

includes primary demand 𝛼𝑁+𝑚(·), add-on purchase 𝛽𝑁+𝑚(·) and 𝛽′
𝑁+𝑚(·), when the

demand for the core products is 𝛾.
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Master problem. max
𝑝𝑛

ℛ =
𝑁∑︁

𝑛=1

𝛼𝑛(𝑝𝑛)𝑝𝑛 +ℛ𝑠(𝛾)

s.t.
𝑁∑︁

𝑛=1

𝛼𝑛(𝑝𝑛) = 𝛾

𝑝𝑛 ∈ Ω𝑐.

(3.2)

Subproblem. ℛ𝑠(𝛾) := (3.3)

max
𝑝𝑁+𝑚,𝑝′𝑁+𝑚,𝐼𝑁+𝑚

𝑀∑︁
𝑚=1

𝛼𝑁+𝑚(𝑝𝑁+𝑚)𝑝𝑁+𝑚

+ 𝛾 ·
𝑀∑︁

𝑚=1

[︁
𝐼𝑁+𝑚 · 𝛽′

𝑁+𝑚(𝑝
′

𝑁+𝑚) · 𝑝′

𝑁+𝑚

]︁
+ 𝛾 ·

𝑀∑︁
𝑚=1

[(1− 𝐼𝑁+𝑚) · 𝛽𝑁+𝑚(𝑝𝑁+𝑚) · 𝑝𝑁+𝑚] (3.4)

s.t.
𝑀∑︁

𝑚=1

𝐼𝑁+𝑚 ≤ 𝑆,

𝑝𝑁+𝑚 < 𝑝′𝑁+𝑚 for 𝑚 = 1, . . . ,𝑀

𝑝𝑁+𝑚 ∈ Ω𝑠, 𝑝
′
𝑁+𝑚 ∈ Ω𝑎, 𝐼𝑁+𝑚 ∈ {0, 1} for 𝑚 = 1, . . . ,𝑀.

The decomposed formulation does not provide a tractable solution directly: in

order to solve the problem, we need to determine the value of 𝛾, which can take

exponentially many values within [0, 𝑁 ]. Nevertheless, since 𝛾 is bounded, we can

adopt a discretization approach that solves the problem for only a set of discrete

points in [0, 𝑁 ]. In the following, we first show in Lemma 3.1 that function ℛ𝑠(𝛾)

is Lipschitz continuous. Then building on this lemma, we develop an approximation

algorithm using the discretization approach to solve the master problem.

The high-level intuition for function ℛ𝑠(𝛾)’s Lipschitz continuity is based on the

observation that parameter 𝛾 appears in the objective function of the subproblem.

Thus, when the value of 𝛾 changes locally, the value of ℛ𝑠(𝛾) should not change too

much.
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Lemma 3.1. The function ℛ𝑠(𝛾), as defined in (3.3), is Lipschitz continuous in

𝛾 ≥ 0 with parameter 𝑀 · 𝑝, where 𝑝 is the highest price among all the products,

namely, 𝑝 := max𝑝∈Ω𝑐∪Ω𝑠 𝑝.

Lemma 3.1 implies that we can approximate the value of ℛ𝑠(𝛾) with a guaranteed

accuracy. More importantly, this result motivates an approximation scheme where we

only need to evaluate the value of ℛ𝑠(𝛾) for a set of discrete points in [0, 𝑁 ], instead

of for all possible 𝛾 values.

Based on the approximation scheme, we can develop the solutions to the sub-

problem and the master problem separately. Specifically, for the subproblem, we can

formulate it as a selection problem and solve it using a greedy approach. For the mas-

ter problem, we can formulate it as a 𝑁 -stage dynamic program, with approximations

between stages, and solve it using backward induction.

We formally describe the detailed procedures of our algorithm in Algorithm 2.

Then we show in Lemma 3.2 that Algorithm 2 has a polynomial runtime. Next, in

Lemma 3.3, we show that Algorithm 2 has a bounded approximation error. Building

on the results of these two lemmas, we show in Theorem 3.1 that Algorithm 2 is an

FPTAS.

Lemma 3.2. Algorithm 2 has a runtime of complexity 𝑂(𝐶4 ·𝐾), where

𝐶 := max(𝑀,𝑁, |Ω𝑐| , |Ω𝑠| , |Ω𝑎|).

Proof. Consider the algorithm’s runtime in the Big-O complexity. In Part 1 of

Algorithm 2, step b) takes the longest runtime. Specifically, in step b), we enu-

merate 𝑀 · 𝑁 · 𝐾 cases in total, and solve each case by enumerating all possible

pairs of 𝑝𝑁+𝑚 and 𝑝′𝑁+𝑚 such that 𝑝𝑁+𝑚 > 𝑝′𝑁+𝑚. The runtime for step b) is thus

𝑂 (𝑀 ·𝑁 ·𝐾 · |Ω𝑠| · |Ω𝑎|) ≤ 𝑂 (𝐶4 ·𝐾), and this also gives the runtime complexity

of Part 1. In Part 2 of Algorithm 2, the total number of states is 𝑂 (𝐶2 ·𝐾). In

addition, for each state, we check the optimality equation once, which has runtime

𝑂 (𝐶). The runtime complexity for Part 2 is thus 𝑂 (𝐶3 ·𝐾). Combining the two

parts, we obtain the algorithm’s total runtime complexity 𝑂 (𝐶4 ·𝐾).
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Algorithm 1 FPTAS optimization subroutine for the offline optimization problem:
Algorithm input:

– Ω𝑐, Ω𝑠, Ω𝑎,
– 𝛼𝑛(𝑝𝑛) for all 𝑝𝑛 ∈ Ω𝑐 and 𝑛 = 1, . . . , 𝑁 ,
– 𝛼𝑁+𝑚(𝑝𝑁+𝑚) for all 𝑝𝑁+𝑚 ∈ Ω𝑠 and 𝑚 = 1, . . . ,𝑀 ,
– 𝛽′

𝑁+𝑚(𝑝′𝑁+𝑚) for all 𝑝′𝑁+𝑚 ∈ Ω𝑎 and 𝑚 = 1, . . . ,𝑀 ,
– 𝛽𝑁+𝑚(𝑝𝑁+𝑚) for all 𝑝𝑁+𝑚 ∈ Ω𝑠 and 𝑚 = 1, . . . ,𝑀 ,
– Integer constant 𝐾.

Part 1: Solve supportive revenue part separately.

a) For all 𝑚 = 1, . . . ,𝑀 , and 𝛾 = 0, 1
𝐾
, 2
𝐾
, . . . , 𝑁𝐾

𝐾
, solve

max
𝑝𝑁+𝑚∈Ω𝑠

𝛼𝑁+𝑚(𝑝𝑁+𝑚)𝑝𝑁+𝑚 + 𝛾𝛽𝑁+𝑚(𝑝𝑁+𝑚)𝑝𝑁+𝑚,

and denote the optimal objective value as 𝑟𝑁+𝑚(𝛾).

b) For 𝑚 = 1, . . . ,𝑀 , and 𝛾 = 0, 1
𝐾
, 2
𝐾
, . . . , 𝑁𝐾

𝐾
, solve

max
𝑝𝑁+𝑚∈Ω𝑠,𝑝′𝑁+𝑚∈Ω𝑎,𝑝′𝑁+𝑚<𝑝𝑁+𝑚

𝛼𝑁+𝑚(𝑝𝑁+𝑚)𝑝𝑁+𝑚 + 𝛾𝛽′
𝑁+𝑚(𝑝′𝑁+𝑚)𝑝′𝑁+𝑚,

and denote the optimal objective value as 𝑟′𝑁+𝑚(𝛾).

c) For 𝛾 = 0, 1/𝐾, 2/𝐾, . . . , 𝑁 , sort the values of 𝑟′𝑁+𝑚(𝛾)− 𝑟𝑁+𝑚(𝛾) into an
array in the descending order. Set 𝐼𝑁+𝑚(𝛾) = 1, if 𝑟′𝑁+𝑚(𝛾) − 𝑟𝑁+𝑚(𝛾)
is positive and in the first 𝑆 entries of the array of sorted values. Set
𝐼𝑁+𝑚(𝛾) = 0, otherwise.

d) For 𝛾 = 0, 1/𝐾, 2/𝐾, . . . , 𝑁 , let

ℛ𝑠(𝛾) =
𝑀∑︁

𝑚=1

[︀
𝑟𝑁+𝑚 + 𝐼𝑁+𝑚(𝛾) · [𝑟′𝑁+𝑚(𝛾)− 𝑟𝑁+𝑚(𝛾)]

]︀
.
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Algorithm 2 FPTAS optimization subroutine for the offline optimization problem:
Part 2: Combining the revenue of core products and supportive products using
dynamic programming.

a) Initialization: For 𝑛 = 1, . . . , 𝑁 and 𝑝𝑛 ∈ Ω𝑐, let 𝛼̂𝑛(𝑝𝑛) be 𝛼𝑛(𝑝𝑛) rounded
to the nearest integer multiple of 1/𝐾.

b) State: (𝑛, 𝛾). Action: 𝑝𝑛 in every state (𝑛, ·).
c) Value function: 𝑉𝑛(𝛾) is defined as the maximum revenue to be earned

from all the products (both core and supportive) excluding product 1 to
𝑛 − 1, when the total (approximate) demand for the first 𝑛 − 1 products
are 𝛾.

d) Optimality equation: 𝑉𝑛(𝛾) = max𝑝𝑛∈Ω𝑐 [𝛼𝑛(𝑝𝑛) · 𝑝𝑛 + 𝑉𝑛+1(𝛾 + 𝛼̂𝑛(𝑝𝑛))] .

e) Boundary condition: 𝑉𝑁+1(𝛾) = ℛ𝑠(𝛾), for all 𝛾 = 0, 1/𝐾, 2/𝐾, . . . , 𝑁 .

f) The above DP can be solved efficiently using backward induction, the
optimal decisions can be retrieved along the optimality equations, and
𝑉1(0) is the approximate optimal total revenue.

Lemma 3.3. The approximation error of Algorithm 2 is upper-bounded by

𝑝𝑀𝑁

𝐾
,

where 𝑝 is the highest price among all the products.

Theorem 3.1. Suppose 𝑉 (𝑂𝑃𝑇 ) ≥ 𝑣*. For any problem instance and an 𝜀 > 0,

Algorithm 2 can output an (1 − 𝜀)-optimal policy, with running time polynomial in

both the problem size and 1/𝜀, with parameter

𝐾 =

⌈︂
𝑝𝑀𝑁

𝑣* · 𝜀

⌉︂
.

In other words, Algorithm 2 is an FPTAS.

Proof. By Lemma 3.3, we know that the approximation error of Algorithm 2 is

bounded by 𝑝𝑀𝑁
𝐾

. Given the value of 𝐾, we have

𝑉 (𝑂𝑃𝑇 )− 𝑉 (𝐴𝐿𝐺) ≤ 𝑝𝑀𝑁

𝐾
≤ ·𝜀𝑣*. ≤ 𝜀 · 𝑉 (𝑂𝑃𝑇 ).

Therefore, the algorithm is (1 − 𝜀)-optimal. By Lemma 3.2, we also know that the
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algorithm’s runtime is polynomial in both the problem size and 1/𝜀. Therefore,

Algorithm 2 is an FPTAS.

3.4 Learning Algorithm and Regret Analysis

We consider in this section the revenue management problem in the online setting

where the demand functions 𝛼𝑛(·), 𝛼𝑁+𝑚(·), 𝛽𝑁+𝑚(·) and 𝛽′
𝑁+𝑚(·) are not known a

priori. In this setting, the retailer needs to determine the prices of different products

and the selection of products with add-on discounts, while conducting price experi-

ments and learning the demand information on the fly. More importantly, with the

goal of maximizing the total revenue over 𝑇 selling periods, the retailer faces the

classic learning (exploration) and earning (exploitation) trade-off.

To tackle these challenges from unknown demand parameters, we model the joint

learning and optimization problem as a multi-armed bandit, and develop a UCB-based

algorithm to solve the problem. One way to design the algorithm is to construct

the upper confidence bound (UCB) of the expected revenue (i.e., reward) of each

policy (i.e., arm), which is equal to the empirical mean of each policy’s revenue plus

a confidence interval. Then the algorithm picks the policy with the highest upper

confidence bound in each period. However, this naive construction of the UCBs

results in the following issues.

∙ The learning algorithm is highly inefficient because the total number of policies

in our problem is exponentially large. Consequently, the regret of this learning

algorithm, as defined in (3.5), would be very large, meaning the algorithm can

hardly converge to the optimal policy.

∙ In each period of the algorithm, it is impossible to compare an exponential

number of policies so as to find the best one to implement. In addition, it is

difficult to implement the learning algorithm together with the optimization

subroutine we propose in Section 3.3.

To resolve these issues, we adopt an alternative way of constructing the UCBs:

instead of estimating the UCBs for each policy, we estimate the UCBs for each un-
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known parameter, namely, 𝛼𝑛(𝑝𝑛), 𝛼𝑁+𝑚(𝑝𝑁+𝑚), 𝛽′
𝑁+𝑚(𝑝′𝑁+𝑚) and 𝛽𝑁+𝑚(𝑝𝑁+𝑚), for

𝑝𝑛 ∈ Ω𝑐, 𝑝𝑁+𝑚 ∈ Ω𝑠 and 𝑝′𝑁+𝑚 ∈ Ω𝑎. Then, we can use these estimates as inputs to

the FPTAS optimization subroutine to determine the “optimal" policy in each period.

3.4.1 The learning algorithm

In the UCB-based learning algorithm, we keep track of the empirical mean of de-

mand parameters 𝛼𝑛(𝑝𝑛), 𝛼𝑁+𝑚(𝑝𝑁+𝑚), 𝛽′
𝑁+𝑚(𝑝′𝑁+𝑚), 𝛽𝑁+𝑚 for all products 𝑛 ∈

{1, . . . , 𝑁}, 𝑚 ∈ {1, . . . ,𝑀} and all prices 𝑝𝑛 ∈ Ω𝑐, 𝑝𝑁+𝑚 ∈ Ω𝑠, 𝑝′𝑁+𝑚 ∈ Ω𝑎, respec-

tively. We also keep track of the counter of each price, which counts the number of

periods or the number of purchased products associated with the price, for each type

of demand function.

We introduce the following notations in our algorithm.

∙ 𝛼𝑛(𝑝𝑛): the empirical average of 𝛼𝑛(𝑝𝑛), for all 𝑛 = 1, ..., 𝑁 and 𝑝𝑛 ∈ Ω𝑐.

∙ 𝛼𝑁+𝑚(𝑝𝑁+𝑚): the empirical average of 𝛼𝑁+𝑚(𝑝𝑁+𝑚), for all 𝑚 = 1, ...,𝑀 and

𝑝𝑁+𝑚 ∈ Ω𝑠.

∙ 𝛽
′
𝑁+𝑚(𝑝′𝑁+𝑚): the empirical average of 𝛽′

𝑁+𝑚(𝑝′𝑁+𝑚), for all 𝑚 = 1, ...,𝑀 and

𝑝′𝑁+𝑚 ∈ Ω𝑎.

∙ 𝛽𝑁+𝑚(𝑝𝑁+𝑚): the empirical average of 𝛽𝑁+𝑚(𝑝𝑁+𝑚), for all 𝑚 = 1, ...,𝑀 and

𝑝𝑁+𝑚 ∈ Ω𝑠.

∙ 𝑐𝑛(𝑝𝑛): the number of periods that price 𝑝𝑛 of core product 𝑛 has been used,

for all 𝑛 = 1, ..., 𝑁 and 𝑝𝑛 ∈ Ω𝑐.

∙ 𝑐𝑁+𝑚(𝑝𝑁+𝑚): the number of periods that price 𝑝𝑚 of supportive product 𝑁 +𝑚

has been used, for all 𝑚 = 1, ...,𝑀 and 𝑝𝑁+𝑚 ∈ Ω𝑠.

∙ 𝑐
(𝑎,1)
𝑁+𝑚(𝑝′𝑁+𝑚): the number of core products purchased when product 𝑁 + 𝑚

is selected as an add-on product under the discount price 𝑝′𝑁+𝑚, for all 𝑚 =

1, ...,𝑀 and 𝑝′𝑁+𝑚 ∈ Ω𝑎.

∙ 𝑐
(𝑎,2)
𝑁+𝑚(𝑝𝑁+𝑚): the number of core products purchased when product 𝑁 + 𝑚 is

not selected as an add-on product but offered at the original price 𝑝𝑁+𝑚, for all

𝑚 = 1, ...,𝑀 and 𝑝𝑁+𝑚 ∈ Ω𝑠.
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We also introduce the notion of episode, which is defined as a consecutive number

of periods. In the algorithm, we update the “online" policy at the beginning of each

episode, and then use the policy for a number of periods, until the episode terminates

with certain stopping rules. Therefore, the length of each episode (in periods) is in

fact a stopping time.

We refer to our learning algorithm as UCB-Add-On, and formally describe it in

Algorithm 3.

In the beginning of each episode, the algorithm first uses the FPTAS optimization

subroutine to solve an optimistic version of the problem, in which all the parameters

are evaluated at their UCBs. In addition, given that the demand parameters are

defined as Bernoulli random variables, we truncate all the UCBs at value 1.

We also observe that the parameter 𝐾 increases as the number of episodes 𝜏 and

time period 𝑡 increase. By Theorem 3.1, we know the approximation error of the

optimization subroutine decreases with 𝜏 , while the computation time increases. To

mitigate the computational cost, we set the stopping criteria where given policy Π𝜏 ,

each episode ends when the value of at least one of the associated counters is doubled

within the episode. By this construction, the length of each episode increases in 𝜏 .

As a result, the algorithm calls the subroutine less frequently as time increases, and

the output policy also becomes more stable.

3.4.2 Regret analysis

We analyze the performance of our learning algorithm by adopting the standard

notion of regret. Letℛ* be the one-period expected revenue of the optimal clairvoyant

policy that has access to the full demand information, andℛ(Π𝑡) the expected revenue

of the policy Π𝑡 that is used by algorithm UCB-Add-On in period 𝑡. The regret of our

algorithm is then defined as

Regret(𝑇 ) := E

[︃
𝑇∑︁
𝑡=1

ℛ* −ℛ(Π𝑡)

]︃
. (3.5)
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Algorithm 3 UCB-Add-On
∙ Initialization.

Set all the empirical means and counters to 0. Set the value of 𝜀.
∙ Loop. For each episode 𝜏 ,

1. Let period 𝑡 denote the first period in 𝜏 . Solve the optimization problem
(3.1) using the FPTAS subroutine with the following inputs.
* Ω𝑐, Ω𝑠, Ω𝑎,
* ̃︀𝛼𝑛(𝑝𝑛) = min

(︁
1, 𝛼̄𝑛(𝑝𝑛) +

√︁
2 log 𝑡
𝑐𝑛(𝑝𝑛)

)︁
for all 𝑝𝑛 ∈ Ω𝑐 and 𝑛 = 1, . . . , 𝑁

* ̃︀𝛼𝑁+𝑚(𝑝𝑁+𝑚) := min
(︁

1, 𝛼̄𝑛(𝑝𝑁+𝑚) +
√︁

2 log 𝑡
𝑐𝑁+𝑚(𝑝𝑁+𝑚)

)︁
for all 𝑝𝑁+𝑚 ∈ Ω𝑠

and 𝑚 = 1, . . . ,𝑀

* ̃︀𝛽′
𝑁+𝑚(𝑝′𝑁+𝑚) := min

(︃
1, 𝛽′

𝑁+𝑚(𝑝′𝑁+𝑚) +
√︂

2 log 𝑡

𝑐
(𝑎,1)
𝑁+𝑚(𝑝′𝑁+𝑚)

)︃
for all

𝑝′𝑁+𝑚 ∈ Ω𝑎 and 𝑚 = 1, . . . ,𝑀

* ̃︀𝛽𝑁+𝑚(𝑝𝑁+𝑚) = min

(︃
1, 𝛽𝑁+𝑚(𝑝𝑁+𝑚) +

√︂
2 log 𝑡

𝑐
(𝑎,2)
𝑁+𝑚(𝑝𝑁+𝑚)

)︃
for all 𝑝𝑁+𝑚 ∈

Ω𝑠 and 𝑚 = 1, . . . ,𝑀

* 𝐾 =
⌈︁√

𝑡
𝜀

⌉︁
2. Denote the output policy as Π𝜏 . Keep using policy Π𝜏 and updating the

empirical means and counters in each period, accordingly.
3. Terminate the episode when the value of at least one of the counters (as-

sociated with the selected add-on products and prices under policy Π𝜏 ) is
doubled within the episode.
Set 𝜏 = 𝜏 + 1.

Since ℛ* is an upper bound of ℛ(Π) for any policy Π, the regret is always non-

negative. In the following theorem, we state our main result on the upper bound of

our learning algorithm’s regret.

Theorem 3.2. For any problem instance, the regret of algorithm UCB-Add-On can

be upper-bounded by

Regret (𝑇 ) ≤ 𝒪
(︁
𝑁𝑀𝑝

(︁
(1/𝜆) ·

√︀
𝑈𝑇 log 𝑇 + 𝜀

√
𝑇
)︁)︁

, (3.6)

where 𝑝 is the maximum price as defined in Lemma 3.1, 𝜆 is the lowest possible

probability that the total primary demand is non-zero, 𝑈 := max {|Ω𝑐| , |Ω𝑠| , |Ω𝑎|}

and 𝜀 is the input parameter to Algorithm 3.

Lower bound. We note that the regret bound (3.6) shown in Theorem 3.2 is
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tight up to the logarithmic term. More specifically, we can show that the regret is

lower-bounded by Ω
(︁
𝑁𝑀𝑝

√
𝑈𝑇
)︁
. The proof is based on constructing a problem

instance where this part of the regret is inevitable for any learning algorithm.

Consider the instance where the add-on space limit is 𝑆 = 0. In addition, the

primary demand 𝛼𝑁+𝑚(·) are zero, and the add-on purchase probabilities 𝛽𝑁+𝑚(·)

are one, for all supportive products 𝑚 = {1, . . . ,𝑀}, and all prices 𝑝𝑁+𝑚 ∈ Ω𝑠.

In this instance, the optimal policy is to set the prices of all the supportive products

at the highest price. For simplicity, consider that there is only one price available for

all supportive products, which is 𝑝 as defined in Lemma 3.1.

Now we can translate the problem into a collection of independent MAB problems.

In particular, for each core product, we obtain a regret lower bound Ω
(︁
𝑀𝑝
√
𝑈𝑇
)︁
.

Summing up the regret of all 𝑁 core products, we then obtain the regret lower bound

Ω
(︁
𝑁𝑀𝑝

√
𝑈𝑇
)︁
.

The proof of Theorem 3.2 is based on breaking down the total regret.

Before moving to the proof details, we first introduce the notations that we need

in the analysis. Let 𝛼𝑛,𝑡(𝑝𝑛), 𝛼𝑁+𝑚,𝑡(𝑝𝑁+𝑚), 𝛽′
𝑁+𝑚,𝑡(𝑝

′
𝑁+𝑚), 𝛽𝑁+𝑚,𝑡(𝑝𝑁+𝑚), 𝑐𝑛,𝑡(𝑝𝑛),

𝑐𝑁+𝑚,𝑡(𝑝𝑁+𝑚), 𝑐(𝑎,1)𝑁+𝑚,𝑡(𝑝
′
𝑁+𝑚) and 𝑐

(𝑎,2)
𝑁+𝑚,𝑡(𝑝𝑁+𝑚) be the values of the corresponding

parameters at the beginning of period 𝑡, respectively. Then, with these notations,

we define the collection of events ℰ𝑡, where each parameter’s empirical mean at the

beginning of period 𝑡 is not in its confidence interval that is shown in Algorithm 3.

Formally, we have

ℰ𝑡 :=

⎧⎨⎩ ⋃︁
𝑛∈[𝑁 ]

⋃︁
𝑝𝑛∈Ω𝑐

|𝛼𝑛,𝑡(𝑝𝑛)− 𝛼𝑛(𝑝𝑛)| > 2 log 𝑡

𝑐𝑛,𝑡(𝑝𝑛)

⎫⎬⎭
⋃︁ ⎧⎨⎩ ⋃︁

𝑚∈[𝑀 ]

⋃︁
𝑝𝑁+𝑚∈Ω𝑠

|𝛼𝑁+𝑚,𝑡(𝑝𝑁+𝑚)− 𝛼𝑁+𝑚(𝑝𝑁+𝑚)| > 2 log 𝑡

𝑐𝑁+𝑚,𝑡(𝑝𝑁+𝑚)

⎫⎬⎭
⋃︁ ⎧⎨⎩ ⋃︁

𝑚∈[𝑀 ]

⋃︁
𝑝′𝑁+𝑚∈Ω𝑎

⃒⃒⃒
𝛽
′
𝑁+𝑚,𝑡(𝑝

′
𝑁+𝑚)− 𝛽′

𝑁+𝑚,𝑡(𝑝
′
𝑁+𝑚)

⃒⃒⃒
>

2 log 𝑡

𝑐
(𝑎,1)
𝑁+𝑚,𝑡(𝑝

′
𝑁+𝑚)

⎫⎬⎭
⋃︁ ⎧⎨⎩ ⋃︁

𝑚∈[𝑀 ]

⋃︁
𝑝𝑁+𝑚∈Ω𝑠

⃒⃒
𝛽𝑁+𝑚,𝑡(𝑝𝑁+𝑚)− 𝛽𝑁+𝑚(𝑝𝑁+𝑚)

⃒⃒
>

2 log 𝑡

𝑐
(𝑎,2)
𝑁+𝑚,𝑡(𝑝𝑁+𝑚)

⎫⎬⎭ .
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Conditioning on events ℰ𝑡(𝜏) for all episodes, we break down the total regret into

two major parts. Let 𝑡(𝜏) denote the starting period of episode 𝜏 . Let 𝑛(𝜏) be the

total number of episodes from period 𝑡 = 1 to 𝑇 , and ℓ(𝜏) the length of episode 𝜏 ,

i.e., the total number of periods in episode 𝜏 . Specifically, we have

Regret(𝑇 ) = E

[︃
𝑇∑︁
𝑡=1

ℛ* −ℛ(Π𝑡)

]︃

= E

⎡⎣𝑛(𝜏)∑︁
𝜏=1

(ℛ* −ℛ(Π𝜏 )) · ℓ(𝜏)

⎤⎦
= E

⎡⎣𝑛(𝜏)∑︁
𝜏=1

E
[︀
(ℛ* −ℛ(Π𝜏 )) · ℓ(𝜏) | ℰ𝑡(𝜏)

]︀
·P
[︀
ℰ𝑡(𝜏)

]︀⎤⎦
+ E

⎡⎣𝑛(𝜏)∑︁
𝜏=1

E
[︀
(ℛ* −ℛ(Π𝜏 )) · ℓ(𝜏) | ℰ ′𝑡(𝜏)

]︀
·P
[︀
ℰ ′𝑡(𝜏)

]︀⎤⎦ . (3.7)

In the following, we bound the first term in (3.7) using Lemma 3.4 and Lemma 3.5,

and bound the second term using Lemma 3.6. Theorem 3.2 then follows by summing

up the two parts.

Lemma 3.4. The expected length of the episode 𝜏 that starts with period 𝑡 is upper-

bounded by 𝑡, namely,

E[ℓ(𝜏)] ≤ 𝑡(𝜏).

Lemma 3.5. Given the algorithm shown in Algorithm 3, we have

E

⎡⎣𝑛(𝜏)∑︁
𝜏=1

E
[︀
(ℛ* −ℛ(Π𝜏 )) · ℓ(𝜏) | ℰ𝑡(𝜏)

]︀
·P
[︀
ℰ𝑡(𝜏)

]︀⎤⎦ ≤ 𝐾1, (3.8)

where 𝐾1 a constant that is independent of 𝑇 .

Lemma 3.6. Given the algorithm shown in Algorithm 3, we have

E

⎡⎣𝑛(𝜏)∑︁
𝜏=1

E
[︀
(ℛ* −ℛ(Π𝜏 )) · ℓ(𝜏) | ℰ ′𝑡(𝜏)

]︀
·P
[︀
ℰ ′𝑡(𝜏)

]︀⎤⎦ (3.9)

≤ 𝐾2 ·
[︁
𝑁𝑀𝑝

(︁
(1/𝜆) ·

√︀
𝑈𝑇 log 𝑇 + 𝜀

√
𝑇
)︁]︁

, (3.10)
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where 𝐾2 is a constant that is independent of 𝑇 .

The proof of Theorem 3.2 follows by combining the results in Lemma 3.4, 3.5, and

3.6.

3.5 Discussion

Given that the revenue management problem with add-on discounts is a new model,

we discuss in this section several variants of the optimization problem for different

practical scenarios. In particular, we discuss how the changes of the underlying model

assumptions would affect the formulation of the problem, as well as the optimization

and learning algorithms.

3.5.1 Assumption on independent demand

In optimization problem (3.1), we have assumed that all the demand parameters (both

primary demand and add-on purchase) are independent across different products,

which means that all the demand functions, 𝛼𝑛(𝑝𝑛), 𝛼𝑁+𝑚(𝑝𝑁+𝑚), 𝛽′
𝑁+𝑚(𝑝′𝑁+𝑚) and

𝛽𝑁+𝑚(𝑝𝑁+𝑚), are dependent only on the price of the corresponding product itself.

Alternatively, we can model demand using discrete choice models, e.g. the MNL

model and other similar variants.

Consider the demand assumption that each customer can purchase at most one

core product. Let p𝑐 denote the vector of prices of the core products, i.e., p𝑐 :=

(𝑝1, . . . , 𝑝𝑁), and 𝛼𝑛(p𝑐) denote the purchase probability for core product 𝑛 given

price vector p𝑐. Given a choice model, we have
∑︀𝑁

𝑛=1 𝛼𝑛(p𝑐) ≤ 1. However, for

supportive products, as one customer can purchase multiple supportive products at

the same time, it is not appropriate to model demand functions 𝛼𝑁+𝑚(·), 𝛽′
𝑁+𝑚(·) and

𝛽𝑁+𝑚(·) using choice models (because with choice models, e.g. MNL, each customer

can select at most one product). The revenue management problem with a choice

model for the core products can now be formulated as:
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max
𝑝𝑛,𝑝𝑁+𝑚,𝑝′𝑁+𝑚,𝐼𝑁+𝑚

𝑁∑︁
𝑛=1

𝛼𝑛(p𝑐) · 𝑝𝑛 +
𝑀∑︁

𝑚=1

𝛼𝑁+𝑚(𝑝𝑁+𝑚) · 𝑝𝑁+𝑚

+

[︃
𝑁∑︁

𝑛=1

𝛼𝑛(p𝑐)

]︃
·

𝑀∑︁
𝑚=1

[︁
𝐼𝑁+𝑚 · 𝛽

′

𝑁+𝑚(𝑝
′

𝑁+𝑚) · 𝑝′

𝑁+𝑚

]︁
+

[︃
𝑁∑︁

𝑛=1

𝛼𝑛(p𝑐)

]︃
·

𝑀∑︁
𝑚=1

[(1− 𝐼𝑁+𝑚) · 𝛽𝑁+𝑚(𝑝𝑁+𝑚) · 𝑝𝑁+𝑚]

s.t.
𝑀∑︁

𝑚=1

𝐼𝑁+𝑚 ≤ 𝑆,

𝑝′𝑁+𝑚 < 𝑝𝑁+𝑚 for 𝑚 = 1, . . . ,𝑀,

𝑝𝑛 ∈ Ω𝑐 for 𝑛 = 1, . . . , 𝑁,

𝑝𝑁+𝑚 ∈ Ω𝑠, 𝑝
′
𝑁+𝑚 ∈ Ω𝑎, 𝐼𝑁+𝑚 ∈ {0, 1} for 𝑚 = 1, . . . ,𝑀.

(3.11)

Given the new formulation (3.11), we cannot apply Algorithm 2 to solve the cor-

responding offline optimization problem. Although we can use Part 1 of Algorithm

2 to approximate the revenue function ℛ𝑠(·) for the supportive products, we can-

not apply Part 2 of Algorithm 2 to solve the master problem max
∑︀𝑁

𝑛=1 𝛼𝑛(p𝑐)𝑝𝑛 +

ℛ𝑠(
∑︀𝑁

𝑛=1 𝛼𝑛(p𝑐)) using the same dynamic programming approach. In the following,

we discuss the solutions to the updated optimization problem in two cases: 1) when

the number of core products 𝑁 is small 2and ) when 𝑁 is large. We also discuss how

to solve the joint learning and optimization problem in both cases.

When 𝑁 is small relative to the computational resource, we can solve the opti-

mization problem by enumerating the value of
∑︀𝑁

𝑛=1 𝛼𝑛(p𝑐)𝑝𝑛+ℛ𝑠(
∑︀𝑁

𝑛=1 𝛼𝑛(p𝑐)) over

all possible price vectors p𝑐. Correspondingly, in the joint learning and optimization

problem, we can consider the choice model as a black-box, and use this enumerating

solution as a subroutine. Specifically, we can model each possible price vector p𝑐 as

an arm, and learn the values of
∑︀𝑁

𝑛=1 𝛼𝑛(p𝑐)𝑝𝑛 and
∑︀𝑁

𝑛=1 𝛼𝑛(p𝑐) separately using

a UCB-based algorithm similar to Algorithm 3. Moreover, we can show that such

a learning algorithm can converge to the optimal policy, with a slower convergence

rate, as the algorithm’s regret is now proportional to the number of all possible price
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vectors, i.e., 𝑂
(︀
|Ω𝑐|𝑁

)︀
.

When 𝑁 is large and we can no longer consider the choice model as a black-box, we

have to resort to heuristics based on neighborhood searching to obtain near-optimal

solutions. In addition, we need to explicitly incorporate the choice model into the

learning algorithm. In this case, if we assume the underlying choice model to be MNL,

we can use the existing learning algorithms for MNL models (e.g., Rusmevichientong

et al. (2010), Agrawal et al. (2016a), Agrawal et al. (2017), Agrawal et al. (2019), or

Miao Chao (2017)) to handle the learning task in our problem.

3.5.2 Assumption on add-on demand function

We assume in the optimization problem (3.1) that the probability of an add-on pur-

chase under discount price 𝛽′
𝑁+𝑚(·) depends only on discount price 𝑝′𝑁+𝑚, rather than

on both 𝑝′𝑁+𝑚 and 𝑝𝑁+𝑚. This assumption is justified by the following two observa-

tions from practice. First, many supportive products, like video games, have suggested

retail prices from the industry. For example, in the US, the prices of video games

are regularly set at $59.99. This fixed price, rather than the offered price 𝑝𝑁+𝑚, can

be considered as a reference point for customers. Therefore, it suffices to consider

only the discount price 𝑝′𝑁+𝑚 in estimating demand 𝛽′
𝑁+𝑚(·). Second, in practice,

add-on discounts are usually shown as a limited time offer as a way of triggering a

customer’s intention to purchase. Therefore, in the purchase dynamics, it is common

that customers only consider whether or not to take discount price 𝑝′𝑁+𝑚, instead of

going back and comparing the discount price with the original price 𝑝𝑁+𝑚.

Alternatively, one can assume that 𝛽′
𝑁+𝑚(·) depends both on the discount price

𝑝′𝑁+𝑚 and the original price 𝑝𝑁+𝑚. In this case, we can update the formulation of the

offline optimization problem as follows.
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max
𝑝𝑛,𝑝𝑁+𝑚,𝑝′𝑁+𝑚,𝐼𝑁+𝑚

𝑁∑︁
𝑛=1

𝛼𝑛(𝑝𝑛)𝑝𝑛 +
𝑀∑︁

𝑚=1

𝛼𝑁+𝑚(𝑝𝑁+𝑚)𝑝𝑁+𝑚

+

[︃
𝑁∑︁

𝑛=1

𝛼𝑛(𝑝𝑛)

]︃
·

𝑀∑︁
𝑚=1

[︁
𝐼𝑁+𝑚 · 𝛽′

𝑁+𝑚(𝑝′𝑁+𝑚, 𝑝𝑁+𝑚) · 𝑝′

𝑁+𝑚

]︁
+

[︃
𝑁∑︁

𝑛=1

𝛼𝑛(𝑝𝑛)

]︃
·

𝑀∑︁
𝑚=1

[(1− 𝐼𝑁+𝑚) · 𝛽𝑁+𝑚(𝑝𝑁+𝑚) · 𝑝𝑁+𝑚]

s.t.
𝑀∑︁

𝑚=1

𝐼𝑁+𝑚 ≤ 𝑆,

𝑝′𝑁+𝑚 < 𝑝𝑁+𝑚 for 𝑚 = 1, . . . ,𝑀.

𝑝𝑛 ∈ Ω𝑐 for 𝑛 = 1, . . . , 𝑁,

𝑝𝑁+𝑚 ∈ Ω𝑠, 𝑝
′
𝑁+𝑚 ∈ Ω𝑎, 𝐼𝑁+𝑚 ∈ {0, 1} for 𝑚 = 1, . . . ,𝑀.

(3.12)

In this updated formulation, we replace the 𝛽′
𝑁+𝑚(𝑝′𝑁+𝑚) in (3.1) with 𝛽′

𝑁+𝑚(𝑝′𝑁+𝑚, 𝑝𝑁+𝑚).

Note that this modification will not change the framework of the optimization sub-

routine shown in Algorithm 2, and hence we can still apply Algorithm 2 to solve the

offline problem. More specifically, in Part 1.(b) of Algorithm 2, we simply update the

procedure to

max
𝑝𝑁+𝑚∈Ω𝑠,𝑝′𝑁+𝑚∈Ω𝑎,𝑝′𝑁+𝑚<𝑝𝑁+𝑚

𝛼𝑁+𝑚(𝑝𝑁+𝑚)𝑝𝑁+𝑚 + 𝛾𝛽′
𝑁+𝑚(𝑝′𝑁+𝑚)𝑝′𝑁+𝑚,

and the algorithm’s complexity stays unchanged.

For the joint learning and optimization problem, we can adopt Algorithm 3 with

a simple modification of the counters associated with function 𝛽′
𝑁+𝑚(·). Following a

similar regret analysis procedure to that in Section 3.4, we obtain regret

𝒪
(︁
𝑁𝑀𝑝

(︁
1/𝜆
√︀
𝑈2𝑇 log 𝑇 + 𝜀

√
𝑇
)︁)︁

,

where the original term 𝑈 shown in Theorem 3.2 is now replaced by 𝑈2.

83



3.5.3 Assumption on Bernoulli demand

We assume in our model that all the demand parameters 𝛼𝑛(𝑝𝑛), 𝛼𝑁+𝑚(𝑝𝑁+𝑚),

𝛽′
𝑁+𝑚(𝑝′𝑁+𝑚) and 𝛽𝑁+𝑚(𝑝𝑁+𝑚) are represented by Bernoulli random variables. In

fact, the model can be extended to other types of demand parameters as long as

we can obtain similar concentration results for the learning algorithm, as shown in

Lemma 3.5 and Lemma 3.6. In our analysis, we use the Chernoff-Hoeffding inequality

to obtain the concentration results for Bernoulli random variables. We refer interested

readers to Bubeck et al. (2013) for further discussions on the concentration results for

other types of random variables, such as normal, Poisson, exponential and all bounded

distributions, which all belong to the family of sub-exponential distributions.

In this paper, our major focus is the add-on discount structure in the revenue

management problem, and hence we skip the detailed discussion on the assumptions of

the underlying demand random variables, as well as the corresponding regret analysis.

In fact, relaxing the Bernoulli assumptions will only affect the construction of the UCB

terms, and the framework of our learning and optimization algorithm will still apply.

In addition, in practice, one may simply remove the min(1, ·) term in the UCB to

handle other types of demand parameters.

3.6 Numerical Experiments

We present in this section the results of our numerical experiments. We conduct

the experiments with the real-world data we collect from Tmall.com, which is an

online e-commerce platform operated in China by Alibaba Group. The data provide

the transaction history from a popular video gaming brand’s official online store at

Tmall.com. In the experiments, we first use the data to estimate the demand-price

relationships of different products as the ground truth. Then we test the performance

of algorithm UCB-Add-On in different settings with varying levels of add-on discount

effects and add-on space limits. The experiment results not only validate the perfor-

mance guarantee of the learning algorithm UCB-Add-On, as shown in Theorem 3.2,

but also illustrate the advantages of using the add-on discount strategy in practice.
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3.6.1 Experiment settings

The data provide the detailed transaction records from the video gaming brand’s

online store at Tmall.com during the period from October 2017 to July 2019. The

store mainly sells video game consoles, video games and accessories. We observe from

the data that the major sales are from three video game consoles and twenty video

games. Therefore, we set 𝑁 = 3 and 𝑀 = 20 in all the experiments.

We use the data to calculate the hourly arrival rate, i.e, the number of customers

per hour, as the demand for each of the selected video game consoles (core products)

and video games (supportive products). In addition, for each product, given its

demand under different prices, we use linear models to estimate the demand functions,

i.e., 𝛼𝑛(𝑝𝑛), 𝛼𝑁+𝑚(𝑝𝑁+𝑚) and 𝛽𝑁+𝑚(𝑝𝑁+𝑚), as the ground truth. More specifically,

for each 𝑚 ∈ {1, . . . ,𝑀}, we estimate 𝛼𝑁+𝑚(𝑝𝑁+𝑚) and 𝛽𝑁+𝑚(𝑝𝑁+𝑚) separately: if

the game is purchased together with a game console, we then count the transaction

as add-on demand 𝛽𝑁+𝑚(𝑝𝑁+𝑚); and if the game is purchased without any game

console, we count the transaction as primary demand 𝛼𝑁+𝑚(𝑝𝑁+𝑚). The details of

the estimated coefficients of functions 𝛼𝑛(𝑝𝑛), 𝛼𝑁+𝑚(𝑝𝑁+𝑚) and 𝛽𝑁+𝑚(𝑝𝑁+𝑚) are

provided in the Appendix. We note that the linear demand assumption is only used

for estimating the ground truth, and is not known to the learning algorithm.

Since the online store does not implement any add-on discount strategy, we cannot

estimate the add-on demand function 𝛽′
𝑁+𝑚(𝑝′𝑁+𝑚) from the transaction data directly.

Instead, we generate these functions based on 𝛽𝑁+𝑚(𝑝𝑁+𝑚) by making different as-

sumptions about the level of the add-on discount effect. Given the intuition that for

each video game, its add-on demand should be higher than its primary demand under

the same price, we consider the following three cases in our experiments:

∙ Low add-on discount effect, where 𝛽′
𝑁+𝑚(·) = 2 · 𝛽𝑁+𝑚(·) for all 𝑚 = 1, . . . ,𝑀 ;

∙ Medium add-on discount effect, where 𝛽′
𝑁+𝑚(·) = 3 · 𝛽𝑁+𝑚(·) for all 𝑚 =

1, . . . ,𝑀 ;

∙ High add-on discount effect, where 𝛽′
𝑁+𝑚(·) = 4 ·𝛽𝑁+𝑚(·) for all 𝑚 = 1, . . . ,𝑀 .

Given the total number of games 𝑀 = 20, we consider three possible values for
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the space limits, i.e., the total number of add-on discounts the retailer can offer at

most, which is 𝑆 ∈ {4, 6, 8}. In total, we test 9 cases (3 levels of add-on discount

effect × 3 space limits) in our experiments.

We also modify the prices of different products that are used in practice. First,

since the sale prices of video game consoles are much higher than those of the video

games, we subtract the unit cost, which we assume to be 3, 000 CNY, from the sale

price of each game console, in order to obtain prices of the same level in the objective

function (3.1). With this modification, we can consider the objective value as the

total profit rather than the total revenue. Second, for simplicity, we round the prices

that end with 9 or 99 to the nearest ten or hundred. We set the price sets of different

products as follows. For video game consoles, we have 𝑝𝑛 ∈ Ω𝑐 = {200, 400, 600, 800}.

For video games, we have 𝑝𝑁+𝑚 ∈ Ω𝑠 = {80, 100, 120, 140, 160} and 𝑝′𝑁+𝑚 ∈ Ω𝑎 =

{80, 100, 120, 140}. All the prices are in CNY. Note that price value 160 is removed

from Ω𝑎, as it never makes a feasible add-on discount.

When running algorithm UCB-Add-On, we set the approximation error to be

𝜀 = 0.1 for the optimization subroutine. This approximation error is also used for

calculating the revenue of the optimal policy with Algorithm 2. In addition, in con-

structing the confidence intervals, we add an additional multiplier, which we fix to

be 2−3, to all the UCB terms to enhance the algorithm’s efficiency. The reasons for

adding this multiplier are further discussed in Russo Van Roy (2014). Moreover, we

note that each period in our experiment corresponds to one hour in the real world.

This is consistent with our calculation of demand, which is defined as the hourly ar-

rival rate. We also note that 365× 24 = 8760 periods in our experiments correspond

to the time of a year in the real-world.

3.6.2 Result Analysis

We aim to answer the following questions in analyzing the results of our numerical

experiments.

∙ How does algorithm UCB-Add-On perform in different scenarios, in terms of
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the algorithm’s rate of convergence to the optimal policy that knows the true

demand functions?

∙ What is the optimality gap, namely, the difference in total revenue, between the

optimal policy that uses add-on discounts (i.e., 𝑆 > 0), and the optimal policy

that does not use add-on discounts (i.e., 𝑆 = 0), when both optimal policies

know the true demand functions from the beginning?

∙ How long does it take for algorithm UCB-Add-On to achieve a better perfor-

mance, in terms of total revenue (profit), than the optimal policy that does not

use add-on discounts?

We summarize the experiment results under different test scenarios in Table 3.1.

In the first part of the table, we demonstrate the performance of algorithm

UCB-Add-On. For each test scenario, we run the algorithm a total of 100 times,

and then calculate the average regret, as defined in (3.5), up to period 𝑇 = 168

(one week), period 𝑇 = 672 (one month), period 𝑇 = 2016 (three months) and period

𝑇 = 8760 (one year), respectively. We display the average regret in percentage, which

is given by

Regret(𝑇 )

ℛ* · 𝑇
= 1−

∑︀𝑇
𝑡=1E [ℛ(Π𝑡)]

ℛ* · 𝑇
. (3.13)

In the second part of Table 3.1, we answer the second question by displaying

the difference of total revenue (in percentage) between the optimal policy that uses

add-on discounts and the optimal policy that does not use add-on discounts. For

simplicity, we call the first policy the optimal (add-on) policy and the second policy

the optimal no-add-on policy. Let ℛ*
0 be the revenue of the optimal no-add-on policy.

The optimality gap percentage is given by (ℛ*/ℛ*
0 − 1).

In the last column of Table 3.1, we show the number of periods it takes for algo-

rithm UCB-Add-On to surpass the revenue of the optimal no-add-on policy.

To visualize the performance of algorithm UCB-Add-On in comparison to the two

optimal policies, we plot out the accumulative revenue of our algorithm as a function

of the real-world time in Figure 3-4. Specifically, the results are from the test case
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where 𝑆 = 6 and the add-on effect is medium. The plot also shows the comparisons

between our algorithm and the other two optimal policies.

Table 3.1: Summary of experiment results under different test scenarios.
Low add-on discount effect : 𝛽′

𝑁+𝑚(·) = 2 · 𝛽𝑁+𝑚(·)
Expected average regret percentage Optimality gap of Time to beat optimal

Time 1 week 1 month 3 months 1 year optimal no add-on policy no add-on policy
𝑆 = 4 14.10% 10.60% 8.00% 5.50% 4.30% 1.2 years

𝑆 = 6 11.00% 9.20% 7.30% 3.90% 5.60% 0.5 year

𝑆 = 8 16.60% 11.40% 7.80% 5.10% 6.30% 0.5 year

Medium add-on discount effect: 𝛽′
𝑁+𝑚(·) = 3 · 𝛽𝑁+𝑚(·)

Expected average regret percentage Optimality gap of Time to beat optimal
Time 1 week 1 month 3 months 1 year optimal no add-on policy no add-on policy
𝑆 = 4 14.80% 11.30% 7.20% 5.30% 8.70% 2 months

𝑆 = 6 17.10% 11.90% 7.70% 4.80% 11.50% 1 month

𝑆 = 8 12.50% 10.10% 6.80% 4.50% 12.80% 1/4 month

High add-on discount effect: 𝛽′
𝑁+𝑚(·) = 4 · 𝛽𝑁+𝑚(·)

Expected average regret percentage Optimality gap of Time to beat optimal
Time 1 week 1 month 3 months 1 year optimal no add-on policy no add-on policy
𝑆 = 4 11.50% 8.30% 6.50% 4.50% 13.20% 6 days

𝑆 = 6 16.40% 11.20% 7.00% 4.40% 17.20% 6 days

𝑆 = 8 14.10% 9.30% 6.60% 4.10% 19.30% 2 days

First, we observe that algorithm UCB-Add-On can efficiently converge to the op-

timal policy in all test scenarios. The regret (in percentage) shrinks to 10% within

one-month time in all the tests. In addition, the figure validates the algorithm’s

convergence rate 𝒪(
√
𝑇 ), as shown in Theorem 3.2.

Second, for the optimality gap between the two optimal policies, we observe that

the gap increases when 𝑆 becomes larger and when the add-on discount effect becomes

stronger. The results are reasonable because in both cases, the revenue of the optimal

add-on policy increases, while the revenue of the optimal no add-on policy stays the

same. Moreover, we observe a non-negligible optimality gap: even in the modest

setting where 𝑆 = 4 and the add-on discount effect is low, the gap is 4.3%. Such

comparison results demonstrate the advantages of using the add-on discount strategy.

Third, from the comparisons between algorithm UCB-Add-On and the optimal

no-add-on policy, we observe that the time for algorithm UCB-Add-On to beat the

optimal-add-on policy decreases as the space limit or the discount effect increases.
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Figure 3-4: Performance of algorithm UCB-Add-On in the test case for 𝑆 = 6 with
medium add-on discount effect.

This is consistent with our observations from the optimality gap comparisons. More

importantly, the results reassure the benefits of using the add-on discount strategy

even when the retailer has no prior knowledge of all the demand parameters. As we

show in Figure 3-4, where the 𝑥-axis depicts the real time in weeks, and the 𝑦-axis

depicts the average hourly revenue (i.e., revenue per period), the learning algorithm

can quickly outperform the optimal no-add-on policy in around four weeks.
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Chapter 4

Fast Thompson Sampling for Online

Network Revenue Management

4.1 Introduction

We study in this paper a canonical price-based network revenue management prob-

lem where a retailer needs to determine the prices of multiple products over a finite

selling horizon. The products are made from multiple types of resources with limited

inventory that are fixed before the selling season starts and cannot be replenished

throughout the season. The retailer’s goal is to maximize the total revenue by dy-

namically determining the prices of these products based on real-time observations

of demand. The problem has a variety of applications including airline, hospitality,

fashion retailing, and cloud computing. For example, in airlines, a firm needs to

determine the prices of flight itineraries (products). Each flight consists of one or

multiple flight legs (resources), and each flight leg has a finite number of seats (in-

ventory). In cloud computing, a cloud service provider needs to determine the prices

of virtual machines (products) that consume computing resources, including CPUs,

storage, and memory (resources). Many other interesting applications of the problem

can also be found in Talluri Van Ryzin (2006) and Özer et al. (2012).

One common challenge of using dynamic pricing in practice is that many retailers

do not know the demand of each product associated with each price, and have to

91



learn this information from the sales data during the selling horizon. In this case,

the retailer faces the trade-off between trying different prices to learn and estimate

the demand under each price (“exploration") and setting a price that maximizes

the revenue based on the current demand estimations (“exploitation"). Specifically,

given a finite selling horizon, if the retailer spends most of the selling season learning

demand, the time left for exploiting this knowledge would be limited. On the other

hand, if the retailer does not use enough periods for exploration, demand estimations

would be inaccurate and thus yield sub-optimal pricing decisions. This exploration-

exploitation trade-off is also signified by the resource inventory constraints.

One of the classic approaches for solving the exploration-exploitation trade-off in

network revenue management problems with unknown demand is to use techniques

from multi-armed bandits (MAB). In particular, by formulating the problem as an

MAB, we can consider each possible selection of price vector as an “arm", and the

revenue under the selected price vector as the “reward" of pulling an arm. The chal-

lenge of adopting this MAB approach is that in the presence of inventory constraints,

traditional MAB algorithms, like Upper confidence bound (UCB) and Thompson

sampling, are likely to fail in finding the optimal pricing policy. This is because these

traditional algorithms are designed to find the price vector with the highest revenue,

while the optimal pricing policy given inventory constraints should choose a combina-

tion of multiple price vectors over the entire selling season. To tackle this challenge,

Ferreira et al. (2018) propose algorithms based on Thompson sampling techniques to

solve the network revenue management problems with unknown demand. However,

in their algorithms, the retailer needs to solve an estimated linear program (LP) in

each period of the selling horizon. Given that solving LP is a time-consuming task,

the algorithms in Ferreira et al. (2018) may not be a practical choice due to their

computational drawbacks, especially for problems where the number of resources and

products is huge.

We study in this paper a network revenue management problem with unknown

demand (we refer to the problem as the "online network revenue management prob-

lem" as in Ferreira et al. (2018)), and we focus on developing computationally efficient
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dynamic pricing and learning algorithms that can maximize the total expected reward

while learning the true demand parameter on the fly without violating the resource

inventory constraints. Our main contributions can be summarized as follows.

We propose a primal-dual algorithm that does not require solving any LPs to

solve the online network revenue management problem. In comparison to the algo-

rithms in Ferreira et al. (2018), our algorithm has the advantage in computational

efficiency, and more importantly, it does not compromise the convergence rate to

the optimal dynamic pricing policy that knows the true demand parameter. Specif-

ically, in Section 4.3.2, we show that our algorithm obtains the same order of regret

as the algorithms in Ferreira et al. (2018). We also conduct numerical experiments

and show in Section 4.3.3 that our algorithms outperforms the LP-based algorithms

significantly in terms of computation time.

We build the connections between the online network revenue management prob-

lem and the multi-armed bandit problem from several aspects. We observe that our

problem fits into the bandit with knapsack model proposed in Badanidiyuru et al.

(2013) that study multi-armed bandit problems with resource constraints. If we model

the network revenue management problem as a bandit, we have correlated “reward"

and “resource consumption" for an “arm" since both items involve the mean demand

under a selected price vector. This unique feature is useful in bounding the unit value

of a resource, and thus motivates the design of our LP-free algorithms.

We show that our primal-dual decomposition framework provides not only the

flexibility in designing algorithms, but also a convenient analysis framework. In par-

ticular, by using the primal-dual decomposition, we obtain a dynamic pricing and

learning subproblem without any inventory constraints in the primal decision space.

This subproblem is equivalent to a multi-armed bandit problem with no resource

constraints, and we can then apply various bandit learning algorithms to learn the

unknown demand parameters. Meanwhile, in the dual space, we obtain an online

optimization subproblem that aims to learn the optimal resource value, and we can

also apply various online convex optimization algorithms (see Hazan et al. (2016)) to

solve the subproblem. We show in Section 4.4 several extensions of our model and
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algorithms to show the wide applicability of our primal-dual framework.

4.1.1 Literature Review

Due to challenge of incomplete demand information and the increased availability

of real-time sales data, there has been a vast literature on dynamic pricing with

demand learning, and most of the papers are based on the canonical revenue manage-

ment problems defined in the seminal works Gallego Van Ryzin (1994) and Gallego

Van Ryzin (1997). Specifically, Gallego Van Ryzin (1994) study a (single-leg) prob-

lem with a single product and a single resource, and Gallego Van Ryzin (1997) study

a network revenue management problem with multiple products sharing multiple re-

sources. Both papers are focused on dynamic pricing strategies under the assumption

of complete demand information. For demand learning problems in the single-product

single-resource setting, a series of algorithms with provably regret upper bounds are

provided in Besbes Zeevi (2009) Lei et al. (2014) and Wang et al. (2014). A more

detailed review of the problem can also be found in den Boer (2015). Our work fo-

cuses on demand learning in the network revenue management setting, which is more

difficult to analyze than the single-leg problem. More discussions that compare these

two problem settings can be found in Chen Shi (2019) and Chen et al. (2019b).

Several approaches have been proposed in the literature to address the exploration-

exploitation trade-off in the general network revenue management problem with de-

mand learning under resource constraints. One intuitive approach is to divide the

selling horizon into a disjoint exploration phase and an exploitation phase (e.g., Bes-

bes Zeevi (2012)). During the exploration phase, the retailer offers each price vector

for a fixed number of times and collect the corresponding sales data. At the end of

the phase, the retailer calculates the average sales as the estimation for the mean

demand rate under each price, and then uses these estimates to find a combination

of price vectors that maximize the revenue for the remaining periods, i.e., the ex-

ploitation phase, via a linear program. One drawback of this approach is that the

demand learning process is discontinued in the exploitation phase, and thus the sales

data collected in this later phase is wasted. Moreover, if the inventory is limited, it is
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very likely that retailer will run out of inventory in the exploration phase, and thus

cannot exploit any learned demand information.

Another approach to address the exploration-exploitation trade-off is to use the

multi-armed bandit tools. By formulating the learning task in a network revenue

management problem as a multi-armed bandit, we can use algorithms like Upper

Confidence Bound (UCB) and Thompson Sampling to estimate the demand parame-

ters and use these estimates to optimize the prices in each discrete selling period. For

example, by using UCB techniques, the algorithm creates a confidence interval for

each unknown mean demand rate, and then optimize the prices based on the demand

rates estimated at the upper bound of each interval. In addition, by using Thompson

Sampling, the algorithm keeps updating the posterior distribution of each unknown

mean demand rate, and optimize the prices in each time period based on the mean

demand rates sampled from the latest posterior distribution. The original versions of

these multi-armed bandit algorithms are developed without considering any resource

constraints. Extensions of the algorithms in the presence of resource constraints can

be found in Badanidiyuru et al. (2013) and Ferreira et al. (2018).

There also exist many other approaches for solving revenue management problems

with unknown demand, such as the bisection search method in Wang et al. (2014) and

Lei et al. (2014), the least square method in Besbes et al. (2015), and the primal dual

method in Chen Gallego (2018). The methods in these papers heavily rely on the

problem structure of a single product or a single resource, and can hardly be extended

to a general multi-product multi-resource network revenue management problem.

We would also like to note that many papers reviewed above are primary focused

on the discrete price setting, with an extension to the continuous price setting. One

key distinction between discrete and continuous price sets in dynamic pricing and

learning lies in the structure of their revenue optimization problems. As discussed

in Ferreira et al. (2018), in the discrete price setting, the retailer needs to maximize

over distributions of prices, since there might not exist a single price that maximizes

revenue, while in the continuous price setting (e.g., prices drawn from a certain con-

vex and compact set), there always exists a single price vector that is asymptotically
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optimal, if the demand function satisfies certain regularity conditions. In addition,

as pointed out in Chen et al. (2019b), when analyzing the order of an algorithm’s

performance bound, the upper bound benchmarks used for the two settings are dif-

ferent (the continuous setting has a higher revenue upper bound). These distinctions

make it unfair to compare the performance of the algorithms for different settings.

More importantly, we cannot simply extend the existing algorithms developed in the

discrete price setting to the continuous setting because of the difference in algorithm

performance measures of the two settings. See more discussions in Chen et al. (2019b).

Our approach of solving the online network revenue management problem fol-

lows the multi-armed bandit approach with a computationally efficient primal-dual

framework. When dealing with demand uncertainty, we closely follow the method

in Ferreira et al. (2018) and use Thompson sampling to estimate the mean demand

rates in each selling period. However, when optimizing the prices, instead of solving

a linear program with sampled demand inputs and inventory constraints, we simply

pick the price that maximizes the pseudo revenue, which is defined as the total es-

timated revenue (estimated demand times price for each product) minus the total

value of resources that each product consumes. We measure the value of each re-

source by introducing a number of dual variables, each associated with a resource.

At the end of each selling period, in addition to updating the posterior distribution of

each unknown demand parameter, we also update the values of these dual variables

based on the observed sales. Our primal-dual algorithm framework does not require

solving any linear program, and therefore, can significantly outperform the algorithm

in Ferreira et al. (2018) in terms of computational efficiency.
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4.2 Fast Thompson Sampling

4.2.1 Model

We consider a retailer who sells 𝑁 products, indexed by 𝑖 ∈ [𝑁 ], over a finite selling

horizon. Throughout the paper, we to [𝑥] to denote the set {1, 2, . . . , 𝑥}. These

products consume 𝑀 resources, indexed by 𝑗 ∈ [𝑀 ]. Specifically, one unit of product

𝑖 consumes 𝑎𝑖𝑗 units of resource 𝑗. The selling horizon is divided into 𝑇 discrete

selling periods. For each resource 𝑗 ∈ [𝑀 ], it has 𝐼𝑗 units of initial inventory, and

no replenishment during the selling season. We use 𝐼𝑗(𝑡) to denote the inventory of

resource 𝑗 at the end of period 𝑡 ∈ [𝑇 ], and we denote 𝐼𝑗(0) = 𝐼𝑗.

The sales dynamics in each period is as follows. At the beginning of period 𝑡 ∈ [𝑇 ],

the retailer offers a price for each product from a finite and discrete set of price vectors.

We denote the set by {𝑝1, . . . , 𝑝𝐾}, where for each 𝑘 ∈ [𝐾], 𝑝𝑘 = (𝑝1𝑘, . . . , 𝑝𝑁𝑘) is a

vector of length 𝑁 specifying the price of each product. We also assume there exists

a “shut-off" price 𝑝∞ such that the demand for any product under this price is zero

with probability one. We use 𝑃 (𝑡) = (𝑃1(𝑡), . . . , 𝑃𝑁(𝑡)) to denote the prices chosen

by the retailer in this period, and we know 𝑃 (𝑡) ∈ {𝑝1, . . . , 𝑝𝐾 , 𝑝∞}.

Customers then observe the prices chosen by the retailer and make purchase deci-

sions. We denote the demand of each product at period 𝑡 by 𝐷(𝑡) = (𝐷1(𝑡), . . . , 𝐷𝑁(𝑡)).

Given 𝑃 (𝑡) = 𝑝𝑘, we assume that demand 𝐷(𝑡) is sampled from a probability dis-

tribution with joint cumulative distribution function (CDF) 𝐹 (𝑥1, . . . , 𝑥𝑁 ; 𝑝𝑘, 𝜃) that

contains parameter 𝜃, and we assume 𝜃 takes values in the parameter space Θ. The

distribution is assumed to be sub-exponential. Note that many commonly used de-

mand distributions belongs to the family of sub-exponential distributions, such as,

normal, Poisson, exponential and all bounded distributions. We also assume that

𝐷(𝑡) is independent of the history ℋ𝑡−1 = {𝑃 (1), 𝐷(1), . . . , 𝑃 (𝑡− 1), 𝐷(𝑡− 1)} given

𝑃 (𝑡).

If the inventory is sufficient to satisfy demand 𝐷𝑖(𝑡) for all products 𝑖 ∈ [𝑁 ],

the retailer receives revenue
∑︀𝑁

𝑖=1𝐷𝑖(𝑡)𝑃𝑖(𝑡), and the inventory of each resource 𝑗 ∈

[𝑀 ] diminishes by
∑︀𝑁

𝑖=1 𝐷𝑖(𝑡)𝑎𝑖𝑗 units such that 𝐼𝑗(𝑡) = 𝐼𝑗(𝑡 − 1) −
∑︀𝑁

𝑖=1𝐷𝑖(𝑡)𝑎𝑖𝑗.
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Otherwise, if there exists at least one resource with insufficient inventory to satisfy the

corresponding demand, the sales dynamics stops immediately. The retailer receives

no revenue from this period, and the price is forced to be 𝑝∞ in the remaining selling

periods.

We assume that the demand parameter 𝜃 is fixed but unknown to the retailer at

the beginning of the selling season, and the retailer needs to learn the true value of

𝜃 from the historical sales data ℋ𝑡−1. In addition, we assume the retailer knows a

prior probability distribution of 𝜃 ∈ Θ at the beginning. The retailer’s objective is to

maximize the expected total revenue over the entire selling horizon.

4.2.2 Relation to the Multi-Armed Bandit Problem

The model we describe is a generalization of the MAB problem, where we can consider

each price vector as an “arm" and the associated revenue as the “reward". One

deviation from the classic MAB model is that we consider inventory constraints in

our problem. Note that in the presence of inventory constraints, the optimal pricing

strategy should converge to a mixed strategy given by a distribution of multiple

price vectors instead of a single price vector. Therefore, in addition to learning the

unknown demand parameter, a good algorithm also needs to estimate the time when

the inventory runs out. This is in contrast to classical MAB problems for which the

process always ends at a fixed period.

Our model closely follows the dynamic pricing model in Besbes Zeevi (2012),

Ferreira et al. (2018), and is closely related to the the bandit with knapsack (BwK)

model studied in Badanidiyuru et al. (2013). In comparison to the BwK model, in this

paper, we focus on the Bayesian setting where the prior distributions of the unknown

parameters are known. Moreover, if we model the network revenue management prob-

lems with unknown demand as a BwK model, the “reward" and “consumption" of an

“arm" are correlated since they both involves the mean demand parameters. This spe-

cial feature provides convenience in designing computationally efficient algorithms. In

Section 4.2.4 and Section 4.2.5, we will discuss the difference between our algorithm

and other algorithms in the literature. We will explain the computational disadvan-
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tage of the LP-based learning algorithms in Ferreira et al. (2018) and the limitations

of the primal-dual algorithm framework in Badanidiyuru et al. (2013). We also con-

duct numerical experiments to compare the performance of different algorithms and

will present the results in Section 4.3.3.

4.2.3 Algorithm

We present our computational efficient Thompson Sampling algorithm Fast-TS in

Algorithm 4. The algorithm is based on a primal-dual framework: in the primal

space, we optimize price decisions based on sampled demand parameters, and in the

dual space, we update a vector of dual variables 𝜆𝑗, each associated with a resource

inventory constraint 𝐼𝑗 for 𝑗 ∈ [𝑀 ]. Intuitively, these dual variables measure the

value, i.e., opportunity cost, of each unit of the corresponding resource.

In the initialization step of the algorithm, we define the domain of the dual vector

by

Ω = {𝜆 | 𝜆 ≥ 0, ‖𝜆‖1 ≤ Λ}, (4.1)

which requires each dual variable to be non-negative and the dual vector’s 1-norm

to be bounded by a constant Λ. When the selling horizon begins, in Step 1, we first

use the Thompson sampling method to estimate the mean demand for each price

vector. Then in Step 2, we select the price vector that maximizes the estimated

mean pseudo revenue where the price of each product is subtracted by the estimated

cost of the associated resources. After observing the realized demand, we update the

posterior distribution of the demand parameters and the values of the dual variables

respectively in Step 3 and Step 4. The update of posterior distribution follows that of

the Thompson sampling algorithm, and the dual variables are updated by the online

gradient descent method that is described in Algorithm 5 given objective function

𝑔𝑡(𝜆) and step size 𝜂𝑡. The algorithm stops when at least one of the resources is out

of inventory.
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Algorithm 4 Fast Thompson Sampling (Fast-TS)
0. Initialization. Define dual domain Ω. Set 𝜆𝑗(0) = 0 and 𝐼𝑗(0) = 𝐼𝑗 for all

𝑗 ∈ [𝑀 ].

For each time period 𝑡 = 1, . . . , 𝑇 :

1. Sample demand. Sample 𝜃(𝑡) from Θ according to the posterior distribution of

𝜃(𝑡) given history ℋ𝑡−1. Let 𝑑𝑖𝑘(𝑡) be the mean demand given 𝜃(𝑡).

2. Optimize pricing decisions. Offer the optimal price vector with index 𝑘(𝑡)

such that

𝑘(𝑡) = arg max
𝑘∈[𝐾+1]

𝑁∑︁
𝑖=1

(︃
𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)𝑎𝑖𝑗

)︃
𝑑𝑖𝑘(𝑡). (4.2)

3. Update estimate of parameter 𝜃. Observe demand 𝐷(𝑡). Update the history

ℋ𝑡 = ℋ𝑡−1 and the posterior distribution of 𝜃 given ℋ𝑡.

4. Update parameter 𝜆. Define function

𝑔𝑡(𝜆) =
𝑀∑︁
𝑗=1

𝜆𝑗 · (𝐼𝑗/𝑇 −
𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝐷(𝑡)). (4.3)

Update 𝜆(𝑡 + 1) by Online Gradient Descent with step size 𝜂𝑡 = 𝐶/
√
𝑡.

5. Stopping condition. Update the inventory of each resource 𝑗 ∈ [𝑀 ]. If there

exists 𝑗 such that inventory 𝐼𝑗(𝑡) ≤ 0, then Exit.

Algorithm 5 Online Gradient Descent
Initialization. Set 𝜂𝑡 = 𝐶/

√
𝑡. Calculate ▽𝑔𝑡(𝜆(𝑡)) given 𝑔𝑡(𝜆).

Update. Calculate 𝜆′ = 𝜆(𝑡)− 𝜂𝑡 · ▽𝑔𝑡(𝜆(𝑡)) .

Projection. Calculate 𝜆(𝑡 + 1) = ΠΩ(𝜆′).

The update of the dual variables in Algorithm 5 is based on the online gradient

descent (OGD) algorithm for an online convex optimization (OCO) problem. Specif-

ically, the OCO problem is

min
𝜆∈Ω

𝑇∑︁
𝑡=1

𝑀∑︁
𝑗=1

𝜆𝑗

(︀𝐼𝑗
𝑇
−

𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝐷(𝑡)
)︀
. (4.4)
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We will later see in the analysis (Section 4.3.2) that the optimal solution to this OCO

problem actually corresponds to the optimal value of opportunity cost associated

with each resource inventory constraint. Let 𝐼min be the minimum inventory, namely,

𝐼min = min𝑗∈[𝑀 ] 𝐼𝑗, and 𝐼max the maximum inventory, namely, 𝐼max = max𝑗∈[𝑀 ] 𝐼𝑗. In

addition, let 𝑝𝑗max be the maximum revenue that can possibly be achieved by adding

one unit of resource 𝑗, namely, 𝑝𝑗max = max𝑖:𝑎𝑖𝑗 ̸=0,𝑘∈[𝐾] (𝑝𝑖𝑘/𝑎𝑖𝑗). We set the 1-norm

upper bound of dual vector 𝜆 in domain Ω as

Λ = (𝐼max/𝐼min) ·
𝑀∑︁
𝑗=1

𝑝𝑗max. (4.5)

For step size 𝜂𝑡 = 𝐶/
√
𝑡, we have 𝐶 = 𝐷/𝐺 where 𝐷 is the diameter of domain Ω,

and 𝐺 is the upper bound of the norm of gradient ‖▽ 𝑔𝑡(𝜆)‖. We set 𝐷 =
√

2 Λ, and

will specify the value of 𝐺 later in Section 4.3.2.

We note that the online gradient descent algorithm involves a projection step.

Given 𝜆′, the projection to domain Ω is mathematically defined as

ΠΩ(𝜆′) = arg min
𝜆∈Ω
‖𝜆− 𝜆′‖. (4.6)

This projection result can be efficiently calculated without solving any LP. See Duchi

et al. (2008). We provide the detail of the projection algorithm in the Appendix.

4.2.4 Comparison to LP-based Thompson Sampling

Ferreira et al. (2018) provide two LP-based Thompson sampling algorithms, denoted

by TS-Fixed and TS-Update, to solve the online network revenue management prob-

lem. Those algorithms also use Thompson sampling as the learning backbone, as

in Step 1 and Step 3 of our algorithm Fast-TS. The difference is that in Step 2,

both TS-Fixed and TS-Update need to solve the following LP that uses the sampled

mean demand 𝑑(𝑡) as inputs to optimize the price decisions. Specifically, algorithm

TS-Fixed uses fixed inventory constraints 𝑐𝑗 = 𝐼𝑗/𝑇 and algorithm TS-Update uses

updated inventory constraints that replace 𝑐𝑗 with 𝑐𝑗(𝑡) = 𝐼𝑗(𝑡− 1)/(𝑇 − 𝑡 + 1).
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LP(𝑡) : max
𝑥

𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑝𝑖𝑘𝑑𝑖𝑘(𝑡)

)︃
𝑥𝑘 (4.7)

s.t.
𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝑑𝑖𝑘(𝑡)

)︃
𝑥𝑘 ≤ 𝑐𝑗, ∀𝑗 ∈ [𝑀 ] (4.8)

𝐾∑︁
𝑘=1

𝑥𝑘 ≤ 1, (4.9)

𝑥𝑘 ≥ 0, ∀𝑘 ∈ [𝐾]. (4.10)

In comparison to algorithms TS-Fixed and TS-Update, our algorithm Fast-TS fea-

tures a primal-dual framework that does not require solving any LP. Specifically, our

algorithm uses dual variables to measure the tightness of the inventory constraints.

These dual values correspond to the value (i.e. opportunity cost) of each unit of

the resources, and are thus taken into account in the price optimization step (Step

2) of Fast-TS. By Lagrangian relaxation, we know the price decisions given by our

algorithm can approximate the solution of the LP in TS-Fixed when these dual vari-

ables converge to their optimal values. Therefore, we can show that our algorithm

has a similar performance guarantee as TS-Fixed. Moreover, since our algorithm is

LP-free, it has the advantage in computations, and can thus outperform TS-Fixed

significantly in terms of computational efficiency, especially for large-scale systems

for which solving an LP in each iteration is very time expensive.

4.2.5 Comparison to primal-dual bandit with knapsack

By formulating the online network revenue management problem as a multi-armed

bandit problem with resource constraints, we can also apply the primal-dual algorithm

PD-BwK that is proposed in Badanidiyuru et al. (2013) to solve our problem. The

algorithm PD-BwK uses UCB as the learning backbone, and is designed for problems

with no prior knowledge. In each iteration, it estimates the upper bounds on revenue,

lower bounds on resource consumption, and the dual price of each resource, and then

selects the price vector that has the highest revenue-to-resource-price (“bang-per-
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buck") ratio.

Although PD-BwK is also based on an LP-free primal-dual framework, the algo-

rithm has limitations compared to our algorithm Fast-TS. First, the original algo-

rithm assumes that the revenue and resource consumption under each price vector is

bounded by [0, 1] and [0, 1]𝑀 , and it uses the multiplicative weights update method to

learn the optimal dual values. However, in the case where these bounds do not hold

(e.g. Poisson demand process), we cannot apply the algorithm directly because its

dual update method fails to specify the range of the optimal dual solution correctly.

Second, PD-BwK is not as flexible as Fast-TS. In particular, algorithm PD-BwK and

its analysis can hardly be adopted to the contextual setting, while our algorithm’s

primal-dual framework can be easily extended. More details about the extensions of

our algorithm are provided in Section 4.4.

4.2.6 Examples

We use the following two examples to elaborate the update process of the Thompson

sampling algorithm in Step 1 and Step 3 of algorithm Fast-TS that is provided in

Algorithm 4.

Example 1. Bernoulli demand with independent Beta prior. We assume

the demand for each product and all prices is Bernoulli distributed, and the unknown

parameter 𝜃 denotes the mean demand rate 𝑑(𝜃). We also assume that 𝜃 has a Beta

prior distribution, which is conjugated to the Bernoulli distribution. More specifically,

we assume the prior distribution of mean demand 𝑑𝑖𝑘(𝜃) is uniform in [0, 1], which is

equivalent to a Beta(1, 1) distribution, and is independent for all 𝑖 ∈ [𝑁 ] and 𝑘 ∈ [𝐾].

The update of posterior distribution is easy to calculate. Let 𝑁𝑘(𝑡 − 1) be the

number of periods that the retailer uses price 𝑝𝑘 in the first 𝑡 − 1 periods, and

𝑊𝑖𝑘(𝑡 − 1) the number of periods that product 𝑖 is purchased under price 𝑝𝑘. In

step 1 of the algorithm, we sample 𝑑𝑖𝑘(𝜃) independently from the posterior distribu-

tion Beta(𝑊𝑖𝑘(𝑡 − 1) + 1, 𝑁𝑘(𝑡 − 1) −𝑊𝑖𝑘(𝑡 − 1) + 1) for each product 𝑖 and price

vector 𝑘. In step 3, given selected price vector 𝑘(𝑡) and observed demand 𝐷𝑖(𝑡)

for product 𝑖, we update the posterior distribution of 𝜃 by updating the parameters
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𝑁𝑘(𝑡)(𝑡) ← 𝑁𝑘(𝑡)(𝑡 − 1) + 1 and 𝑊𝑖𝑘(𝑡)(𝑡) ← 𝑊𝑖𝑘(𝑡)(𝑡 − 1) + 𝐷𝑖(𝑡) for all 𝑖 ∈ [𝑁 ]. The

posterior distribution associated with the unchosen price vectors 𝑘 ̸= 𝑘(𝑡) are not

changed.

Example 2. Poisson demand with independent Gamma prior. We assume

the demand for each product and all prices is Poisson distributed, and the unknown

parameter 𝜃 denotes the mean demand rate 𝑑(𝜃). We also assume that 𝜃 has a Gamma

prior distribution, which is conjugated to the Poisson distribution. More specifically,

we assume the prior distribution of mean demand 𝑑𝑖𝑘(𝜃) is exponential with CDF

𝑓(𝑥) = 𝑒−𝑥, which is equivalent to a Gamma(1, 1) distribution, and is independent

for all 𝑖 ∈ [𝑁 ] and 𝑘 ∈ [𝐾].

The update of posterior distribution is also easy to calculate. Let 𝑁𝑘(𝑡−1) be the

number of periods that the retailer uses price 𝑝𝑘 in the first 𝑡−1 periods, and 𝑊𝑖𝑘(𝑡−1)

the total demand of product 𝑖 under price 𝑝𝑘. In step 1 of the algorithm, we sample

𝑑𝑖𝑘(𝜃) independently from the posterior distribution Gamma(𝑊𝑖𝑘(𝑡 − 1) + 1, 𝑁𝑘(𝑡 −

1)+1) for each product 𝑖 and price vector 𝑘. In step 3, given selected price vector 𝑘(𝑡)

and observed demand 𝐷𝑖(𝑡) for product 𝑖, we update the posterior distribution of 𝜃 by

updating the parameters 𝑁𝑘(𝑡)(𝑡)← 𝑁𝑘(𝑡)(𝑡−1)+1 and 𝑊𝑖𝑘(𝑡)(𝑡)← 𝑊𝑖𝑘(𝑡)(𝑡−1)+𝐷𝑖(𝑡)

for all 𝑖 ∈ [𝑁 ]. The posterior distribution associated with the unchosen price vectors

𝑘 ̸= 𝑘(𝑡) are not changed.

4.3 Performance Analysis

In this section, we are focused on answering the following two questions. First, what

is the performance guarantee of our algorithm in terms of its convergence rate to the

optimal pricing policy that knows the true demand parameters? Second, what is our

algorithm’s computational efficiency compared to other algorithms in the literature?

We provide in Section 4.3.2 and Section 4.3.3, respectively, answers to these two

questions. In addition, building on the numerical results, we will discuss the trade-off

between an algorithm’s performance guarantee and its computational efficiency in

Section 4.3.3.
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4.3.1 Benchmark

We use regret to evaluate an algorithm’s performance guarantee, which is defined as

the revenue loss of an algorithm relative to the (benchmark) optimal pricing policy of

a clairvoyant that knows the true demand parameter. Specifically, given true demand

parameter 𝜃, we define regret the in 𝑇 selling periods by

Regret(𝑇, 𝜃) = E[Rev*(𝑇 ) | 𝜃]− E[Rev(𝑇 ) | 𝜃] (4.11)

where Rev*(𝑇 ) is the revenue achieved by the optimal policy of a clairvoyant, and

Rev(𝑇 ) is the revenue achieved by an algorithm that does not know 𝜃. The conditional

expectation is taken over random demand realizations given 𝜃, and any randomization

within the algorithm.

We also define the Bayesian regret by

BayesRegret(𝑇 ) = E[Regret(𝑇, 𝜃)], (4.12)

where the expectation is taken over the prior distribution of 𝜃.

The revenue of the optimal policy with known demand parameter can be found by

dynamic programming. However, this approach is computationally intractable due to

the curse of dimensionality. Gallego Van Ryzin (1997) have shown that the optimal

revenue can be upper-bounded by the following linear program. Given true demand

parameter 𝜃, we denote the LP by LP(𝜃), and the mean demand by 𝑑(𝜃).

LP(𝜃) : max
𝑥

𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑝𝑖𝑘𝑑𝑖𝑘(𝜃)

)︃
𝑥𝑘 (4.13)

s.t.
𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝑑𝑖𝑘(𝜃)

)︃
𝑥𝑘 ≤

𝐼𝑗
𝑇
, ∀𝑗 ∈ [𝑀 ] (4.14)

𝐾∑︁
𝑘=1

𝑥𝑘 ≤ 1, (4.15)

𝑥𝑘 ≥ 0, ∀𝑘 ∈ [𝐾]. (4.16)
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Let OPT(𝜃) be the optimal value of LP(𝜃). By the result shown in Gallego

Van Ryzin (1997), we have

E[Rev*(𝑇 )
⃒⃒
𝜃] ≤ OPT(𝜃) · 𝑇. (4.17)

Therefore, we have

Regret(𝑇, 𝜃) ≤ OPT(𝜃) · 𝑇 − E[Rev(𝑇 )
⃒⃒
𝜃], (4.18)

and

BayesRegret(𝑇 ) ≤ E[OPT(𝜃)] · 𝑇 − E[Rev(𝑇 )]. (4.19)

4.3.2 Analysis of Fast Thompson Sampling

We provide the Bayesian regret bound of FastTS in Theorem. 4.1. In the analysis,

we assume that the observed demand for each product 𝑖 ∈ [𝑁 ] under any price vector

𝑝𝑘 for 𝑘 ∈ [𝐾] is bounded, namely, 𝐷𝑖(𝑡) ∈ [0, 𝑑𝑖]. The regret result involves the

following constants:

𝑞max = max
𝑗∈[𝑀 ]

𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝑑𝑖, (4.20)

𝑟max = max
𝑘∈[𝐾]

𝑁∑︁
𝑖=1

𝑝𝑖𝑘𝑑𝑖 + Λ𝑞max, (4.21)

𝐺 =
√
𝑀 max

{︂
𝑞max,

𝐼max

𝑇

}︂
(4.22)

where 𝑞max is the maximum resource consumption in each period for any resource

𝑗 ∈ [𝑀 ]; 𝑟max is the maximum pseudo revenue that takes into account both the price

of each product and the unit cost of each resource; and 𝐺 is the maximum sub-

gradient, i.e., Lipschitz parameter, of the dual objective function 𝑔𝑡(𝜆). Recall from

(4.4) that Λ is the bound of the dual values given by Λ = (𝐼max/𝐼min) ·
∑︀𝑀

𝑗=1 𝑝
𝑗
max

where 𝐼min = min𝑗∈[𝑀 ] 𝐼𝑗, 𝐼max = max𝑗∈[𝑀 ] 𝐼𝑗, and 𝑝𝑗max = max𝑖:𝑎𝑖𝑗 ̸=0,𝑘∈[𝐾] (𝑝𝑖𝑘/𝑎𝑖𝑗).
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Theorem 4.1. The Bayesian regret of FastTS is bounded by

BayesRegret(𝑇 ) ≤ 18𝑟max

√︀
𝐾𝑇 log𝐾 +

3
√

2

2
𝐺Λ
√
𝑇 + 𝑞maxΛ

(︁√︀
𝑇 log 𝑇 + 1

)︁
.

(4.23)

Proof outline. The regret analysis of algorithm FastTS is based on a primal-dual

framework. Given dual multipliers 𝜆𝑗 for 𝑗 ∈ [𝑀 ], each associated with a resource

constraint, we can define the Lagrangian dual problem of LP(𝜃) by the following LP,

denoted by LP(𝜆, 𝜃).

LP(𝜆, 𝜃) : max
𝑥

𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

(︃
𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗𝑎𝑖𝑗

)︃
𝑑𝑖𝑘(𝜃)

)︃
𝑥𝑘 +

𝑀∑︁
𝑗=1

𝜆𝑗
𝐼𝑗
𝑇

(4.24)

s.t.
𝐾∑︁
𝑘=1

𝑥𝑘 ≤ 1, (4.25)

𝑥𝑘 ≥ 0, ∀𝑘 ∈ [𝐾]. (4.26)

Let the optimal value of LP(𝜆, 𝜃) be OPT(𝜆, 𝜃). By weak duality, we have OPT(𝜃) ≤

OPT(𝜆(𝑡), 𝜃). Denote the optimal solution of LP(𝜆(𝑡), 𝜃) by 𝑥*(𝑡), and the pricing de-

cision of our algorithm in period 𝑡 as 𝑥(𝑡), i.e., 𝑥𝑘(𝑡) = 1(𝑘 = 𝑘(𝑡)). We can decompose

OPT(𝜆(𝑡), 𝜃) by OPT(𝜆(𝑡), 𝜃) = 𝑅(𝑡, 𝜃)+∆1(𝑡, 𝜃)+∆2(𝑡, 𝜃)+∆3(𝑡, 𝜃), where we define

𝑅(𝑡, 𝜃) =
𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑝𝑖𝑘𝑑𝑖𝑘(𝜃)

)︃
𝑥𝑘 , (4.27)

∆1(𝑡, 𝜃) =
𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

(︃
𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)𝑎𝑖𝑗

)︃
𝑑𝑖𝑘(𝜃)

)︃
(𝑥*

𝑘 − 𝑥𝑘(𝑡)) , (4.28)

∆2(𝑡, 𝜃) =
𝑀∑︁
𝑗=1

(︃
𝐼𝑗
𝑇
−

𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝐷𝑖(𝑡)

)︃
𝑥𝑘

)︃
𝜆𝑗(𝑡) , (4.29)

∆3(𝑡, 𝜃) =
𝑀∑︁
𝑗=1

(︃
𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑎𝑖𝑗 (𝐷𝑖(𝑡)− 𝑑𝑖𝑘(𝜃))

)︃
𝑥𝑘

)︃
𝜆𝑗(𝑡). (4.30)
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Suppose the algorithm ends in period 𝜏 . By the decomposition, we obtain

E

[︃
𝑇∑︁
𝑡=1

1 (𝜏 ≥ 𝑡) OPT(𝜃)

]︃
≤ E

[︃
𝜏∑︁

𝑡=1

𝑅(𝑡, 𝜃) + ∆1(𝑡, 𝜃) + ∆2(𝑡, 𝜃) + ∆3(𝑡, 𝜃)

]︃
. (4.31)

By definition,
∑︀𝜏

𝑡=1𝑅(𝑡, 𝜃) denotes the total revenue achieved by the algorithm,∑︀𝜏
𝑡=1 ∆1(𝑡, 𝜃) corresponds to the regret in the primal pricing decision space,

∑︀𝜏
𝑡=1 ∆2(𝑡, 𝜃)

corresponds to the regret in the dual resource value space, and
∑︀𝜏

𝑡=1 ∆3(𝑡, 𝜃) corre-

sponds to the stochastic error in demand, which connect the primal space and the

dual space.

To show the regret bound in (4.23), we need to provide the upper bound for each

∆ component respectively. Specifically. we will show

E

[︃
𝜏∑︁

𝑡=1

∆1(𝑡, 𝜃)

]︃
≤ 18𝑟max

√︀
𝐾𝑇 log𝐾, (4.32)

E

[︃
𝜏∑︁

𝑡=1

∆2(𝑡, 𝜃)

]︃
≤ E [(𝜏 − 𝑇 ) OPT(𝜃)] +

3
√

2

2
𝐺Λ
√
𝑇 , (4.33)

E

[︃
𝜏∑︁

𝑡=1

∆3(𝑡, 𝜃)

]︃
≤ 𝑞maxΛ

(︁√︀
𝑇 log 𝑇 + 1

)︁
. (4.34)

Remark. The Bayesian regret bound of the LP-based Thompson sampling algo-

rithm TS-fixed that is proposed in Ferreira et al. (2018) is

BayesRegret(𝑇 ) ≤

(︃
18𝑝max + 38

𝑀∑︁
𝑗=1

𝑁∑︁
𝑖=1

𝑝𝑗max𝑎𝑖𝑗𝑑𝑖

)︃√︀
𝐾𝑇 log𝐾

where 𝑑𝑖 the upper bound of 𝐷𝑖(𝑡), 𝑝𝑗max := max𝑖:𝑎𝑖𝑗 ̸=0,𝑘∈[𝐾] (𝑝𝑖𝑘/𝑎𝑖𝑗) and 𝑝max =

max𝑘∈[𝐾]

∑︀𝑁
𝑖=1 𝑝𝑖𝑘 · 𝑑𝑖. See Theorem 1 in Ferreira et al. (2018). Compare our algo-

rithm’s Bayesian regret with the result in Ferreira et al. (2018). We observe that

both algorithms obtain a Bayesian regret of order 𝑂(
√
𝑇𝐾 log𝐾), and the constants

are upper bounded by the same order of dependence in 𝑀 and 𝑁 . Moreover, both

results are prior-free as they do not depend on the prior distribution of parameter 𝜃,

and the constants can be computed without knowing the demand distribution.
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4.3.3 Numerical Experiments

In this section, we numerically compare our algorithm FastTS with other algorithms

in the literature through several examples. When measuring the performance of an

algorithm, we focus on the following two dimensions: (i) the algorithm’s average rev-

enue and (ii) the algorithm’s average running time. These two dimensions respectively

represent an algorithm’s optimality and computational efficiency. For consistency, the

examples we use are identical to the ones in the numerical section of Ferreira et al.

(2018) and Besbes Zeevi (2012).

Single-Product Example

Consider a retailer selling a single product (𝑁 = 1) that consumes a single resource

(𝑀 = 1) throughout a finite selling horizon of 𝑇 periods. The set of feasible prices

is {$29.9, $34.9, $39.9 $44.9}, and the mean demand is 𝑑($29.9) = 0.8, 𝑑($34.9) =

0.6, 𝑑($39.9) = 0.3, 𝑑($44.9) = 0.1. As is common in revenue management literature,

we show numerical results in an asymptotic regime when the inventory is scaled

linearly with time. Given 𝐼 = 𝛼𝑇 , we consider two scenarios of initial inventory

where 𝛼 = 0.25 and 𝛼 = 0.5.

We evaluate and compare the following dynamic pricing algorithms.

∙ FastTS: defined in Algorithm 4. We use the independent Beta prior as in Ex-

ample 1.

∙ TS-Fixed: the algorithm proposed in Ferreira et al. (2018), which solves LP(𝑡)

with 𝑐𝑗 = 𝐼𝑗/𝑇 . See Section 4.2.4. We use the independent Beta prior as in

Example 1.

∙ TS-Updated: the algorithm proposed in Ferreira et al. (2018), which solves LP(𝑡)

with 𝑐𝑗(𝑡) = 𝐼𝑗(𝑡 − 1)/(𝑇 − 𝑡 + 1). See Section 4.2.4. We use the independent

Beta prior as in Example 1.

∙ BZ: the algorithm proposed in Besbes Zeevi (2012), which first explores all

prices and then exploits the best pricing decisions by solving an LP once. In

our implementation, we divide the exploration and exploitation phases at period
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𝜏 = 𝑇 2/3 as suggested in their paper.

∙ PD-BwK: the algorithm proposed in Badanidiyuru et al. (2013) that uses the

UCB algorithm to estimate demand 𝑑(𝑡) and uses a primal dual algorithm to

solve LP(𝑡). See the description in Section 4.2.5.

∙ TS: the original Thompson sampling algorithm presented in Thompson (1933),

which does not consider inventory constraints.

We measure the optimality performance of an algorithm using the average per-

centage of “optimal revenue" achieved over 500 simulations. By “optimal revenue”, we

are referring to the optimal value of LP(𝜃), described in Section 4.3.2, and we know

the optimal value is an upper bound on the optimal revenue where the retailer knows

the true demand parameter 𝜃 prior to the selling season. In terms of computation per-

formance, we use the average running time of an algorithm over the 500 simulations

to describe the algorithm’s computational efficiency. Figure 4-1 and Figure 4-2 show

the performance results for the two scenarios 𝛼 = 0.25 and 𝛼 = 0.5, respectively.

(a) (b)

Figure 4-1: Performance comparison of different algorithms: single product example
with 𝐼 = 0.25𝑇 .

First, we notice that all the tested algorithms that takes into inventory constraints

i.e., BZ, TS-Fixed, TS-Updated, PD-BwK, FastTS, converge to the optimal revenue as

the length of the selling season increases, while algorithm TS does not. This is because

the optimal strategies in both examples are a mixed strategy: when 𝐼 = 0.25𝑇 , the

optimal pricing policy is to offer $39.90 to 3/4 of the customers, and offer $44.90

to the remaining 1/4 of the customers; and when 𝐼 = 0.5𝑇 , the optimal pricing
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(a) (b)

Figure 4-2: Performance comparison of different algorithms: single product example
with 𝐼 = 0.5𝑇 .

policy is to offer $34.90 to 2/3 of the customers, and offer $39.90 to the remaining

1/3 of the customers. In both cases, TS converges to the suboptimal price $29.90

since this is the price that maximizes the expected revenue given unlimited inventory.

This convergence result illustrates the necessity of incorporating inventory constraints

when developing a dynamic pricing and learning algorithm.

Second, we notice that TS-Updated, TS-Fixed and our algorithm FastTS outper-

form other algorithms in terms of optimality. In particular, TS-Updated and FastTS

show the best optimality performance. In addition, the optimality gap between any

two different algorithms increases when (i) the length of the selling season is short

and (ii) the ratio 𝐼/𝑇 is small. This shows that a good algorithm is able to quickly

learn the true demand parameter and identify the optimal pricing strategy, which is

very useful for low inventory settings.

Last, we notice from the running time comparison results that algorithms TS-

Updated and TS-Fixed have a very long running time because both algorithms require

to solve an estimated LP in the beginning of each selling period. For other algorithms,

BZ only need to solve an LP once at the beginning of the exploitation phase, and

algorithms FastTS and PD-BwK are LP-free since they are both based on a primal-

dual framework. The running time of these three algorithms are much smaller than

that of TS-Updated and TS-Fixed. Moreover, the performance gap in computational

efficiency between the LP-heavy algorithms and LP-light algorithms becomes more
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significant as the length of the selling horizon increases.

If we evaluate an algorithm comprehensively from both dimensions, namely, opti-

mality and computational efficiency, we observe that FastTS has the most outstanding

performance. In terms of optimality, the performance of FastTS closely follows the

algorithm with the highest average revenue, namely, TS-Updated. In terms of com-

putational efficiency, the running time of FastTS is as low as the BZ and TS, which

are the ones that have the lowest computational cost. In other words, among all the

algorithms we test, no single algorithm can outperform FastTS in both dimensions at

the same time.

Multi-Product Example

Consider a retailer selling two products (𝑁 = 2) that consume three resources

(𝑀 = 3). The consumption of resources for each product, also known as the bill-

of-materials, is as follows: one unit of product 𝑖 = 1 consumes 1 unit of resource

𝑗 = 1 and 3 units of resource 𝑗 = 2; one unit of product 𝑖 = 2 consumes 1 unit of

resource 𝑗 = 1, 1 unit of resource 𝑗 = 2, and 5 units of resource 𝑗 = 3. The set of fea-

sible prices is (𝑝1, 𝑝2) ∈ {(1, 1.5), (1, 2), (2, 3), (4, 4), (4, 6.5)}. We assume customers

arrive according to a multivariate Poisson process. We consider the following types

of demand functions.

1. Linear: 𝑑(𝑝1, 𝑝2) = (8− 1.5𝑝1, 9− 3𝑝2),

2. Exponential: 𝑑(𝑝1, 𝑝2) = (5𝑒−0.5𝑝1 , 9𝑒−𝑝2),

3. Logit: 𝑑(𝑝1, 𝑝2) =
(︁

10𝑒−𝑝1

1+𝑒−𝑝1+𝑒−𝑝2
, 10𝑒−𝑝2

1+𝑒−𝑝1+𝑒−𝑝2

)︁
.

For each type of demand function, we consider two scenarios of initial inventory

𝐼 = 𝛼𝑇 where 𝛼 = (3, 5, 7) and 𝛼 = (15, 12, 30), respectively.

We compare algorithms BZ, TS-Fixed, TS-Updated and our algorithm FastTS for

this example. As mentioned in Ferreira et al. (2018), algorithm PD-BwK that is pro-

posed in Badanidiyuru et al. (2013) does not apply to the setting in which customers

arrive according to a Poisson process, so we do not include this algorithm in the com-

parison. For Thompson sampling based algorithms, we use the independent Gamma

prior as described in Example 1.
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As in the single-product example, we measure the optimality performance of an

algorithm using the average percentage of “optimal revenue" achieved over 500 simula-

tions, and measure the computational performance of an algorithm using the average

running time of an algorithm over the 500 simulations to describe the algorithm’s

computational efficiency. In the following plots, Figure 4-3 and Figure 4-4 show the

performance results for the linear demand function with 𝛼 = 3 and 𝛼 = 15, respec-

tively. Figure 4-5 and Figure 4-6 show the performance results for the exponential

demand function with 𝛼 = 5 and 𝛼 = 12. Figure 4-7 and Figure 4-8 show the

performance results for the logit demand function with 𝛼 = 7 and 𝛼 = 30.

(a) (b)

Figure 4-3: Performance comparison of different algorithms: multiple product linear
demand with 𝐼 = 3𝑇 .

(a) (b)

Figure 4-4: Performance comparison of different algorithms: multiple product linear
demand with 𝐼 = 15𝑇 .
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(a) (b)

Figure 4-5: Performance comparison of different algorithms: multiple product expo-
nential demand with 𝐼 = 5𝑇 .

(a) (b)

Figure 4-6: Performance comparison of different algorithms: multiple product expo-
nential demand with 𝐼 = 12𝑇 .

The experiments results for these multiple product examples under different de-

mand functions are consistent with our observations in the single product example.

In the optimality dimension, algorithm TS-Updated provides the best performance in

most of the cases (except for the case of logit demand with 𝐼 = 30𝑇 ), followed by

algorithm TS-Fixed and our algorithm FastTS. In the computational efficiency dimen-

sion, algorithm BZ provides the best performance, followed by algorithm FastTS. In

a comprehensive evaluation of both dimensions, FastTS performs the best.
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(a) (b)

Figure 4-7: Performance comparison of different algorithms: multiple product logit
demand with 𝐼 = 7𝑇 .

(a) (b)

Figure 4-8: Performance comparison of different algorithms: multiple product logit
demand with 𝐼 = 30𝑇 .

4.4 Extensions and Further Applications

We discuss in this section extensions of our primal-dual algorithm and the correspond-

ing analysis framework to a variety of settings in online network revenue management,

and show the broad applicability of our approach in practice.

4.4.1 Contextual Model

We can extend our model and algorithm to the contextual setting where the retailer

has access to some exogenous information, including customer attributes, product

features, seasonality, etc, and can customize the pricing decisions based on such con-
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textual information.

Model and Algorithm. Suppose that at the beginning of each time period 𝑡 ∈

[𝑇 ], the retailer observes a context or feature 𝜉(𝑡). We assume 𝜉(𝑡) belongs to a discrete

set 𝒳 , and is sampled i.i.d. from the set under a known probability distribution. After

observing the context 𝜉(𝑡), the retailer selects a price vector 𝑃 (𝑡) ∈ {𝑝1, . . . , 𝑝𝐾 , 𝑝∞},

and then observes demand 𝐷(𝑡). Given any 𝜉 ∈ 𝒳 , we assume that the demand

under price vector 𝑝𝑘 for any 𝑘 ∈ [𝐾] is i.i.d. sampled from distribution with CDF

𝐹 (𝑥1, . . . , 𝑥𝑁 ; 𝑝𝑘, 𝜉, 𝜃). The distribution is parametrized by an unknown vector 𝜃 ∈ Θ.

We denote by 𝑑𝑖𝑘(𝜉 | 𝜃) the mean demand of product 𝑖 ∈ [𝑁 ] under price vector 𝑝𝑘

given context 𝜉 and parameter 𝜃. We also assume that the retailer knows a prior

distribution of 𝜃 at the beginning of the selling season. The retail’s objective is to

maximize the expected revenue over the entire selling horizon.

We present our algorithm Fast-TS-Context for this model in Algorithm 6. In the

initialization step, we define the domain of the dual variables 𝜆, which is the same

as shown in (4.4). When the selling season starts, in Step 1, we first sample demand

parameter 𝜃(𝑡) according to its posterior probability distribution, and calculate the

mean demand estimation 𝑑𝑖𝑘(𝜉(𝑡)) given observation 𝜉(𝑡). In Step 2, we optimize the

price by selecting the price vector that maximizes the pseudo revenue given 𝑑𝑖𝑘(𝜉(𝑡)).

Here, the definition of pseudo revenue follows that in Algorithm 4. After observing

customer’s demand 𝐷(𝑡), we update the posterior distribution of 𝜃 in Step 3, and

update the dual variable 𝜆(𝑡) by the online gradient descent algorithm described

in Algorithm 5 in Step 4. The definition of the dual function also follows that of

Algorithm 4.

Note that Fast-TS-Context follows the same framework as FastTS. The only dif-

ference lies in the primal space, where we make several simple modifications in the

Thompson sampling steps and the price optimization step to include the contextual

information 𝜉(𝑡). The update of the dual variables is not changed since the dual space

of the problem stays the same. In fact, the problem defined in Section 4.2.1 can be

considered as a special case of this contextual model where we have |𝒳 | = 1.
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Algorithm 6 Fast Thompson Sampling for Contextual Pricing (Fast-TS-Context)
0. Initialization. Set 𝜆𝑗(0) = 0 and 𝐼𝑗(0) = 𝐼𝑗 for all 𝑗 ∈ [𝑀 ]. For each time period

𝑡 = 1, . . . , 𝑇 :

1. Sample demand. Sample 𝜃(𝑡) from Θ according to the posterior distribution of

𝜃(𝑡) given history ℋ𝑡−1.

2. Optimize pricing decisions. Observe context 𝜉(𝑡). Let 𝑑𝑖𝑘(𝜉(𝑡) | 𝜃(𝑡)) be the

mean demand given 𝜃(𝑡). Offer the optimal price vector with index 𝑘(𝑡) such that

𝑘(𝑡) = arg max
𝑘∈[𝐾+1]

𝑁∑︁
𝑖=1

(︃
𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)𝑎𝑖𝑗

)︃
𝑑𝑖𝑘(𝜉(𝑡) | 𝜃(𝑡)). (4.35)

3. Update estimate of parameter 𝜃. Observe demand 𝐷(𝑡). Update the history

ℋ𝑡 = ℋ𝑡−1 ∪ {𝜉(𝑡), 𝑃 (𝑡), 𝐷(𝑡)} and the posterior distribution of 𝜃 given ℋ𝑡.

4. Update parameter 𝜆. Define function

𝑔𝑡(𝜆) =
𝑀∑︁
𝑗=1

𝜆𝑗 · (𝐼𝑗/𝑇 −
𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝐷(𝑡)). (4.36)

Update 𝜆(𝑡 + 1) by Online Gradient Descent with step size 𝜂𝑡 = 𝐶/
√
𝑡.

5. Stopping condition. Update the inventory of each resource 𝑗 ∈ [𝑀 ]. If there

exists 𝑗 such that inventory 𝐼𝑗(𝑡) ≤ 0, then Exit.

Performance Analysis. The Bayesian regret bound of Fast-TS-Context is pro-

vided in Theorem. 4.2. Comparing this results with that in Theorem. 4.1, we observe

that the regret from the dual update procedure and the stochastic errors in 𝐷(𝑡) stay

the same. The only difference of analysis is in the primal space, where we need to

take into account context 𝜉(𝑡). In addition, the result in Theorem. 4.2 also shows

the same order of regret as in Theorem 4 of Ferreira et al. (2018) where the authors

consider an extension of algorithm TS-Fixed to the contextual setting.

Theorem 4.2. The Bayesian regret of Fast-TS-Context is bounded by

BayesRegret(𝑇 ) ≤ 18𝑟max

√︀
|𝒳 |𝐾𝑇 log𝐾+

3

2
𝐺Λ
√
𝑇+𝑞maxΛ

(︁√︀
𝑇 log 𝑇 + 1

)︁
. (4.37)
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We notice that the regret bound in Theorem. 4.2 depends on the size of the

feature space by 𝑂(
√︀
|𝒳 |), and is meaningful when |𝒳 | is small compared with 𝑇 .

The result is also compatible with the regret bound shown in Agrawal et al. (2016b)

for the contextual bandit problem with resource constraints. Specifically, given the

set of admissible policies that maps 𝒳 to {𝑝1, . . . , 𝑝𝑘}, the regret is upper bounded

by 𝑂(
√︀

𝐾𝑇 log(𝑇 |Π|)). Take |Π| = 𝐾 |𝒳 |, and we recover the regret bound in our

theorem (up to log factors).

The proof of Theorem. 4.2 shares a similar analysis structure to Theorem. 4.1, as

discussed in Section 4.3.2. The benchmark is now

LP(𝜃) : max
𝑥

E𝜉

[︃
𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑝𝑖𝑘𝑑𝑖𝑘(𝜉|𝜃)

)︃
𝑥𝜉,𝑘

]︃
(4.38)

𝑠.𝑡. E𝜉

[︃
𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝑑𝑖𝑘(𝜉|𝜃)

)︃
𝑥𝜉,𝑘

]︃
≤ 𝐼𝑗

𝑇
, ∀𝑗 ∈ [𝑀 ] (4.39)

𝐾∑︁
𝑘=1

𝑥𝜉,𝑘 ≤ 1, ∀𝜉 ∈ 𝒳 (4.40)

𝑥𝜉,𝑘 ≥ 0, ∀𝜉 ∈ 𝒳 , ∀𝑘 ∈ [𝐾]. (4.41)

where we use E𝜉 [·] to denote the expectation over context 𝜉(𝑡) given its known prob-

ability distribution. This expectation appears both in the objective and in the con-

straints.

4.4.2 Linear Contextual Model

In this section, we extend our model and algorithm to the linear contextual setting

where we assume demand is a linear function of context. In many practical applica-

tions, context 𝜉(𝑡) is defined on a high-dimensional space R𝑑 rather than a discrete

set, and thus the number of contexts |𝒳 | can hardly be bounded, rendering the re-

sults in the previous section meaningless. In this case, we can adopt a linear model

to parameterize a customer’s demand under different prices.

Model and Algorithm. Let 𝑦(𝜉, 𝑘) denote the function that maps the contextual

information associated with context 𝜉 ∈ 𝒳 and price vector 𝑝𝑘 for 𝑘 ∈ [𝐾] to a vector
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in R𝑑. In each time period 𝑡 ∈ [𝑇 ], given observed context 𝜉(𝑡) and selected price

vector 𝑘(𝑡), define 𝑦(𝑡) = 𝑦(𝜉(𝑡), 𝑘(𝑡)). We assume that 𝐷(𝑡) = 𝑊⊤𝑦(𝑡) + 𝜀(𝑡) where

𝑊 is a parameter matrix in R𝑑×𝑁 , and 𝜀(𝑡) is a demand noise vector in R𝑁 . We also

assume 𝜀(𝑡) is sampled independently from a known multivariate normal distribution

with zero mean. The demand parameter 𝜃 = 𝑊 is unknown, and the retailer knows

a prior distribution of 𝜃 over Θ.

We present our algorithm Fast-TS-LinContext for this model in Algorithm 7. The

algorithm shares the same framework as Algorithm 4 and Algorithm 6. The only

difference is that in step 2, we calculate the mean demand 𝑑𝑖𝑘(𝜉(𝑡) | 𝜃(𝑡)) under each

price vector 𝑝𝑘 using linear function 𝜃⊤𝑦(𝑡) given context 𝑦(𝑡) = (𝜉(𝑡), 𝑘).

Algorithm 7 Fast Thompson Sampling for Contextual Pricing (Fast-TS-Lin-Context)
0. Initialization. Set 𝜆𝑗(0) = 0 and 𝐼𝑗(0) = 𝐼𝑗 for all 𝑗 ∈ [𝑀 ]. For each time period

𝑡 = 1, . . . , 𝑇 :

1. Sample demand. Sample 𝜃(𝑡) from Θ according to the posterior distribution of

𝜃(𝑡) given history ℋ𝑡−1.

2. Optimize pricing decisions. Observe context 𝜉(𝑡). Let 𝑑𝑖𝑘(𝜉(𝑡) | 𝜃(𝑡)) be the

mean demand given 𝜃(𝑡). Offer the optimal price vector with index 𝑘(𝑡) such that

𝑘(𝑡) = arg max
𝑘∈[𝐾+1]

𝑁∑︁
𝑖=1

(︃
𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)𝑎𝑖𝑗

)︃
𝑑𝑖𝑘(𝜉(𝑡) | 𝜃(𝑡)). (4.42)

3. Update estimate of parameter 𝜃. Observe demand 𝐷(𝑡). Update the history

ℋ𝑡 = ℋ𝑡−1 ∪ {𝜉(𝑡), 𝑃 (𝑡), 𝐷(𝑡)} and the posterior distribution of 𝜃 given ℋ𝑡.

4. Update parameter 𝜆. Define function

𝑔𝑡(𝜆) =
𝑀∑︁
𝑗=1

𝜆𝑗 · (𝐼𝑗/𝑇 −
𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝐷(𝑡)). (4.43)

Update 𝜆(𝑡 + 1) by Online Gradient Descent with step size 𝜂𝑡 = 𝐶/
√
𝑡.

5. Stopping condition. Update the inventory of each resource 𝑗 ∈ [𝑀 ]. If there

exists 𝑗 such that inventory 𝐼𝑗(𝑡) ≤ 0, then Exit.
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Note that in the model, we assume a discrete price set, and thus we can optimize

price decisions by sorting different choices of prices without solving any LPs. If we

assume the retailer chooses prices from a continuous price set, we may need to run

the price optimization via a linear program. For example, Ferreira et al. (2018) con-

sider a context-independent setting where price 𝑃 (𝑡) = [𝑃𝑖(𝑡)]𝑖∈[𝑁 ] is from a bounded

polyhedral set 𝒫 , and demand is given by linear function 𝐷(𝑡) = 𝛼 + 𝐵𝑃 (𝑡) + 𝜀(𝑡)

with (𝛼,𝐵) ⊂ R𝑁×(𝑁+1). In this setting, we have in step 2 the following optimization

problem in period 𝑡:

𝑃 (𝑡) = arg max
𝑝∈𝒫

𝑁∑︁
𝑖=1

(︃
𝑝−

𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)𝑎𝑖𝑗

)︃
(𝛼(𝑡) + 𝐵(𝑡)𝑝), (4.44)

where 𝛼(𝑡) and 𝐵(𝑡) are sampled from their posterior distributions. Since this opti-

mization problem does not involve any inventory constraints, we can expect that our

primal-dual algorithm framework still has the advantage in computational efficiency

if the feasible price set 𝒫 is not too complicated.

Performance Analysis. The Bayesian regret bound of Fast-TS-Lin-Context is

provided in Theorem. 4.3. In comparison with the result in Theorem. 4.1, we observe

that the only difference is from the regret of the primal decisions.

Theorem 4.3. The Bayesian regret of Fast-TS-Lin-Context is bounded by

BayesRegret(𝑇 ) ≤ 𝑟max𝑂
(︁
𝑑𝑁 log 𝑇

√
𝑇
)︁

+
3

2
𝐺Λ
√
𝑇 +𝑞maxΛ

(︁√︀
𝑇 log 𝑇 + 1

)︁
. (4.45)

We highlight that the regret bound of algorithm Fast-TS-Lin-Context does not de-

pend on the number of price vectors and the number of contexts, but on the dimension

of the demand function class, which is amount to the number of unknown parameters

in our case. Specifically, we know 𝜃 = 𝑊 ⊂ R𝑑×𝑁 , and this leads to the regret bound

𝑂
(︁
𝑑𝑁 log 𝑇

√
𝑇
)︁

in (4.45).

The proof of Theorem. 4.3 follows the same analysis framework as Theorem. 4.2.

In the analysis, we build a connection between the dynamic pricing problem and the

multi-armed bandit problem where the reward of choosing price vector 𝑘 is given
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by the pseudo revenue
∑︀𝑁

𝑖=1

(︁
𝑝𝑖𝑘 −

∑︀𝑀
𝑗=1 𝜆𝑗(𝑡)𝑎𝑖𝑗

)︁
𝑑𝑖𝑘(𝜉(𝑡) | 𝜃(𝑡)), with 𝑑(𝜉(𝑡) | 𝜃(𝑡))

being a linear function in context 𝑦(𝑡) = (𝜉(𝑡), 𝑘). We build connection between

our problem with the linear bandit problems in Rusmevichientong Tsitsiklis (2010),

Agrawal Devanur (2016) and Russo Van Roy (2014) to analyze the regret bound of

our algorithm.

121





Chapter 5

Concluding Remarks

In this chapter, we summarize the previous works and discuss future research direc-

tions based on the models and algorithms we study in each chapter.

5.1 Summary and Future Research Directions

Online matching with Bayesian rewards

We study in Chapter 2 an online matching problem where a central platform needs

to match finite resources to users that arrive sequentially over time. The reward of

each matching option depends both on the the type of resource and the time period

the user arrives. The matching rewards are assumed to be unknown, but the prior

and posterior updating rules are known a priori. The goal is to maximize the total

reward from all matching options without violating the resource capacity constraints.

The matching problem features a Bayesian learning environment and a non-

stationary reward distribution over time. In addition, the budget constraints are

described both by the number of available impressions of each resource and by the

number of users in each time period. The main contribution of the paper is that we

propose an algorithm for the matching problem that achieves a constant fraction of

the optimal reward. In particular, our algorithm is based on smartly assembling the

single-arm policies that are obtained from the solutions to a linear program. In the
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technical analysis, we show that our algorithm improves the previous results in Guha

Munagala (2013), and we also provide geometric intuitions in proving the algorithm’s

performance guarantee.

Future research directions. The algorithm framework we developed in the

chapter can be further extended. First, in the work, we consider deterministic ar-

rivals, and we believe the techniques can be extended to the setting of stochastic

arrivals. In fact, there exist tools in the online matching literature that can help us

handle the stochastic setting. Second, in the work, we aim to provide an approxima-

tion ratio guarantee for the non-stationary learning problem, while existing literature

mostly focuses on using regret analysis. Each of the two performance metrics has its

advantages and disadvantages, and we believe there are connections we can explore

between these two metrics. This topic also relates to the similarities and differences

between Markovian bandits and stochastic bandits. Moreover, we believe a tight-

ness analysis on the current performance ratio guarantee can make our results more

convincing. Last, in the matching problem, we focus on the efficiency of the central

platform and the goal to maximize the total rewards. In practice, the fairness between

different resource channels may also be a major concern to the central platform. In

this case, it is worth exploring the mechanism design of the allocation platform and

the operational restrictions that can help improve the efficiency of all resource chan-

nels. The impact of such fairness constraints in the online matching problem is an

interesting future research direction.

Online learning and optimization for add-on discounts

We study in Chapter 3 a revenue management problem with add-on discounts, which

is motivated by the unique structure between core products (video game consoles)

and supportive products (video games). We note that although the add-on discount

strategy has been used in the industry, it has not been formally studied in the lit-

erature, and our work fills this gap between theory and practice. In particular, we

develop an optimization formulation of the revenue management problem, and pro-

vide an FPTAS algorithm that can approximately solve the optimization problem to
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any desired accuracy. Moreover, we study the problem in the online setting where

the demand functions of different products are unknown. We propose a UCB-based

algorithm to solve the online problem, and show that the algorithm can obtain a tight

regret bound.

The results of this study provides useful managerial insights and strategical guid-

ance for retailers. In principle, the add-on discount strategy offers more flexibility for

product promotions, and retailers can increase their revenue (and profit) by adopt-

ing this strategy so as to incentivize customers to purchase more items. However,

in practice, the lack of past experience and the uncertainty of customer’s demand

could hold retailers back from implementing the strategy. In our numerical experi-

ments, which are based on the real-world data we collect from Tmall.com, we show

that the retailer can expect a revenue (profit) increase of 5% to 20% by using add-on

discounts. More importantly, in the more practical setting where the retailer has no

prior knowledge of the demand information, we show that the retailer can obtain a

long-term increase in revenue (profit) by using the add-on discount strategy while

learning the demand parameters on the fly. These numerical results demonstrate the

efficacy of using data-driven approaches in revenue management.

Future research directions. We point out several interesting future research

directions based on our work. First, our model motivates a more general add-on set-

ting where discounts are offered two-way. In this work, we categorize the products

into core products and supportive products, and assume that the retailer can only

offer add-on discounts on supportive products. In the more general setting, given two

or more selected sets of products, we may assume that the retailer can offer add-on

discounts to any set of products. Furthermore, in general product bundles, how to

model the relationship between different types of products is more challenging. In

the example of games and game consoles, we have various selections on the support-

ive products that are all compatible with the core product. This might not be the

case when we consider other examples like printers and inks, razors and replacement

blades, etc.

Second, building on the results of this paper, it worth exploring another innovative
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revenue management strategy called share-for-discounts. In share-for-discounts, cus-

tomers can collect bonus points by sharing the information of certain products with

their friends. Once the bonus points reach some threshold, a customer can get dis-

counts on the shared products as rewards. By using this strategy, retailers can reach

more potential customers through a customer’s personal social network. Therefore,

how to design a good data-driven policy for the share-for-discounts strategy would

be another interesting research direction.

Fast Thompson sampling for online network revenue management

We study in Chapter 4 a canonical price-based network revenue management prob-

lem where a retailer aims to maximize revenue from multiple products with limited

inventory over a finite selling season. We assume the demand of different products,

as functions of prices, contains unknown parameters, and the retailer must learn

them from the sales data. The main contribution of the work is that we propose

an primal-dual algorithm that combines the Thompson sampling technique and the

online gradient descent method. We not only provide Bayesian regret bound of the

algorithm, but also numerically show the algorithm’s computational efficiency.

The primal-dual framework we develop in the work provides a convenient tool for

both designing and analyzing algorithms. In particular, in the primal decision space,

we aim to learn the demand parameter by formulating the problem as a multi-armed

bandit, and in the dual decision space, we aim to learn the unit value of resource

by formulating the problem as an online convex optimization problem. Since the

framework does not require solving any LPs, our algorithm obtains the advantage in

computational efficiency in comparison to other LP-based algorithms in the litera-

ture. In the work, we also discuss extensions of the algorithm framework to various

contextual pricing settings.

Future research directions. We note that in our algorithm’s primal-dual

framework, we can easily replace the learning algorithms for both the the primal

and the dual problems with other alternatives. For example, we can replace the

Thompson sampling algorithm with UCB-type learning algorithms, and replace the
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online gradient descent algorithm with follow-the-leader (FTL) algorithm or follow-

the-regularized-leader (FTRL) algorithm. It would be an interesting exercise to ana-

lyze the regret bounds of these algorithm variants, and show their numerical perfor-

mances. In addition, in our algorithm’s primal-dual framework, we consider the dual

online optimization problem with fixed resource inventory parameters. It is worth

exploring the dual problem with updated inventory values, and analyzing the perfor-

mance of the corresponding algorithm. Last, we highlight that the application of our

primal-dual algorithm framework is not limited to dynamic pricing, and it would be

an interesting research direction to explore extensions of our framework to assortment

optimization, online resource allocation, and all sorts of multi-armed bandit problems

with resource constraints.
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Appendix A

Technical Results in Chapter 2

A.1 Proof of Theorem 2.1

Proof. Consider an online algorithm that decides the action of pulling each arm based

on the joint state of the 𝑁 × 𝑇 arms. Let 𝑢𝑖,𝑡 ∈ 𝑆𝑖,𝑡 denote the state of arm (𝑖, 𝑡),

and 𝑢 =
∏︀

𝑖,𝑡 𝑢𝑖,𝑡 ∈
∏︀

𝑖,𝑡 𝑆𝑖,𝑡 the joint state of the 𝑁 × 𝑇 arms. Let 𝑋𝑖,𝑡(𝑢𝑖,𝑡) ∈ {0, 1}

denote whether or not arm (𝑖, 𝑡) ever enters state 𝑢𝑖,𝑡 and is pulled while the arm is

in state 𝑢𝑖,𝑡, 𝑍𝑖,𝑡(𝑢𝑖,𝑡) ∈ {0, 1} the binary result of pulling arm (𝑖, 𝑡) while the arm is

in state 𝑢𝑖,𝑡, and 𝑌𝑖,𝑡(𝑢𝑖,𝑡) ∈ {0, 1} whether or not arm (𝑖, 𝑡) ever enters state 𝑢𝑖,𝑡. The

online algorithm can be written as the mapping between the joint state of 𝑁×𝑇 arms

and the action
∏︀

𝑖,𝑡 𝑋𝑖,𝑡(𝑢𝑖,𝑡), namely,
∏︀

𝑖,𝑡 𝑢𝑖,𝑡 →
∏︀

𝑖,𝑡 𝑋𝑖,𝑡(𝑢𝑖,𝑡), for all states 𝑢𝑖,𝑡 ∈ 𝑆 ′
𝑖,𝑡

with
∑︀

𝑖,𝑡 𝑋𝑖,𝑡(𝑢𝑖,𝑡) ≤ 1.

By definition, a feasible online algorithm satisfies the constraints:

∑︁
𝑖∈[𝑁 ]

∑︁
𝑢𝑖,𝑡∈𝑆′

𝑖,𝑡

𝑋𝑖,𝑡(𝑢𝑖,𝑡) ≤ 𝐷𝑡,

∑︁
𝑡∈[𝑇 ]

∑︁
𝑢𝑖,𝑡∈𝑆′

𝑖,𝑡

𝑋𝑖,𝑡(𝑢𝑖,𝑡) ≤ 𝐵𝑖,

𝑋𝑖,𝑡(𝑢𝑖,𝑡) ≤ 𝑌𝑖,𝑡(𝑢𝑖,𝑡), ∀𝑢𝑖,𝑡 ∈ 𝑆 ′
𝑖,𝑡.

In addition, for each arm (𝑖, 𝑡) with 𝑖 ∈ [𝑁 ] and 𝑡 ∈ [𝑇 ], the transition of the arm’s
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associated MDP follows the constraints:

∙ for root state 𝜌𝑖,𝑡 = (0, 0),

𝑌𝑖,𝑡(𝜌𝑖,𝑡) = 1,

∙ for state 𝑢𝑖,𝑡 = (𝑎, 𝑏) ∈ 𝑆 ′′
𝑖,𝑡 with 𝑎 > 0, 𝑏 = 0, and 𝑣𝑖,𝑡 = (𝑎− 1, 𝑏),

𝑌𝑖,𝑡(𝑢𝑖,𝑡) = 𝑋𝑖,𝑡(𝑣𝑖,𝑡)𝑍𝑖,𝑡(𝑣𝑖,𝑡),

∙ for state 𝑢𝑖,𝑡 = (𝑎, 𝑏) ∈ 𝑆 ′′
𝑖𝑡 with 𝑎 = 0, 𝑏 > 0, and 𝑤𝑖,𝑡 = (𝑎, 𝑏− 1),

𝑌𝑖,𝑡(𝑢𝑖𝑡) = 𝑋𝑖,𝑡(𝑤𝑖,𝑡)(1− 𝑍𝑖,𝑡(𝑤𝑖,𝑡)),

∙ for state 𝑢𝑖,𝑡 = (𝑎, 𝑏) ∈ 𝑆 ′′
𝑖,𝑡 with 𝑎 > 0, 𝑏 > 0, and 𝑣𝑖,𝑡 = (𝑎−1, 𝑏), 𝑤𝑖,𝑡 = (𝑎, 𝑏−1),

𝑌𝑖,𝑡(𝑢𝑖,𝑡) = 𝑋𝑖,𝑡(𝑣𝑖,𝑡)𝑍𝑖,𝑡(𝑣𝑖,𝑡) + 𝑋𝑖,𝑡(𝑤𝑖,𝑡)(1− 𝑍𝑖,𝑡(𝑤𝑖,𝑡)).

The accumulative reward of the online algorithm is given by

∑︁
𝑖∈[𝑁 ]

∑︁
𝑡∈[𝑇 ]

∑︁
𝑢𝑖,𝑡∈𝑆′

𝑖,𝑡

𝑋𝑖,𝑡(𝑢𝑖,𝑡)𝑍𝑖,𝑡(𝑢𝑖,𝑡).

Note that 𝑍𝑖,𝑡(𝑢𝑖,𝑡) ∈ {0, 1} is a random variable. Moreover, due to the fact that

𝑋𝑖,𝑡(𝑢𝑖,𝑡) and 𝑍𝑖,𝑡(𝑢𝑖,𝑡) are independent under the condition that arm (𝑖, 𝑡) is in state

𝑢𝑖,𝑡 ∈ 𝑆 ′
𝑖,𝑡, we have

E[𝑋𝑖,𝑡(𝑢𝑖,𝑡) · 𝑍𝑖,𝑡(𝑢𝑖,𝑡) | 𝑌𝑖,𝑡(𝑢𝑖,𝑡) = 1]

=E[𝑋𝑖,𝑡(𝑢𝑖,𝑡) | 𝑌𝑖,𝑡(𝑢𝑖,𝑡) = 1] · E[𝑍𝑖,𝑡(𝑢𝑖,𝑡) | 𝑌𝑖,𝑡(𝑢𝑖,𝑡) = 1]

=E[𝑋𝑖,𝑡(𝑢𝑖,𝑡) | 𝑌𝑖,𝑡(𝑢𝑖,𝑡) = 1] · 𝑝(𝑢)𝑖,𝑡 ,

where 𝑝
(𝑢)
𝑖,𝑡 follows the definition in Section 2.2.3, namely, 𝑝

(𝑢)
𝑖,𝑡 :=

∫︀ 1

0
𝑝 · 𝜃(𝑢)𝑖,𝑡 (𝑝) 𝑑𝑝.

Recall that 𝜃(𝑢)𝑖,𝑡 (𝑝) is the density function of the posterior distribution of 𝑝𝑖,𝑡 in state
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𝑢 ∈ 𝑆𝑖,𝑡. The expected reward of the online algorithm is

∑︁
𝑖∈[𝑁 ]

∑︁
𝑡∈[𝑇 ]

∑︁
𝑢𝑖,𝑡∈𝑆′

𝑖,𝑡

𝑝
(𝑢)
𝑖,𝑡 · E[E[𝑋𝑖,𝑡(𝑢𝑖,𝑡) | 𝑌𝑖𝑡(𝑢𝑖,𝑡) = 1]].

Now we define 𝑥
(𝑢)
𝑖,𝑡 and 𝑦

(𝑢)
𝑖,𝑡 as follows.

𝑥
(𝑢)
𝑖,𝑡 := E[E[𝑋𝑖,𝑡(𝑢𝑖,𝑡) | 𝑌𝑖,𝑡(𝑢𝑖,𝑡) = 1]], 𝑦

(𝑢)
𝑖,𝑡 := E[𝑌𝑖,𝑡(𝑢𝑖,𝑡)].

It can be easily verified that 𝑥
(𝑢)
𝑖,𝑡 and 𝑦

(𝑢)
𝑖,𝑡 are feasible solutions to LP. In addition,

we observe that the objective function of LP is equal to

∑︁
𝑖∈[𝑁 ]

∑︁
𝑡∈[𝑇 ]

∑︁
𝑢𝑖,𝑡∈𝑆′

𝑖,𝑡

𝑝
(𝑢)
𝑖,𝑡 𝑥

(𝑢)
𝑖,𝑡 =

∑︁
𝑖∈[𝑁 ]

∑︁
𝑡∈[𝑇 ]

∑︁
𝑢𝑖,𝑡∈𝑆′

𝑖,𝑡

𝑝
(𝑢)
𝑖,𝑡 E[E[𝑋𝑖,𝑡(𝑢𝑖𝑡) | 𝑌𝑖,𝑡(𝑢𝑖𝑡) = 1]],

which is the exactly the expected reward of the online algorithm. Hence we know

that the expected reward of any online algorithm, and therefore, the optimal online

algorithm, is upper-bounded by the optimal value of LP.

A.2 Proof of Theorem 2.2

A similar theorem and its proof are provided in Guha Munagala (2013) Theorem 2

(The Truncation Theorem). Since we have a different setting in this paper, we restate

the theorem and provide the proof as follows. The proof is built on the Martingale

Property (see Lemma A.1), which implies the equivalence between the following two

ways of accounting the expected reward and expected cost of each arm’s single-arm

policy. (For simplicity, we remove the subscript 𝑚.)

(i) Let 𝑆 denote the underlying state space of the arm’s MDP. Given single-arm

policy 𝒫(x,y, 𝐾), we have

ℛ(𝒫(x,y, 𝐾)) :=
∑︁

𝑢:(𝑎,𝑏)∈𝑆

𝑝(𝑢)𝑥(𝑢)1(𝑎 + 𝑏 < 𝐾)
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𝒦(𝒫(x,y, 𝐾)) :=
∑︁

𝑢:(𝑎,𝑏)∈𝑆

𝑥(𝑢)1(𝑎 + 𝑏 < 𝐾)

(ii) Let 𝑞 denote the “path", i.e., state evolution in state space 𝑆 that corresponds

to running single-arm policy 𝒫(·, 𝐾) till stop. Let ℓ(𝑞) denote the length of path 𝑞,

i.e., the associated number of pulls. We know ℓ(𝑞) ≤ 𝐾 for any 𝑞. Let 𝑔(𝑝, 𝑞) denote

the probability of seeing 𝑞 when the true reward 𝑝 takes value 𝑝. Letℛ(𝒫(·), 𝑝) denote

the expected reward and 𝒦(𝒫(·, 𝐾), 𝑝) the expected cost of running single-arm policy

when the true reward takes value 𝑝. Then we have

ℛ(𝒫(·, 𝐾), 𝑝) =
∑︁
𝑞

𝑝 · ℓ(𝑞) · 𝑔(𝑝, 𝑞) and 𝒦(𝒫(·, 𝐾), 𝑝) =
∑︁
𝑞

ℓ(𝑞) · 𝑔(𝑝, 𝑞).

In addition, we obtain

ℛ(𝒫(·, 𝐾)) = E𝑝 [ℛ(𝒫𝑖,𝑡(·, 𝐾), 𝑝)] and 𝒦(𝒫(·, 𝐾)) = E𝑝 [ℛ(𝒫𝑖,𝑡(·, 𝐾), 𝑝)] ,

where 𝑝 follows the prior probability distribution 𝜃𝜌(·).

Now consider single-arm policy 𝒫(x,y, 𝛽𝐾). For each path 𝑞 that 𝒫(x,y, 𝐾)

encounters, policy 𝒫(x,y, 𝛽𝐾) encounters the path with the very same probability,

except that the run of 𝒫(x,y, 𝛽𝐾) stops after at least 𝛽 fraction of the total number

of pulls. This means that for each path 𝑞, we have a truncated path with length

ℓ′(𝑞) ≥ 𝛽ℓ(𝑞). Specifically, we have

∙ ℓ′(𝑞) = ℓ(𝑞), if ℓ(𝑞) ≤ 𝛽𝐾;

∙ 𝛽ℓ(𝑞) ≤ ℓ′(𝑞) < ℓ(𝑞), if 𝛽𝐾 < ℓ(𝑞) ≤ 𝐾.

Correspondingly, we have

ℛ(𝒫(·, 𝛽𝐾), 𝑝) =
∑︁
𝑞

𝑝 · ℓ′(𝑞) · 𝑔(𝑝, 𝑞) ≥
∑︁
𝑞

𝑝 · 𝛽ℓ(𝑞) · 𝑔(𝑝, 𝑞),

𝒦(𝒫(·, 𝛽𝐾), 𝑝) =
∑︁
𝑞

ℓ′(𝑞) · 𝑔(𝑝, 𝑞) ≤
∑︁
𝑞

ℓ(𝑞) · 𝑔(𝑝, 𝑞).
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By linearity of expectation, after taking expectation over 𝑝 on both sides, we have

ℛ(𝒫(·, 𝛽𝐾)) ≥ 𝛽 · ℛ(𝒫(·, 𝐾)),

𝒦(𝒫(·, 𝛽𝐾)) ≤ 𝒦(𝒫(·, 𝐾)).

A.3 Proof of Theorem 2.3

By Proposition 2.1, we have for algorithm Prophet that

ALG ≥
∑︁
𝑡∈[𝑇 ]

(︃
1− 1

𝐵

∑︁
𝑠<𝑡

̃︀𝒦𝑠

)︃ ̃︀ℛ𝑡. (A.1)

Following the discussion in Section 2.3.2, we know the right-hand side of (A.1)

is lower-bounded by (𝑒1 + 𝑒2) ·
∑︀

𝑡ℛ𝑡. By Lemma 2.2, we have (𝑒1 + 𝑒2) ≥
√

2 − 1.

Therefore, we obtain

∑︁
𝑡∈[𝑇 ]

(︃
1− 1

𝐵

∑︁
𝑠<𝑡

̃︀𝒦𝑠

)︃ ̃︀ℛ𝑡 ≥
(︁√

2− 1
)︁∑︁

𝑡∈[𝑇 ]

ℛ𝑡.

By Theorem 2.1, we know
∑︀

𝑡ℛ𝑡 ≥ OPT. Therefore, we obtain ALG ≥
(︀√

2− 1
)︀
OPT.

A.4 Proof of Theorem 2.4

Proof. Given algorithm TS-Prophet, let 𝑛𝑖,𝑡 denote the number of times arm (𝑖, 𝑡) is

pulled. Recall that 𝐵𝑖(𝑡) is the remaining budget of resource 𝑖 at the beginning of

period 𝑡. By definition, we have

𝐵𝑖(𝑡) = 𝐵𝑖 −
∑︁
𝑠<𝑡

𝑛𝑖,𝑠 for 𝑡 ∈ [𝑇 ].

Given the set of active arms (𝒬𝑡, 𝑡) in time period 𝑡 and 𝑄𝑡 = |𝒬𝑡|, let 𝐼𝑡(1), . . . , 𝐼𝑡(𝑄𝑡)

denote the order of running these 𝑄𝑡 prophet policies. Let 𝐷𝑡(𝑖) denote the remaining
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number of users (“budget") in time period 𝑡 when arm (𝑖, 𝑡) is pulled. By definition,

we have for the 𝑘-th arm (𝐼𝑡(𝑘), 𝑡) that

𝐷𝑡(𝐼𝑡(𝑘)) = 𝐷𝑡 −
∑︁
𝑗<𝑘

𝑛𝐼𝑡(𝑗),𝑡 for 𝑘 ∈ [𝑀𝑡].

Recall that the budget parameter of prophet policy ̃︀𝒫𝑖,𝑡(𝐾𝑖,𝑡) at the beginning

of time period 𝑡 is given by 𝐾𝑖,𝑡 = min{𝐵𝑖(𝑡), 𝐷𝑡}. Given arm (𝑖, 𝑡) ∈ 𝒬𝑡, let 𝐼−1
𝑡 (𝑖)

denote the index of arm (𝑖, 𝑡) in order 𝐼𝑡(1), . . . , 𝐼𝑡(𝑄𝑡). Then the budget parameter of

prophet policy ̃︀𝒫𝑖,𝑡(𝐾𝑖,𝑡) when arm (𝑖, 𝑡) is pulled is given by 𝐾 ′
𝑖,𝑡 = min{𝐵𝑖(𝑡), 𝐷𝑡(𝑖)},

where 𝐷𝑡(𝑖) := 𝐷𝑡 −
∑︀

𝑗<𝐼−1(𝑖) 𝑛𝐼𝑡(𝑗),𝑡.

Recall that ̃︀𝒦′
𝑖,𝑡 = 𝒦( ̃︀𝒫𝑖,𝑡(min{𝐵𝑖(𝑡), 𝐷𝑡})).

Let ̃︀𝒦𝑖,𝑡 := 𝒦( ̃︀𝒫𝑖,𝑡(min{𝐵𝑖, 𝐷𝑡})). For arm (𝑖, 𝑡), we have

E [𝑛𝑖,𝑡] = E
[︀
E
[︀
𝑛𝑖,𝑡 | 𝐾 ′

𝑖,𝑡

]︀]︀
≤ E

[︀
𝒦′

𝑖,𝑡

]︀
≤ E

[︁ ̃︀𝒦𝑖,𝑡

]︁
= ̃︀𝒦𝑖,𝑡, (A.2)

where both inequalities follow from Theorem 2.2 (ii).

Recall that ̃︀ℛ′
𝑖,𝑡 = ℛ( ̃︀𝒫𝑖,𝑡(min{𝐵𝑖(𝑡), 𝐷𝑡})), and ℛ𝑖,𝑡 = ℛ(𝒫𝑖,𝑡(min{𝐵𝑖, 𝐷𝑡})).

Let ̃︀ℛ𝑖,𝑡 := ℛ( ̃︀𝒫𝑖,𝑡(min{𝐵𝑖, 𝐷𝑡})). Let ALG denote the expected reward of algo-

rithm TS-Prophet.

We have

ALG = E

⎡⎣∑︁
𝑡∈[𝑇 ]

∑︁
𝑖∈𝒬𝑡

ℛ( ̃︀𝒫𝑖,𝑡(𝐾
′
𝑖,𝑡))

⎤⎦
≥ E

⎡⎣∑︁
𝑡∈[𝑇 ]

1

2

∑︁
𝑖∈𝒬𝑡

̃︀ℛ′
𝑖,𝑡

⎤⎦ by (2.13)

=
1

2
E

⎡⎣∑︁
𝑖∈[𝑁 ]

∑︁
𝑡:𝑖∈𝒬𝑡

̃︀ℛ′
𝑖,𝑡

⎤⎦
≥ 1

2
E

⎡⎣∑︁
𝑖∈[𝑁 ]

∑︁
𝑡:𝑖∈𝒬𝑡

(︃
1− 1

𝐵𝑖

∑︁
𝑠<𝑡

𝑛𝑖,𝑠

)︃ ̃︀ℛ𝑖,𝑡

⎤⎦ by Theorem 2.2 (i)
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=
1

2

∑︁
𝑖∈[𝑁 ]

∑︁
𝑡∈[𝑇 ]

(︃
1− 1

𝐵𝑖

∑︁
𝑠<𝑡

E [𝑛𝑖,𝑠]

)︃ ̃︀ℛ𝑖,𝑡

≥ 1

2

∑︁
𝑖∈[𝑁 ]

∑︁
𝑡∈[𝑇 ]

(︃
1− 1

𝐵𝑖

∑︁
𝑠<𝑡

̃︀𝒦𝑖,𝑠

)︃ ̃︀ℛ𝑖,𝑡 by (A.2)

≥ 1

2

∑︁
𝑖∈[𝑁 ]

(
√

2− 1)
∑︁
𝑡∈[𝑇 ]

ℛ𝑖,𝑡 by Theorem 2.3

=
1

2
(
√

2− 1)
∑︁
𝑖∈[𝑁 ]

∑︁
𝑡∈[𝑇 ]

ℛ𝑖,𝑡

≥ 1

2
(
√

2− 1) OPT by Theorem 2.1.

A.5 Proof of Proposition 2.1

Proof. Consider an algorithm that uses Framework. For each arm 𝑚, let 𝑛𝑚 be the

number of times arm 𝑚 is pulled by the algorithm. Recall that 𝐾𝑚 := min{𝑈𝑚,𝑊}.

Let 𝑊𝑚 be the remaining budget of budget 𝑊 when the algorithm starts to pull

arm 𝑚, and define 𝐾 ′
𝑚 := min{𝑈𝑚,𝑊𝑚}. Recall ℛ′

𝑚 := ℛ(𝒫𝑚(·, 𝐾𝑚)) an 𝒦′
𝑚 :=

𝒦(𝒫𝑚(·, 𝐾𝑚)).

By Theorem 2.2 (i), we have

ℛ(𝒫𝑚(·, 𝐾 ′
𝑚)) ≥ 𝐾 ′

𝑚

𝐾𝑚

· ℛ′
𝑚 =

min{𝑈𝑚,𝑊𝑚}
min{𝑈𝑚,𝑊}

· ℛ′
𝑚.

Given order 𝐼(1), . . . , 𝐼(𝑀), which is a permutation of 1, . . . ,𝑀 , we know 𝑊𝐼(𝑘) =

𝑊 −
∑︀

𝑗<𝑘 𝑛𝐼(𝑗).

Hence we have

min{𝑈𝐼(𝑘),𝑊𝐼(𝑘)}
min{𝑈𝐼(𝑘),𝑊}

≥
𝑊𝐼(𝑘)

𝑊
≥ 1

𝑊

(︃
𝑊 −

∑︁
𝑗<𝑘

𝑛𝐼(𝑗)

)︃
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Therefore, we know

ℛ(𝒫𝐼(𝑘)(·, 𝐾 ′
𝐼(𝑘))) ≥

1

𝑊

(︃
𝑊 −

∑︁
𝑗<𝑘

𝑛𝐼(𝑗)

)︃
ℛ′

𝐼(𝑘).

By Theorem 2.2 (ii), we also know

E
[︀
𝑛𝐼(𝑗)

]︀
≤ 𝒦′

𝐼(𝑗).

Let ALG be the expected reward of the algorithm, we have

ALG = E

⎡⎣∑︁
𝑘∈[𝑀 ]

ℛ(𝒫𝐼(𝑘)(·, 𝐾 ′
𝐼(𝑘)))

⎤⎦
≥ E

⎡⎣∑︁
𝑘∈[𝑀 ]

(︃
1− 1

𝑊

∑︁
𝑗<𝑘

𝑛𝐼(𝑗)

)︃
ℛ′

𝐼(𝑘)

⎤⎦ (by Theorem 2.2 (i))

=
∑︁
𝑘∈[𝑀 ]

(︃
1− 1

𝑊

∑︁
𝑗<𝑘

E
[︀
𝑛𝐼(𝑗)

]︀)︃
ℛ′

𝐼(𝑘)

≥
∑︁
𝑘∈[𝑀 ]

(︃
1− 1

𝑊

∑︁
𝑗<𝑘

𝒦′
𝐼(𝑗)

)︃
ℛ′

𝐼(𝑘) (by Theorem 2.2 (ii)) .

A.6 Proof of Proposition 2.2

Proof. To prove towards a contradiction, suppose the lower bound is minimized when

(2.14) is not satisfied. Then we know there must exist two consecutive indices 𝑠 and

𝑡 with 0 ≤ 𝑠 < 𝑡 ≤𝑀 such that

ℛ′
𝐼(𝑠)

𝒦′
𝐼(𝑠)

>
ℛ′

𝐼(𝑡)

𝒦′
𝐼(𝑡)

.

136



Recall the lower bound in (2.12) is

∑︁
𝑘∈[𝑀 ]

(︃
1− 1

𝑊

∑︁
𝑗<𝑘

𝒦′
𝐼(𝑗)

)︃
ℛ′

𝐼(𝑘) (A.3)

Now consider switching the positions of arms 𝐼(𝑠) and 𝐼(𝑡). Let ∆ denote the

change in the lower bound after this switch. We have

∆ =

(︃
1− 1

𝑊

∑︁
𝑗<𝑠

𝒦′
𝐼(𝑗)

)︃
ℛ′

𝐼(𝑡) +

(︃
1− 1

𝑊

∑︁
𝑗<𝑠

𝒦′
𝐼(𝑗) −

1

𝑊
𝒦′

𝐼(𝑡)

)︃
ℛ′

𝐼(𝑠)

−

(︃
1− 1

𝑊

∑︁
𝑗<𝑠

𝒦′
𝐼(𝑗)

)︃
ℛ′

𝐼(𝑠) −

(︃
1− 1

𝑊

∑︁
𝑗<𝑠

𝒦′
𝐼(𝑗) −

1

𝑊
𝒦′

𝐼(𝑠)

)︃
ℛ′

𝐼(𝑡)

=
1

𝑊
𝒦′

𝐼(𝑠)ℛ′
𝐼(𝑡) −

1

𝑊
𝒦′

𝐼(𝑡)ℛ′
𝐼(𝑠) < 0.

Therefore, by switching the positions of arms 𝐼(𝑠) and 𝐼(𝑡), we can further decrease

the lower bound, which results in a contradiction.

Note that we assume all single-arm policies 𝒫𝑚(·) have strictly positive expected

costs. If the expected cost of a single arm policy is zero, which implies its expected

reward is also zero, then it can be positioned anywhere without changing the lower

bound of the expected reward.

A.7 Proof of Lemma 2.1

Proof. Let 𝐾* =
∑︀

𝑡∈[𝑇 ]𝒦𝑡, and 𝑥0 := 𝐾*/𝐵. By definition, we know 𝐹 (0) = 0,

𝐹 (𝑥0) = 1, and 𝐹 (𝑥) is strictly increasing in 𝑥 over [0, 𝐾*/𝐵]. Let 𝐺(𝑥) := 1−𝐹 (𝑥).

Then we know 𝐺(0) = 1, 𝐺(𝑥0) = 0, and 𝐺(𝑥) is strictly decreasing in 𝑥 over

[0, 𝐾*/𝐵].

In addition, by the definition of 𝐹 ′(·), we have

𝐹 ′(0) :=

[︂
0,
ℛ1/𝑅

*

𝒦1/𝐵

]︂
and 𝐹 ′(𝑥0) :=

[︂
ℛ𝑇/𝑅

*

𝒦𝑇/𝐵
,∞
)︂
,
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where ℛ1/𝒦1 and ℛ𝑇/𝒦𝑇 are the lowest and highest reward-to-cost ratios after we

re-arrange the arms.

Since ℛ𝑇/𝒦𝑇 ≥ 𝑅*/𝐾*, we have

𝐹 ′(𝑥0) ≥
𝐵

𝐾* ≥ 1.

The cutting point satisfies 𝐺(𝑥) := 1−𝐹 (𝑥) ∈ 𝐹 ′(𝑥). Therefore, by the continuity

of 𝐹 ′(𝑥) and the monotonicity of 𝐺(𝑥), we know 𝑥* is guaranteed to exist, and 𝑥* ∈

[0, 𝑥0]. The uniqueness of 𝑥* follows from the strict monotonicity of 𝐺(𝑥).

A.8 Proof of Lemma 2.2

Proof. By definition (2.16), we know the curve of 𝐹 (𝑥) is convex, and thus the cutting

point satisfies the following conditions.

∙ 𝑦* − 𝑥*(1− 𝑦*) ≤ 0

∙ 0 ≤ 𝑥*, 𝑦* ≤ 1

Given condition (2.17), namely, 1 − 𝐹 (𝑥*) ∈ 𝐹 ′(𝑥*), and definition 𝑦* := 𝐹 (𝑥*),

we know

𝑒1 + 𝑒2 ≥
1

2
(1 + (𝑥*)2)(1− 𝑦*). (A.4)

In addition, the right-hand side of (A.4) is lower-bounded by the value of the

optimization problem

min
𝑥,𝑦∈[0,1]

1

2
(1 + 𝑥2)(1− 𝑦)

𝑠.𝑡. 𝑦 − 𝑥(1− 𝑦) ≤ 0.

We apply the KKT conditions to solve this optimization problem. Specifically, by
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the first-order condition, we find a unique stationary point

(𝑥′, 𝑦′, 𝜇′) = (
√

2− 1, 1− 1√
2
,
√

2− 1).

The corresponding Hessian matrix is

𝐻 =

⎡⎣1− 𝑦 0

0 0

⎤⎦ =

⎡⎣1/
√

2 0

0 0

⎤⎦ .

For all d := (𝑑1, 𝑑2) ∈ 𝑇 (𝑥′, 𝑦′), where 𝑇 (𝑥′, 𝑦′) = {d : 𝑑1 = 2𝑑2}, and d ̸= 0, we

have d𝑇𝐻d > 0. Hence the second-order condition is also satisfied. Therefore, we

have

𝑒1 + 𝑒2 ≥
1

2
(1 + (𝑥′)2)(1− 𝑦′) =

√
2− 1.

A.9 Proof of Lemma A.1

Lemma A.1. Consider an arm and its associated MDP with underlying state space

𝑆. The expected reward 𝑝𝑢 at state 𝑢 ∈ 𝑆 satisfies the martingale property, namely,

E [𝑝𝑣 | 𝑝𝑢] =
∑︁
𝑣∈𝑆

𝑞𝑢,𝑣𝑝𝑣 = 𝑝𝑢,

where 𝑞𝑢,𝑣 denote the MDP’s transition probability from state 𝑢 to state 𝑣.

Proof. Suppose the arm is in state 𝑢 = (𝑎, 𝑏). Let 𝑠 ∈ {0, 1} denote the binary result

after we pull the arm while it is in state 𝑢. Let 𝑃𝑟(·) denote the probability function

conditional on the value of 𝑝𝑢. Then we have,

E[𝑝𝑣 | 𝑝𝑢] =

∫︁ 1

0

𝑝′ · 𝑃𝑟(𝑠 = 1)𝑃𝑟(𝑝′|𝑠 = 1) + 𝑝′ · 𝑃𝑟(𝑠 = 0)𝑃𝑟(𝑝′|𝑠 = 0) 𝑑𝑝′
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Notice that for any 𝑠 ∈ {0, 1}, we have

𝑃𝑟(𝑝′|𝑠) =
𝑃𝑟(𝑝′, 𝑠)

𝑃 (𝑠)
.

Therefore, we obtain

E[𝑝𝑣 | 𝑝𝑢] =

∫︁ 1

0

𝑝′ · 𝑃𝑟(𝑝′, 𝑠 = 1) + 𝑝′ · 𝑃𝑟(𝑝′, 𝑠 = 0) 𝑑𝑝′

=

∫︁ 1

0

𝑝′ · [𝑃𝑟(𝑝′, 𝑠 = 1) + 𝑃𝑟(𝑝′, 𝑠 = 0)] 𝑑𝑝′

=

∫︁ 1

0

𝑝′ · 𝑃𝑟(𝑝′) 𝑑𝑝′ = 𝑝𝑢.
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Appendix B

Technical Results in Chapter 3

B.1 Proof of Lemma 3.1

Note that ℛ𝑠(𝛾) represents the optimal revenue from supportive products, given that

the expected total sales from core products are 𝛾.

By definition (3.3), we can reformulate ℛ𝑠(𝛾) as

ℛ𝑠(𝛾) = min
𝜋

𝑥

s.t. 𝑥 ≥ 𝛾 · 𝐹2(𝜋) + 𝐹1(𝜋), ∀ feasible policy 𝜋,

(B.1)

where 𝜋 denotes the feasible policy of the subproblem.

Formally, the feasible policy 𝜋 is defined by the feasible solution to problem (3.3),

which specifies the values 𝑝𝑁+𝑚 ∈ Ω𝑠, 𝑝′𝑁+𝑚 ∈ Ω𝑠𝑎 and 𝐼𝑁+𝑚 ∈ {0, 1}, that satisfy

𝑝𝑁+𝑚 > 𝑝′𝑁+𝑚,∀ 𝑚 = 1, . . . ,𝑀 and
∑︀𝑀

𝑚=1 𝐼𝑁+𝑚 ≤ 𝑆. Function 𝐹1(𝜋) and 𝐹2(𝜋) are

defined as

𝐹1(𝜋) :=
𝑀∑︁

𝑚=1

𝛼𝑁+𝑚(𝑝𝑁+𝑚)𝑝𝑁+𝑚

𝐹2(𝜋) :=
𝑀∑︁

𝑚=1

𝐼𝑁+𝑚𝛽
′
𝑁+𝑚(𝑝′𝑁+𝑚)𝑝′𝑁+𝑚 + (1− 𝐼𝑁+𝑚)𝛽𝑁+𝑚(𝑝𝑁+𝑚)𝑝𝑁+𝑚.

Observe that in this reformulation, 𝐹1(𝜋) and 𝐹2(𝜋) are constants, and since the
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number of feasible policies is finite, the total number of constraints in (B.1) is also

finite. Moreover, the RHS of each constraint is a linearly increasing function of 𝛾.

Hence we know that for any 𝛾, the optimal solution 𝑥 is equal to

max
𝜋
{𝛾 · 𝐹2(𝜋) + 𝐹1(𝜋)},

and we obtain

ℛ𝑠(𝛾) = min max
𝜋
{𝛾 · 𝐹2(𝜋) + 𝐹1(𝜋)}.

Therefore, we know that ℛ𝑠(𝛾) is a convex piece-wise linear function, and it

implies that ℛ𝑠(𝛾) is Lipschitz continuous. Specifically, the Lipschitz parameter is

equal to the function’s maximum slope, i.e., max𝜋 𝐹2(𝜋), which is bounded by 𝑀 · 𝑝,

by definition.

B.2 Proof of Lemma 3.3

Proof. Let 𝑉 (𝜋) be the true revenue of policy 𝜋, and 𝑉 ′(𝜋) the approximate revenue

of policy 𝜋 that is provided by Algorithm 2. In addition, let OPT be the optimal

policy of problem (3.1), and ALG the “optimal" policy that is provided by Algorithm

2.

Given policy 𝜋, we know that 𝑉 (𝜋) and 𝑉 ′(𝜋) give the same revenue for the core

products, but different revenue for the supportive products. Specifically, due to the

rounding procedure, the value of 𝛾 we use in Algorithm 2 differs from its true value

by at most 𝑁/2𝐾. Hence by Lemma 3.1, we have

|𝑉 (𝜋)− 𝑉 ′(𝜋)| ≤ 𝑝𝑀𝑁

2𝐾
, (B.2)

for any feasible policy 𝜋.

Therefore, we have

𝑉 (𝑂𝑃𝑇 ) ≤ 𝑉
′
(𝑂𝑃𝑇 ) +

𝑝𝑀𝑁

2𝐾
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≤ 𝑉
′
(𝐴𝐿𝐺) +

𝑝𝑀𝑁

2𝐾

≤ 𝑉 (𝐴𝐿𝐺) +
𝑝𝑀𝑁

𝐾
,

where the first and last inequality follow (B.2). The second inequality follows because

ALG optimizes the approximate revenue 𝑉 ′(·).

B.3 Proof of Lemma 3.4

Proof. By definition, the associated counters for primary demand, i.e., 𝑐𝑛(·) and

𝑐𝑁+𝑚(·) always increase by 1 in each period, and the associated counters for add-on

purchases, i.e., 𝑐(𝑎
′)

𝑁+𝑚(·) and 𝑐
(𝑎)
𝑁+𝑚(·) could increase 0, 1, . . . , 𝑁 in each period, which

depends on the total number of core products purchased in the period. In addition,

to obtain an upper bound on the length of an episode, it suffices to consider only one

counter that is associated with the primary demand. W.L.O.G., consider the counter

for product 1 with its price determined at the beginning of episode 𝜏 , namely, 𝑡(𝜏).

Then we know that the value of this counter is at most 𝑡(𝜏)−1, and the value will be

doubled after another 𝑡(𝜏)− 1 periods. By the description of Algorithm 3, episode 𝜏

starts in period 𝑡(𝜏) and terminates in no more than 𝑡(𝜏)− 1 periods. Therefore, we

have E[ℓ(𝜏)] ≤ 𝑡(𝜏).

B.4 Proof of Lemma 3.5

Proof. By definition, ℰ𝑡 is the union of a collection of events.

Specifically, for each core product 𝑛 ∈ {1, . . . , 𝑁} and price 𝑝𝑛 ∈ Ω𝑐, given the

value of 𝑡 and 𝑐𝑛,𝑡(𝑝𝑛), by the Chernoff-Hoeffding inequality, we have

P

{︂
|𝛼𝑛,𝑡(𝑝𝑛)− 𝛼𝑛(𝑝𝑛)| > 2 log 𝑡

𝑐𝑛,𝑡(𝑝𝑛)

}︂
≤ 2

𝑡4
.

Take the union for all possible values of 𝑐𝑛,𝑡(𝑝𝑛) from 1 to 𝑡. By the union bound, we
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obtain

P

{︂
|𝛼𝑛,𝑡(𝑝𝑛)− 𝛼𝑛(𝑝𝑛)| > 2 log 𝑡

𝑐𝑛,𝑡(𝑝𝑛)

}︂
≤ 2

𝑡3
.

Similarly, given the value of 𝑡, for each supportive product 𝑚 ∈ {1, . . . ,𝑀} and

price 𝑝𝑁+𝑚 ∈ Ω𝑠, take the union for all possible values of 𝑐𝑁+𝑚,𝑡(𝑝𝑁+𝑚) from 1 to 𝑡,

and we obtain

P

{︂
|𝛼𝑁+𝑚,𝑡(𝑝𝑁+𝑚)− 𝛼𝑁+𝑚(𝑝𝑁+𝑚)| > 2 log 𝑡

𝑐𝑁+𝑚,𝑡(𝑝𝑁+𝑚)

}︂
≤ 2

𝑡3
.

For add-on purchases, the counters 𝑐
(𝑎,1)
𝑁+𝑚,𝑡(·) and 𝑐

(𝑎,2)
𝑁+𝑚,𝑡(·) range from 1 to 𝑁𝑡.

Thus, for each supportive product 𝑚 ∈ {1, . . . ,𝑀}, we obtain

P

{︃⃒⃒⃒
𝛽
′
𝑁+𝑚,𝑡(𝑝

′
𝑁+𝑚)− 𝛽′

𝑁+𝑚,𝑡(𝑝
′
𝑁+𝑚)

⃒⃒⃒
>

2 log 𝑡

𝑐
(𝑎,1)
𝑁+𝑚,𝑡(𝑝

′
𝑁+𝑚)

}︃
≤ 2𝑁

𝑡3
,

for each add-on discount price 𝑝′𝑁+𝑚 ∈ Ω𝑎, and

P

{︃⃒⃒
𝛽𝑁+𝑚,𝑡(𝑝𝑁+𝑚)− 𝛽𝑁+𝑚(𝑝𝑁+𝑚)

⃒⃒
>

2 log 𝑡

𝑐
(𝑎,2)
𝑁+𝑚,𝑡(𝑝𝑁+𝑚)

}︃
≤ 2𝑁

𝑡3
,

for each add-on original price 𝑝𝑁+𝑚 ∈ Ω𝑠.

Take a union of all these events in ℰ𝑡, we have

P [ℰ𝑡] ≤
2(𝑁 + 𝑀 + 2𝑀𝑁)𝑈

𝑡3
.

In addition, conditional on event ℰ𝑡(𝜏), we know that the regret in episode 𝜏 is

upper-bounded by ℛ* · ℓ(𝜏). Therefore, for each term on the LHS of (3.8), we have

E
[︀
(ℛ* −ℛ(Π𝜏 )) · ℓ(𝜏) | ℰ𝑡(𝜏)

]︀
·P
[︀
ℰ𝑡(𝜏)

]︀
≤ ℛ* · ℓ(𝜏) · 2(𝑁 + 𝑀 + 2𝑀𝑁)𝑈

𝑡(𝜏)3

≤ ℛ* · 2(𝑁 + 𝑀 + 2𝑀𝑁)𝑈

𝑡(𝜏)2

≤ ℛ* · 2(𝑁 + 𝑀 + 2𝑀𝑁)𝑈

𝜏 2
,
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where the second inequality follows from Lemma 3.4, and the third inequality follows

by 𝑡(𝜏) ≥ 𝜏 .

Take the sum over 𝜏 from 1 to 𝑛(𝜏). Since
∑︀𝑛(𝜏)

𝜏=1 1/𝜏 2 ≤ 𝜋2/6, we obtain the

upper bound

ℛ* · (𝑁 + 𝑀 + 2𝑀𝑁)𝑈𝜋2

3
,

which concludes the proof of Lemma 3.5.

B.5 Proof of Lemma 3.6

Proof. For each term on the LHS of (3.9), we relax probability P
[︁
ℰ ′𝑡(𝜏)

]︁
to 1 as an

upper bound. We then need to show that the regret is bounded, conditional on event

ℰ ′𝑡(𝜏) where the empirical mean of each associated parameter is within its confidence

interval.

Let Π* be the optimal policy, and 𝑈𝜏 (Π*) the value of the objective function of

the optimization problem (3.1) under policy Π* with UCB input parameters ̃︀𝛼𝑛(𝑝𝑛),̃︀𝛼𝑁+𝑚(𝑝𝑁+𝑚), ̃︀𝛽′
𝑁+𝑚(𝑝′𝑁+𝑚) and ̃︀𝛽𝑁+𝑚(𝑝𝑁+𝑚), as defined in Algorithm 3. Let 𝑈𝜏 (Π𝜏 )

be the value of the objective function of the optimization problem (3.1) under policy

Π𝜏 with the same UCB input parameters.

Since the value of the objective function of (3.1) is increasing in all the parameters.

We know that conditional on ℰ𝑡(𝜏), 𝑈𝜏 (Π*) is an upper bound of ℛ*, namely, the

expected revenue of the optimal policy, and 𝑈𝜏 (Π𝜏 ) is an upper bound of ℛ(Π𝜏 ).

Therefore, we have

E

⎡⎣𝑛(𝜏)∑︁
𝜏=1

E
[︀
(ℛ* −ℛ(Π𝜏 )) · ℓ(𝜏) | ℰ ′𝑡(𝜏)

]︀⎤⎦
= E

⎡⎣𝑛(𝜏)∑︁
𝜏=1

E
[︀
(ℛ* − 𝑈𝜏 (Π*) + 𝑈𝜏 (Π*)− 𝑈𝜏 (Π𝜏 ) + 𝑈𝜏 (Π𝜏 )−ℛ(Π𝜏 )) · ℓ(𝜏) | ℰ ′𝑡(𝜏)

]︀⎤⎦
≤ 4𝑝𝑀𝑁𝜀

√
𝑇 + E

⎡⎣𝑛(𝜏)∑︁
𝜏=1

E
[︀
(𝑈𝜏 (Π𝜏 )−ℛ(Π𝜏 )) · ℓ(𝜏) | ℰ ′𝑡(𝜏)

]︀⎤⎦ . (B.3)
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The inequality follows because ℛ* − 𝑈𝜏 (Π*) ≤ 0 and 𝑈𝜏 (Π*) − 𝑈𝜏 (Π𝜏 ) is upper

bounded by the approximation error of the FPTAS optimization subroutine. Specif-

ically, with parameter 𝐾 = ⌈
√︀

𝑡(𝜏)𝜀⌉, we have

𝑈𝜏 (Π*)− 𝑈𝜏 (Π𝜏 ) ≤ 𝑈𝜏 (Π*
𝜏 )− 𝑈𝜏 (Π𝜏 ) =

𝑝𝑀𝑁

⌈
√︀
𝑡(𝜏)/𝜀⌉

≤ 𝑝𝑀𝑁𝜀/
√︀
𝑡(𝜏).

By Lemma 3.4, we know ℓ(𝜏) ≤ 𝑡(𝜏). Therefore, we have

𝑛(𝜏)∑︁
𝜏=1

𝑝𝑀𝑁𝜀/
√︀

𝑡(𝜏) ≤
𝑇∑︁
𝑡=1

𝑝𝑀𝑁𝜀 ·
(︁

2/
√
𝑡
)︁
≤ 4𝑝𝑀𝑁𝜀

√
𝑇 .

The second term in (B.3), namely, E
[︁∑︀𝑛(𝜏)

𝜏=1 E
[︁
(𝑈𝜏 (Π𝜏 )−ℛ(Π𝜏 )) · ℓ(𝜏) | ℰ ′𝑡(𝜏)

]︁]︁
,

describes the confidence bound for the revenue of policy Π𝜏 ,

Let 𝑝𝑛,𝜏 , 𝑝𝑁+𝑚,𝜏 , 𝑝′𝑁+𝑚,𝜏 and 𝐼𝑁+𝑚,𝜏 be the decisions of policy Π𝜏 .

Conditional on event ℰ ′𝑡(𝜏), we obtain

𝑈𝜏 (Π𝜏 )−ℛ(Π𝜏 ) ≤ 2(𝑀 + 1)𝑝 ·
𝑁∑︁

𝑛=1

√︃
2 log 𝑡(𝜏)

𝑐𝑛,𝑡(𝜏)(𝑝𝑛,𝜏 )
+ 2𝑝 ·

𝑀∑︁
𝑚=1

√︃
2 log 𝑡(𝜏)

𝑐𝑁+𝑚,𝑡(𝜏)(𝑝𝑁+𝑚,𝜏 )

+2𝑁𝑝 ·
𝑀∑︁

𝑚=1

[︃
𝐼𝑁+𝑚,𝜏 ·

√︃
2 log 𝑡(𝜏)

𝑐
(𝑎,1)
𝑁+𝑚,𝑡(𝜏)(𝑝

′
𝑁+𝑚,𝜏 )

+ (1− 𝐼𝑁+𝑚,𝜏 ) ·
√︃

2 log 𝑡(𝜏)

𝑐
(𝑎,2)
𝑁+𝑚,𝑡(𝜏)(𝑝𝑁+𝑚,𝜏 )

]︃
.(B.4)

To show the inequality, we observe that each of the four parts in (B.4) in fact

corresponds to the revenue gap due to the over estimation of the associated demand

parameters. In addition, for each parameter, we know that the gap between its true

mean and its UCB term is 2
√︁

2 log 𝑡(𝜏)
counter conditional on event ℰ ′𝑡(𝜏).

Specifically, we have parameter 𝛼𝑛(𝑝𝑛,𝜏 ) contributes to the revenue gap by at most

(𝑀 + 1)𝑝 · 2

√︃
2 log 𝑡(𝜏)

𝑐𝑛,𝑡(𝜏)(𝑝𝑛,𝜏 )
,
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parameter 𝛼𝑁+𝑚(𝑝𝑁+𝑚,𝜏 ) contributes to the revenue gap by at most

𝑝 · 2

√︃
2 log 𝑡(𝜏)

𝑐𝑁+𝑚,𝑡(𝜏)(𝑝𝑁+𝑚,𝜏 )
,

parameter 𝛽′
𝑁+𝑚(𝑝′𝑁+𝑚,𝜏 ) contributes to the revenue gap by at most

𝑁𝑝 · 2
√︃

2 log 𝑡(𝜏)

𝑐
(𝑎,1)
𝑁+𝑚,𝑡(𝜏)(𝑝

′
𝑁+𝑚,𝜏 )

if 𝐼𝑁+𝑚 = 1, and nothing if 𝐼𝑁+𝑚 = 0; parameter 𝛽𝑁+𝑚(𝑝𝑁+𝑚,𝜏 ) contributes to the

revenue gap by at most

𝑁𝑝 · 2
√︃

2 log 𝑡(𝜏)

𝑐
(𝑎,2)
𝑁+𝑚,𝑡(𝜏)(𝑝𝑁+𝑚,𝜏 )

if 𝐼𝑁+𝑚 = 0, and nothing if 𝐼𝑁+𝑚 = 1.

Given inequality (B.4), we take a sum over 𝜏 on both sides and obtain the follow-

ing. For parameter 𝛼𝑛(·), we have

E

⎡⎣𝑛(𝜏)∑︁
𝜏=1

ℓ(𝜏) ·

√︃
2 log 𝑡(𝜏)

𝑐𝑛,𝑡(𝜏)(𝑝𝑛,𝜏 )
| ℰ ′𝑡(𝜏)

⎤⎦ ≤ E

[︃
𝑇∑︁
𝑡=1

√︃
4 log 𝑡(𝜏)

𝑐𝑛,𝑡(𝑝𝑛,𝑡)
| ℰ ′𝑡(𝜏)

]︃

≤ E

⎡⎣ 𝜁(𝑐)∑︁
𝑖=1

𝑐𝑛,𝑇 (𝑞𝑖𝑐)∑︁
𝑗=1

√︃
4 log 𝑇

𝑗
| ℰ𝑡(𝜏)′

⎤⎦ = 2
√︀

log 𝑇 E

⎡⎣ 𝜁(𝑐)∑︁
𝑖=1

𝑐𝑛,𝑇 (𝑞𝑖𝑐)∑︁
𝑗=1

√︂
1

𝑗
| ℰ ′𝑡(𝜏)

⎤⎦
≤ 2

√︀
log 𝑇

⎡⎣ 𝜁(𝑐)∑︁
𝑖=1

2
√︁

𝑐𝑛,𝑇 (𝑞𝑖𝑐) | ℰ ′𝑡(𝜏)

⎤⎦ ≤ 2
√︀

log 𝑇 E
[︁
2
√
𝑈𝑇 | ℰ ′𝑡(𝜏)

]︁
= 4

√︀
𝑈𝑇 log 𝑇 . (B.5)

In the first inequality, with abuse of notation, we use 𝑝𝑛,𝑡 to denote the price

decision of product 𝑛 in period 𝑡. The inequality follows due to the fact that the

counter’s value in period 𝜏 is no larger than 2 · 𝑡(𝜏). The second inequality follows

from the relaxation of log 𝑡(𝜏) to log 𝑇 , and an alternative way of counting 𝑐𝑛,𝑡(𝑝𝑛,𝑡)

from 𝑡 = 1 to 𝑇 . The third inequality follows because of the fact that
∑︀𝐽

𝑗=1

√︀
1/𝑗 ≤

2
√
𝐽 . The last inequality follows from the Cauchy-Schwarz inequality since we know
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𝜁(𝑐) := |Ω𝑐| ≤ 𝑈 and
∑︀𝜁(𝑐)

𝑖=1 𝑐𝑛,𝑇 (𝑞𝑖𝑐) ≤ 𝑇 .

Following the same analysis, we can show similar bounds for parameters 𝛼𝑁+𝑚(·),

𝛽′
𝑁+𝑚(·) and 𝛽𝑁+𝑚(·). Notice that in developing the bounds for 𝛽′

𝑁+𝑚(·) and 𝛽𝑁+𝑚(·),

we need to have the values of the associated counters 𝑐
(𝑎,1)
𝑁+𝑚,𝑇 (·) and 𝑐

(𝑎,2)
𝑁+𝑚,𝑇 (·) to be

non-zero for at least one of the prices. Hence, we need to multiple the bound by 1/𝜆,

where 𝜆 denotes the lowest probability that the total primary demand is non-zero.

Now given (B.4) and (B.5), we have

E

⎡⎣𝑛(𝜏)∑︁
𝜏=1

ℓ(𝜏) · (𝑈𝜏 (Π𝜏 )−ℛ(Π𝜏 )] | ℰ𝑡(𝜏)

⎤⎦ ≤ [︂2(𝑀 + 1)𝑁 + 2𝑀 +
4𝑁𝑀

𝜆

]︂
𝑝·4
√︀
𝑈𝑇 log 𝑇 .

Put the bound back to (B.3), and we obtain

E

⎡⎣E
⎡⎣𝑛(𝜏)∑︁

𝜏=1

ℓ(𝜏) · (ℛ* −ℛ(Π𝜏 )] | ℰ ′𝑡(𝜏)

⎤⎦ ·P [︀ℰ ′𝑡(𝜏)]︀
⎤⎦ ≤ 4𝑝𝑀𝑁𝜀

√
𝑇+

8𝑁𝑀

𝜆
𝑝·4
√︀
𝑈𝑇 log 𝑇 .

This concludes the proof of Lemma 3.6.
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Appendix C

Technical Results in Chapter 4

C.1 Efficient Projection Algorithms

We use the following algorithm to project 𝜆(𝑡) /∈ Ω to Ω = {𝜆 | 𝜆 ≥ 0, ‖𝜆‖1 ≤ Λ}

given v := 𝜆(𝑡) and 𝑧 := Λ.

Algorithm 8 Efficient Projection to Simplex
Input: vector v and scaler 𝑧 > 0.

Sort v into 𝜇 : 𝜇1 ≥ 𝜇2 ≥ . . . ≥ 𝜇𝑛

Find 𝜌 = max
{︁
𝑗 ∈ [𝑛] : 𝜇𝑗 − 1

𝑗

(︀∑︀𝑗
𝑟=1 𝜇𝑟 − 𝑧

)︀
> 0
}︁

Define 𝜃 = 1
𝜌

(︁∑︀𝜌
𝑖=1 𝜇𝑖 − 𝑧

)︁
Output: w s.t. 𝑤𝑖 = max{𝑣𝑖 − 𝜃, 0}

In the following, we present the proof of Theorem 4.2. The proof of Theorem 4.1

simply follows by taking |𝒳 | = 1.

C.2 Primal-dual Decomposition

We define the dual benchmark as follows.

LP(𝜆, 𝜃) : max
𝑥

E𝜉

[︃
𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

(︃
𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗𝑎𝑖𝑗

)︃
𝑑𝑖𝑘(𝜉|𝜃)

)︃
𝑥𝜉,𝑘

]︃
+

𝑀∑︁
𝑗=1

𝜆𝑗
𝐼𝑗
𝑇

(C.1)
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𝑠.𝑡.

𝐾∑︁
𝑘=1

𝑥𝜉,𝑘 ≤ 1, ∀𝜉 ∈ 𝒳 (C.2)

𝑥𝜉,𝑘 ≥ 0, ∀𝜉 ∈ 𝒳 , ∀𝑘 ∈ [𝐾]. (C.3)

We denote the optimal value of LP(𝜆, 𝜃) as OPT(𝜆, 𝜃), where 𝜆 = (𝜆1, . . . , 𝜆𝑀),

and the optimal solution to LP(𝜆, 𝜃) as 𝑥*(𝜆, 𝜃).

By duality, we have for any (feasible) 𝜆 ≥ 0 that

OPT(𝜃) ≤ OPT(𝜆, 𝜃), (C.4)

where OPT(𝜆, 𝜃) is given by the optimal value of LP(𝜆, 𝜃), i.e.,

E𝜉

[︃
𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

(︃
𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗𝑎𝑖𝑗

)︃
𝑑𝑖𝑘(𝜉|𝜃)

)︃
𝑥*
𝜉,𝑘(𝜆, 𝜃)

]︃
+

𝑀∑︁
𝑗=1

𝜆𝑗
𝐼𝑗
𝑇
. (C.5)

Given 𝜉(𝑡) and 𝜆(𝑡), define OPT(𝜉(𝑡), 𝜆(𝑡), 𝜃) as

𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

(︃
𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)𝑎𝑖𝑗

)︃
𝑑𝑖𝑘(𝜉(𝑡)|𝜃)

)︃
𝑥*
𝜉(𝑡),𝑘(𝜆(𝑡), 𝜃) +

𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)
𝐼𝑗
𝑇
. (C.6)

Since 𝜆(𝑡) is deterministic given ℋ𝑡−1, we have from (C.4) that

OPT(𝜃) ≤ E𝜉(𝑡)

[︀
OPT(𝜉(𝑡), 𝜆(𝑡), 𝜃)

⃒⃒
ℋ𝑡−1

]︀
. (C.7)

Suppose the algorithm stops at period 𝜏 . We multiply both sides by 1 (𝜏 ≥ 𝑡), take

sum over 𝑡 = 1, . . . , 𝑇 , and then take expectation over 𝜏 , 𝜃 and all randomizations

within the algorithm. We have

E

[︃
𝑇∑︁
𝑡=1

1 (𝜏 ≥ 𝑡) OPT(𝜃)

]︃
≤ E

[︃
𝑇∑︁
𝑡=1

1 (𝜏 ≥ 𝑡)E
[︀
OPT(𝜉(𝑡), 𝜆(𝑡), 𝜃)

⃒⃒
ℋ𝑡−1

]︀]︃
(C.8)

= E

[︃
𝑇∑︁
𝑡=1

E
[︀
1 (𝜏 ≥ 𝑡) OPT(𝜉(𝑡), 𝜆(𝑡), 𝜃)

⃒⃒
ℋ𝑡−1

]︀]︃
(C.9)
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= E

[︃
𝑇∑︁
𝑡=1

1 (𝜏 ≥ 𝑡) OPT(𝜉(𝑡), 𝜆(𝑡), 𝜃)

]︃
(C.10)

= E

[︃
𝜏∑︁

𝑡=1

OPT(𝜉(𝑡), 𝜆(𝑡), 𝜃)

]︃
. (C.11)

Note that the first equality follows since 1 (𝜏 ≥ 𝑡) is deterministic given ℋ𝑡−1.

Let 𝑥*
𝜉(𝑡),𝑘 := 𝑥*

𝜉(𝑡),𝑘(𝜆(𝑡), 𝜃) and 𝑥𝜉(𝑡),𝑘 := 1(𝑘 = 𝑘(𝑡)). Let 𝐷𝑖(𝑡) denote the

random demand realization, which follows the probability distribution with CDF

𝐹𝑖(𝑥1, . . . , 𝑥𝑁 ; 𝑝𝑘, 𝜉(𝑡), 𝜃) and mean 𝑑𝑖𝑘(𝜉|𝜃). We can decompose OPT(𝜉(𝑡), 𝜆(𝑡), 𝜃) by

OPT(𝜉(𝑡), 𝜆(𝑡), 𝜃) = 𝑅(𝑡, 𝜃) + ∆1(𝑡, 𝜃) + ∆2(𝑡, 𝜃) + ∆3(𝑡, 𝜃), (C.12)

where we have

𝑅(𝑡, 𝜃) :=
𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑝𝑖𝑘𝑑𝑖𝑘(𝜉(𝑡)|𝜃)

)︃
𝑥𝜉(𝑡),𝑘 (C.13)

∆1(𝑡, 𝜃) :=
𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

(︃
𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)𝑎𝑖𝑗

)︃
𝑑𝑖𝑘(𝜉(𝑡)|𝜃)

)︃(︀
𝑥*
𝜉(𝑡),𝑘 − 𝑥𝜉(𝑡),𝑘

)︀
(C.14)

∆2(𝑡, 𝜃) :=
𝑀∑︁
𝑗=1

(︃
𝐼𝑗
𝑇
−

𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝐷𝑖(𝑡)

)︃
𝑥𝜉(𝑡),𝑘

)︃
𝜆𝑗(𝑡) (C.15)

∆3(𝑡, 𝜃) :=
𝑀∑︁
𝑗=1

(︃
𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑎𝑖𝑗 (𝐷𝑖(𝑡)− 𝑑𝑖𝑘(𝜉(𝑡)|𝜃))

)︃
𝑥𝜉(𝑡),𝑘

)︃
𝜆𝑗(𝑡). (C.16)

Therefore, from (C.8) we obtain

E

[︃
𝑇∑︁
𝑡=1

1 (𝜏 ≥ 𝑡) OPT(𝜃)

]︃
≤ E

[︃
𝜏∑︁

𝑡=1

𝑅(𝑡, 𝜃) + ∆1(𝑡, 𝜃) + ∆2(𝑡, 𝜃) + ∆3(𝑡, 𝜃)

]︃
. (C.17)

C.3 Proof of Proposition 4.1

E

[︃
𝜏∑︁

𝑡=1

∆1(𝑡, 𝜃)

]︃
≤ 18𝑟max

√︀
|𝒳 |𝐾𝑇 log𝐾 (C.18)
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∆1(𝑡, 𝜃) =
𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

(︃
𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)𝑎𝑖𝑗

)︃
𝑑𝑖𝑘(𝜉(𝑡)|𝜃)

)︃(︀
𝑥*
𝜉(𝑡),𝑘 − 𝑥𝜉(𝑡),𝑘

)︀
(C.19)

Proof. We follow the analysis in Ferreira et al. (2018) (Theorem 4 Part I).

Given price 𝑘 ∈ [𝐾], context 𝜉 ∈ 𝒳 and dual value 𝜆, let

𝑟𝜉,𝑘(𝜆) :=
𝑁∑︁
𝑖=1

(︃
𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗𝑎𝑖𝑗

)︃
𝑑𝑖𝑘(𝜉|𝜃) (C.20)

denote the mean pseudo revenue.

Recall ℋ𝑡−1 := (𝜉(1), 𝑃 (1), 𝐷(1), . . . , 𝜉(𝑡− 1), 𝑃 (𝑡− 1), 𝐷(𝑡− 1)), i.e., the history

available at the beginning of period 𝑡. Since parameter 𝜃(𝑡) is sampled from the

posterior distribution given history ℋ𝑡−1, we know P(𝜃|ℋ𝑡−1) = P(𝜃(𝑡)|ℋ𝑡−1).

Since 𝜉(𝑡) is sampled i.i.d. from a known distribution, and is independent of 𝜃,

𝜃(𝑡) and ℋ𝑡−1, we know P(𝜃|ℋ𝑡−1, 𝜉(𝑡)) = P(𝜃(𝑡)|ℋ𝑡−1, 𝜉(𝑡)). Therefore, we have for

𝑡 = 1, . . . , 𝜏 that

P(𝑥*
𝜉(𝑡),𝑘|ℋ𝑡−1, 𝜉(𝑡)) = P(𝑥𝜉(𝑡),𝑘|ℋ𝑡−1, 𝜉(𝑡)).

Let 𝑈𝜉,𝑘,𝑖(𝑡) be upper confidence bound, which is deterministic givenℋ𝑡−1, namely,

𝑈𝜉,𝑘,𝑖(𝑡) = min

⎛⎜⎝𝑑𝑖, 𝑑𝑖𝑘𝜉(𝑡− 1) + 𝑑𝑖

⎯⎸⎸⎷ log+

(︁
𝑇𝐾

𝑁𝜉,𝑘(𝑡−1)·|𝒳 |

)︁
𝑁𝜉,𝑘(𝑡− 1)

⎞⎟⎠ (C.21)

where

∙ log+(𝑥) = log(𝑥) · 1(𝑥 ≥ 1);

∙ 𝑑𝑖 denotes the upper bound of demand, namely 𝐷𝑖(𝑡) ∈ [0, 𝑑𝑖];

∙ 𝑁𝜉,𝑘(𝑡− 1) denotes the number of times when price 𝑝𝑘 is offered with context 𝜉

over the first 𝑡− 1 periods;

∙ 𝑑𝑖𝑘𝜉(𝑡 − 1) denotes the average demand of product 𝑖 when price 𝑝𝑘 is offered

with context 𝜉 in the first 𝑡− 1 periods.
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Let 𝐿𝜉,𝑘,𝑖(𝑡) be lower confidence bound, which is deterministic given ℋ𝑡−1, namely,

𝐿𝜉,𝑘,𝑖(𝑡) = max

⎛⎜⎝0, 𝑑𝑖𝑘𝜉(𝑡− 1)− 𝑑𝑖

⎯⎸⎸⎷ log+

(︁
𝑇𝐾

𝑁𝜉,𝑘(𝑡−1)·|𝒳 |

)︁
𝑁𝜉,𝑘(𝑡− 1)

⎞⎟⎠ (C.22)

Notice that the price term
(︁
𝑝𝑖𝑘 −

∑︀𝑀
𝑗=1 𝜆𝑗𝑎𝑖𝑗

)︁
in the pseudo revenue could be

negative.

To apply the results in Ferreira et al. (2018), we define an adaptive confidence

bound 𝐶𝐵𝜉,𝑘(𝑡), which is deterministic given ℋ𝑡−1, namely,

𝐶𝐵𝜉,𝑘(𝑡) :=
𝑁∑︁
𝑖=1

𝑈𝜉,𝑘,𝑖(𝑡) ·

(︃
𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)𝑎𝑖𝑗

)︃+

+ 𝐿𝜉,𝑘,𝑖(𝑡) ·

(︃
𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)𝑎𝑖𝑗 − 𝑝𝑖𝑘

)︃+

.

(C.23)

Given 𝜆(𝑡) ∈ Ω, we have for each 𝑘 ∈ [𝐾] and 𝑡 ∈ [𝑇 ] that

𝑁∑︁
𝑖=1

⃒⃒⃒⃒
⃒𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)𝑎𝑖𝑗

⃒⃒⃒⃒
⃒ · 𝑑𝑖 ≤

𝑁∑︁
𝑖=1

𝑝𝑖𝑘𝑑𝑖 +
𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)𝑎𝑖𝑗𝑑𝑖 (C.24)

≤ max
𝑘∈[𝐾]

𝑁∑︁
𝑖=1

𝑝𝑖𝑘𝑑𝑖 + Λ · max
𝑗∈[𝑀 ]

𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝑑𝑖. (C.25)

The second inequality follows from the fact that ‖𝑓𝑔‖1 ≤ ‖𝑓‖1‖𝑔‖∞.

Define the right-hand side of the inequality as 𝑟max, namely,

𝑟max := max
𝑘∈[𝐾]

𝑁∑︁
𝑖=1

𝑝𝑖𝑘𝑑𝑖 + Λ · max
𝑗∈[𝑀 ]

𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝑑𝑖. (C.26)

For simplicity, we use shorthand notation 𝑟𝜉(𝑡),𝑘 := 𝑟𝜉(𝑡),𝑘(𝜆(𝑡)) and 𝐶𝐵𝜉(𝑡),𝑘 :=

𝐶𝐵𝜉(𝑡),𝑘(𝑡), which are deterministic given ℋ𝑡−1 and 𝜉(𝑡).

E

[︃
𝜏∑︁

𝑡=1

𝐾∑︁
𝑘=1

𝑟𝜉(𝑡),𝑘
(︀
𝑥*
𝜉(𝑡),𝑘 − 𝑥𝜉(𝑡),𝑘

)︀]︃

= E

[︃
𝜏∑︁

𝑡=1

E

[︃
𝐾∑︁
𝑘=1

𝑟𝜉(𝑡),𝑘𝑥
*
𝜉(𝑡),𝑘 − 𝑟𝜉(𝑡),𝑘𝑥𝜉(𝑡),𝑘

⃒⃒
ℋ𝑡−1, 𝜉(𝑡)

]︃]︃
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= E

[︃
𝜏∑︁

𝑡=1

E

[︃
𝐾∑︁
𝑘=1

𝑟𝜉(𝑡),𝑘𝑥
*
𝜉(𝑡),𝑘 − 𝐶𝐵𝜉(𝑡),𝑘𝑥

*
𝜉(𝑡),𝑘 + 𝐶𝐵𝜉(𝑡),𝑘𝑥𝜉(𝑡),𝑘 − 𝑟𝜉(𝑡),𝑘𝑥𝜉(𝑡),𝑘

⃒⃒
ℋ𝑡−1, 𝜉(𝑡)

]︃]︃

= E

[︃
𝜏∑︁

𝑡=1

E

[︃
𝐾∑︁
𝑘=1

𝑟𝜉(𝑡),𝑘𝑥
*
𝜉(𝑡),𝑘 − 𝐶𝐵𝜉(𝑡),𝑘𝑥

*
𝜉(𝑡),𝑘 | ℋ𝑡−1, 𝜉(𝑡)

]︃]︃

+ E

[︃
𝜏∑︁

𝑡=1

E

[︃
𝐾∑︁
𝑘=1

𝐶𝐵𝜉(𝑡),𝑘𝑥𝜉(𝑡),𝑘 − 𝑟𝜉(𝑡),𝑘𝑥𝜉(𝑡),𝑘 | ℋ𝑡−1, 𝜉(𝑡)

]︃]︃

=
𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

E
[︂
1 (𝑡 ≥ 𝜏)

(︂
𝑟𝜉(𝑡),𝑘𝑥

*
𝜉(𝑡),𝑘 − 𝐶𝐵𝜉(𝑡),𝑘𝑥

*
𝜉(𝑡),𝑘

)︂]︂
(C.27)

+
𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

E
[︂
1 (𝑡 ≥ 𝜏)

(︂
𝐶𝐵𝜉(𝑡),𝑘𝑥𝜉(𝑡),𝑘 − 𝑟𝜉(𝑡),𝑘𝑥𝜉(𝑡),𝑘

)︂]︂
(C.28)

In term (C.27), since 0 ≤ 𝑥*
𝜉(𝑡),𝑘 ≤ 1, we have for all 𝑡 ∈ [𝑇 ], 𝑘 ∈ [𝐾] and 𝜉(𝑡) ∈ 𝒳

that

E
[︀
𝑟𝜉(𝑡),𝑘𝑥

*
𝜉(𝑡),𝑘 − 𝐶𝐵𝜉(𝑡),𝑘𝑥

*
𝜉(𝑡),𝑘

]︀
≤ E

[︁(︀
𝑟𝜉(𝑡),𝑘 − 𝐶𝐵𝜉(𝑡),𝑘

)︀+]︁
. (C.29)

In addition, by Lemma EC.3 in Ferreira et al. (2018), which is based on the result

in Bubeck Liu (2013) (Theorem 1, Step 2), we have

E
[︁(︀
𝑟𝜉(𝑡),𝑘 − 𝐶𝐵𝜉(𝑡),𝑘

)︀+]︁ ≤ 𝑁∑︁
𝑖=1

⃒⃒⃒⃒
⃒𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)𝑎𝑖𝑗

⃒⃒⃒⃒
⃒ · 𝑑𝑖 · 6

√︂
|𝒳 |
𝐾𝑇

,

which implies

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

E
[︀
𝑟𝜉(𝑡),𝑘𝑥

*
𝜉(𝑡),𝑘 − 𝐶𝐵𝜉(𝑡),𝑘𝑥

*
𝜉(𝑡),𝑘

]︀
≤ 𝑟max · 6

√︀
|𝒳 |𝐾𝑇. (C.30)

For term in (C.28), by Lemma EC.4 in Ferreira et al. (2018), which is based on

the results in Bubeck Liu (2013) (Theorem 1, Step 3) and Russo Van Roy (2014)

(Proposition 1), we obtain that

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

E
[︀
𝐶𝐵𝜉(𝑡),𝑘𝑥𝜉(𝑡),𝑘 − 𝑟𝜉(𝑡),𝑘𝑥𝜉(𝑡),𝑘

]︀
≤ 𝑟max · 12

√︀
|𝒳 |𝐾𝑇 log𝐾. (C.31)
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Therefore, we have

E

[︃
𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

𝑟𝜉(𝑡),𝑘
(︀
𝑥*
𝜉(𝑡),𝑘 − 𝑥𝜉(𝑡),𝑘

)︀]︃
≤ 𝑟max · 18

√︀
|𝒳 |𝐾𝑇 log𝐾. (C.32)

C.4 Proof of Proposition 4.2

E

[︃
𝜏∑︁

𝑡=1

∆2(𝑡, 𝜃)

]︃
≤ E [(𝜏 − 𝑇 ) OPT(𝜃)] +

3
√

2

2
𝐺Λ
√
𝑇 (C.33)

∆2(𝑡, 𝜃) =
𝑀∑︁
𝑗=1

(︃
𝐼𝑗
𝑇
−

𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝐷𝑖(𝑡)

)︃
𝑥𝜉(𝑡),𝑘

)︃
𝜆𝑗(𝑡) (C.34)

Proof. We follow the analysis in Agrawal Devanur (2014b), Agrawal Devanur

(2016). Recall that

𝑘(𝑡) = arg max
𝑘∈[𝐾+1]

𝑁∑︁
𝑖=1

(︃
𝑝𝑖𝑘 −

𝑀∑︁
𝑗=1

𝜆𝑗(𝑡)𝑎𝑖𝑗

)︃
𝑑𝑖𝑘 (𝜉(𝑡)|𝜃(𝑡)) .

Given price vector 𝑝𝑘(𝑡), context 𝜉(𝑡) and the true demand parameter 𝜃, define the

consumption of resource 𝑗 ∈ [𝑀 ] in period 𝑡 as 𝑏′𝑗(𝑡, 𝜃), namely,

𝑏′𝑗(𝑡, 𝜃) :=
𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝐷𝑖(𝑡). (C.35)

Recall the dual objective function

𝑔𝑡(𝜆, 𝜃) :=
𝑀∑︁
𝑗=1

𝜆𝑗 ·

(︃
𝐼𝑗
𝑇
−

𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝐷𝑖(𝑡)

)︃
. (C.36)

The objective in the dual space is to minimize
∑︀𝜏

𝑡=1 𝑔𝑡(𝜆, 𝜃) over domain Ω. Recall

Λ :=
𝐼max

𝐼min

·
𝑀∑︁
𝑗=1

𝑝𝑗max where 𝑝𝑗max := max
𝑖:𝑎𝑖𝑗 ̸=0,𝑘∈[𝐾]

𝑝𝑖𝑘
𝑎𝑖𝑗

. (C.37)
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By definition, we have the property

Λ · 𝐼min ≥ OPT(𝜃) · 𝑇. (C.38)

Let 𝜆min be the optimal solution to the dual problem, namely

𝜆min = arg min
𝜆∈Ω

𝜏∑︁
𝑡=1

𝑔𝑡(𝜆, 𝜃). (C.39)

By Theorem 3.1 in Hazan et al. (2016), we have

𝜏∑︁
𝑡=1

𝑔𝑡(𝜆(𝑡), 𝜃) ≤
𝜏∑︁

𝑡=1

𝑔𝑡(𝜆min, 𝜃) +
3
√

2

2
𝐺𝐷
√
𝜏 . (C.40)

The inequality follows because

∙ We know 𝐷 ≤
√

2Λ by definition.

∙ Given ▽𝑗𝑔𝑡(𝜆) =
𝐼𝑗
𝑇
−
∑︀𝑁

𝑖=1 𝑎𝑖𝑗𝐷𝑖(𝑡), 𝑗 ∈ [𝑀 ], we have

𝐺 ≤
√
𝑀 · max

𝑗∈[𝑀 ]

⃒⃒⃒⃒
⃒𝐼𝑗𝑇 −

𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝐷𝑖(𝑡)

⃒⃒⃒⃒
⃒ (C.41)

≤
√
𝑀 ·max

{︃
𝐼max

𝑇
, max
𝑗∈[𝑀 ]

𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝑑𝑖

}︃
(C.42)

by the property ‖𝑎‖2 ≤
√
𝑀 · ‖𝑎‖1 for any 𝑎 ∈ R𝑀 .

We know the algorithm stops with the following two cases:

1. 𝜏 < 𝑇 , which means
∑︀𝜏

𝑡=1 𝑏
′
𝑗(𝑡, 𝜃) ≥ 𝐼𝑗 for some 𝑗. In this case, since Λ ·𝑒𝑗 ∈ Ω,

we have

𝜏∑︁
𝑡=1

𝑔𝑡(𝜆min, 𝜃) ≤
𝜏∑︁

𝑡=1

𝑔𝑡(Λ𝑒𝑗, 𝜃) ≤ Λ ·
(︂
𝜏 · 𝐼𝑗

𝑇
− 𝐼𝑗

)︂
≤ Λ ·

(︁ 𝜏
𝑇
− 1
)︁
· 𝐼min. (C.43)

2. 𝜏 = 𝑇 . In this case, we have

𝜏∑︁
𝑡=1

𝑔𝑡(𝜆min, 𝜃) ≤
𝜏∑︁

𝑡=1

𝑔𝑡(0) = Λ ·
(︁ 𝜏
𝑇
− 1
)︁
· 𝐼min. (C.44)
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Recall that

∆2(𝑡, 𝜃) = 𝑔𝑡(𝜆(𝑡), 𝜃) =
𝑀∑︁
𝑗=1

(︃
𝐼𝑗
𝑇
−

𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝐷𝑖(𝑡)

)︃
𝑥𝜉(𝑡),𝑘

)︃
𝜆𝑗(𝑡). (C.45)

Therefore, from (C.40), (C.43) and (C.44) we obtain

𝜏∑︁
𝑡=1

∆2(𝑡, 𝜃) = Λ ·
𝜏∑︁

𝑡=1

𝑔𝑡(𝜆(𝑡), 𝜃) (C.46)

≤
(︁ 𝜏
𝑇
− 1
)︁

Λ𝐼min +
3
√

2

2
𝐺Λ
√
𝑇 . (C.47)

We have

𝜏 · OPT(𝜃) ≤ E

[︃
𝜏∑︁

𝑡=1

𝑅(𝑡, 𝜃)

]︃
+ E

[︃
𝜏∑︁

𝑡=1

∆1(𝑡, 𝜃)

]︃

+
(︁ 𝜏
𝑇
− 1
)︁

Λ𝐼min +
3

2
𝐺Λ
√
𝑇 + E

[︃
𝜏∑︁

𝑡=1

∆3(𝑡, 𝜃)

]︃
(C.48)

Given property Λ𝐼min ≥ OPT(𝜃) · 𝑇 , since 𝜏 ≤ 𝑇 , we have

(︁ 𝜏
𝑇
− 1
)︁

Λ𝐼min ≤ 𝜏 · OPT− 𝑇 · OPT(𝜃). (C.49)

Therefore, we obtain

𝑇 ·OPT(𝜃) ≤ E

[︃
𝜏∑︁

𝑡=1

𝑅(𝑡, 𝜃)

]︃
+E

[︃
𝜏∑︁

𝑡=1

∆1(𝑡, 𝜃)

]︃
+

3

2
𝐺Λ
√
𝑇 +E

[︃
𝜏∑︁

𝑡=1

∆3(𝑡, 𝜃)

]︃
(C.50)

C.5 Proof of Proposition 4.3

E

[︃
𝜏∑︁

𝑡=1

∆3(𝑡, 𝜃)

]︃
≤ 𝑞maxΛ

(︁√︀
𝑇 log 𝑇 + 1

)︁
(C.51)

∆3(𝑡, 𝜃) =
𝑀∑︁
𝑗=1

(︃
𝐾∑︁
𝑘=1

(︃
𝑁∑︁
𝑖=1

𝑎𝑖𝑗

(︂
𝐷𝑖(𝑡)− 𝑑𝑖𝑘(𝜉(𝑡)|𝜃)

)︃)︃
𝑥𝜉(𝑡),𝑘

)︂
𝜆𝑗(𝑡) (C.52)
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Proof. Construct martingale sequence

𝑀(0) := 0, (C.53)

𝑀(𝑡) :=
𝑡∑︁

𝑠=1

𝑀∑︁
𝑗=1

𝜆𝑗(𝑠) ·
𝑁∑︁
𝑖=1

𝑎𝑖𝑗

(︂
𝐷𝑖(𝑠)− 𝑑𝑖𝑘(𝑠)(𝜉(𝑠)|𝜃)

)︂
. (C.54)

The sequence is a martingale since we have for all 𝑡 ∈ {1, . . . , 𝜏},

E[𝑀(𝑡) | ℋ𝑡−1] = 𝑀(0) = 0.

The regret (stochastic error) is thus

𝜏∑︁
𝑡=1

∆3(𝑡, 𝜃) = 𝑀(𝜏)−𝑀(0) = 𝑀(𝑇 )−𝑀(0). (C.55)

Since ‖𝑓𝑔‖1 ≤ ‖𝑓‖1‖𝑔‖∞ and
∑︀𝑀

𝑗=1 𝜆𝑗(𝑡) ≤ Λ, we have

|𝑀(𝑡)−𝑀(𝑡− 1)| ≤ Λ · max
𝑗∈[𝑀 ]

𝑁∑︁
𝑖=1

𝑎𝑖𝑗𝑑𝑖. (C.56)

Define 𝑞max = max𝑗

∑︀𝑁
𝑖=1 𝑎𝑖𝑗𝑑𝑖.

By the Azuma-Hoeffding inequality, we have that with probability at least 1− 𝛿,

|𝑀(𝑇 )−𝑀(0)| ≤ Λ · 𝑞max ·
√︂
𝑇 log

1

𝛿
. (C.57)

Therefore, we have

E [|𝑀(𝑇 )−𝑀(0)|] ≤ Λ · 𝑞max ·
√︂

𝑇 log
1

𝛿
· 1 + (𝑇 · Λ · 𝑞max) · 𝛿. (C.58)

Take 𝛿 = 1/𝑇 . We obtain

E

[︃
𝜏∑︁

𝑡=1

∆3(𝑡, 𝜃)

]︃
≤ E [|𝑀(𝜏)−𝑀(0)|] ≤ Λ · 𝑞max ·

(︁√︀
𝑇 log 𝑇 + 1

)︁
(C.59)
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C.6 Proof of Theorem 4.3

The proof of Theorem 4.3 follows the decomposition in (C.12). In addition, the regret

bounds for E [
∑︀𝜏

𝑡=1 ∆2(𝑡, 𝜃)] and E [
∑︀𝜏

𝑡=1 ∆3(𝑡, 𝜃)] follow the previous analysis. The

regret bound for E [
∑︀𝜏

𝑡=1 ∆1(𝑡, 𝜃)] follows from the result of Proposition 3 in Russo

Van Roy (2014) where the number of parameters is 𝑑×𝑁 .
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