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ABSTRACT 
 

 If we are willing to pay a premium, we may be able to mitigate some of the long-lasting 
impacts of nuclear waste. Deciding how to navigate this tradeoff, between cost and waste, is a 
central challenge for stewards of nuclear power. It is made more difficult by uncertainties that 
characterize the global future of nuclear electricity generation. 

The recent increase in concern about climate change has prompted U.S. policymakers to 
back strategies favorable toward nuclear power, so much so that some experts see a “nuclear 
renaissance” on the horizon. Whether such a renaissance will come to pass, involving the 
construction of a vast new fleet of nuclear plants, is unclear – especially in light of the March 
2011 nuclear accident at the Fukushima Daiichi reactors in Japan. Even more unclear is what 
should be done with the commercial U.S. nuclear waste, given an array of technical options and 
a large amount of uncertainty about how much waste will ultimately need to be managed. 
 This study introduces a framework for analysis of strategies to evolve the nuclear fuel 
cycle which may be helpful in analyzing decision problems for similarly complex, long-lived 
technical infrastructure systems. The framework consists of a system dynamics simulation 
coupled with a decision analysis model. The system dynamics code is developed specifically for 
this study to be simple, fast-running, and also to echo the results of many previous nuclear fuel 
cycle simulations in demonstrating how various technical options impact important parameters 
(like uranium consumed, waste generated, etc.). Code results are benchmarked to more complex 
fuel cycle simulations for the parameters relevant to the decision space. The decision analysis 
model takes information from the simulation and makes it useful to policymakers, by allowing 
the explicit analysis of desirable decision pathways under uncertainty, and also considering 
tradeoffs among system goals. 
 The framework is applied to three nuclear systems, the light-water reactor (LWR) once-
through fuel cycle, which represents the status quo, an advanced, traditional, plutonium-fed self 
sustaining fast reactor fuel cycle, and a fast reactor fuel cycle for which initial fast reactor cores 
are composed of enriched uranium rather than recycled LWR fuel. Fast reactors are highly likely 
to cost more than LWRs, but they can produce electricity from some of the elements that most 
plague the long-term management of a nuclear waste repository. A value function compares how 
these options fare under different scenarios, incorporating system-wide costs and the system 
waste burden as the two attributes in the function. 
 The primary result is that the best strategy, under a strong preference for eliminating 
LWR spent nuclear fuel waste, consists of building a few traditional fast reactors now, and then 
building a full fleet more rapidly later in the century. This allows both for a significant amount of 
waste mitigation compared to an all-LWR fuel cycle, and for the costs associated with the more 
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expensive fast reactor technology to be incurred primarily later in the century. On the other hand, 
if cost is the main consideration, the framework advises moving forward with the once-through 
LWR fuel cycle and avoiding fast reactors altogether, or at least until later in the century.  

These results are examined from a traditional decision analysis perspective, and then 
from one that departs somewhat from the assumption of a fully powerful decision maker.  In 
reality, a government decision maker can only offer incentives to industry in order to induce a 
strategy change. Changing the decision model to reflect this reality causes the framework to 
more strongly advise moving forward with traditional fast reactors. This occurs because any 
single attempt at offering incentives to industry might be unsuccessful, and thus prevent a waste-
concerned government from achieving any significant mitigation. 
 The most important contribution of the methodology is its ability to illuminate which 
parameters represent strong drivers of system decisions. Preferences across competing attributes 
are always important: in general, if decision maker preferences for reducing cost vs. waste were 
to shift significantly, the framework would show a change in the desirable decision strategy. 
Decision results are not very sensitive, on the other hand, to the rate of nuclear power growth or 
to the cost of fast reactor technology.  

A second contribution comes from the initial foray into studying a more complex 
decision maker perspective, and shows how a different view can complement results using the 
traditional decision analysis assumption of an “ideal” decision maker. Ultimately, the system 
dynamics/decision analysis framework presented here helps identify desirable pathways for 
complex system evolution, identifies factors that bear strongly on decisions and which are 
deserving of more study, and begins to show how strategy implementation can be considered 
within the framework in order to further improve decision-making. 
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Japan Steel Industry Professor of Nuclear Science and Engineering 
 
Committee Member: Mort D. Webster 
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Chapter 1:  Introduction 
  

Complex, high-technology systems are becoming more prevalent in our lives. One 

category of these could be considered “consumer technologies,” which provide a service directly 

to a device owner. These objects have short life spans, rapid version updates, and low per-unit 

costs. Cell phones and some internet applications fall into this category. Other high-tech systems, 

however, enable these consumer technologies. Such enabling systems are large, complex, and 

generally involve huge investments in long-lasting infrastructure. Many electricity generation 

and large transportation systems are typical of this group. Managing and evolving these types of 

complex technologies, that last far beyond political and industrial cycles, presents a unique 

challenge. 

For a certain class of big infrastructure systems, the notion that we can develop a huge 

suite of technology options to solve a problem and then “let the market decide between them” is 

not realistic. The investment required to accomplish this is simply too great, and often the returns 

on investment depend on the continuity of government policy. The more expensive, complex, 

and long-lasting the system, the more important it becomes to make careful design decisions 

ahead of any investment or implementation. Making these decisions, however, is challenging 

because large enabling systems are required to meet an array of sometimes-conflicting 

objectives. Usually these objectives include low costs, low environmental impacts, high degrees 

of safety and reliability, and others. 

Modeling and simulation tools are increasingly aiding decision makers in defining 

complex system designs and selecting options. Simulation and decision analysis tools together 

can help establish a tractable strategy for system evolution, by helping to illuminate the tradeoffs 

between systems and their objectives. Complex technologies that would benefit from this 

approach include the U.S. electrical grid (onto which renewable energy sources are unlikely to 

prosper unless there is significant centralized planning involving storage and backup systems, in 

addition to cost reductions), and the nuclear fuel cycle (which will never advance beyond its 

once-through, throw-away status quo unless a careful path is charted). 

All of these systems must evolve over the course of decades, and they face numerous 

uncertainties during that time. It is not yet clear what electricity demand will be, how many 

nuclear plants will be desirable, or how quickly new generations of technologies will become 
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available. These systems and others like them also suffer, in varying amounts, from murky 

definitions of who, exactly, is responsible for changing them. For the U.S. nuclear fuel cycle and 

the electricity grid, complex relationships between private and public decision makers govern 

their futures. 

This thesis provides a framework intended to help groups of decision makers compare 

and select options for evolving complex, long-lasting infrastructures serving multiple objectives. 

The framework comprises a decision analysis model linked with a system dynamics simulation, 

allowing for the explicit enumeration of options and uncertainties set over a temporal axis. 

Establishing a value function, as required by the decision analysis model, highlights the drivers 

for making system changes, and forces decision makers to consider their relative importance. 

The framework is applied here to the nuclear fuel cycle, because the nuclear fuel cycle strongly 

exemplifies the characteristics of a long-lived, technologically complex system with disparate 

groups of decision makers responsible for its evolution. In the U.S. and elsewhere, discussions 

focus on how to manage the conflicting objectives inherent in fuel cycle options, including 

reductions in CO2, safety, waste management, and others. This thesis concentrates solely on the 

U.S. perspective. 

. 

1.1 Motivation: The nuclear fuel cycle as a complex infrastructure 
Nuclear power may be poised for a dramatic renaissance in the United States. Chief 

among the drivers for new nuclear are concerns about the environmental impacts of 

anthropogenic carbon dioxide, and a desire to improve the sustainability of our energy systems. 

Though the nuclear meltdowns at Fukushima, Japan are having a negative impact on global 

public opinion, it is unclear whether the Japanese accident will significantly stall planned 

expansions of nuclear energy in the U.S. Nuclear remains the only widely available, 

commercialized technology that can provide baseload electricity while producing negligible 

amounts of CO2.  

Despite its advantages, nuclear power confronts many challenges besides public opinion 

in the U.S. electricity market. Costs are paramount among these, because the capital costs for a 

single nuclear plant range in the several billions of dollars and thus require utilities to bet their 

entire balance sheets on one project.(J. Deutch & et al., 2009) The difficulty in financing nuclear 
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projects is compounded by the roughly 30-year U.S. hiatus in nuclear power plant builds, 

causing considerable uncertainty for investors about costs and regulatory risks.  

 A second major issue with nuclear power involves the unique characteristics of the 

waste. Spent nuclear fuel (SNF) is highly radioactive, dangerous, and long-lived. It also, 

however, contains significant potential to produce more electricity from various elements 

generated in or remaining in the fuel. These valuable components are stripped out and re-

fabricated for use again in reactors to produce electricity. This reprocessing and reuse of SNF has 

the potential not only to increase energy extraction from the material, but also can in principle 

reduce some of the long-lived radiotoxicity and volume of nuclear waste. Whether or not SNF is 

reprocessed, high-radiation wastes will require disposal. Scientists have long agreed that the best 

method of disposal consists of underground burial.(Hess, 1957) Yet establishing a program for 

nuclear waste disposal has proved difficult in the U.S. 

The 1987 amendment to the 1982 Nuclear Waste Policy Act designated Yucca Mountain, 

Nevada as the site for a nuclear waste repository. Since then, over $13 billion has been spent 

characterizing and designing the repository location.(Yucca mountain cost estimate rises to $96 

billion.2008) The Department of Energy used this information to submit a license application for 

construction and operation of the repository to the Nuclear Regulatory Commission (NRC) in 

June 2008. In March of 2010, however, the Obama administration moved to withdraw the 

application from the NRC, plunging the future of Yucca Mountain and of the pathway to nuclear 

waste management into doubt. At the same time, President Obama appointed the Blue Ribbon 

Commission on America’s Nuclear Future to chart a course for SNF management in the U.S. 

The Commission will make recommendations, but both public and private actors will still be 

responsible for making decisions at many points over time in order to determine the fate of the 

fuel cycle. 

This thesis is directed toward developing and applying a methodology for decision 

making with regard to the U.S. nuclear fuel cycle. The intent is to help provide tools to navigate 

complex decisions between different pathways for fuel cycle development and investment. An 

example presented in this thesis concerns the choice between employing advanced recycling or 

maintaining the existing and well-understood once-through fuel cycle based on light water 

reactors (LWRs). Recycling nuclear fuel may make sense, but the utility of any fuel cycle will 

depend heavily on the trajectory for nuclear power growth (i.e. whether a nuclear renaissance 
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indeed takes place), the cost of advanced reactors and recycling technologies, and proliferation 

considerations, among other things. Each of these parameters is highly uncertain, so that the risks 

of investing in infrastructure that will last 50 years or more are especially acute. The high degree 

of uncertainty present for this system calls for a management approach considering flexibility 

and the preservation of options.(Saleh, Hastings, & Newman, 2001)  

 

1.2 Focusing the Problem: the Cost-Waste Tradeoff 
Although many different challenges confront nuclear power, two are often cited as the 

major barriers to a true nuclear renaissance. These two problems are the cost of the technology, 

and the nuclear waste it produces. While challenges associated with nonproliferation, safety, and 

public perception are important, the issues of waste and cost seem to be especially central to 

arguments for and against various configurations of the nuclear fuel cycle. 

 Federal policy currently requires the U.S. government to take title to commercial spent 

nuclear fuel and dispose of it. But, as described above, this has proved extremely difficult given 

large amounts of political and scientific opposition. The lack of a solution is damaging: several 

states have enacted bans on building new nuclear plants until a waste disposal program is 

operating.  

Reprocessing spent LWR fuel and reusing it in advanced reactors could, however, be one 

mitigating solution. Such a fuel cycle would sequester waste into reactor cores and put it to work 

producing electricity, and could potentially reduce the long-term waste burden posed by 

traditional spent LWR fuel. This might allow for building a smaller final repository, and prevent 

the need for additional repositories beyond the first one. Less waste would be more palatable 

politically, potentially enabling a true life-cycle nuclear waste solution and incentivizing greater 

participation from industry in building and operating reactors as part of the energy mix. 

 This advanced fuel cycle, however, will almost certainly be more expensive than the 

traditional once-through fuel cycle.(Kazimi, Moniz, Forsberg, & et al., 2011) Given that even 

LWRs operating in once-through mode are expensive (see above), increasing the cost of nuclear 

power could simply ensure that it is never used. A true tradeoff exists between options for waste 

mitigation and options for keeping the cost of nuclear as low as possible. 
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One caveat is in order: the extent to which LWR waste can be truly “mitigated” by an 

advanced fuel recycling is still the subject of debate. For example, although plutonium recycle 

decreases the volume of high-level waste destined for disposal, volume may be an irrelevant 

metric in a repository for which the loading factor is determined by the waste’s heat output. Fast 

reactor recycle may lower the radiotoxicity, volume, and heat output of high-level waste 

compared to the once-through fuel cycle, but the extent of the benefit must be confirmed. 

Analysis is needed on a life-cycle basis, in conjunction with the relevant (and yet unknown) final 

disposal site characteristics. This thesis makes the assumption that an advanced fuel cycle will 

provide a tangible waste benefit. Indeed, if it is shown that the waste benefits of advanced 

recycling are negligible, considering such cycles is pointless at this point in time (under the 

plausible assumption that fresh fuel in a once-through fuel cycle is not a significant constraint). 

Deciding which fuel cycle to implement in the face of the cost-waste tradeoff is difficult. 

One could claim that the decision should depend on how much new nuclear we build; if we build 

lots of LWRs, and potentially will need vast amounts of repository space, we should look into 

reprocessing. But this argument makes an assumption about how desirable it is to mitigate the 

waste burden. Even if we build very few new nuclear plants, deploying a small number of 

advanced reactors and associated recycling facilities could be an attractive way to reduce the 

waste we have.  

 Further complicating the decision, a large number of entities have a vested interest in the 

structure of the nuclear fuel cycle and also have different perspectives on which aspects of the 

problem matter. The government agencies responsible for waste management would like a 

politically expedient and socially acceptable way to handle and dispose of spent nuclear fuel. 

Industry actors, including the major reactor vendors and nuclear utilities, are also concerned 

about waste, but are more immediately interested in the cost of producing electricity.  

The problem is complex, fraught with different actors of varying sizes, roles, and decision 

making power. These groups have decisions to make at many different strategic levels and across 

long timescales. Focusing on the cost-waste tradeoff with simplified representations of the 

multiple decision makers helps narrow the analysis, and sheds light on some of the better and 

worse pathways for evolving the U.S. nuclear fuel cycle. 
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1.3 Research Objectives 
Over the last three decades, credible institutions have made extensive and deep system 

studies of advanced nuclear fuel cycle deployment. These studies can be broadly classified in 

one of three categories: in-depth design and analysis of individual advanced systems (e.g. of an 

advanced fast reactor or an aqueous reprocessing plant), static or equilibrium analysis of system 

interactions (e.g. on how much fuel would regularly be transferred in a fast reactor-reprocessing 

plant system), and dynamic analyses (e.g. on how quickly fast reactors can penetrate the nuclear 

market). Each type of study provides information relevant to decision makers at some level. This 

thesis aims to synthesize that information and put it into a framework relevant for policymakers 

at the level of the federal government, by creating a lens for viewing the results of dynamic fuel 

cycle analyses. 

The primary research objective is to create a decision analysis framework for 

understanding and comparing various advanced fuel cycle options. The value function used to 

evaluate the utility of various nuclear power scenarios will be flexible and expandable, allowing 

decision makers to ultimately decide the criteria by which technologies will be chosen. The 

decision analysis methodology further allows for explicit enumeration and evaluation of 

uncertainties that may confront nuclear fuel cycle development. This increases the usefulness of 

the model, and adds a new dimension to the field of fuel cycle analysis. Various flexible patterns 

of development can be analyzed within the framework to evaluate them as potential responses to 

the uncertainties. 

Among the limitations of decision analysis is the traditional methodological assumption, 

described more fully in section 2.1, that the system is governed by a single decision 

maker.(Keeney, 1982) This assumption is extremely restricting for many systems of interest, and 

especially for the nuclear fuel cycle. Nuclear reactor vendors, utilities, Congress, regulators, and 

local governments will all make decisions shaping fuel cycle evolution. The framework 

presented here is flexible enough to begin considering these interactions between private and 

public decision-makers, and one example is presented wherein industry actions are modeled 

from the perspective of the government.  

Research questions addressed in this thesis include the following: 

• Given an initial, simple value function, what are some of the preferred pathways 

for U.S. nuclear fuel cycle development? 
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• Does considering a broader range of options (including those that can flexibly 

respond to uncertainty) change the suite of desired pathways? 

• What are the effects of recognizing some the limitations of government as a 

decision-maker that interacts with the nuclear power industry (in effect 

acknowledging that the system has no all-powerful decision-maker)? 

 

1.4 Methodological Overview 
The primary focus of this work is a decision analysis model intended to both assist 

policymakers and expand the discussion of options and uncertainties that deserve the attention of 

fuel cycle studies. The full methodology underlying the decision tree and attendant calculations 

is described in Chapter 4. 

Providing solid inputs to the decision tree, in the form of fuel cycle scenario parameters, 

is essential to conducting a valid analysis. To this end, a new fuel cycle simulation is created and 

linked to adjustable sets of decision trees. The fuel cycle simulation is designed to be very 

simple, fast-running, and inclusive of only the variables most central to the analysis problem at 

hand. A full description of the MATLAB-based system dynamics fuel cycle model is presented 

in Chapter 3. 

The decision tree and fuel cycle models, plus their linkage through a set of Microsoft 

Excel spreadsheet calculations, form the methodological basis of this work (see Figure 1.1; 

methodological tools are listed in orange boxes, and software packages are represented in grey 

boxes). 
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Figure 1-1: Outline of methodology: two linked models 

 

The inputs to the overall process include “traditional” fuel cycle simulation inputs. They 

are the advanced fuel cycle technology types in question, the times at which they are introduced, 

and the assumptions for nuclear power growth. These parameters are varied and arranged into 

scenarios, corresponding to scenarios of interest that are modeled as paths through the decision 

tree. Each branch of the decision tree model in Figure 1-1, ranging from left to right, represents a 

scenario with certain set values for each of the model parameters. The structure of the scenarios 

in the context of the decision tree is discussed more fully in Chapter 4. 

The outputs of the entire process include groups of scenarios that prove desirable under 

various conditions. Rather than assume the preferences of the decision makers, results are 

reported for a full range of “preference values,” any one of which in principle could represent the 

true desires of the decision making body. Other methodologies address the elicitation of these 
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preference values in the context of decision analysis; such elicitation is beyond the scope of this 

work (and instead is replaced by analyzing the full range of preference values that could be 

chosen). Because preference elicitations are controversial, especially for groups of decision 

makers (and likely even more so for disparate groups public and private institutions), reporting 

desirable decisions over a range of preference values and demonstrating each decision’s relative 

robustness was deemed more appropriate for this work. Further investigations should explore 

whether strategy “solutions” are more useful to decision makers when calculated for elicited 

preferences or when reported for a preference range. 

 

1.5 Thesis Organization 
This document is organized in eight chapters and two appendices. Chapter 2 presents a 

focused literature review of the decision analysis methodologies and fuel cycle analyses relevant 

to this work. Chapter 3 describes the system dynamics fuel cycle code, the Flexible Advanced 

Nuclear Technology Simulation by Year (FANTSY), developed to provide inputs to decision 

analysis models in this thesis. Chapter 4 explains the decision analysis methodology which forms 

the basis for the contributions of this work. Chapter 5 describes a series of studies performed 

using the decision analysis framework, each surrounding an important question about options for 

evolution of the nuclear fuel cycle. Chapter 6 presents seven sensitivity studies, which 

demonstrate the robustness of the results presented in Chapter 5. Chapter 7 discusses the impact 

of relaxing the assumption that a single decision maker has full control over the system, and 

Chapter 8 presents conclusions and recommendations for further work. The appendices provide 

the MATLAB script for the FANTSY fuel cycle analysis code, and a comparison of FANTSY 

results to a benchmark study of fuel cycle simulations.  
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Chapter 2:  Selected Background on Decision 
Analysis and Nuclear Fuel Cycle Studies 

 

 The primary analytical foundations of this thesis include areas of decision analysis and 

simulation and modeling studies of the nuclear fuel cycle. Both subjects are exceptionally broad, 

so this chapter does not seek to provide a complete review of either one. Rather, the aspects of 

each most relevant to this work are highlighted, and the final section reviews the small body of 

literature on combining system dynamics methods with decision analysis. 

 

2.1 The “Canonical Method” of Decision Analysis 
Decision analysis is often divided into three “schools” of study: normative, descriptive, 

and prescriptive; an overview of the decision analysis field is described in (Tang, 2006). 

Normative theory describes how humans should make decisions if they are following ideal rules 

of logic and rationality.(D. Bell, H. Raiffa, A. Tversky, 1988) Descriptive theorists analyze how 

decisions are actually made. Prescriptive theory, the school in which this thesis is grounded, is 

concerned with improving the process and results of decision-making.  

Within the prescriptive school of decision analysis, one major theme is of interest for this 

work, providing the foundation for a contribution to the field. This is the “canonical method” of 

decision analysis, consisting of a set of steps which a decision maker (or analyst) should follow 

in order to identify a recommended choice. Several versions of this method have been presented 

since the birth of decision analysis, all of them more or less following a pattern of problem 

definition, followed by the generation of options, and then option examination.  

John Dewey created one of the first models for phased decision making steps in 

1910.(Hansson, 2005) His model included five stages: problem identification, problem 

definition, generation of alternatives, evaluation of alternatives, and further observation leading 

to acceptance or rejection of the alternative. Herbert Simon proposed modifications to this same 

basic outline in 1960(Hansson, 2005), and then others followed by proposing sequential and 

circular/iterative versions of the process. Ralph Keeney, considered to be one of the “fathers” of 

modern decision analysis, proposed an iterative set of steps that added one for explicitly 

quantifying the values of decision makers, and another that prescribes performing a sensitivity 
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analysis.(Keeney, 1982) Among others famous for their versions of this canonical set of decision 

analysis steps are (Clemen, 1996), and (Howard, 1988), who is often credited with coining the 

term “decision analysis.” Figure 2-1 shows one version of the canonical model, after the models 

described by Clemen and Keeney. 

 
Figure 2-1: One general description of a canonical decision analysis model, with proposed iterative 
steps 

 

The vast majority of initial literature on decision analysis recognized a common problem: 

the canonical model and the tools of decision analysis assumed a single, all-powerful decision 

maker.(Keeney, 1982) Keeney and others realized that few decisions are made by such 

ubiquitous beings, but argued that decision analysis could nonetheless provide a useful 

perspective on many problems. Subsequent research has tackled this problem in many ways, 
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including by incorporating game theory for cooperative or competitive players (who are making 

decisions as they play). 

A study by a National Research Council committee suggested a different avenue for 

handling multiple decision makers, producing a report in 1996 that recommended decision 

analysts incorporate stakeholder deliberation while moving through the steps of a canonical 

decision analysis model.(Committee on Risk Characterization, National Research Council, 1996) 

The benefits of deliberation include improved communication among decision makers, such that 

discrepancies in viewpoints are more easily discovered and consensus can be more easily 

reached.(Weil, R. and Apostolakis, G., 2001) The framework presented in this thesis is intended 

to be used along with a deliberative process, but testing it with actual (or acting) human decision 

makers was beyond the scope of work and is left to further study.  

It is important to note that performing this analysis with the full participation of several 

stakeholders would not completely solve the multi-decision maker problem. For the nuclear fuel 

cycle and similar systems, the problem is not simply that there are multiple people involved with 

decision making; there are multiple groups responsible for the relevant decisions, each composed 

of other groups with varying aims, and it is not always clear which groups possess decision 

making authority. This study offers initial steps toward a solution, by suggesting a modification 

to the most recent versions of the canonical decision analysis process. 

Variations of the canonical procedure can now be found outside traditionally-defined 

boundaries of the decision analysis field. One example of a canonical model version comes from 

Joseph Sussman and his students in the MIT Engineering Systems Division, known as the 

“Complex, large-scale, interconnected, open, sociotechnical” (CLIOS) process.(Sussman, 

Dodder, McConnell, Mostashari, & Sgouridis, 2007) The three major stages of the CLIOS 

process consist of: (1) system representation, (2) design, evaluation, and selection of 

alternatives, and (3) implementation of the selected alternatives. CLIOS is a more thorough 

expression of the canonical decision analysis model (see Figure 2-2). Another example, designed 

specifically in the context of nuclear waste cleanup, is called the “KONVERGENCE” 

Framework (for which the goal is to find where Knowledge, Values, and Resources 

converge).(Piet, Gibson, Joe, Kerr, & Nitschke, 2003) Like CLIOS, the KONVERGENCE 

model includes explicit consideration of implementation of options. 
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Figure 2-2: Stages of the CLIOS processes (Sussman, 2007) 
 

These and other models offer comprehensive decision support for ranges of complex 

systems, without necessarily invoking decision analysis. Each recognizes the importance of 

iteration between steps, the need for a strongly creative process to generate options, and the 
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critical importance of implementation phase planning. The framework established in this thesis 

could be aligned with any one of these system analysis and evolution procedures. 

A new contribution to this class of processes, demonstrated here, is the utility of 

performing the set of procedural steps twice. The stages of problem definition, alternative 

generation, and analysis of options are first performed under the assumption that a single, all-

powerful decision maker can alter the system in order to maximize public welfare. In some 

sense, this perspective is aligned with that of the federal government, which acts to benefit the 

common good. But an examination at the implementation planning phase quickly illuminates the 

fact that the government will not have the ability to enact the desired options as they have been 

defined. A second iteration is performed, where the alternatives are adjusted to reflect the 

interaction between government regulations and industry responses in the nuclear sector. The 

information from the first iteration about “best” options can then be compared with those that are 

more realistic, and a better option set ultimately chosen.  

This thesis lays the groundwork for how such a “dual-iteration” procedure might work; 

further study will be needed to determine its effectiveness for other types of problems and 

whether continued iteration with more complex decision maker definitions could illuminate even 

better sets of desired alternatives. 

 

2.2 Nuclear Fuel Cycle Studies 
The U.S. Department of Energy (DOE), along with many other organizations, has been 

conducting research on the nuclear fuel cycle for over 40 years. In 2001, the DOE began 

studying fuel cycle systems under the aegis of the Generation IV initiative. In 2003, the system 

studies program was expanded as part of the Advanced Fuel Cycle Initiative (AFCI). Work 

continues under the AFCI, now called the Fuel Cycle Research and Development (FCRD) 

Program (after a brief period under an umbrella initiative called the Global Nuclear Energy 

Partnership). This work includes annual reports and other documents produced by researchers at 

Idaho National Lab and Argonne National Lab, and by FCRD-supported university research. A 

small selection of U.S. fuel cycle reports, many (but not all) produced with full or partial support 

of the AFCI/FCRD, is described in section 2.2.2 below. 
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2.2.1 Why Study the Nuclear Fuel Cycle: AFCI/FCRD Goals 

Policymakers and technologists have produced several iterations of the goal set to which 

advanced nuclear fuel cycle technologies should aspire. Each time these goals/values are 

restated, the theme is the same: the nuclear fuel cycle should be sustainable, imposing as small 

an impact as possible on resources and nuclear proliferation. To varying extents, every fuel cycle 

study invokes goals along these lines, and qualitatively or quantitatively discusses the impacts of 

advanced technologies on the goals. 

The current DOE program, FCRD, states explicitly that its objective is to conduct 

research and help develop sustainable fuel cycles. It states goals for fuel cycle technologies 

through a definition: “Sustainable fuel cycle options are those that improve uranium resource 

utilization, maximize energy generation, minimize waste generation, improve safety, and limit 

proliferation risk.”(U.S. Department of Energy, 2011) Though the program managers did not 

explicitly name low cost as a goal, they do indicate later in the document that the fuel cycle must 

be “acceptable to the American public.” As such, the final option must adhere to a cost goal that 

was defined in the AFCI mission, to “ensure that advanced fuel cycle technologies cause no 

significant decrease in the economic competitiveness of nuclear electricity.”(Dixon et al., 2008) 

Indeed, given the current competitive environment in which all nuclear and non-nuclear energy 

technologies are judged, a fuel cycle that fails to meet this objective is sure never to be 

implemented.  

2.2.2 Nuclear Fuel Cycle Reports 

Among the factors that make fuel cycle decision making difficult is the sheer volume of 

information available about technological options. Reports on the subject range from the purely 

qualitative to those based entirely on quantitative models. On the qualitative end, industry has 

suggested paths forward for fuel cycle evolution by combining statements from experts.(Nuclear 

energy for the future: Required research and development capabilities - an industry 

perspective2008) Similarly, recommendations to government by advisory committees also tend 

to come in the form of the gathered wisdom of fuel cycle experts, who themselves are familiar 

with a wide range of studies (e.g. (Martin, Ahearne, & and the Nuclear Energy Advisory 

Committee, 2008)). Hybrid qualitative/quantitative studies abound as well. One example is the 

MIT Future of the Nuclear Fuel Cycle report, which includes fuel cycle system modeling for 

scenario analysis and a separate model for uranium consumption, alongside qualitative sections 
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assessing the pros and cons of various fuel cycle options.(Kazimi, Moniz, Forsberg, & et al., 

2011) 

 Highly quantitative modeling and simulation fuel cycle studies tend to fall into three 

broad categories: individual facility analyses (such as in-depth modeling of an advanced reactor), 

static or equilibrium system analyses (usually discussions of system-wide impacts of the fuel 

cycle, including linkages between reprocessing plants and advanced reactors), and dynamic 

analyses (fleet-level system analyses that examine the development of the fuel cycle system over 

time). Each type of study adds crucial information to the field of fuel cycle analysis. 

 Among the most important single-facility analyses are those that examine advanced 

reactors. Reactor studies often include calculations performed using core neutronic and thermal-

hydraulic models, in order to simulate the performance of reactor fuel and the potential response 

of the reactor system to design-basis accidents. Examples include numerous MIT theses (see e.g. 

(Pope, Driscoll, & Hejzlar, 2004)). One of the most cited and influential studies in the area of 

fuel cycle analysis is Edward Hoffman’s design of a sodium-cooled fast reactor (SFR).(Hoffman, 

Yang, & Hill, 2008) Hoffman performed an analysis of core operation, and in the process 

defined the isotopic compositions needed to sustain reactor operation for a range of fast reactor 

conversion ratios. His isotopic vector “recipes” are used in this thesis as well as Idaho National 

Lab’s fuel cycle simulation called VISION. 

 The in-depth studies of individual facilities are vital for any advancement of nuclear 

technology, but they do not provide all of the information needed to make decisions about fuel 

cycle evolution. Advanced reactors in fact exist within a complex system of reprocessing plants, 

light water reactors, fabrication plants, and disposal systems, and these all need to be 

technologically and economically harmonized in order to close or significantly alter the fuel 

cycle.  

Many system studies focus on collections of multiple facility types. Wigeland and Bauer, 

for example, consider the repository impact of thermal recycling by looking at the interaction of 

light-water reactors (LWRs) and aqueous reprocessing facilities.(Wigeland & Bauer, 2004) They 

are able to quantify the benefit of limited thermal recycle on repository loading in terms of a 

mass factor increase that can be loaded into Yucca Mountain. They do not make any analysis of 

fleet characteristics or nuclear power growth, but instead concentrate on a representative LWR 
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and reprocessing facility. In this sense, the analysis can be said to be “static” – it does not 

address growth or change over time. 

Studies that estimate the costs of advanced recycling also often take static or equilibrium 

viewpoints. Parsons and De Roo perform a calculation of advanced fuel cycle costs assuming 

that LWRs and fast reactors are in equilibrium with one another; this means they assume that the 

numbers of LWRs and fast reactors are attuned to one another such that there is no (or very little) 

excess fuel passing between them, and also that the isotopic composition of multi-recycled fuel 

changes very little with each pass through a fast reactor.(De Roo & Parsons, 2009) This 

approach enables them to calculate a levelized cost of electricity for the advanced fuel cycle 

system that can be compared to the levelized cost of nuclear power today. 

The third category consists of dynamic fuel cycle studies. Many of these studies are 

relatively recent, because complex fuel cycle simulations have become gradually more accessible 

as the speed of computing has increased. The use of dynamic fuel cycle analysis ranges from 

single-growth rate, single-technology scenarios intended to bolster qualitative arguments, to 

extensive use of complex codes that include sensitivity analyses.  

The codes which are the workhorses of these analyses similarly range from the very 

simple to the very complex. Among the most complex and highly-developed fuel cycle codes are 

VISION (Idaho National Laboratory), DANESS (Argonne National Laboratory), and COSI 

(CEA – the French Atomic Energy Commission). Of the three, COSI may be the most 

sophisticated, because it includes linked neutronics models to calculate fuel compositions as it 

runs. VISION and DANESS are both written on system dynamics platforms (PowerSim and 

iThink, respectively), and include millions of input options and extensive output data. 

Researchers at Idaho National Lab used VISION in 2008 to perform one of the most 

extensive fuel cycle analyses to date, called the Dynamic Systems Analysis Report for Nuclear 

Fuel Recycle (DSARR).(Dixon et al., 2008) DSARR’s primary objective is a comparison of 

three fuel cycle systems: (1) once-through, (2) “1-tier” (LWR spent fuel is sent to immediate fast 

reactor recycle of all transuranics), and (3) “2-tier” (LWRs recycle spent fuel in a limited 

manner, followed by a later introduction of fast reactors). System scenarios are run assuming a 

1.75% growth rate in nuclear energy demand, and assuming single introduction dates for each 

advanced technology. The technology options are then compared in terms of their uranium usage 

and waste impacts (which is divided into dimensions of dose, heat, and radiotoxicity). The costs 
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of each system are separately estimated using static assumptions, to provide a further metric of 

comparison. Proliferation concerns are not addressed in the report. 

The notions of uncertainty and flexibility are addressed qualitatively in DSARR. The 

authors suggest three ways in which fuel cycle systems could be flexible, including (1) burning 

Pu-MOX in LWRs if fuel separations have begun but fast reactors are not ready for deployment, 

(2) fast reactors could use excess weapons material or enriched uranium if separations are not 

operational in time, and (3) demonstration plants could be converted upward to commercial-scale 

plants. Each of these possibilities could prove to be useful pathways for fuel cycle system 

evolution, but they all are more like solutions to potential problems than they are options that can 

be exercised for a range of uncertain futures. Furthermore, they do not address uncertainties in 

nuclear power growth, costs of advanced technologies, or the possibility that other events could 

dramatically alter the desired suite of technologies at any given time. 

The authors do, however, quantitatively assess the possibility that advanced technologies 

might be desired (or only available) later in the future. A sensitivity analysis on the date of fast 

reactor introduction shows that late deployment of FRs actually slightly increases the number of 

fast reactors that are ultimately built, because the build rate of FRs is so sensitive to the 

availability of used LWR fuel. The effect, however, is minimal. These results track with some of 

the scenarios studied in this thesis, but they are not discussed further in DSARR. 

DSARR is extremely successful in accomplishing its objective of describing some 

canonical technology options for fuel cycle evolution, and comparing them to the stated goals of 

the AFCI. The authors have made an enormous contribution to the information required by 

policymakers to move development of the fuel cycle forward. The picture painted by DSARR 

and many other dynamic fuel cycle studies, however, is incomplete. In order to make good 

decisions about the future of nuclear power technologies, policymakers will need to better 

understand the impacts of various uncertainties and the tradeoffs between fuel cycle impacts. 

Nearly all studies like DSARR address a range of metrics (e.g. resource sustainability in the form 

of uranium consumption, heat output of the waste), but do not offer a quantitative assessment of 

how the objectives of sustainability, cost, safety, and security trade off among one another.  

The framework outlined and demonstrated in this thesis forces explicit consideration of 

sources of uncertainty, the level of flexibility with which various systems address those 

uncertainties, and the tradeoffs between system values. The technology options evaluated here 
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are few, because the intent was to demonstrate the method more than to provide a comprehensive 

fuel cycle option analysis. The hope is that as fuel cycle information becomes richer, new data 

and important options can be added into the framework in order to provide policymakers with a 

holistic analysis of fuel cycle evolution pathways. Ultimately, this framework can help identify 

the most (or least) promising ways to balance competing goals and move fuel cycle development 

forward. 

 

2.3 Hybrid System Dynamics–Decision Analysis Studies 
System dynamics and decision analysis are two tools that were developed independently 

to aid system managers. Each has strengths and weaknesses. Decision analysis offers the ability 

to quantify the benefits of real options in system evolution, so that managers can take advantage 

of flexibility and understand when to exercise options. Within a decision analytic framework, 

however, accounting for feedbacks, endogenous uncertainties, and nonlinearities is exceedingly 

difficult. System dynamics models make short work of handling nonlinearities and feedbacks, 

and can to some extent incorporate simple decision rules and flexibilities with use of “if-then” 

statements, but consideration of multiple-decision, multiple-uncertainty problems in the search 

for an optimum decision rule is intractable. 

Several researchers have taken initial steps toward combining system dynamics and 

decision analysis, in order to reap the benefits of both. Hovmand and Ford applied a hybrid SD-

DA approach to a social question, on what the best methods are for preventing domestic abuse 

while simultaneously maintaining low rates of victim arrest. Their approach included developing 

a system dynamics model, detailing the impacts of a domestic violence mandatory arrest policy. 

They then constructed decision sequences, involving options for advocate and community 

training, in case primary victim arrests increased after implementation of the mandatory arrest 

policy. These were carefully added into the decision model as “if-then” statements, and the 

model was run to determine which decision rule produced the most desirable results. They noted 

that coding the decision rules into the model was a difficult task, and that the best learning from 

the process came from thinking about how to structure new decision strategies.(Hovmand & 

Ford, 2009) 
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Nathaniel Osgood showed that he could drastically reduce the calculation time with a 

different method: he aligned decision tree branches with system dynamics runs and then 

performed a backward-induction calculation on the tree to determine the best decision rule. In 

this way, decision rules did not need to be included in the system dynamics model.(Osgood, 

2005) He demonstrates his method with a very simple case, involving a single decision, single 

decision criterion, and one uncertainty. The method used in this thesis is based on Osgood’s 

approach, but is extended to incorporate multiple decisions, uncertainties, and decision criteria. 

Burcu Tan combined real options valuation approaches with system dynamics in a series 

of papers. He uses a system dynamics model to generate cash flow distributions for each time 

period of a decision tree, and then performs backward induction on the tree to calculate the best 

course(s) of action and to discern the value of the options modeled. He uses NPV as the single 

decision attribute, which is often appropriate for a firm’s decision to invest in a project. He also, 

interestingly, models all uncertainties within the system dynamics model rather than specifying 

them in the decision tree. This has the advantage of keeping the tree simple, but obscures the 

direct impacts the uncertainties are having on the results.(Tan, Anderson, Dyer, & Parker, 2010) 

None of these hybrid approaches so far have tackled national-level multi-decade strategic 

planning problems, nor have they considered more than one objective to optimize. This thesis 

addresses those gaps, applying decision analytic approaches to the relatively well-understood 

system dynamics characterization of the nuclear fuel cycle, and incorporating multiple objectives 

and explicit analyses of uncertainty in order to inform decision maker discussion. 
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Chapter 3:  The Flexible Advanced Nuclear 
Technology Simulation by Year (FANTSY) 

 

Chapter 2 described several of the most important fuel cycle analysis codes. An effort was 

made in the course of this work to use an available, well-tested fuel cycle simulation in order to 

obtain information about different scenario options. Unfortunately, neither of the two accessible 

options was viable, mostly for logistical reasons. VISION in its third version contained some 

non-working parts, which were resolved too late to serve as the basis for this thesis; an MIT 

simulation called the Code for Advanced Fuel Cycle Assessment (CAFCA) is too limited in the 

options it offers, and as of writing had no active stewards or users of the code. A new fuel cycle 

code was created to be maximally flexible, to run quickly, and to interface easily with Microsoft 

Excel and TreeAge software programs. 

 The new fuel cycle code is written in MATLAB script and is called the Flexible 

Advanced Nuclear Technology Simulation by Year (FANTSY). FANTSY consists of two 

primary files: a basic 100-year fuel cycle simulation script, and a wrapper that runs the fuel cycle 

simulation multiple times with different inputs for each run. Each time a new study is done with 

a new decision tree, the two files are adjusted to incorporate items of interest. One version of 

each file (complete code) is presented in Appendix A. 

 

3.1 Code Description 
 The wrapper code is designed to run the primary FANTSY simulation file one time for 

each branch of a decision tree. Each branch is associated with a number of inputs, including the 

growth rate for nuclear power at each epoch, the type (or types) of nuclear plants to build and the 

relative amounts. FANTSY also contains options to define a start date for centralized storage, 

and/or to specify the loss percentages for spent fuel recycling; neither of these variables is 

required for the simulation to run. See Table 3.1 for a complete description of the required input 

variables, where LWR = light water reactor, TFR = traditional (spent TRU-fed) fast reactor, and 

EUFR = enriched-uranium fed fast reactor (see section 4.2 for a more complete description of the 

reactor decision options). 
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Table 3-1: FANTSY Core Simulation Input Variables 
Input Variable Var 

Type 
Allowed Values Description 

Nuclear Growth Scalar Positive reals % growth per year of nuclear demand 
Reactor Type(s) String LWR, TFR, 

EUFR 
Reactors to build 

Reactor Fraction Scalar [0, 1] Fraction of FRs to build of those allowed 
by available amounts of fuel feedstock 

 

The wrapper code iterates through each possible combination of inputs by assigning appropriate 

values for growth, reactor types, and reactor amounts to each time period between decisions. 

Once the wrapper specifies a complete set of inputs, it calls the core 100-year simulation 

function. 

 The FANTSY core simulation code shares several characteristics with CAFCA, but 

brings inputs to outputs in a linear fashion. The simulation file begins with initialization, taking 

the inputs defined above and establishing a 100-year trajectory for nuclear power demand. The 

initialization also includes designation of the current U.S. reactor fleet and the setting of “fuel 

recipes.” In practice, the isotopic composition of the fuel changes with each pass through a fast 

reactor. FANTSY, however, follows CAFCA and VISION by setting the isotopic composition of 

fresh and spent fuels and keeping these constant throughout the simulation; in this case, fuel 

recipes were taken from VISION (which in turn credits Hoffman for the specification of fast 

reactor isotopic ratios). Like CAFCA, FANTSY groups the constituents of the fuel into 

categories (fission products and actinides); CAFCA includes an option for separate tracking of 

plutonium, but this was deemed unnecessary for FANTSY at this time given that no Pu-

separation fuel cycles were evaluated for this work. VISION tracks all isotopes individually and 

performs decay calculations at various steps throughout the cycle. This level of detail was also 

deemed unnecessary for this work, owing to the breadth of questions under consideration, but 

further studies could incorporate the sophistication of VISION. 

 Following initialization, FANTSY commences a set of commands performed for a single 

year and loops these commands 100 times. The first step is to create a forecast for reactors 
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needed five years hence. Like CAFCA and VISION, FANTSY assumes “perfect vision,” or that 

reactor builders have accurate knowledge of what nuclear power demand will be in five years 

(the time it will take to build the reactors started in the current year). The next step is to fuel 

currently-operating LWRs with 4.2% enriched uranium fuel, in the process calculating uranium 

and SWU usage. Enriched uranium-fed fast reactors are fueled next if any are starting up in the 

current year. 

 The next step is construction of reprocessing plants. The benchmarking exercise 

performed to calibrate CAFCA, VISION, DANESS, and COSI (see Appendix B) determined 

that the amount of available reprocessing capacity has a significant impact on the speed with 

which traditional fast reactors can be built.(Guerin & et al., 2008) Many of the codes specify 

limits on how fast reprocessing plants can be built (e.g. that it makes no sense to have 100 plants 

built per year starting as early as 2020). FANTSY follows these codes, specifying a generous 

limit on reprocessing plant builds that allows 500MT/year of LWR SNF reprocessing capacity 

adds until 2050 when this increases to 1000MT/year, and 50MT/year reprocessing capacity for 

FR spent fuel increasing to 150MT/year in 2065. More stringent limits on additions of 

reprocessing capacity have the effect of “smoothing” the curve of fast reactor builds, but have 

little impact on the results in this study (see Chapter 6.5 for the sensitivity analysis on these 

parameters). 

 After reprocessing plants are constructed, spent fuel from LWRs and from FRs is 

reprocessed (if the scenario allows it). The amount of fuel reprocessed is equal to either the total 

cooled spent fuel in inventory or the maximum reprocessing capacity; whichever is lower. In this 

way, reprocessing is modeled as a “push” process in the parlance of VISION: as soon as spent 

fuel is generated, the utility gets rid of it as fast as possible by pushing it to any available 

reprocessing plants. In practice, this is likely not how the fuel cycle system would operate, 

because it could lead to situations where separated TRU is stockpiled at reprocessing plants. 

Nonproliferation experts might prefer a “pull” process where TRU is only separated if it is 

needed by the FR fleet. 

 The distinction, however, is not particularly important to this very simplistic model at this 

stage of analysis (though further work on nonproliferation aspects of scenario comparisons might 

warrant a second look at the assumption). Modeling the process as “push” makes the yearly fuel 

cycle calculations, based primarily on TRU availability, much easier. It is also a conservative 
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choice, because the stockpile of TRU from year to year thus represents a “worst-case scenario” 

for amount of separated TRU. None of the decisions, however, depend on this particular 

parameter (they depend only on TRU that is designated as waste and intended for disposal), so 

decision outcomes remain unaffected. 

 After reprocessing occurs, existing fast reactors receive their fuel from the now-separated 

TRU stockpile. This is mostly a straightforward calculation. There are scenarios, however, where 

the amount of separated TRU in the stockpile is not sufficient to meet the fuel demands of 

operating reactors. CAFCA suffers from the same idiosyncrasy, which is kept in both codes in 

order to maintain simplicity of the reactor ordering algorithm. A lack of fuel happens most often 

for EUFR scenarios, when reprocessing capacity builds are not keeping pace with the needs of 

FR fuel (reactor builds can outpace reprocessing capacity expansion because EUFR startup is not 

constrained by TRU availability). For most scenarios, a maximum of about 10% of the fuel is 

“missing.” Were these situations to occur in the actual fuel cycle system, the “missing” fuel 

could be replaced by enriched uranium, or perhaps by TRU or SNF purchased or taken for free 

from a foreign country under a nonproliferation-based fuel take-back agreement. There would be 

a cost for this fuel, although it would likely be very small (especially if the U.S. were taking title 

to another country’s SNF). Another alternative to keep FRs fueled would be to increase the TRU 

yield of the FR fleet by increasing the conversion ratio, so that more TRU would be produced per 

kg of FR SNF reprocessed. A final option involves lifting restrictions on the pace of reprocessing 

plant builds. Whatever action is taken to ensure reliable refueling for FRs, the cost penalty for 

missing fuel at a system-wide level is likely to be relatively small and is not likely to impact fuel 

cycle decisions. The only major impact of fuel availability is in the prediction of how many FRs 

can be built, and because the missing fuel never “builds up,” the pace of reactor builds still tracks 

with those of other fuel cycle codes. 

 The final major step in the yearly fuel cycle simulation involves the building of reactors. 

Fast reactors are built first, depending on fuel availability (for TFRs) and on the ratio of 

“allowed” fast reactors that will be built. The number of TFRs allowed is determined by taking 

the current year’s TRU inventory, multiplying it by 60 (in effect assuming that the TRU 

available that year will be the same over the lifetime of a reactor built) and dividing this number 

by the lifetime TRU needs for a single TFR. This equation is somewhat arbitrary, but it is the 
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same rule employed by CAFCA and it leads to the same general build patterns observed in 

VISION and other codes. LWRs are then built to fulfill the remaining nuclear energy demand. 

 The remaining “clean-up” steps include first the discharging of spent LWR and FR fuel, 

placing it in a cooling pool where it will remain for five years before becoming available for 

reprocessing. Reactors and fuel in cooling pools are then aged for one year before beginning the 

next year-cycle. 

 The outputs of the fuel cycle simulation are many. In principle, any of the arrays 

generated by the core fuel cycle code is accessible within MATLAB and could be considered an 

output of the simulation. Seventeen important arrays are passed back to the wrapper code, and 

written into Excel for analysis by decision trees. These outputs are described in Table 3-2; all 

take the range of positive real numbers. 

 

Table 3-2: FANTSY Outputs 

Output 
Var 
Type 

Units Description 

NaturalUraniumConsumed # Array MT Nat U used to fuel LWRs/EUFRs by yr 

SWU # Array kgSWU SWU required to fuel LWRs/EUFRs by yr 

LWRfuelfabricated # Array MT Uranium oxide fuel fabricated by yr 

FRfuelfabricated # Array MT FR U/TRU fuel fabricated by year 

ReactorsConstructed # Array # LWRs constructed by year 

TotalFRsConstructed # Array # FRs (EUFR or FR) constructed by year 

ReactorsOperating # Array # LWRs operating by year 

FRsOperating # Array # FRs operating by year 

SNFreprocessed # Array MT LWR SNF reprocessed by year 

FRreprocessed # Array MT FR spent fuel reprocessed by year 

ReactorsDecommissioned # Array # LWRs decommissioned by year 

FRsDecommissioned # Array # FRs decommissioned by year 

SNFcooled # Array MT SNF leaving cooling pool by year 

FRcooled # Array MT FR SNF leaving cooling pool by year 

SNFstock(100) Scalar MT SNF in cooling + dry storage at 100 years 

Sum(FP) Scalar MT Total fission products separated over 100 yrs 
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Sum(TRUlosses) Scalar MT Total TRU lost to waste over 100 yrs 

 

3.2 FANTSY Benchmark Results 
In order to confirm that the results produced by FANTSY are commensurate with those 

of other fuel cycle codes, various scenarios were simulated and compared to those described in 

the MIT Center for Advanced Nuclear Energy Systems benchmark study.(Guerin & et al., 2008) 

A full report of this benchmarking exercise is provided in Appendix B. Overall, FANTSY tracks 

well with the scenario results of all four codes (and especially well with CAFCA, which 

provided the primary modeling example).  

The only major point of departure tends to center around whether restrictions on the pace 

of fast reactor builds are implemented. For most of the work in this thesis, the number of fast 

reactors that can be built in a given year is unrestricted. At particularly high nuclear demand 

growth this does mean that as many as 90 fast reactors are built in a single year. Though such 

high numbers are unlikely, especially in the near term, they are consistent in shape with boom-

and-bust cycles that could actually exist due to delays within the system. Adding in restrictions 

on fast reactor builds produces curves that are more consistent with results from the other four 

codes, but these restrictions in a sense are artificial. Ultimately, whether restrictions are 

implemented or not, FANTSY winds up building about the same number of reactors as the other 

fuel cycle codes as long as fast reactor builds are not overly constricted for the entire simulation. 

Furthermore, the differences are only stark when extremely high growth rates are assumed (see 

Figure 3-1 and Figure 3-2 for an example). A full sensitivity analysis of FR build restrictions on 

optimal decisions is presented in section 6.5.  
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Figure 3-1: FANTSY reactor fleet results when FR build case is unrestricted and growth is high 
 

 
Figure 3-2: FANTSY reactor fleet results when growth is high and the FR building pace is highly 
restricted (beginning at 2 FRs per year, expanding to 10 FRs per year by the end of the simulation) 
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Chapter 4: Methodology for a Decision Analytic 
Model of the U.S. Nuclear Fuel Cycle 

 

The decision tree model of the U.S. nuclear fuel cycle represents the heart of this thesis 

work. Each tree includes three component types: values, decisions, and uncertainties, which are 

used to define and compare scenarios for fuel cycle evolution. The structure adds two major 

types of knowledge to traditional fuel cycle analysis. First, the decision tree allows for clear 

construction and analysis of flexible scenarios, where decisions to deploy advanced recycle 

technologies can be re-evaluated later in the century. The second major contribution is explicit 

designation of metrics by which to compare fuel cycle strategies. Though these metrics can never 

perfectly capture the goals and preferences of any set of decision makers, they can provide a 

common language by which to discuss the impact options have on fuel cycle objectives. 

Each tree component is discussed in turn. Throughout this thesis, common conventions 

for designating decisions, uncertainties, and terminal nodes are used. Figure 4-1 shows the basic 

decision tree structure: blue squares represent decision nodes, green circles represent uncertainty 

(chance) nodes, for which probabilities represent the likelihood that the scenario will take on a 

particular value for the uncertain parameter, and red triangles represent terminal nodes. The 

branches run from left to right, and in this case, each branch represents a separate scenario 

(which is also a separate run of the basic fuel cycle simulation model). There is, in effect, an 

invisible time axis along the bottom of the tree. Decisions on the left are made before gaining 

any knowledge about uncertainties that appear on the right. Decisions represented to the right of 

uncertainty nodes are made with full knowledge of the previous uncertainty outcome. 

The tree begins with a question to be answered by comparison of the branches, and ends 

with a variable intended to capture the value of each branch (designated in this thesis as 

“ScenarioValue”). TreeAge software calculates the value of each branch and then rolls back the 

tree to determine which choice is best at the initial decision node. TreeAge also allows extensive 

sensitivity analysis of this initial choice on a wide set of parameters represented in the tree. 
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Figure 4-1: Simple illustrative decision tree 
 

4.1 The Value Function 
The goals laid out by the DOE Fuel Cycle Research and Development (FCRD) program 

and other organizations (see section 2.2.1) provide guidance on how to compare and choose fuel 

cycle evolution pathways. They are not, however, specific or quantitative enough to serve as true 

metrics for comparison. For example, one goal of the FCRD program involves the minimization 

of waste generation. But what qualifies as waste? Is used nuclear fuel a waste, or a resource? 

Should fuel cycles minimize waste mass, volume, heat, or radiotoxicity? 

Because no definitive resource specifies the metrics by which fuel cycles should be 

judged, fuel cycle metrics have been defined differently across a range of studies. Ideally, for a 

comprehensive and policy-focused study like the one conducted here, an analyst would gather 

fuel cycle experts and stakeholders and conduct an elicitation procedure to determine important 

fuel cycle goals, overarching values, and metrics by which fuel cycle impacts can be measured. 

An extensive elicitation process is beyond the scope of this thesis. Instead, several plausible 

metrics are constructed and evaluated for a range of scenarios in order to determine the 

sensitivity of decision results to the value function.  

A common metric used to evaluate options in complex engineering and finance projects 

is Net Present Value (NPV).(de Neufville, 2010) This number adequately captures the costs of 

making investments, and is incorporated here as a “net present cost” metric. NPV, however, does 

not fully account for the range of fuel cycle system objectives defined above. Indeed, as Bob 

Budnitz noted at the March 31, 2011 CANES conference on Nuclear Power in 2050, if the U.S. 
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decides to move to an advanced fuel cycle system, it will not be because that system is cheaper 

than the one currently in place. This implies that there is some value in closing or advancing the 

fuel cycle (tied to waste management, security, and/or sustainability) unrelated to cost. 

The value function for evaluating fuel cycle scenarios must therefore account for multiple 

objectives, which can be done using a multi-attribute utility function. Ideally, each fuel cycle 

goal would be translated into a metric, which could then be compared to others in an “apples-to-

apples” fashion through a utility function assessed across the range of values the metric takes. 

These utility values would then be traded off using preference weighting. Again, the full 

elicitation required with human decision makers or actors is beyond the scope of this work, and 

the process is simplified. 

One example of a “full” set of values and metrics, that could be similar to one that fuel 

cycle policy makers would construct, is presented in Figure 4-2. This is by no means the best or 

most comprehensive value tree imaginable; for example, one objective that has been left out 

includes the desire for security of fuel supply. Rather, it has been designed to incorporate the 

values evinced in the AFCI and FCRD program goals, in addition to some other potentially 

important objectives (like minimizing the use of land). A multi-attribute utility function that 

contained all of the metrics and goals in Figure 4-2 would be large and somewhat unruly. 

Nevertheless, working with such a function might ultimately be necessary in order to understand 

all of the important tradeoffs between fuel cycle options and values. 
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Figure 4-2: Example value tree for nuclear fuel cycle decision-making 
  

 For this study, a much simpler set of values and attendant value functions are employed. 

The methodology is more easily demonstrated with a small number of metrics, but the 

framework is intended to be flexible enough to handle other or more values and value function 

types according to the wishes of particular decision makers. 

 The two metrics chosen for study throughout the remaining chapters relate to system 

costs and amounts of waste generated. Cost and waste were chosen because they come up often 

in arguments for and against advanced fuel cycles (proponents of closing the fuel cycle argue 

that recycling reduces the waste management burden, while those opposed to recycling argue 

that it is too costly). The two metrics trade off: paying more for an advanced fuel cycle may 

allow the U.S. to reap a benefit in terms of waste management. 

 One major challenge in the studies that follow is a lack of complete knowledge about 

what the costs and waste management impacts are for the technologies under consideration. This 

problem is not unique to the nuclear fuel cycle: it applies to any system that, like the fuel cycle, 

requires heavy investment along a particular pathway before all economic and technological 

uncertainties are resolved. In this thesis, the cost uncertainty is dealt with explicitly and 
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probabilistically (see section 4.2). This is the recommended way to treat uncertainties that have a 

strong impact on scenario outcomes. For waste, one aspect of the uncertainty is treated explicitly 

(one sensitivity analysis investigates the impact of separations efficiency on the set of desirable 

decisions; see section 6.2). Several other unknowns related to waste management are treated 

using best estimates. These include, for example, the assumption (explained in Chapter 3) of how 

much TRU is produced during each FR cycle. Significantly more research is needed on recycling 

systems and reactors in order to reduce the uncertainties in this realm, and projects sponsored by 

the FCRD will help in the coming years. For example, more detailed neutronics/reactor studies 

would clarify the extent to which fast reactor recycling results in actinide destruction.  

In the following sections, the components of the value function are explained more fully. 

The sections discuss the cost metric, the waste metric, the disutility functions used to compare 

cost to waste, and the weights used to explore tradeoffs between the metrics. 

4.1.1 The Cost Metric 

The cost metric is calculated as the total system cost of the nuclear fuel cycle, including 

the reactor capital cost. Outputs (number of reactors constructed, SNF reprocessed, etc.) are 

written directly from the FANTSY code to an Excel spreadsheet, and a cost model immediately 

calculates the per-year costs. These yearly costs are then discounted back to the present year and 

added together to get the total system cost of a given scenario. Table 4-1 shows the cost 

assumptions used in the model. Note that the waste fee and other waste-related costs are not 

considered in the model; this is done in order to make the cost and waste metrics as independent 

as possible. The financial cost associated with waste is accounted for by capturing the extent to 

which waste is “disliked.”  

 

 

 

Table 4-1: System Nuclear Fuel Cycle Costs 
costs    amount unit source 
natural uranium    80000 $/tonneHM (De Roo & Parsons, 2009) 
conversion   10000 $/tonneHM (De Roo & Parsons, 2009) 
SWU   160 $/SWU (De Roo & Parsons, 2009) 
fabrication   250000 $/tonneHM (De Roo & Parsons, 2009) 
capital   4645 $/KWe CAFCA 
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fixed O&M   56000000 $/Gwe/year (J. Deutch & et al., 2009) 

variable O&M   0.00042 $/kWh 

(J. Deutch & et al., 2009)(Bunn, 
Holdren, Fetter, & van der 
Zwaan, 2005)(Bunn, Holdren, 
Fetter, & van der Zwaan, 
2005)(Bunn, Holdren, Fetter, & 
van der Zwaan, 2005)(Bunn, 
Holdren, Fetter, & van der 
Zwaan, 2005)(Bunn, Holdren, 
Fetter, & van der Zwaan, 
2005)(Bunn et al. 209-230)

decommissioning   700000000 $/plant (De Roo & Parsons, 2009) 
incremental cap    40000000 $/GW/yr (De Roo & Parsons, 2009) 
waste fee   0.001 $/kWh IGNORED 
dry cask storage**   200000 $/tHM (Bunn et al., 2005) 
         
FR Capital premium   20% % (De Roo & Parsons, 2009) 
FR O&M premium   20% % (De Roo & Parsons, 2009) 
UO2 reproc   1600000 $/MT (De Roo & Parsons, 2009) 
FR reproc   3200000 $/MT (De Roo & Parsons, 2009) 
FR fuel fab   2400000 $/MTHM (De Roo & Parsons, 2009) 
FR fuel managed storage   20% on 200/kg guess 
FR decommissioning premium   20% % guess 
         
annually compounded discount   7%   (De Roo & Parsons, 2009) 

  

In addition to the per-year nuclear system costs, a “cost liability” term is added for each 

scenario. This liability accounts for the commitment of nuclear power plants to continue 

operating for their full 60-year lifetime, past the rather artificial end of the 100-year simulation. 

The cost liability is calculated by determining the total number of reactor-years remaining for the 

nuclear fleet in place at 2110, and multiplying this number by the rough O&M, fuel, and SNF 

management costs each plant type incurs each year. This value is discounted to 120 years from 

the present (2120), and added to the total decommissioning costs of the reactors discounted to 

150 years. The values and discount times are somewhat arbitrary, but are intended to give a very 

rough estimate of the financial commitment in place at the end of the simulation. Discounting 

over the long time horizon of the simulation means that adding in this cost liability has only a 

very small effect, but it is included for completeness.  

An alternative cost metric defined as the per-kWh levelized cost of electricity was 

considered in the early stages of this study. Though it has some advantages, including its ease in 
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communicating the differences between scenarios as cents per kWh (vs. tens of billions of 

dollars in system costs), the levelized cost was ultimately not pursued as a metric. One main 

reason is that the levelized cost in effect would change rapidly throughout each individual 

simulation, owing to the change in the ratio of advanced to traditional reactors. Creating an 

economically sound and useful metric proved extremely difficult, and initial attempts in this 

direction did not produce results significantly different from those obtained with the total cost 

metric. An exploration of an analogous definition of the waste liability is explored in section 6.5. 

 

4.1.2 The Waste Metric 

The waste metric has three components: spent (or used) nuclear fuel (SNF), transuranic 

high level waste (TRU), and fission products (FP). FANTSY tracks the mass of each of these 

produced throughout the simulation, and they are combined to form the waste metric. The 

amount of SNF for a scenario is defined as the amount in dry storage (after 5 years cooling) 

present at the end of the 100-year simulation. For TRU and FP, the amount of each is 

accumulated throughout the simulation due to separations activity (losses producing TRU to 

waste, and FP explicitly separated as a waste product). For the systems considered here, the FP 

stream is in fact commingled with the TRU waste. The total amounts produced over 100 years 

are reported as the TRU/FP metrics. The apparatus to track them both separately remains 

throughout the simulation, but in fact they are one stream whose management characteristics are 

largely dominated by the presence of TRU. 

A common criticism leveled at waste metrics based on mass (or volume) is that the waste 

management burden, or the difficulty of nuclear waste disposal, rarely depends at all on the mass 

of the waste. Instead, repository loading is generally constrained by the heat output of the waste 

and sometimes on waste radiotoxicity. This is an important point that would render a purely 

mass-based waste metric useless if significantly different reactor technologies were compared. 

For the studies presented here, however, only one basic fast reactor technology is compared to 

LWRs. This means that the particular makeup of the SNF is constant across scenarios (equal to 

that of a once-through LWR) and the makeup of separated TRU and FP is also constant (equal to 

that for a self-sustaining sodium-cooled fast reactor). In turn, this means that the SNF, TRU, and 

FP terms expressed in terms of heat or radiotoxicity would simply be a constant multiplied by the 

mass, and mass is thus a sufficient metric. 
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Combining the three waste terms is done in the traditional multi-attribute way: weighting 

reflects the relative difficulty in managing each (note that the weights therefore take the place of 

a heat/radiotoxicity constant that differentiates the three waste types). The combined waste 

metric for a scenario i is expressed as: 

௜ܿ݅ݎݐ݁ܯ݁ݐݏܹܽ ൌ ܨܰܵݓ כ ௜ܨܰܵ ൅ ܷܴܶݓ כ ܴܶ ௜ܷ ൅ ܲܨݓ כ ܨ ௜ܲ 

where wX is the weight for variable X, and X is the mass of the waste type in question (actually 

a utility representation of the mass, explained in section 4.1.3), and wSNF + wTRU + wFP = 1. 

 As a check, two other versions of the waste metric were defined and tested for most of 

the study vignettes presented in Chapter 5. These included a repository-based version of the 

metric, for which the value of waste depended on the number of repositories needed to contain 

the SNF (assuming a 100,000 legal MTHM limit) plus the number of boreholes required to 

contain the TRU and FP (assuming 6.5 MTHM of TRU per borehole, with corresponding fission 

products added in because they are not heat-limiting). A third version of the metric involved 

multiplying each waste type by the amount of heat it produced at a given time after discharge. As 

discussed above, this amounted to multiplying already-weighted terms by constants. Replacing 

the mass metric with these did not significantly impact decision results for any of the questions 

analyzed; see the sensitivity analysis of section 6.1.  

4.1.3 Utility Functions 

One major challenge with multiple attributes is finding a way to compare them 

consistently. Utility theory offers one approach to this problem. By eliciting a decision maker’s 

utility for one unit of cost vs. one unit of waste, the two metrics are easily compared. This 

elicitation process, however, is involved and requires time and committed participants. Instead of 

eliciting preferences, several potential versions of utility functions are defined here and analyzed 

to see how they impact the sets of desirable options. Because greater cost and larger amounts of 

waste are undesirable, the utility functions defined below are actually disutility functions, 

representing, as they get larger, greater and greater disutility. 

One utility function is applied to the cost metric. The function maps cost numbers onto 

the range [0,1], by assigning the highest cost scenario in a given tree to a utility of 1, the lowest 

cost to a utility of zero, and the other costs to corresponding values in between. The utility 

function for the cost of scenario i is thus: 
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௖ܷሺܿݐݏ݋௜ሻ ൌ
௜ݐݏ݋ܿ െ ௠௜௡ݐݏ݋ܿ

௠௔௫ݐݏ݋ܿ െ ௠௜௡ݐݏ݋ܿ
 

where costi is the total system cost for scenario i, costmin is the minimum of all scenario costs, 

and costmax is the maximum of all scenario costs. 

 Two different types of utility functions are associated with the waste metric. The first 

mimics the cost utility function above; waste values are mapped onto [0,1] and 

ܷ௪ሺ݁ݐݏܽݓ௜ሻ ൌ
௜݁ݐݏܽݓ െ ௠௜௡݁ݐݏܽݓ

௠௔௫݁ݐݏܽݓ െ ௠௜௡݁ݐݏܽݓ
 

The utility function is applied to each of the waste types (SNF, TRU, FP) individually before 

they are weighted. 

 The second type of utility function is a diminishing returns function. The first function 

assumes linearity of decision makers’ disutility, because a single unit more of waste is equally 

undesirable whether it is added on to a small or large stockpile. This need not be the case for 

nuclear waste. For example, having one MTHM more than 100,000 MTHM, if a repository limit 

is set at 100,000 MTHM, would be much more problematic than one MTHM more than 95,000 

MTHM. As long as the next MTHM can be put in an already-open repository, it is not very 

threatening. But if another unit of SNF means opening a new repository, there is a significant 

disutility associated with that unit. Indeed, this could imply a step function, where each step 

increases the disutility once a repository is filled. A step function was explored, but it did not 

provide qualitatively different results from a smooth diminishing returns function. The disutility 

function shape is demonstrated in Figure 4-3 for the waste masses after they are multiplied by a 

heat value. 
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Figure 4-3: Diminishing returns disutility function for waste 
 

 The equation used for the diminishing returns disutility function in Figure 4-3 (which was 

also used to test the heat-multiplied waste metric) is:  

ܷ௪ሺ݁ݐݏܽݓ௜ሻ ൌ ቌ1 െ
1

௜݁ݐݏܽݓ
08ܧ5 ൅ 1

ቍ כ 1.14 

where each waste type utility is calculated individually. Note that for some values of waste heat 

input to the function, the utility could be greater than one; these values were not observed in the 

course of this analysis, so the function is appropriate for the relevant ranges. 

 It is important to note here that the waste metrics and utility functions assume a material 

benefit to decreasing the amount (either in terms of mass or heat) of spent LWR fuel. As 

mentioned at the beginning of the chapter, even the most well-understood reprocessing and 

transmutation systems would benefit from more research in order to quantify these benefits. The 

extent of the benefit, furthermore, depends heavily on the characteristics of the waste repository, 
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and the repository location for U.S. commercial waste is currently unknown. If it was determined 

that the benefit of reducing waste is negligible, the decision would be easy: the inexpensive and 

understood once-through fuel cycle would handily dominate a more expensive advanced cycle, 

unless attributes other than waste and cost were considered. This decision space could very well 

be the best representation of attitudes. If it is not, however, the complexity of the solution is 

increased and requires more study: this thesis therefore focuses on the realm where a serious 

waste benefit to an advanced fuel cycle trades off with the lower cost of the once through cycle. 

4.1.4 Attribute Weights 

The final piece of the value function is the weighting used to trade off the primary 

attributes. The total, final value for scenario i is thus calculated as: 

௜݁ݑ݈ܸܽ݋݅ݎܽ݊݁ܿܵ ൌ

ܥݓ כ ௖ܷሺܿݐݏ݋௜ሻ ൅ ܹݓ כ

ሾܨܰܵݓ כ ܷ௪ሺܵܰܨ௜ሻ ൅ ܷܴܶݓ כ ܷ௪ሺܴܶ ௜ܷሻ ൅ ܲܨݓ כ ܷ௪ሺܨ ௜ܲሻሿ 

where wC + wW = 1, and the utility functions and metrics are defined as above. 

 In order to get a definitive “answer” about which scenario is the best, an analyst would 

need to fix all weights in the equation. As with the function structure, the analyst would obtain 

these weighting values through a decision maker elicitation process. For this work, results are 

instead reported for the entire range of values for wC and wW. wC is varied from zero to one, 

and wW is calculated correspondingly. Similarly, several values of the waste weighting are 

explored (i.e. the relative magnitudes of wSNF, wTRU, and wFP are varied, under the condition 

that they always sum to one). This allows the reader to see how robust certain decision pathways 

are to a range of preferences. 

 

 For problems of this type, with many different disparate groups of decision makers, it 

may never be feasible to do a comprehensive elicitation process to obtain a definitive set of 

weights (let alone a definitive form for the value function). The results and following discussion 

show that valuable information is gleaned by showing answers across the whole weighting 

spectrum. With this information, decision makers may be able to choose options that are robust 

to a range of values, making the best choice given that stakeholder preferences are highly varied 

and are likely to change over time. 
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 The possibility exists that decision results will be highly sensitive not only to the 

weighting scheme, but also to the structure of the value function (including the forms of the 

metrics and utility functions). For these studies, it turned out that the results were far more 

sensitive to the weights than to the metric structures or utility function forms. A sensitivity 

analysis is presented in section 6.3, but in reality, every study in Chapter 5 was checked with all 

four forms of the value function. None were significantly sensitive to the value function 

structure. The results in Chapter 5 are thus presented using the first functional form only: the 

metrics are dollars and mass of waste, and utilities are composed of a linear mapping of the 

metrics onto the range [0,1]. 

 

4.2 Decisions 
The purpose of the decision tree is to determine which options, or initial decision paths, 

are desirable. It is thus critical to appropriately frame available decisions and represent them in 

the tree structure, so that they can then be compared according to the value functions defined in 

section 4.1.  

As discussed in Chapter 2, this thesis will initially follow other fuel cycle reports by 

framing decisions from the perspective of a “benevolent dictator,” who has full control over 

implementing any desired technology in the system. This decision analysis assumption will be 

relaxed later (see Chapter 7). The question asked by this benevolent dictator is “What fuel cycle 

should the U.S. employ?” This requires an analysis of technological options, including the 

reactor type(s) in use by the nuclear fleet and the components of the fuel to reprocess. At the 

highest level, one could ask whether to maintain the status quo (the once-through fuel cycle) or 

move to a closed fuel cycle. There are many other layers of choices that must ultimately be 

answered in order to employ an advanced fuel cycle, such as: what type of fuel (oxide or metal) 

should be used, what type of reprocessing (pyroprocessing, aqueous, or other) should be 

implemented, etc. Some of the broader classes of options are delineated in Figure 4-4, which is a 

hierarchy of decisions rather than a decision tree. 
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Figure 4-4: Technology options for an advanced nuclear fuel cycle 
 

 As mentioned above, the highest-level decision involves whether to close the fuel cycle. 

It is impossible, however, to understand which of the two cycles is more desirable according to 

the value function without specifying a little more about what each system would entail. The 

next level of options considers the type of waste disposal (for once-through) or the reactor class 

in which recycling will occur. At the next level, the type of fissile material used in the fuel cycle 

is important to calculate the waste and cost metrics. One must also consider the reactor 

conversion ratio; though it may be flexible for a given reactor type, the conversion ratio has a 

substantial effect on fuel cycle outcomes.  

 Choices between the options in Figure 4-4 will strongly affect waste management 

outcomes, costs, uranium usage, and security outcomes. Because these outcomes are directly tied 

to fuel cycle goals (see section 2.2.1) and to the value function, this level of decision is 

appropriate. By contrast, decisions about fuel type etc. can be considered second-order for the 

purposes of this analysis, which seeks to advise high-level policy decisions. This may not remain 

true, however, as innovation proceeds in the future; for example, if a new separations technology 

were introduced that virtually eliminated waste losses and substantially reduced recycling costs, 

analysts might need to consider the new technology at this high level since it would impact the 

important fuel cycle outcomes. 

 Ultimately, decision makers will want to analyze and understand all of the technological 

options defined above. This thesis, which seeks to demonstrate the methodology appropriate for 

making decisions on these types of complex systems, focuses on a small subset of the options. 
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The options compared in the scenarios below include the status quo (LWRs operated in once-

through mode); traditional, self-sustaining fast reactors using spent LWR TRU as their initial 

batch of fissile material; and the same type of fast reactor started with enriched uranium rather 

than LWR TRU. The fast reactor model used is a scaled-up version of Hoffman’s sodium-cooled 

fast reactor (see Chapter 2 for a description of Hoffman’s study). 

 Fast reactors were chosen over thermal recycling reactors because the fast reactor fuel 

cycle involves greater system changes. Recycling in thermal reactors does not entail significantly 

different reactor costs from the status quo, and does not provide actinide reduction for the sake of 

waste management to the extent that fast reactors can.(Piet, Matthern, Jacobson, Laws, & 

Cadwallader, 2006) The self-sustaining fast reactor was chosen because it allows for significant 

introduction of fast reactors (traditional fast reactors with low conversion ratios are constrained 

by the availability of LWR TRU) and it has a better chance than low-conversion reactors of 

meeting uranium resource sustainability targets in the distant future. High conversion ratio 

reactors may eventually be needed in order to address the resource issue, but in the nearer term, 

self-sustaining reactors are far more enticing for their benefits in terms of minimized recycle 

throughput and more options for reactor design.(Kazimi et al., 2011) 

 

4.3 Uncertainties 
Modeling uncertainties adds important richness to the scenarios considered. Decisions for 

complex systems like the nuclear fuel cycle are never made with complete knowledge of the 

future. A huge number of uncertainties may be important to the nuclear fuel cycle system, 

including the level of nuclear power demand, the cost of advanced fuel cycle technologies, the 

timing and availability of advanced technologies, public opinion of nuclear power and of waste 

management, the existence or not of a carbon price, further nuclear catastrophes, etc. Some of 

these uncertainties can be grouped. For example, if a carbon price is enacted, that will increase 

demand for nuclear power; so both of these uncertainties can be modeled by varying a single 

proxy parameter for nuclear demand. For this work, nuclear power growth and advanced 

technology cost are the two core uncertainties investigated. Follow-on studies should consider 

more sources of uncertainty. 
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Nuclear power growth is modeled in FANTSY as a percent increase in demand per year. 

For most of the studies described in Chapter 5, “low” growth is considered to be an increase of 

0.05% per year, while “high” growth includes 2.5% growth in period 1 (2040-2065) and 4% 

growth in period 2 (2065-2110). For most scenarios, growth is tacked at 1.2% per year for the 

period in which no decisions are made (2010-2040); this number was chosen as a median 

between the MIT Future of the Nuclear Fuel Cycle projections of 1-1.5% for that period.(Kazimi 

et al., 2011) The high and low growth values are arbitrarily chosen to cover a big, bounding 

range. It is possible that growth will be lower than 0.05% per year (see section 5.1), but cases 

where there is zero or declining growth in nuclear power are not interesting to study because fast 

reactors would not be needed. 4% is in fact an absurdly high growth number, and continued 

nuclear power growth on that trajectory would lead to nuclear supplying 100% of U.S. electricity 

(and its growth rate would eventually outstrip that of total electricity demand). This is impossible 

in practice, but again allows for investigation of a bounding scenario. More exotic versions of 

growth uncertainty are examined in section 5.8. 

Cost uncertainty modeling focuses solely on reactor costs. Because reactor costs are by 

far the highest of any fuel cycle system component (De Roo & Parsons, 2009), adjusting them is 

a sufficient way of understanding the differences in fuel cycle costs. Fast reactor capital costs are 

expressed as a premium over LWR costs: low-cost FRs have a premium of 5%, whereas high-

cost FRs have a premium of 55%. As with nuclear power demand, these values were chosen to 

span a very wide range in order to clearly illustrate differences in desirable decision paths. 

Though LWR costs are also uncertain, especially at this time in nuclear history, their cost 

uncertainty is not modeled. One tree analysis was completed with uncertain LWR costs, but this 

confirmed that what matters for this formulation of the problem is in fact the relative cost of the 

two technological options rather than the absolute cost. 

 

4.4 Linking the Fuel Cycle and Decision Analysis Models 
Choices on which decisions and uncertainties to model are made first by the analyst, and 

then implemented in a decision tree structure. As described in Chapter 1, each branch through 

the decision tree represents a single scenario. For each scenario, uncertainty and decision values 

are adopted at each node (i.e. at each time period). These scenario groupings are then fed into the 

fuel cycle model as inputs, one scenario grouping per 100-year run of the model. 
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The outputs from the fuel cycle model consist of waste and construction data for each 

100-year simulation. These results are fed into an excel model, which calculates the scenario 

value for each run, and tabulates the set of tree scenario values for the decision analysis software. 

The use of decision trees both for setting up the problem and for calculating decision results, as 

well as interaction between the trees and the fuel cycle model, is depicted in Figure 4-5. 

 

 
Figure 4-5: Linking of fuel cycle simulation with decision tree 
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Chapter 5: Studies on Desirable Fuel Cycle 
Evolution Alternatives under Uncertainty 

 

The decision tree framework described in Chapter 4 is designed to be highly flexible, in 

order to address a range of systems, options, and value structures. It has the capacity to answer a 

range of questions about the possibilities for system evolution. In this chapter, ten “vignettes” 

will demonstrate the flexibility and utility of the methodology by exploring possibilities for 

improving the U.S. nuclear fuel cycle. Each mini-study fundamentally improves on current 

system perspectives, by altering the set of strategic alternatives or adding uncertainty explicitly 

into fuel cycle analysis. These more sophisticated alternatives recognize a need for flexibility, 

and so consider options as phased and changing deployments of advanced fuel cycle systems for 

which impacts depend on uncertain outcomes.  

 

5.1 One Period Analysis 
The simplest version of the decision tree includes a single period with a single decision 

and one source of uncertainty. This is already more sophisticated than most fuel cycle scenarios 

analyzed, because it recognizes that we may not be correct about nuclear power growth after we 

make a decision about evolving the nuclear fuel cycle. Figure 5-1 shows the decision tree 

representing the simple case.  

For the first seven studies in this chapter, the initial decision node always comes at 2040, 

reflecting the assumption that we will not be able to begin operating an advanced fuel cycle until 

then. As explained in Chapter 4, nuclear power grows at 1.2% from 2010-2040. At that point, the 

decision maker implements either as many TFRs or as many EUFRs as possible (for TFR 

scenarios, the remaining nuclear energy demand is met by LWRs), or chooses to continue 

building LWRs only. This choice is made without any knowledge of the eventual nuclear power 

growth rate. Immediately after the choice is made, nuclear power takes on a growth rate of 2.5% 

per year (high growth) or 0.5% per year (low growth). P1 represents the probability that growth 

will be high. 
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Figure 5-1: Simple one-period tree 

 

Once values are chosen for the parameter P1 and for the weights that comprise the value 

function, the tree can be “rolled back” and the best decision calculated, given uncertain outcomes 

and preferences. Table 5-1 shows one possible weighting scheme (recall the requirement that wC 

+ wW = 1 and wFP + wTRU + wSNF = 1). This particular weighting scheme reflects a high 

dislike for waste, and especially for SNF. FP is considered easier to manage than TRU. 

 

Table 5-1: Sample weights for simple tree 
Weight Value 

wC 0.12 
wW 0.88 
wFP 0.05 

wTRU 0.15 
wSNF 0.80 

 

 As mentioned in Chapter 4, the assumption holds here that an advanced fuel cycle will 

provide a material waste benefit. If reprocessing will not provide a waste benefit, or if the public 

or decision makers do not care about the waste burden, there is no point in considering a cycle 
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other than the relatively inexpensive, better-known once through fuel cycle. The interesting 

decision space lies where employing advanced recycling is desirable from the perspective of 

waste management, and where reducing the waste burden is important to society. The following 

discussions concentrate on this regime where there is a difficult decision to be made between two 

options. 

 
Figure 5-2: Simple tree rollback 
 

 Figure 5-2 shows the tree rolled back for the weights in Table 5-1. The probability of 

high nuclear growth has been set to 0.5. TreeAge software calculates the scenario value for each 

branch according to the value function, and displays it to the right of each terminal node. The 

best path is the one with the lowest value (because the value function calculates disutilities rather 

than utilities). Choosing to “build TFRs” entails a 50-50 chance of getting a value of 0.28 or 

0.12. The expected value, 0.2, is the lowest of any branch, so the best choice is to build TFRs. 

The choice determined “best” can change if we make different assumptions about the probability 

of growth or the weights for the elements in the value function. 

 Figure 5-3 shows the result of a sensitivity analysis simultaneously over P1, the 

probability of high growth, and the cost weight. The color on the graph corresponds to the 
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optimal decision (see legend) given the particular combination of cost weight and probability of 

high growth.  

  

 
Figure 5-3: Sensitivity analysis for simple tree over wC and P1 
 

 Several conclusions can be drawn from the graph. The first is that only two decisions 

appear: TFRs are optimal (as expected) if the cost weight is low and waste weight is high, 

whereas with weights reversed, LWRs are optimal. EUFRs never appear because they are 

effectively “middled-out.” EUFR scenarios wind up costing slightly less than TFR scenarios for 

these growth values, owing to the early need for TFRs to reprocess lots of SNF, but EUFR 

scenarios fare significantly worse than TFR scenarios on SNF buildup. The second observation is 

that the decision is clearly more sensitive to the cost weight than to the probability of nuclear 

power growth: for any value of growth, there is a point at which the cost weight could change a 

decision makers’ mind, but the same is not true for a given value of the cost weight. 
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Increasing wTRU to 0.5 has the expected effect of increasing the space where LWRs are 

the favored alternative (see Figure 5-4). The increased TRU weight indicates that the decision 

maker would prefer handling SNF to TRU, so LWR scenarios (where no TRU is separated) are 

more optimal. These results follow intuition, and provide a baseline for the studies that follow. 

 
Figure 5-4: Sensitivity on cost weight and growth probability with high wTRU 
 

5.1 Key Takeaways from the One-Period Analysis 
The one-period analysis provides a baseline for the analyses of more complex, changeable 
decisions that follow. The analysis shows that traditional fast reactors are desirable if mitigating 
LWR SNF is preferable both to decreasing costs or avoiding stocks to separated TRU. We also 
learn that the decision is more sensitive to preference values than to the probability of nuclear 
power growth.  
 

5.2 Two Period Analysis 
The one-period representation of the fuel cycle decision is highly unrealistic. Decision 

makers in fact will have opportunities later in the century to re-evaluate the evolution of the fuel 
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cycle, and to change course depending on the outcomes of various uncertainties. A two-period 

decision tree represents a more realistic option structure that includes the possibility of changing 

course. 

 
Figure 5-5: Two period decision tree with cost uncertainty 
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 Figure 5-5 shows a two-period decision tree, now with cost uncertainty added; note that 

some decision paths are truncated to save space. As before, the decision maker first chooses 

between TFRs, EUFRs, and LWRs at 2040 (after 30 years of LWR growth at 1.2% per year). 

Immediately after choosing, the decision maker finds out if fast reactors are expensive (55% 

more expensive than LWRs) or cheap (only 5% more expensive than LWRs). The probability for 

high cost is represented by P4. Growth is then high or low as before. Then, in 2065, the decision 

maker has the opportunity to re-evaluate his decision. If he chose TFRs in the first period, he can 

continue them, stop them, or switch to EUFRs. If EUFRs are chosen first, the options are to 

continue or stop (in principle, switching from EUFRs to TFRs is also a possibility, but this was 

eliminated because it would obviate one of the main arguments for EUFRs: avoidance of LWR 

SNF reprocessing infrastructure). A choice to build LWRs only in the first period means that the 

same options are repeated in 2065. Growth can then take on a high or low value once again in the 

second period. 

 Results for this tree, commensurate with the parameter values in section 5.1, are shown in 

Figure 5-6. As before, wTRU = 0.15 and wFP = 0.05, meaning that wSNF = 0.80. P4, the 

probability of high FR cost, is set to 0.5. The primary difference from Figure 5-3 is obvious: 

considering two periods means that the “build TFR” decision is considerably less attractive 

overall. As expected (and as before), when growth is expected to be higher, TFRs become more 

attractive because there is more waste to mitigate. Also as expected, increasing the probability of 

high FR cost means that TFRs are less favorable. 
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Figure 5-6: Basic results for two-period, two-uncertainty tree 
 

Explaining why TFRs are less desirable in general for a two-period tree requires 

examination of the second period decision. Figure 5-7 shows the desirable decisions for the 

second period, given the first period decision. If, during the first period, your weighting and 

estimation of probabilities means that you decide to build TFRs, in 2065 you will face the 

decision space shown in the left-hand graph of Figure 5-7. For most weight values, your optimal 

decision is to continue building TFRs (and consider that in order to arrive at that decision set, 

your cost weight was very low in period 1). 

If, on the other hand, the decision maker chooses to build LWRs in the first period, the 

optimal choice for most weights is to begin building TFRs in the second period (see right-hand 

graph of Figure 5-7). The pathway most robust to a wide range of weights is thus to build LWRs 

in the first period and TFRs in the second. 
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Figure 5-7: Second period decisions for the two-period tree 
 

 The reason for the desirability of the “build LWR then TFR” path is that waiting until 

period 2 and then building TFRs entails the lowest system costs, while still providing a waste 

benefit (under this value function structure). Figure 5-8 shows the operating reactor profile for 

the two most desirable pathways. The blue line shows the decision to build TFRs starting in 

2040, and then continuing in 2065. The green dotted line shows the operating reactor profile 

when TFR builds begin in 2065. For both scenarios, roughly the same number of fast reactors is 

built by the end of the century. The reason for this is that starting earlier does not mean you get 

ahead: the pace of TFR builds is severely restricted by the availability of SNF from LWRs. 

Starting early does mean, however, that the system costs are higher, because more FRs are built 

earlier when they are discounted less heavily. 
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Figure 5-8: Operating FRs for two desirable fuel cycle pathways 
 

 
Figure 5-9: SNF stockpile for two desirable fuel cycle pathways 
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 Figure 5-9 shows the SNF stockpile for the same two scenarios. One clear advantage of 

starting FR builds earlier in the century is that the peak amount of SNF in the stockpile is about 

half that of the peak if FR builds start later. Ultimately, however, the waste benefit is substantial 

compared to a continuing increase under LWRs, regardless of which TFR path is chosen. Note 

that the graphs here represent the highest-growth scenarios possible; for lower-growth scenarios, 

the SNF stockpile for each decision path is nearly the same by the end of the century. The 

conclusion is that the best decision, given this formulation, is to build LWRs only for a 

significant period of time, and to plan to build traditional fast reactors later in the century. 

 

5.2 Key Takeaways from the Two Period Analysis 
Adding a second period to the decision tree substantially decreases the desirability of building 
traditional fast reactors in the first period. This happens because waiting until later in the century 
to build the reactors entails less cost (because the later builds are discounted more), while a 
significant waste benefit compared to LWR scenarios can still be realized. Building LWRs in the 
first period thus appears to be the best decision for almost all preference weightings. 
 

5.3 Building the FR Fleet Gradually 
Another odd assumption many fuel cycle analyses make is that building fast reactors is an 

“all-or-nothing” proposition. In reality, the nuclear industry will need time to become 

comfortable with a completely new technology, and utilities are unlikely to build fast reactors 

immediately and as fast as possible once they become available. Indeed, there is an advantage to 

building a small fleet of FRs early: we can observe how well (and at what cost) they operate, and 

let those data inform our decisions about whether to more extensively deploy FRs later. Adding 

in the option to build a fraction of the “allowable” FRs (given availability of SNF) paints a 

different picture again of the desirability of TFRs. 

The tree including options for partial build of TFRs is shown in Figure 5-10. Everything 

is the same as for the two-period tree above, except now there are two more options for fast 

reactors at the first decision node. Decision makers can choose to build as many TFRs as are 

allowed by SNF availability, as before, or can choose to build TFRs at a rate that is 25% the 

allowed amount throughout the first decision period. Similarly, decision makers can choose to 

build EUFRs at 25% their “allowed” rate, but recall that EUFRs are not restricted by the 

availability of LWR SNF. The “25% EUFR” decision thus corresponds to building EUFRs at 
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25% of electricity demand, with the remaining demand met by LWRs. Partial build options are 

similarly available in the second period. In the second period, the decision maker can choose to 

build 50% of the allowed FR amount, or can build 100% as before. 

The decision results for the first period with partial build options are shown in Figure 

5-11. Each line represents the demarcation between the spaces where FRs vs. LWRs are more 

desirable for the first period course of action. The line through the green triangles indicates the 

same basic result presented in the previous section (compare to Figure 5-6). Waste weights are 

the same (Table 5-2) as for the previous two sections. 
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Figure 5-10: Two-period tree with partial build options 



73 
 

  

Table 5-2: Standard weighting scheme for partial build analysis 
Weight Value 

wC 0.12 
wW 0.88 
wFP 0.05 

wTRU 0.15 
wSNF 0.80 

 

 
Figure 5-11: Desirable first-period decisions when building fractions of FRs is allowed 
 
 To the left of the line through the red squares, building TFRs in the first period at 25% of 

the allowable amount is desirable. Similarly, to the left of the line through the blue diamonds, 

building TFRs at 10% of the allowable amount is the desirable course of action. Decreasing the 

amount of FRs built in the first period actually makes the choice to begin builds a better one for a 

wider range of cost weights. 
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 As mentioned above, this makes intuitive sense because we would learn about TFRs by 

building a smaller number of them and would be able to make future decisions based on real 

deployment data. This effect, however, is not modeled in this tree structure. In fact, re-ordering 

the tree branches to model a version of path dependency (where we only learn about the cost of 

fast reactors if we build some first) has virtually no impact on the decision result. Rather, the 

effects seen in Figure 5-11 are due to the waste management benefit that comes from building a 

few FRs early in the simulation, for relatively less cost than building a large number of FRs. 

 A comparison between the partial and full build TFR scenarios is presented in Figure 

5-12. The figure clearly shows that building 10% or 25% of the allowed TFRs in the first period, 

then switching to full deployment of as many TFRs as possible (red and green lines), entails a 

waste management benefit close to that of starting with 100% TFRs immediately in 2040 (solid 

blue line). The waste penalty for starting with 10% or 25%, vs. starting immediately with 100% 

TFRs, is a little less than 20,000 MTHM of SNF.  Compare this to a much larger penalty 

associated with waiting until 2065 to start building TFRs at 100% (dotted blue line: a nearly 

60,000 MTHM difference from starting 100% TFRs in 2040 by the end of the century). The cost, 

moreover, for these small-percent scenarios is significantly less than for building 100% TFRs at 

2040. For all three 2040 TFR scenarios, close to the same number of fast reactors is built by the 

end of the century. Building 100% TFRs early, however, means that more reactors are built 

sooner, when costs are not as steeply discounted. 
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Figure 5-12: Waste benefit of building a few reactors early 
 

 Growth effects are responsible for the difference in slope (seen in Figure 5-11) between 

the results for 10% vs. the 25% build profile. At low growth, the differences between the two 

percentage build choices are almost imperceptible (and hence the two demarcation lines between 

optimal decisions meet on the x-axis). The 25% pathway entails building very slightly more 

TFRs early on, but because the percentages are taken out of a small growth number, the 

difference between 10% and 25% of possible builds are small. Almost exactly the same number 

of fast reactors is operating at the end of the century in both scenarios if growth is low. If growth 

is high, however, the 25% TFR scenario is more costly because it does require building more 

FRs early on. The end-of-century waste benefit, however, is not larger for the 25% scenario, as 

can be seen in Figure 5-12. Therefore, at high growth, the 25% scenario is less desirable (and the 

TFR-desirable space is smaller) than the 10% build scenario. 

 The ultimate conclusion from this study is that even before considering the value of 

information learned by building a small fleet, building some smaller number of fast reactors 

early on is desirable. The final decision will depend heavily on the decision makers’ cost 

weights, and building LWRs is still more robust to a wider range of weightings, but decreasing 

the amount of FRs built in the first “wave” makes an early FR pathway much more attractive. 
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5.3 Key Takeaways from the analysis on Building the FR Fleet Gradually 
Building a small number of traditional fast reactors in the first period (starting in 2040) is much 
more desirable than immediately building as many FRs as possible given the availability of spent 
nuclear fuel. The additional desirability comes because there is a waste benefit to starting with 
some fast reactors, but relatively little cost penalty; the gains from the “value of information” in 
terms of lessons learned from a small fast reactor fleet would be an additional reason to build a 
few early on. 
 

5.4 Very Low Nuclear Power Growth or “Nuclear Catastrophe” 
The scenarios above all assume the possibility for very high nuclear power growth. Even 

low growth is modeled as an increase in nuclear power, because if we build no new reactors, we 

have no need to consider advanced fuel cycle systems (other than possible partitioning of 

existing waste in the context of the once-through cycle, which is not an option evaluated in this 

thesis). A natural question decision makers have is, “what should we do if nuclear electricity 

demand grows very little or stagnates?” Another natural question to ask is what happens if a 

large catastrophe were to strike, such that all nuclear reactors and processing facilities were 

suddenly shut down.1 Each of these questions is addressed in this section. 

5.4.1 Very low growth and nuclear stagnation 

Intuition tells us that building a fast reactor infrastructure is unlikely to be worthwhile if 

we will not be generating significant amounts of waste. In order to see if the analytical 

framework here agrees with intuition, new values for growth are inserted into the “gradual 

build”, five-option tree of section 5.3, with 10% TFRs as the slow build option (see Figure 5-10). 

Now, instead of low growth at 0.5% per year and high growth at 2.5% or 4% per year, low is 0% 

and high is 0.1% for 2040-2065 and 0.01% for the second period (2065-2110) These growth 

values are demonstrated in tree form in Figure 5-13. 

                                                 
1 Prior to the March 2011 accident at the Fukushima Daiichi reactors in Japan, this case was considered to be of 
small probability. The response of many major nuclear countries has been moderate; most are calling for safety 
reviews, but neither France nor the U.S. has abandoned plans to build more plants. Italy, Switzerland, and Japan 
have all announced that they will forego any new builds, but will continue operating the plants they have in place 
(though the Swiss government is considering a phase-out by 2034). Only Germany has so far definitively called for 
a before end-of-life shutdown of all its operating nuclear power plants.(Hewitt, 2011) 
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Figure 5-13: Tree of uncertainties in nuclear demand for low growth scenarios 
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Figure 5-14: Desirable decisions under conditions of extremely low growth 
 

 Results for desirable first-period decisions are shown in Figure 5-14. Clearly, the only 

desirable option for conditions of low growth is to build LWRs at the first decision node. The 

results are shown for sensitivity to cost weight and to probability for high FR cost, but the same 

graph appears for the sensitivity of cost weight to growth in period 2 (P2 vs. wC). Note that these 

results are valid for a particular set of weights over the different waste types; in this case, as 

before, wFP = 0.05, wTRU = 0.15, and wSNF = 0.8, indicating an extreme dislike for handling 

SNF vs. other waste products.  

 Results for the second period show a marked and somewhat surprising affinity for 

building TFRs at 50% of their allowed pace (see Figure 5-15). The results are presented as a 

sensitivity between the cost of FRs and the cost weight, but the results are nearly identical for the 

relationship between wC and the probability of high growth in the second period (although with 

an even more vertical slope between the regions, owing to the very slight difference in growth 

values). Even at very low growth, a fair number of traditional fast reactors would be built later in 

the century both to replace decommissioning LWRs and to build the few more that would be 
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needed to fill demand. Because costs are much more heavily discounted in the second period, 

fast reactors are attractive even at high cost weights because they come with a waste advantage. 

 
Figure 5-15: Desirable options for the second period, very low nuclear power demand 
 

 To some nuclear fuel cycle experts, the desirability of building an entire infrastructure of 

fast reactor systems later in the century in order to support only 100-odd reactors does not track 

with intuition. Indeed, it may be that the analysis framework over-emphasizes the value of waste 

management under these low growth conditions. In practice, however, the overall decision 

analysis results should not be the sole decision-making device (they would be supplemented by 

deliberation in which points of this nature would rise to the surface), and furthermore, the second 

period decisions recommended by the framework are not automatic. Rather, a decision would be 

taken for the first period under consideration of the second period pathways, but later, analysts 

should conduct a similar study with updated information (rather than simply relying on the 

optimal second period decision as decided several decades ago). The information from this low-
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growth exploration thus tells us that first-period decisions track well with intuition, but that for 

these analyses we should understand that the framework includes (for these waste weights) a 

measure of bias toward using FRs for waste management purposes. 

 Changing the relative weighting of wTRU and wSNF has an impact on the results of the 

low-growth analysis. Figure 5-16 shows the sensitivity of the decision result to the TRU weight 

and cost weight. The fission product weight is held constant at 0.05, so the SNF weight changes 

opposite to the TRU weight, as wSNF = 0.95-wTRU. The graph shows, as expected, that at very 

high cost weights and/or very high TRU weights (indicating that management of a separated 

TRU stream is undesirable), LWRs are the preferred option. At this end of the spectrum, having 

lots of SNF is more desirable than having any separated TRU. If, for example, repository space 

were plentiful, and keeping TRU mixed with FP and other spent fuel products were desirable 

from a proliferation perspective, the weight for minimizing SNF would be very low. The once-

through fuel cycle would be strongly favored in this case. For many values of the TRU weight, 

building 50% TFRs in the second period is desirable, because the decision maker would be very 

keen to get rid of SNF. If the cost weight and TRU weight are both very low, the decision maker 

might even want to build 100% TFRs (this is essentially a case where SNF must be minimized at 

all costs).  

 The first period decision, on the other hand, is not very sensitive to the TRU vs. SNF 

weighting. Because FRs are more expensive in the first period, and because waste can be 

mitigated later, the best choice is to build LWRs for nearly every value of cost and TRU weights. 

 A scenario in which built reactors continue to operate but no new builds occur (even to 

replace decommissioned reactors) is examined in the three-period tree of section 5.5. 
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Figure 5-16: Sensitivity of low growth results to TRU/SNF weighting 
 

5.4.2 Nuclear Catastrophe 

Despite the severity of the nuclear accidents at Chernobyl, Three Mile Island, and 

Fukushima, society has never required a complete and immediate shutdown of all nuclear power 

plants either in the affected countries or elsewhere (though the situation in Japan is still evolving, 

and immediate shutdown of all Japanese plants is a future possibility). Advancements in nuclear 

safety continue to minimize the risks associated with nuclear disasters, so that a sudden 

abandonment of operating nuclear power due to a catastrophe remains fairly unlikely. 

Nevertheless, one can imagine a very small-probability event with economic and public health 

ramifications so big that all U.S. nuclear power plants are ordered to shut down, after which the 

whole nuclear system would be dismantled. 

The decision tree is the same one used in section 5.3, with five options (including 10% 

TFRs and EUFRS) and two periods. This time, however, “Low Growth” in the second period is 
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modeled as a shutdown scenario rather than as 0.5% growth. P2 represents the probability of 

attaining high growth in the second period (still modeled as 4% per year), so that (1-P2) 

represents the probability of full nuclear shutdown. 

For the shutdown scenario, the decision is made and all nuclear reactors cease operating 

in 2065. The reactors are then decommissioned over the next 1-2 decades (though no reactors 

operate during that time, the time of decommissioning determines when decommissioning costs 

are incurred). All reprocessing, enrichment, and fabrication plants cease operation immediately, 

and all reactors discharge their full cores into cooling pools in the same year the decision is made 

(2065). After cooling for five years, LWR fuel that was discharged in 2065 enters the SNF stock. 

The FR fuel discharged from FR cores requires a new management route for this scenario (for 

the previous scenarios where all plants continue operation, we assume that only losses from FR 

fuel recycling need to be managed, because the TRU from decommissioned reactors would 

continue to be recycled). The discharged FR fuel would contain both TRU and fission products, 

and separation would not be possible because all recycling facilities would be shut down. To 

account for this fuel, the TRU component (14.1% of the fuel mass) is added to the TRU waste 

bucket. Fission products remain with that TRU, so nothing is added to the FP bucket. In essence, 

this assumes that the FR core fuel would be cooled for a period of time until the TRU 

characteristics alone dominate the waste behavior and the fission products are no longer relevant.  

Note that for such an extreme scenario, if all reactors were shut down at exactly the same 

time, they would all be at different points in their fueling/outage cycles. Much of the fuel coming 

from the reactor cores would thus not have achieved full burnup, and this would impact the 

fission product and TRU ratios in the fuel. This effect is ignored, because the decision outcomes 

depend on relative values between the different fuel cycles, and the effect of the lesser TRU/FP 

fractions is likely to similarly impact both once-through and closed fuel cycles. 

The results for a potential shutdown scenario are shown in Figure 5-17. This is starkly 

different from the basic 10% TFR result (see Figure 5-11). Before, the 10% TFR decision was 

desirable for low cost weights, and building 100% TFRs was never desirable. Now, however, 

building 10% TFRs is never desirable, and at low cost weights, the decision maker should build 

TFRs at 100%. This makes intuitive sense: if there is a possibility that all nuclear will shut down 

entirely in the second period, there is no reason to build a small number of TFRs for some added 

cost with little relative waste benefit (especially because these reactors will have to discharge 
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their cores). If, however, the cost weight is low, the analysis tells the decision maker to build 

TFRs quickly in order to reap as much waste benefit as possible before a possible shutdown. The 

large area for which the 100% TFR decision is attractive goes counter to what we learned in 

sections 5.2 and 5.3: waiting is no longer quite as advantageous if the possibility exists that the 

nuclear system will cease functioning. 

 

 
Figure 5-17: Decision sensitivity to cost weight and period 1 growth for shutdown scenario 

 

If we are fairly certain, however, that growth will be high in the second period (and thus 

that we will not face a nuclear shutdown), the first period decision to build 10% TFRs reappears 

as a desirable option. Figure 5-18 shows how the first period decision depends on growth in the 

second period. For many values of the probability for high growth (recall that the probability for 

shutdown is 1-P2), we would not want to bother with 10% TFRs, but at high P2, we face a set of 

desirable options similar to those that rose to the top in section 5.3. 
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Figure 5-18: Sensitivity between second period growth and cost weight for nuclear shutdown 
scenario 
 

 In section 5.3, we learned that in general, a higher probability of low growth means TFRs 

become less desirable in the first period (but more desirable in the second period). Here, on the 

other hand, if the possibility exists with some decently high probability that nothing will be built 

in the second period, and indeed that U.S. nuclear infrastructure will stop operating, decision 

makers are encouraged to build fast reactors quickly in the first period (provided their cost 

weight is low enough). Most likely, the probability of such a catastrophe scenario is low. The 

decision result space in section 5.3 is thus probably more relevant to decision makers. The next 

section explores a less-dire “zero build” scenario where new power plants are never built, but a 

plant built before a moratorium continues to operate for its full 60-year lifetime. The probability 

of this type of scenario is much higher than the probability of full nuclear shutdown. 

 

5.4 Key Takeaways from Low Growth and Nuclear Catastrophe Analyses 
If growth is likely to be very low throughout the century, building LWRs in the first period is the 
best option for all possible values of growth and preference weights. For the same conditions in 
the second period, however, the framework advises decision makers to build traditional fast 
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reactors at 50% of their allowed pace. If there is a probability of “nuclear catastrophe” (i.e. a 
sudden shutdown of all nuclear facilities) in the second period, the framework advises a rapid 
buildup of traditional fast reactors in the first period if the waste weight is high, in order to 
achieve some waste mitigation before the catastrophe occurs. The emphasis on TFRs in the 
catastrophe scenario and in the second period during low growth is evidence of a bias in the 
framework toward waste mitigation (since intuitively, for example, we would be unwilling to 
develop fast reactors if we knew nuclear growth would remain extremely low).  

 

5.5 Three Periods 
The three-period analysis evaluates the impact of dividing the problem into three stages, 

rather than just two. In principle, this is a more realistic model: policymakers are likely to have 

more than two opportunities to make changes to the nuclear fuel cycle within the century. If, 

however, we consider similar ranges for costs and growth trajectories, we would expect the 

insights from a three-period model to be similar to a two-period model, with some greater 

fidelity in the results but similar trends. The three-period model may still be useful: it allows 

more freedom to explore exotic growth patterns, including full stops and starts to nuclear 

infrastructure at the low end of nuclear growth assumptions. 

A “bumpy” pattern of nuclear power growth is assumed for this analysis. This allows an 

exploration of the desirable decisions under conditions where we begin building a new 

technology, then stop and start again. Figure 5-19 gives a general impression of the tree layout. 

The same options presented in section 5.3 are preserved for the first node, including building 

100% or 10% of the possible fast reactors; but now, the first decision is made at 2025. At the 

second decision node (2050), the decision maker has a choice between 100%, 50% or 0% of the 

same advanced technology. If LWRs are chosen in the first period, the choices in the second 

period are 100% TFR, 50% TFR, 100% EUFR, or 50% EUFR, or LWRs again. The third period 

(a decision made at 2075) repeats the decision options of the second period. 
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Figure 5-19: Three-period tree 
 

 At each node, one of two growth rates materializes. The possibilities for each uncertainty 

node are listed in Table 5-3. A growth rate of 0% per year means that reactors are built when 

needed to replace those that are decommissioned. The designation “no builds” means that zero 

reactors are built (and no LWR fuel is reprocessed), even if reactors are decommissioned; 

electricity demand is met by non-nuclear sources. Any built reactor continues to operate until it 

has served its full 60 years, regardless of the growth rate.  
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Table 5-3: Growth rates for three-period tree 
 Period 1 Growth Rates Period 2 Growth Rates Period 3 Growth Rates

High Growth 1.75% per year 0% per year 1.75% per year 

Low Growth 0% per year No builds No builds 

 

 The decision results are similar to those for the low-growth study presented in section 

5.4. Figure 5-20 shows the desirable options given different possibilities for the cost weight and 

for the probability of high growth in the first period. The desirability of traditional fast reactors 

actually increases compared to the 2-period, positive growth scenarios. This occurs because the 

possibility exists that zero reactors will be built in later years, so to guarantee a waste benefit, 

fast reactors should be built sooner. This effect is similar to the shutdown effect observed in the 

preceding section, which pushed 100% TFRs into the range of desirability. 

 

 
Figure 5-20: Desirable first period decisions for the three-period tree 
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Desirable decisions for the second period are shown in Figure 5-21, for the scenario in 

which 10% TFRs are build in the first period, and then high FR cost and high growth rates 

materialize. At low P2, the probability of requiring any nuclear reactors to be built in the second 

period is extremely small. In this regime of P2/wC space, decision makers should be indifferent 

to the choice between 50% and 100% TFRs (because in fact, zero reactors will be built). 

TreeAge is not able to represent indifference on the 2-way sensitivity graphs, so instead presents 

a strange sharp shape between the blue and pink regions at low cost weights.  

The curve separating 50% TFRs and stopping FRs is a real result. It stems from the 

assumptions made for these scenarios: “stopping FRs” entails stopping all reprocessing of FR 

spent fuel. For these simulations, the stockpile of TRU is enough to keep built FRs operating. On 

the other hand, if demand is low or zero but the “desire” still exists to build FRs, reprocessing of 

spent FR fuel continues. The result is that putting serious brakes on the entire FR infrastructure 

(both reprocessing plants and reactors) becomes more desirable if growth is very probably going 

to be nil. Changing the assumption, so that reprocessing of spent FR fuel continues regardless of 

whether new FRs will be built, would make the decision maker indifferent between the 

stop/build choices. 

The results for third period decisions look similar to second period decisions in their 

dependencies on cost weight and probability of growth. 
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Figure 5-21: Desirable second period decisions for the three-period tree, if 10% TFRs are built in 
the first period 
 

 The three-period results do not produce wildly different results or offer new insights 

compared to the two-period studies. The stopping-starting build profile assumed in this section, 

however, would actually wreak havoc on the nuclear industry, causing great uncertainty for the 

nuclear construction workforce and for the institutions that finance nuclear builds. But the value 

function, dependent only on the scenario costs and heavily biased toward waste considerations, is 

not able to capture those effects. This is a limitation of the present model and value function 

structure. Further examination of the impacts of stopping/starting will be necessary before any 

significant investments are made in a new direction for the nuclear fuel cycle. 

 

5.5 Key Takeaways from the Three Period Analysis 
Adding a third period to the decision tree allows a more exotic growth profile to be examined, 
including starts and stops to the nuclear industry. The decision results under these conditions, 
however, are similar to the results from low-growth and catastrophe scenarios examined in the 
preceding section. Decisions are still not especially sensitive to the probability of high vs. low 
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growth, but the possibility that no reactors will be built in later periods makes building fast 
reactors more desirable early on, in order to achieve at least some waste benefit. 

 

5.6 The Impact of Uranium Cost 
Concerns about uranium availability were a primary motivation for France to build its 

reprocessing systems, (World Nuclear Association, 2011b) and were instrumental in Japan’s 

decision to close its fuel cycle. Fast reactors also address uranium availability challenges, 

because they can use LWR SNF as a feedstock and/or be operated in a “breeder” mode where 

fissionable U-238 is transmuted into fissile Pu-239. Though this investigation does not consider 

breeder reactors, it does explore self-sustaining, plutonium and enriched uranium-fed reactors 

with the potential to extend uranium resources. In fact, for some growth scenarios, enriched-

uranium fed fast reactors can save even more uranium than traditional fast reactors, because 

EUFRs can take over the fleet quickly and obviate the need to continue building LWRs in order 

to have feedstock for starting up fast reactors.(Kazimi et al., 2011) A natural question is whether 

increasing uranium prices will increase the desirability of building these FRs. 

In order to answer this question, the tree depicted in Figure 5-22 is analyzed. To simplify 

the results, only the 3-option tree with “build at 100%” choices is examined. At low nuclear 

power growth, uranium resources are not as likely to constrain LWR expansion. The low-growth 

nodes are thus pared, and high growth scenarios are retained in order to highlight the maximum 

possible benefits FRs can offer in terms of fuel resource extension. The tree reflects zero 

uncertainty in nuclear power demand. 

Full tree evaluations are performed with different uranium costs. In this way, the 

examination of uranium cost uncertainty is a deterministic scenario analysis. The simple scenario 

analysis is easier to model than a stochastic representation of uranium cost, so it was conducted 

first to determine if more complex uranium cost modeling is necessary. 
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Figure 5-22: Uranium price impacts tree 
 

The results in Figure 5-23 for the first period decision show that uranium costs do have 

an effect, but that a significant change in the desirability of fast reactors requires a very high 

uranium cost. $80/kg represents the approximate current uranium contract price (for delivered 

U3O8 in 2010), and is the assumption used so far in this study as well as by (De Roo & Parsons, 

2009). The green region thus reflects the area where TFRs are desirable, given this uranium cost 

and the promise of high nuclear power growth. The next uranium cost threshold discussed in the 

NEA/OECD “Red Book” includes recoverable resources above $130/kg, (A Joint Report by the 

OECD Nuclear Energy Agency and the International Atomic Energy Agency OECD, 2010); at 

$400/kg, extracting uranium from seawater (a gigantic resource) becomes economically 

viable.(Kazimi et al., 2011) Yet TFRs only take over significant portions of the decision space at 

far higher uranium costs, and costs above $1000/kg are not likely to ever be attainable (as other 

forms of energy would begin to substitute for uranium-fueled nuclear power). From Figure 5-23, 

we conclude that swings within the band of likely near-term uranium costs will not have a 

significant effect on the decision results. The reason for this is that uranium comprises only a 

small portion of the total fuel cycle costs. 
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Figure 5-23: Effect of uranium price on desirability of traditional fast reactors 

 

 It is notable, however, that enriched uranium fast reactors do not appear as a desirable 

option. One might think they would, given that at high nuclear power growth, EUFRs eventually 

consume less uranium than TFRs (see Figure 5-24). But EUFRs are not desirable because for 

high growth scenarios, far more EUFRs are built than TFRs. The EUFR scenarios are thus much 

more expensive even though they use less uranium. Note, however, that the analysis did not 

consider building EUFRs alongside TFRs (future work could examine this option, and see if an 

“ideal” mix exists under a uranium constraint). These conclusions are valid for a value function 

that depends only on cost and waste management. If decision makers wish to consider security of 

fuel supply as an additional metric, EUFRs and U-saving TFR scenarios will become more 

attractive. 
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Figure 5-24: Natural uranium consumption by TFRs vs. EUFRs at very high growth 
 

5.6 Key Takeaways from the analysis of Uranium Cost Impact 
An increase in uranium cost increases the desirability of building traditional fast reactors, 
because fast reactors do not depend on uranium for feedstock. The increases in the decision 
space are not extremely significant, however, because uranium is such a small portion of the cost 
of the reactor system.  
 

5.7 The Impact of Uncertainty in Reprocessing Efficiency 
The separation of the constituents of used nuclear fuel, whether done by pyroprocessing 

or an aqueous process, will never be 100% efficient. Nuclear chemical engineers aim to develop 

a commercial-scale process that is as effective as possible, separating out high fractions of 

fission product elements for disposal while maintaining very high levels of TRU in the fuel 

stream. It is not yet clear what level of efficiency is attainable, but the DOE stated a goal in 2005 

to “remove more than 99.5% of TRU from waste destined for geologic disposal.”(Shropshire et 

al., 2009) 



94 
 

The assumption used so far is that the separations efficiency for TRU is 99%. This means 

that when LWR or FR SNF is reprocessed, 99% of the TRU is recovered for fuel fabrication, 

while 1% is lost to a waste stream that includes the TRU and the fission products. This analysis 

also assumes that 0% of the fission products remain with the TRU fuel feed; in principle, this 

will not be the case. Both of these assumptions are the same as those made by VISION. 

Changing the loss fraction may have an impact on the desirable fuel cycle decisions. If 

we are only able to recover 90% of the TRU from spent fuel, and the rest goes to disposal, 

closing the fuel cycle should become less attractive because we are doing less to reduce the most 

noxious waste burden. Similarly, if we can separate 99.9% of the TRU, closed scenarios should 

become more desirable. Figure 5-25 shows the simple three-decision two-period decision tree 

with the uncertainty in reprocessing losses modeled. We make a decision about what type of 

reactor/fuel cycle to employ, and then find out (if we build fast reactors and begin fuel recycling) 

what the maximum separations efficiency will be for the remainder of the simulation. 
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Figure 5-25: Decision tree with reprocessing loss uncertainty 
 

 The desirable decisions across a range of cost weights and growth probabilities are shown 

in Figure 5-26. For this graph, the probability of attaining each of the three possible loss 

fractions is set to 33%. The space over which TFRs are attractive (yellow) is larger for this 

formulation than for the 99% fraction analyzed in section 5.2. The yellow space grows because 

there are now more options for waste outcomes, and the 99.9% recovery rate entails so little 

TRU waste that the possibility it would happen pushes closed cycles to a slightly more desirable 

position. 
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Figure 5-26: Desirable decisions given an even probability between three reprocessing loss fractions 
 

 Figure 5-27 and Figure 5-28 illustrate the effect of different probabilities for the various 

loss fractions. The nearly-straight line between the TFR and LWR regions shows that the 

decision is far more sensitive to the cost weight than to the loss probability. A rollback of the tree 

indicates that for TFRs, the expected values for the different loss branches are nearly identical. 

When the loss fraction is low, the amount of TRU going to waste is less, so we have a waste 

benefit. There is also a cost penalty, however, because now we must build more TFRs in order to 

handle the extra TRU in the fuel stream. The additional TFR cost counter-balances the benefit 

we get from separating more waste (though both changes are quite small: the differences are on 

the order of a few 10,000ths of utility points for both waste and cost). The fact that different loss 

fractions come with both costs and benefits, and the fact that the changes are so tiny over the 

utility scale, means that the achievable reprocessing loss fraction is not a very important 

parameter from the perspective of the decision maker.  

This decision analysis, however, does not consider the impact of e.g. fission product 

impurities in the fuel, which are tied to the loss fractions and may have a significant impact on 

reactor performance. Furthermore, the particular concentrations of radionuclides in the product 

and waste streams may affect worker safety and the cost of protection measures at a commercial 
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reprocessing plant. The System Analysis Campaign at Idaho National Lab continues to evaluate 

these and other losses-related questions, and may ultimately conclude that a certain loss fraction 

is highly desirable. A complete understanding of the losses issue will be necessary for an entity 

that builds a commercial plant. It may not be as important, however, for the highest-level 

decision makers to account for achievable loss levels in making broad strategic decisions about 

closing the fuel cycle. Depending on how significantly they impact safety and security attributes 

of fuel cycle systems, loss levels may not need to be considered at all when deciding the broad 

U.S. nuclear fuel cycle strategy. 

 
Figure 5-27: Desirability of TFRs when loss fraction is either low or medium 
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Figure 5-28: Desirability of TFRs when low loss fraction is set at a stable value 
 

5.7 Key Takeaways from the Reprocessing Efficiency Analysis 
The efficiency ultimately obtainable for nuclear fuel reprocessing does not have a significant 
impact on the choice between traditional self-sustaining, enriched-uranium startup, and light 
water reactors. In fact, improving the separation efficiency for TRU has the impact of increasing 
system costs because more traditional fast reactors will be required to handle the additional TRU. 
This analysis, however, does not account for the fuel performance benefits of higher efficiencies. 

 

5.8 The Impact of Changing Preferences Over Time 
The desires of decision makers and of society are not likely to be the same over the 

course of an entire century. Preferences will be shaped by the performance of nuclear power, by 

the availability of other energy technologies, and by broad attitudes on environmental protection. 

The results presented in the previous five sections are all shown for the full range of the primary 

preference tradeoff, and thus show which decisions are robust to large swings in opinion.  

The calculations underlying the previous graphs, however, assume constant preferences 

throughout time. That is, each calculation of the optimal first-period decision assumes that the 



99 
 

optimal second-period decision will be made given the same weight value. A natural question is 

whether we will get different decision results if we re-do the calculations, allowing the weights 

to change between the first and second period; in some sense, this might represent a more 

realistic decision scenario.   

One major challenge with relaxing the assumption of constant preferences is that a 

standard method for performing a mixed-preferences calculation does not exist. For this study, 

two calculation regimes are proposed and compared, modeled after the time-dependent decision 

analyses of Hammond, Grout, and many others.(Grout, 1982; Hammond, 1976) A “myopic” or 

“naïve” calculation assumes that the decision maker does not consider the second period (or any 

periods thereafter); he or she simply makes a decision for the period at hand, and then makes 

remaining decisions after reaching later nodes. A “sophisticated” calculation starts at the last 

decision period, and calculates the best decision contingent on each possible first period decision 

being made.  The tree is pared so that only the best second period decisions remain, and the first 

period decision is then made with the remaining information. The terms “myopic” and 

“sophisticated” do not, in fact, imply that one calculation mode is better than the other. In fact, 

(Grout, 1982) determines that for all but the simplest decision trees, myopic calculations can 

Pareto dominate the best sophisticated results. 

The first myopic evaluation will determine the best first-period decision. Figure 5-29 

shows the decision tree corresponding to the calculation.  The fuel cycle simulation is run from 

2010 to 2065, and the decision is made at 2040 based only on knowledge of what has come 

before and estimates of what will occur between 2040 and 2065 (rather than before, where 

decisions at the 2040 node considered the entire century).  This amounts to a one-period decision 

under uncertainty.  Cost and wastes for each scenario are tabulated at 2065. 



100 
 

 
Figure 5-29: Decision tree for first period myopic calculation 
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 The waste weights are set through the entire investigation to wSNF = 0.8, wTRU = 0.15, 

and wFP = 0.05. The cost weight changes: for the first-period calculation described above and 

depicted in Figure 5-29, the cost weight has a limited range between 0.5 and 1 (indicating a 

period in which society prefers reducing cost to minimizing waste). In the second period, the cost 

weight will range between 0 and 0.5 (indicating that in later decades, minimizing waste will 

become more important). 

 The second-period decision is calculated using the entire tree, but assumes that the only 

possible first-period decisions are those identified by the previous calculation. The results for the 

two possible first period decisions and the subsequent second period decisions, using the myopic 

view, are presented in Figure 5-30. 

 
Figure 5-30: Results for myopic calculation of decisions with changing preferences 
 

 The myopic calculation suggests the same general suite of desirable decisions as the 

traditional analysis of the five-option tree with 10% FR builds. Again, low cost weight means 

that 10% TFRs are desirable in the first period, and that LWRs are preferred otherwise. Building 

LWRs first means that 100% TFRs are preferred in the second period, but a slower TFR build is 

preferable if 10% TFRs are chosen earlier in the century.  

 The primary difference between these and previous results is that 10% TFRs are 

preferred in the first period up to a much higher cost weight. Recall that in the first period and on 
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the left graph, wC is constrained to [0.5, 1], so decision makers would need a cost weight above 

0.7 to want to build LWRs only (vs. above about 0.2 in section 5.3). The reason for the 

difference is that for the myopic calculation, the decision maker does not need to consider any 

impacts (i.e. costs or wastes) after 2065. The decision maker also acts as though there is not 

going to be an opportunity to change course later, so to get any waste benefit, the results 

emphasize an early need to build TFRs.  

 

 The sophisticated decision calculation focuses on the second period first. The calculation 

begins with the traditional five-option tree (see Figure 5-10), including both periods and all 

uncertainties with fuel cycle simulation results tabulated at the end of the century.  The weight 

sets are the same as in the myopic calculation, with waste weights constant throughout the 

evaluation, and high cost weights for the first period but low cost weights for the second period.  

The best decisions for the second period are identified using wC = [0, 0.5], for each possible 

decision that could be made in the first period. 

 The results are similar to those for the myopic second period, with 50% TFRs being 

desirable if TFRs are built early on, 100% EUFRs are desirable if EUFRs are built early on, and 

100% TFRs are desirable if LWRs are the first-period decision.  Any pathway that does NOT 

appear on a sensitivity graph (where wC is varied over the appropriate range) is pared.  If a 

pathway does not appear on any sensitivity graph, this means it will never be desirable, 

regardless of the possible values of the uncertainty outcomes and decision variables.  The 

remaining second period possibilities after paring are listed in Table 5-4: for each possible first 

period decision (listed on the left), the corresponding attainable second period decision(s) are 

identified. 

 

Table 5-4: Remaining second period decisions after paring under sophisticated calculation 

First Period 
Decision  

Second Period Decisions  

100% TFR  100% TFR, 50% TFR  

10% TFR  50% TFR  

100% EUFR  100% EUFR  

10% EUFR  100% EUFR  
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LWR  100% TFR, 50% TFR  
 

 The next step is to solve for the best first period decision, given this pared tree (the tree is 

shown in Figure 5-31).  The pared tree will be solved as a traditional two-period tree, but with a 

cost weight range restricted to [0.5, 1].  The first period results, which ultimately are of most 

import to the decision maker, are shown in Figure 5-32. 
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Figure 5-31: Pared decision tree for calculation of period one decision in sophisticated mode 
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Figure 5-32: Decision results for the first period, sophisticated calculation 
 

 The results for the sophisticated calculation are quite surprising: at a very high cost 

weight, EUFRs are the most desirable course of action. EUFRs appear because, in fact, they are 

the cheapest of all remaining options in this formulation (and at wC near 1, cost is all that 

matters). Building TFRs first is always cheaper for the two-period formulation before the 

discount rate is applied, but TFRs require extensive reprocessing of LWR SNF early in the 

simulation. With discounting (at 7% or at 3%), the TFR calculation comes out just slightly more 

expensive as a result of this early and heavy cost. Note, however, that this is only true at low 

growth, when the number of EUFRs built is similar to the number of TFRs (otherwise one builds 

many more EUFRs than TFRs and the EUFR scenarios are more expensive – but the effect of 

full LWR takeover at high growth is only visible in the sensitivity P2 vs. wC because the second 

period is much longer).  

EUFRs also manage to edge out LWRs at high cost weights: recall that we pared the 

branch “build LWRs” in the second period, so at high cost weight, building LWRs only through 

the whole century is no longer an option. We MUST either build 100% TFRs or 50% TFRs if we 

begin with LWRs only, and the EUFR-first option is solidly cheaper than LWRs  50% TFRs 
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(now because of the combination of effects that SNF reprocessing is costly, and building LWRs 

first allows a rapid buildup of TFRs because so much SNF is available). 

 We could conclude from the sophisticated calculation that if we are absolutely sure we 

will highly favor waste mitigation in the future, it may make sense to build EUFRs now. But this 

conclusion is not particularly useful, because it is impossible to be sure about our later 

preferences (especially for such a volatile issue as nuclear waste management). 

 The fact that the results from the sophisticated analysis are at odds with those of the 

myopic or unchanging preference calculations means we likely have a scenario where myopic 

solutions Pareto-dominate sophisticated ones.  Neither the myopic nor sophisticated calculations 

are very realistic; it does not make sense to choose a pathway without regard for future decision 

opportunities, or to artificially constrain our options in this time period according to what we 

believe we will want later on.  It thus seems likely that the regular formulation provides the best 

information for a range of decision preferences, even though the calculation is done assuming 

that those preferences stay constant.  If the desirable decisions depended more heavily on the 

attribute weights (i.e. if a tiny change in the cost weight always produced a change in the 

desirable decision path), the effect of changing preferences might have to be explored more fully. 

 The analysis was repeated for the balance between the waste weights. The cost weight 

(and waste weight) varied from 0 to 1 for both periods, while different values of wSNF and 

wTRU were tested (wFP remained constant at 0.05). The results from this study were similar to 

the above: nothing differed substantially from the traditional formulation that was not an artifact 

of the extra constraints on the tree. 

 

5.8 Key Takeaways from the Changing Preferences Analysis 
Two methods of calculating best decisions under changing preferences are performed, one 
“myopic” or forward-looking, and one “sophisticated,” starting at the end of the simulation time. 
The “sophisticated” calculation involves constraining the available decisions in the first period in 
a way that is probably not realistic. The “myopic” calculation produces results somewhat similar 
to those seen in section 5.3, with a larger area of optimality for fast reactors. The result shows 
that the time period over which the decision is considered has an impact on the general 
desirability of fast reactors, and the timeframe should thus be chosen carefully. 
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5.9 The Impact of Learning 
So far, analyses of fuel cycle decisions have assumed that LWR and FR costs are 

constant over the entire simulation. While the methodology does model uncertainty in the 

relative FR cost, once this uncertainty is resolved, there are no further changes. We know the 

assumption of perfectly constant costs (for any type of nuclear reactor over time) to be 

inaccurate. Costs may change for any system in the nuclear fuel cycle, but for purposes of this 

discussion, capital costs are the primary focus because they are the strongest driver of nuclear 

electricity cost. 

Capital costs for either reactor type could increase over time, depending on 

macroeconomic factors like commodity costs, or regulatory delays. At least one study, for 

example, has concluded that nuclear reactors costs actually increased in real terms over the main 

buildup of the French fleet, because of escalation in complexities of reactor design and 

construction processes.(Grubler, 2009) The U.S. fleet, with far less standardization than that 

present in the French fleet, has also surely seen a real escalation in nuclear costs. 

It is possible, however, that for the large number of builds envisioned in many of these 

growth scenarios, the capital costs of plants will come down due to learning effects, and indeed 

other studies have found positive learning rates for the nuclear industry. The University of 

Chicago performed an extensive economic analysis of nuclear power, focusing mostly on LWR 

technology; among their investigations is a survey of literature on nuclear learning rates.(The 

University of Chicago, 2004) They conclude that a learning rate of 3-10% cost improvement 

with each doubling of units built is a fair estimate, and they provide conditions under which 

various points along that range are appropriate. 

The actual learning rate for LWRs, and for less economically-understood FRs, is a 

subject of intense debate. For purposes of this study, estimates within the 3-10% range are 

applied to LWR and FR costs, in order to determine the basic effect on learning decision analysis 

results. A 3% learning rate is assumed for LWRs (intended to reflect the likelihood of near-term 

slow growth), while a 5% learning rate is assumed for FRs (because FRs are built later in the 

century and generally at a faster, more continuous pace, allowing for higher worker retention and 

better construction learning). The initial cost premiums of FRs are increased, because the 55% 

and 5% cost premiums were based on an assumption of an “nth of a kind” plant. Now, the first 
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FR will cost 100% more than a LWR at the high range, and 25% at the low range, but the 

learning curve will bring those costs down as more FRs are built. 

Learning is implemented in FANTSY by tracking the number of each reactor type built, 

and calculating the cost adjustment factor (CAF) for year y by: 

௬ܨܣܥ ൌ ሺ1 െ ݀ሻ୪୬ ሺ௡ሻ ୪୬ ሺଶሻ⁄  

where d is the learning rate, and n is the number of reactors built up to the beginning of year y 

(equation adapted from (The University of Chicago, 2004)).  The CAF for year y is then 

multiplied by the initial capital cost of the reactor, and that cost is used for all reactors built in 

year y.  For the particular learning rates assumed and at the highest-growth scenario, fast reactor 

costs reach 60% of their initial cost by the end of the simulation.  This represents the most 

extensive cost reduction due to learning of all pathways in the analysis. 

 The new cost model is applied to the five-option decision tree that includes the option of 

building FRs or EUFRs at 10% of the allowed rate (tree depicted in Figure 5-10). The results for 

decision desirability across the range of cost weights and period 1 growth probabilities are shown 

in Figure 5-33. The dark purple region shows the growth and cost weight conditions under which 

building 10% TFRs was desirable before, given constant reactor costs (the assumptions of 

section 5.3). When learning is included as described above, the 10% TFR space expands out to 

the blue area. 
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Figure 5-33: Increased desirability of building 10% TFRs given learning 
 

 We would expect TFRs to become more desirable in general if the learning curve brings 

the cost of fast reactors closer to the cost of LWRs. In fact, for this particular set of assumptions, 

the cost gap between FRs and LWRs is greater than it was in section 5.3, and for most decisions 

throughout the tree, FRs become less desirable than they were in previous studies. For the second 

period decisions that follow the best first period options, the decrease in FR desirability is small 

but evident.  

Figure 5-34 shows the impact of learning on the first period decision for a value function 

incorporating the relative heat output of each type of waste (a more full explanation of the 

differences between value functions is presented in section 6.1). A comparison of the results for 

learning vs. no learning elucidates a seeming contradiction: the space favoring 100% TFR builds 
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shrinks when learning is considered, but the space favoring 10% TFRs grows. As mentioned 

above, it makes sense that the space favorable to TFRs shrinks, because the particular 

assumptions about learning mean that FRs are especially expensive relative to LWRs throughout 

the simulation. 

 
Figure 5-34: Effect of learning on the first-period decision, for heat metric value function 
 

  

In fact, the 10% TFR decision responds differently to learning because of the particular 

pattern of FR construction in that scenario. Figure 5-35 shows the FR construction pattern for the 

three decision options represented in Figure 5-34 (all at high growth only). The three sets of data 

represent three different first period decisions, modeled along with the optimum second period 

decision.  For both the LWR and 100% TFR scenarios, the optimal second period decision is to 

build TFRs at 100%. The graph shows that “clumped” construction results, whereby many 
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reactors are built in short bursts.  For the 10% TFR decision, the optimal second period choice is 

to build 50% TFRs, and the result includes slightly more total TFRs built than for the other two 

scenarios in addition to a much smoother build pattern. 

The learning factor is calculated each year.  This means that when FRs are built smoothly 

across many years, more reactors are built at lower cost.  Rather than build 15 reactors in a single 

year at one point on the learning curve, those 15 reactors are stretched across several years and 

the cost decreases each year.  Ultimately, this means that the 10% TFR scenario comes out with 

a slight cost advantage relative to its position when learning is not considered. 

It is of note, however, that inclusion of a learning cost model overall has only a small 

impact.  Even with dramatic assumptions about initial costs, learning rates, and growth rates, 

learning by doing has a tiny effect on the optimal decision space.  These results do confirm, 

however, that sustained, smooth building is preferable to a “bunched” build profile in order to 

maximize the effects of learning. Further exploration of the relationship between the building 

curve shape and decision results is presented in section 6.5. 

 
Figure 5-35: FR construction patterns for three scenarios 
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5.9 Key Takeaways from Learning Curve Analysis 
Assuming that nuclear reactor costs will decrease over time due to learning effects has only a 
small effect on the decision space. The effect is to increase the overall desirability of building 
traditional fast reactors at 10% of the allowed pace and increasing the pace later, because this 
particular configuration allows for the smoothest building curve. Given that learning is likely to 
disseminate relatively slowly (under long construction times), spreading reactor builds out across 
more years allows better leverage of learning cost reductions. 
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Chapter 6: Sensitivity Analyses 
 

In order to ensure that the results above are robust to some of the assumptions made, five 

sensitivity analyses are performed. Overall, the results are encouraging and demonstrate that the 

conclusions of Chapter 5 are qualitatively sound. Sensitivity analyses have not been performed 

for every possible contingency or parameter, however, and before using the results for decision 

making, decision makers should confirm that the most important assumptions have been 

addressed. 

 

6.1 Sensitivity to Metric and Utility Function Structure 
One criticism often leveled at decision analysis studies is that the mathematical 

construction of the metrics and utility functions may not accurately reflect desires of decision 

makers. For this reason, four versions of the waste metric and utility function structure were 

compared for each analysis presented in Chapter 5. Obviously, four value functions do not 

capture the full range of plausible structures, but they give a sense for how the results respond to 

variations of the assumed equations.  

A full description of the metrics and utility functions is provided in Chapter 4 and 

summarized below in Table 6-1. Note that only the waste metrics and waste utilities change; the 

cost metric for each value function is total dollars, and the cost utility function is always a linear 

mapping of those dollar amounts. 

Table 6-1: Value function structures tested for sensitivity of results 
Value Function Label Waste Metric Utility Function 

Value Function 1 Mass (kg) Linear 

Value Function 2 Repositories/Boreholes (No.) Linear 

Value Function 5 Repositories/Boreholes (No.) Diminishing Returns 

Value Function H1 Heat (W) Diminishing Returns 

 

Originally, twelve value functions were considered, each representing different 

combinations of the metrics and utility functions (including, at first, a diminishing returns utility 

function for cost). This explains the seeming arbitrariness of the function labels in Table 6-1: the 

functions listed were those retained throughout all analyses, while others were discarded because 
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they consistently produced results nearly identical to at least one of the value functions retained. 

Three of the remaining four structures seem to give a good sense of the range of decision 

responses to different functions; VF2 is kept despite giving consistently similar results to VF1, in 

order to provide a check. 

Figure 6-1 shows a sample of one-period decision results for each of the four utility 

functions. These are calculated using a one-period tree for which five options are available in the 

first period, corresponding to the same options available in section 5.3 (including 100% TFRs, 

10% TFRs, 100% EUFRs, 10% EUFRs, or LWRs). For illustrative purposes, only the 

relationship between P1 and wC is graphed (but other parameters were tested and gave similar 

qualitative results in terms of the differences between value functions). 

 
Figure 6-1: Comparison of utility functions for the one-period tree 
 

 The one-period results show some variation between value functions, especially between 

linear and diminishing returns utility functions. The first two value functions, VF1 and VF2, give 
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essentially identical results. This makes sense because the only difference between the two is a 

conversion of the waste metric unit: for VF2, instead of considering the mass of each waste type, 

the number of repositories needed to contain the SNF (based on a 100,000 MTHM repository 

capacity) and number of boreholes needed (based on 6.5 MT TRU per borehole) is compared. 

The only material difference between the functions is that for VF2, the fission products are 

assumed to be commingled with the TRU, and because TRU is the limiting factor for borehole 

loading, the effect of fission products is completely and explicitly removed. Already with VF1, 

however, the fission products had effectively no bearing on the results because wFP is generally 

kept low. 

 VF5 uses the same repository/borehole metric as VF2, but uses a diminishing returns 

function to express the utility. The decision results are similar at the higher ranges of the cost 

weight, but there is a reversal of the nearly-vertical slope between the decision regions in VF5 

compared to VF1 and VF2. This reversal happens because the diminishing returns function 

increases the waste disutility of all but one scenario: building LWRs at high growth. For the 

linearized disutility functions, the LWR/high growth scenario had an SNF utility of 1 because it 

produced the most of that type of waste. For the diminishing returns function, however, the 

disutility function effectively asymptotes to 1 in that range, so the LWR/high growth disutility is 

less than one. At high growth, LWRs therefore become more desirable compared to TFRs than 

they were in the first two utility functions. 

 The second major difference between utility functions is the appearance of the 100% 

TFR decision for VF5 and heat-based VFH1. 100% TFRs are able to appear on the bottom 

graphs, beating out 10% TFRs for low cost weights. This happens because the diminishing 

returns function increases the 10% TFR disutility compared to a linear function, while 100% 

TFR disutilities remain low regardless of which utility function is used. Figure 6-2 illustrates 

this: the clusters of points at the lower left represent the linear (diamond) and diminishing return 

(square) disutilities for the 100% TFR situation. A diminishing returns function only increases 

the 100% TFR disutility by a small or negligible amount. By contrast, the 10% TFR points in the 

middle show that there can be a larger increase in disutility when a diminishing returns utility 

function is applied in place of a linear one. 
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Figure 6-2: SNF disutility for linear and diminishing returns functions -- 100% TFR points are 
clustered at the lower left, 10% TFRs in the middle, and LWRs in the upper right 
  

Finally, the last function is slightly different in that it has the most space where 100% 

TFRs are desirable: this is due to the particulars of the heat metric. The waste metric for VFH1 is 

obtained by calculating the heat output of each waste type, at an assumed emplacement time of 

100 years for SNF and FP and 5 years for TRU. The SNF always has a much greater heat rate for 

the scenarios considered, so the effect is that the SNF value within the function receives extra 

weighting. As a result, 100% TFRs are highly desirable at very low cost weight.  

The utility function test is next applied to the five-option, two-period version of the 

decision tree. Compared to the one-period sensitivity analysis, the primary difference is the 

expected shrinking of the space where 10% or 100% TFRs are desirable. Figure 6-3 shows the 

cost weight vs. first-period growth probability graphs for the standard two-period tree discussed 

in section 5.3, and, as explained in that section, the reduction of TFR desirability in the first 

period happens because TFRs can be built later in the simulation. These graphs, therefore, 
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confirm that regardless of the utility function, the qualitative conclusion that waiting to build 

TFRs still holds. 

 
Figure 6-3: Comparison of utility functions for the two- period tree 
 

  

As with the one-period tree, the first two utility functions produce nearly identical results. 

The only departure from the one-period analysis is that the slopes between all decisions are 

positive for each version of the utility function, indicating that for this tree, high growth is 

always more favorable toward fast reactors than low growth. This happens because at the 

boundary between LWRs and 10% TFRs, the best second-period decision is to build 100% 

TFRs. For the one period scenario, the decision “build LWRs” meant locking in LWRs-only for 

the entire simulation. Now, the LWR decision (at a medium cost weight) still allows for 100% 

TFRs later on, and this pathway to 100% TFRs is optimal.  This means that these LWR scenarios 

include an SNF reduction such that they fall into a mid-range category along the x-axis of Figure 
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6-2, and thus increase their disutility substantially when a diminishing returns function is 

applied. This increase in disutility is commensurate with the increase for building 10% TFRs 

first; LWRs gain no new advantage by applying a disutility function. 

Figure 6-4 shows three-period results according to various utility functions. The set of 

graphs confirms the results of section 5.8, with qualitatively similar patterns of decision 

desirability across the various functions. As in Chapter 5, the three period results exhibit greater 

desirability for TFRs at low growth, in a departure from the two-period results. This happens 

because the three-period analysis considered possible stagnation and very low growth of nuclear 

power, and a probability for no builds in later periods (equivalent to low P1) means TFRs are 

more desirable now, in order to ensure at least some are built to provide waste benefits. 

 
Figure 6-4: Comparison of utility functions for the three-period tree 
 

 The most important message from the sensitivity analysis of the value function is that 

changes in the decision space due to variations in value function structure are small. The general 
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pattern of desirable decisions, and thus the conclusions in Chapter 5, hold true regardless of the 

function applied. Of the small differences, the most significant arise when a new shape of utility 

function is applied to the waste metric. In general, the diminishing returns function places greater 

desirability on scenarios that can bring the SNF stockpile close to zero; if highly exact decision 

results are required, further work should examine which function (or whether a completely 

different function) most closely approximates public desires surrounding waste. Metric 

definitions should also be considered carefully (and others tested), because the heat-based metric 

of VFH1 showed that certain formulations can place a natural weighting on a specific waste type. 

 If, as in this thesis, qualitative insights about decision problems are more valuable than 

precise quantitative decision outcomes, exploring further variations of this set of metrics and 

value functions is probably not germane. One potential change to the value function, which more 

fundamentally alters its structure, is examined in section 6.2. 

 

6.1 Key Takeaways from Sensitivity Analysis of Various Waste Metrics and Utility 
Functions 
Changing the structure of the waste metric and/or utility function does not change the set of basic 
qualitative conclusions presented in Chapter 5. The biggest change in results occurs when the 
utility function changes from a linear mapping to a “diminishing returns” function over the 
amount of waste. The diminishing returns function emphasizes the desirability of waste 
mitigation, especially at low waste amounts, so rapidly building TFRs becomes more desirable. 
 

6.2 Sensitivity to an Interaction Term in the Value Function 
Multi-attribute methodologies require analysts to assume (or to define) each attribute to 

be independent of the others. The metrics capturing waste and cost attributes in Chapter 4 were 

defined as much as possible to preserve independence. The cost metric, for example, does not 

include the price of waste management and disposal: this is assumed to be part of the “social” 

cost which is captured in non-dollar denominations by the waste metric. Yet the assumption of 

complete independence between these two attributes is not perfectly accurate. For example, the 

cost of the nuclear fuel cycle system may affect public opinion of nuclear power overall, which 

in turn will affect the social disutility for nuclear waste.  

 Clemen (1996) suggests several ways to adjust value functions so that they account for 

the non-independence of attributes. One option, which is relatively straightforward for two-
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attribute functions, is to define a utility surface over the two-dimensional space of the attributes. 

The advantage of this method is that it does not require any assumptions whatsoever about 

attribute independence. A significant disadvantage, however, is that properly eliciting the 

structure of the utility surface is computationally intensive, requiring a decision maker to 

establish preference-indifference curves by comparing a large number of attribute lotteries.  

If the two attributes are determined to be mutually utility independent, attribute utility 

functions are separable and the value function can be expressed as: 

ܷሺݔ, ሻݕ ൌ ݇௫ܷ௫ሺݔሻ ൅ ݇௬ܷ௬ሺݕሻ ൅ ൫1 െ ݇௫ െ ݇௬൯ܷ௫ሺݔሻܷ௬ሺݕሻ 

where U(x,y) is the value of having the attributes at level x and level y, and kx and ky are 

weighting constants. Determining the appropriate utility equations for a separated utility function 

is simpler than determining a joint utility surface.  

Attributes are mutually utility independent if a decision maker determines that his or her 

preferences for uncertain choices involving different levels of Y are independent of the value of 

X, and vice versa. A thought experiment helps to determine whether cost and waste are utility 

independent in the context of the U.S. nuclear fuel cycle. If cost is utility independent of waste, 

the decision maker should have a certainty equivalent for e.g. a lottery where there is a 50% 

chance the fuel cycle will produce 2 repositories worth of waste over the century, and a 50% 

chance the cycle will produce enough to fill only one repository: this certainty equivalent should 

not depend on whether the fuel cycle is expensive or cheap. For some decision makers, this will 

be true. The decision maker might prefer the certainty of 1.5 repositories’ worth of waste to the 

lottery above, regardless of the nuclear system cost. Similarly, a lottery over costs does not 

necessarily depend on the amount of waste the system generates: lower cost is always preferred. 

Political decision makers, however, might be more risk averse about waste if nuclear system 

costs are high: justifying the need for a new repository site might be made more difficult if 

nuclear power is expensive compared to other sources of electricity. Further work should explore 

the true utility independence of these attributes for different decision makers, and could explore 

whether decisions change substantially given different utility surfaces. Here, mutual utility 

independence is assumed (and indeed may hold for some decision makers) in order to see the 

effect of adding one layer of complexity to the value function. 

The waste metric is calculated as before, using an additive multi-attribute function for the 

waste types. The waste utility function is still applied to each type individually, such that  
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௜ݕݐ݈݅݅ݐܷ݁ݐݏܹܽ ൌ ܨܰܵݓ כ ௌܷேிሺܵܰܨ௜ሻ ൅ ܷܴܶݓ כ ்ܷோ௎ሺܴܶ ௜ܷሻ ൅ ܲܨݓ כ ܷி௉ሺܨ ௜ܲሻ 

 

The overall value function will now be: 

௜݁ݑ݈ܸܽ݋݅ݎܽ݊݁ܿܵ ൌ

ܥݓ כ ௖ܷሺܿݐݏ݋௜ሻ ൅ ܹݓ כ ሾܹܽݕݐ݈݅݅ݐܷ݁ݐݏ௜ሿ ൅ ሺ1 െ ܥݓ െ ሻܹݓ כ ௖ܷሺܿݐݏ݋௜ሻ כ

ሾܹܽݕݐ݈݅݅ݐܷ݁ݐݏ௜ሿ 

Note that we no longer require that wC + wW = 1 (and indeed, if wC and wW satisfy this 

condition, the equation simplifies to the original form with no interaction term). If the coefficient 

of the interaction term is positive, the two attributes are considered to be complements (such that 

increasing the disutility of the attributes entails an extra penalty: having high cost and a large 

amount of waste, in a sense, is thus highly catastrophic). A negative coefficient, however, is 

more likely. A negative coefficient is reasonable if the attributes are substitutes, such that higher 

cost-scenarios are more tolerable if they produce less waste. The “true” weights could be elicited 

formally from a decision maker, in order to determine which characterization of the attributes 

makes more sense. TreeAge, however, allows exploration of an extensive range of the weights, 

so that we do not need to assume either case and can instead present decision results as a 

sensitivity to a range of weights. 

 The figures below show that we receive very little new insight by adding an interaction 

term to the value function. The decision result depicted in Figure 6-5 is calculated for the five-

option tree, which allows the decision maker to build TFRs or EUFRs at 10% of their allowed 

amount in the first period (compare to the results of section 5.3). All probabilities for growth and 

cost are set to 0.5, and wC and wW are each varied from 0 to 1. This means that in the upper-

right region of the graph, the attributes act as complements, while in the lower-left, they act as 

substitutes. 

 The results are fairly intuitive: if cost weights are low and waste weights are high, fast 

reactors are desirable. The graph does show that for this range of cost and waste weights, the 

decision is more sensitive to the cost weight than to the waste weight. One possible explanation 

relates to an insight from chapter five: waiting to build TFRs significantly reduces cost, because 

of discounting, whereas strong waste benefits can still be gained even if TFRs are built later. 
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Figure 6-5: Cost and waste weight tradeoff for a value function with a cost-weight interaction term 
 

 Figure 6-5 does not change substantially when other parameters are shifted. For example, 

increasing the probability of high growth in period one simply makes TFRs more attractive, 

shifting the pink space to the right (as we would expect, given that for the 10% TFR decision, 

higher growth makes TFRs more attractive). Similarly, graphs comparing the sensitivity of wC 

to P1 with wW set at various values look almost exactly the same as the graph of the basic 10% 

decision presented in section 5.3, with the wW determining the thickness of the 10% TFR 

desirability band. 

 Overall, the simple addition of an interaction term does not significantly impact the 

results presented in Chapter 5. It may be, however, that consideration of a wildly different utility 

surface over the attributes would change the results more substantially (but this surface would 

need to accurately represent the desires of decision makers, and would not likely depart far from 

the linear or exponential curves explored in this thesis).  

Rather than concentrate too heavily on the independence of the attributes and structure of 

the value function, analysts conducting further work would probably do better to examine the 

effect of a completely different value function with new metrics. For example, if decisions were 

made that rendered volume to be the only relevant waste metric (e.g. because deep “hot” 
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borehole disposal were deemed the best pathway for geologic management), this might 

substantially alter the results. Alternatively, adding metrics or replacing waste or cost with other 

attributes deemed to be more important also could have a large effect. Safety, for example, is 

paramount in the public’s post-Fukushima thoughts on nuclear power; further work could 

examine the effect of incorporating a safety metric into the value function.  

 

6.2 Key Takeaways from the Sensitivity Analysis on the Addition of an Interaction Term 
Adding an interaction term to the value function does not change the qualitative outcomes 
observed so far. We do see that when we separate the waste and cost preference weights so that 
they are independent of one another, the results are somewhat more sensitive to the cost weight. 
The decision results generally respond to uncertain parameters as before. 
 

6.3 Sensitivity to the Financial Discount Rate 
A major challenge for any analysis with a financial investment component is selection of 

a discount rate to represent the time-value of money. For all analyses so far, a discount rate of 

7% has been used. This follows DeRoo and Parsons, who employ 7% annually compounded in 

their analysis.(De Roo & Parsons, 2009)2 The MIT Future of Nuclear Power study estimated the 

rate for nuclear power plants to be 10%.(J. Deutch, Moniz, & et al., 2003) The Boston 

Consulting Group, however, in its analysis of the cost of reprocessing nuclear fuel, used a 

discount rate of 3%.(Boston Consulting Group, 2006) This low figure represents a “risk-free” 

government rate, which may or may not be applicable to the fuel cycle system. Because the 

possibility exists that the government would build and operate fuel cycle facilities, and because 

3% represents one of the largest departures from an estimated 7% discount rate, 3% is chosen as 

a rate to explore the sensitivity of decision results. 

The new discount rate of 3% is applied to the total cost of the nuclear system, calculated 

by year. The lower discount rate means that costs do not decrease as quickly with time, so that 

the present value of system costs in later years is higher than it otherwise would be. The new 

discount rate is tested using the decision tree of section 5.2, which includes three options for the 

                                                 
2 DeRoo and Parsons explain that the 7% discount rate is the sole discount they apply to cash flows, and thus the 
figure subsumes rates related to the financial structure of the project in question. It therefore most closely resembles 
a Weighted Average Cost of Capital in their analysis; here, it is applied broadly to all expenditures required in future 
years to build up and sustain the nuclear fuel cycle system. 
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decision maker (TFR, EUFR, or LWR – all at 100% of the allowed building rate) and two 

periods. 

Figure 6-6 shows how the decision result changes with the new discount rate. As 

expected, the lower discount rate increases the space for which TFRs are the desirable first-

period option. This happens because the advantage of waiting until the second period to build 

TFRs is no longer so great, given that costs do not fall off as rapidly with time. 

 
Figure 6-6: Sensitivity of the decision space to a low discount rate 
  

 Similar effects occur for the second-period decision. Figure 6-7 shows desirable choices 

for the second period if “build TFRs” is chosen in the first period. Stopping TFRs becomes more 

desirable, again because costs are calculated to be higher with the lower discount rate in the later 

period. 
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Figure 6-7: Sensitivity of the second-period decision to a lower discount rate 
 

 Both the first and second-period decisions exhibit very little change when a new discount 

rate is applied. This, combined with the fact that the small changes occur in the direction we 

would expect, increases confidence in results described in Chapter 5. Within the range of 

plausible discount rates (2-12%), the decision outcomes in this framework are not likely to 

change qualitatively; analysts should therefore concentrate efforts on narrowing the uncertainty 

around the other decision parameters. 
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6.3 Key Takeaways from the Sensitivity Analysis on the Financial Discount Rate 
Changing the discount rate applied to yearly system costs from 7% to 3% has the expected 
effect: building traditional fast reactors in the first period becomes more desirable. This happens 
because the cost benefit of waiting until later in the century is minimized by the lower discount 
rate. The effect, however, is not large, and qualitative conclusions about the relationships 
between the various parameters and their effects on the decision space do not change. 

 

6.4 Waste Liability 
Chapter 4 introduced the concept of a “cost liability” intended to capture the financial 

commitment associated with plants operating at the end of the simulation. Because those plants 

will presumably continue producing electricity for their full 60-year lifetimes, a fair scenario 

comparison accounts for the future expenditures that the scenario will require. Similarly, we 

might consider a “waste liability:” the plants present at the end of the simulation will continue to 

produce waste, and this is unavoidable if we assume a normal next century where the plants 

continue to operate.  

Calculating the waste the plants will produce is straightforward. For the LWRs operating 

at the end of the simulation, the total number of remaining reactor-years is calculated and 

multiplied by the amount of SNF discharged each year. The FRs are assumed to recycle their 

own fuel year after year, but at the end of their lives, they will discharge their entire core (which 

will then be managed either in a repository or perhaps in a new FR). The future waste for each 

FR is thus calculated to be its total core mass. Note that both future losses from reprocessing and 

the final full-core discharge for LWRs are ignored; both are relatively small amounts, and the 

waste liability is intended to be a very rough approximation. 

Far less straightforward is determining an appropriate discount rate to apply to this waste 

which will be discharged over a century from now. So far, waste has not been discounted at all 

within the 100 years of the simulation: waste that appears 100 years from now is as undesirable 

as waste generated next year. By so far ignoring the waste liability, the discount rate used in the 

above analyses could be described as a step function, which discounts simulation waste at 0% 

and post-simulation waste at 100%. 

Caplin and Leahy (2000) argue that where societal welfare is concerned, a smaller 

discount rate should be used than the private (financial) discount rate in order to properly 
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account for society’s preferences.(Caplin & Leahy, 2000) Government, says Caplin and Leahy, 

should pursue future-oriented policies. Given that financial discount rates tend to be on the order 

of 10% and lower, the discount rate applied to future nuclear waste could be justified at a very 

low number. This section explores the effect of discounting the waste liability at 0%. 

The waste liability is first applied to the results for the simple, three-decision, two-period 

tree with cost uncertainty (see Figure 5-5). The decision is between building TFRs, EUFRs, and 

LWRs at 100% their possible rates in each of two periods. Growth can be high or low for either 

period. 

Figure 6-8 shows the resulting decision space for sensitivity over the cost weight and 

probability of high growth in the first period. This image should be compared with Figure 5-6, 

for which the yellow band is much thinner: when the waste liability is added in, TFRs become 

more attractive. This makes intuitive sense, because LWRs will generate waste every year 

throughout their lifetimes whereas FRs discharge only a single core’s worth of fuel when they 

are decommissioned. The more FRs present at the end of the simulation, the lower the waste 

liability, so FR scenarios get a boost from considering the waste liability. 
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Figure 6-8: Desirable decisions for the two-period tree with waste liability incorporated 
 

EUFR scenarios, of course, entail building the most FRs of all because they do not rely 

on continued building of LWRs for reactor startups.3 Building EUFRs does appear as a desirable 

option if fast reactors are particularly inexpensive, as shown in Figure 6-9. EUFRs are the most 

expensive option if the cost premium on FRs is high. If, however, the cost premium is low, 

EUFRs actually are cheaper because the difference in reactor construction is no longer as 

important, and EUFRs obviate the need for LWR SNF recycle. Note, however, that at very low 

cost weights (where the waste weight is high), TFRs are still the desirable option because starting 

with them, using some LWR SNF, and then moving to EUFRs is better from a waste perspective 

than building EUFRs all the way through. 

                                                 
3 Note that in reality, it is possible to build fewer EUFRs in addition to some LWRs (the 10% and 25% startup 
scenarios begin to address these options). In general, those scenarios do not reduce the waste burden enough or 
come in at low enough cost to be desirable (the EUFRs are “middled-out”: if cost matters, LWRs are the best option, 
whereas TFRs are the best option if waste is important). There may be an optimal mix of EUFRs and LWRs such 
that cost is not too high and enough waste is obviated by EUFRs, but finding such optima was not the aim of this 
analysis. The following discussion does show that increasing the importance of obviated waste favors EUFRs. 



129 
 

 
Figure 6-9: Decision sensitivity to fast reactor cost for the two-period tree when waste liability is 
added 
 The optimal second-period decision for this tree is almost always to build EUFRs. Figure 

6-10 shows the sensitivity of the decision over cost weight and probability of high growth in the 

second period if “build LWRs” is chosen first; the “build EUFR” space is even larger if TFRs are 

the chosen first-period option. Predictably, LWRs are most desirable when the cost weight is 

high. The stark sensitivity to growth in period 2 between the TFR and EUFR options occurs 

because at low growth, the same number of FRs are built regardless of which scenario is chosen 

(LWRs no longer limit the building of FRs in the TFR scenario: only FRs are built in the second 

period). The TFRs, however, are using old spent LWR fuel to start up while EUFRs are not, 

meaning that there is more leftover LWR SNF from early LWRs contributing to the waste 

liability for the EUFR scenarios. This gives TFRs the edge at low growth. At high growth, by 

contrast, TFRs are limited by available SNF, so LWRs must be built alongside the TFRs. This 

contributes to the waste liability throughout the second period because more LWRs are present at 

end, and gives EUFRs the advantage from the waste perspective. 
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Figure 6-10: Second-period decision for simple two-period tree with waste liability 
 

 Considering the waste liability in the context of the five-option tree (where the decision 

maker can start with 10% TFRs or 10% EUFRs in addition to the options above) creates a more 

variegated decision space with similar trends. Figure 6-11 shows the decision sensitivity to the 

probability of high growth in period one and to the cost weight. The “build EUFRs at 10%” 

decision now overtakes some of the space for which LWRs were the optimal decision in the 

three-option tree. This happens because the EUFRs can replace some LWRs that would be built 

early on, reducing the ultimate waste liability for relatively little cost. The other sensitivities for 

the five-option tree look similar to the three-option tree in shape, with the 10% options gaining 

some traction for the middle range of cost weights. 
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Figure 6-11: Decision sensitivity to growth probability and cost weight for 5-option tree with waste 
liability 
 

 Overall, inclusion of the waste liability has a strong effect on the decision results. This 

indicates that it is very important for decision makers to consider what the waste management 

strategy will be. It also means that the time horizon or discounting applied to the waste buildup 

will dramatically impact choices between fuel cycles. This is especially true for high-growth 

scenarios, where the number of reactors built, and thus the waste liability, is extremely large by 

the end of the century.   

 

6.4 Key Takeaways from Sensitivity to the Nuclear Waste Liability 
Considering the “waste liability,” or the final disposal of all system wastes at some point in the 
future when (or if) the entire nuclear system is decommissioned, has a dramatic effect on the 
decision results. Avoiding LWRs becomes very important, because any LWRs operating at the 
end of the scenario will continue to produce a large amount of waste throughout their lifetimes. 
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Enriched-uranium fed fast reactors become a desirable option, because they are the only manner 
of ensuring that few (or no) LWRs exist by the end of the simulation. 
 

6.5 The Impact of Placing an Industrial Capacity Limit on the Pace of Fast 

Reactor Builds 
The comparison of FANTSY with four more sophisticated fuel cycle codes showed that 

FANTSY produces a more “bumpy” boom-and-bust pattern of fast reactor builds than the other 

codes (see Chapter 3 for a summary and Appendix B sections 4 and 5 for more full discussion of 

the build results). As mentioned before, the pattern results in FANTSY because there is no limit 

on the number of FRs that can be built, so the code builds FRs rapidly and then must stop for a 

period of time while stocks of LWR SNF are rebuilt. Though each code calculates similar 

numbers of fast reactors built by the end of the century, a sensitivity analysis is desirable to 

determine if the difference in when fast reactors are built has an impact on decision outcomes. 

Note that LWRs could also face industrial capacity restrictions over the timeframe of the 

simulation, but because the LWR build pattern is equal to the demand minus the FR build 

pattern, it is only necessary to explore restrictions on FR builds. 

The pattern of FR builds is determined in CAFCA, VISION, and FANTSY by the 

industrial limits placed on the number of FRs that can be built in a given period, if any, by the 

available reprocessing capacity (and hence feedstock available for FR startup), and by the utility 

“ordering rules” for each new FR. FANTSY includes no limit on FR numbers, uses a set of 

reprocessing capacity restrictions similar to CAFCA’s, and employs the FR ordering mechanism 

used by CAFCA. Two of the three parameters are easy to adjust: restrictions on build rates for 

FRs, and limits on reprocessing capacity additions. Of those two, a cap on the number of 

allowable FR builds each year produces more dramatic changes in the FR build pattern. This 

sensitivity analysis thus analyzes the impact of introducing an FR build restriction into FANTSY 

on decision results. 

Two possible sets of build restrictions are shown in Table 6-2. These values are based on 

the peak build rate for LWRs in the U.S.: about 10-12 reactors per year. Each profile ramps up 

gradually, reflecting the assumption that it will take industry some time to develop to the “LWR 

bandwagon” market capacity or beyond. These cases were also chosen because they produce 
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significant differences in the pattern of nuclear reactor builds (and, in the harsh restriction case, 

the total number of FRs built by the end of the century). 

 

Table 6-2: Restrictions on national industrial capacity for building FRs 

PERIOD  MAX FR BUILDS

  Medium Restriction Harsh Restriction 

2035‐2040  5/yr 3/yr

2040‐2050  8/yr 4/yr

2050‐2065  10/yr 5/yr

2065‐2110  15/yr 8/yr

 

  

 Figure 6-12 shows the impact of build restrictions on the profile of operating fast reactors 

at high growth. The green lines show the impact of no restriction (“Zero”) vs. medium and harsh 

(or “Hi”) restriction for building 10% FRs at the beginning of the simulation and 100% in the 

second period. The blue lines show the same, for building 100% TFRs the whole way through. 

One can see that for the 100% TFR all-through case, the total number of reactors operating at the 

end of 100 years is similar regardless of the restrictions placed on the build pattern. This is not so 

for the 10% case: the ultimate number of operating FRs is very different between build 

restriction scenarios. The industrial capacity limit thus has an effect beyond just smoothing the 

pattern of FR builds for some cases. To truly isolate the impact of a smoother profile while 

preserving the same number of reactors ultimately built, the FR ordering algorithm would need 

to be adjusted toward those of the advanced fuel cycle simulations. For now, we continue with 

the analysis of sensitivity to an FR build restriction, because it could represent a physical 

industrial reality that both smoothes the building curve and restricts the number of reactors built 

within the century timeframe. 
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Figure 6-12: Impacts of FR build restrictions on the operating FR profile 
  

The fast reactor fleet grows larger under high growth scenarios, so build restrictions have 

a much bigger impact on the construction pattern when growth is high. If growth is low 

throughout the entire simulation (1.2% per year until 2040 and 0.5% per year thereafter), the 

maximum number of fast reactors ever built in a single year (toward the end of the simulation) is 

16. Nearly every single year under low growth, the number of fast reactors required is less than 

allowed by the medium build restriction. The harsh restriction only has a very small effect on the 

FR build profile at low levels of demand. 

The analysis here therefore concentrates on build restrictions that apply at high growth 

only. In practice, industrial capacity restrictions on the number of fast reactors could exist at any 

growth level, but the assumption simplifies the decision tree exhibited in Figure 6-13. The tree is 

identical to that of section 5.3, except that an extra uncertainty node has been added for 

conditions of high growth. If growth is high in the same period that fast reactors have been 

chosen, an uncertainty node reflects the possibility that build restrictions for FRs could be harsh, 



135 
 

medium, or non-existent. A new probability parameter, P5a, P5b, and P5c, tracks the probability 

with which each restriction comes to pass. 
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Figure 6-13: Decision tree for industrial capacity restrictions on FRs 
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 When P5c, the probability of zero restriction, equals 1, the tree simplifies to one very 

similar to that in section 5.3. The only difference is that more options have been calculated for 

the terminal nodes, causing slight shifts in the utility values. The decision graph for the initial 

node comparing the probability of high growth to the cost weight is effectively the same as the 

one from section 5.3 (Figure 6-14). As before, below a cost weight of 0.2, building 10% TFRs in 

the first period is desirable, and becomes very slightly more so with increasing probability of 

high growth. 

 

 
Figure 6-14: Desirable decisions for standard tree with uncertainty in FR building capacity at high 
growth 
 

 Changing the probability of the industrial capacity restrictions has almost no effect on the 

decision space. Figures Figure 6-15 and Figure 6-16 show the miniscule effects of the restrictions, 

demonstrated by setting the harsh and then medium restriction probabilities to one, and 

comparing each to the above scenario where the probability of zero restriction is one. Recall that 
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P5a is the probability of harsh restrictions plaguing industry, while P5b is the probability of a 

medium restriction and P5c is the probability of no restriction at all. 

 

 
Figure 6-15: Comparison of zero and harsh industrial capacity restriction effects on decision space 
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Figure 6-16: Comparison of medium and zero industrial capacity restrictions on decision space 
 

 Of note is the fact that the harsh restriction very slightly increases the desirability of the 

10% fast reactor decision, while the medium restriction decreases its desirability. The reason for 

this is that both restriction levels achieve similar levels of waste benefit in terms of decreasing 

the SNF stock, but the medium restriction involves earlier (i.e. less discounted) FR builds. 

 The primary conclusion to be drawn from this analysis is that restricting the amount of 

FRs that can be built in a given year has very little impact on the decision space (the decision 

space for the second period decision, not shown, confirms this conclusion). This is true even 

though there are some significant differences in the FANTSY results for the build pattern of FRs. 

Given that FANTSY produces build numbers and patterns fairly similar to those from other 

codes with different FR ordering algorithms, adjusting the FANSTY ordering algorithm is likely 

to continue producing similar results with no ultimate effect on the decision space. Further 

analysis of sensitivity to the drivers for the FR build pattern is therefore unnecessary. 
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6.5 Key Takeaways from the Sensitivity Analysis to Industrial Capacity Restrictions for 
Building Fast Reactors 
Adding an industrial capacity restriction, allowing only a few fast reactors to be built per year, 
has a nearly imperceptible impact on the decision space. Neither the smoother build profile nor 
the decrease in ultimate numbers of reactors built changes the desirability of any of the options 
evaluated, at least in the absence of a learning curve assumption. The differences between codes’ 
fast reactor build profiles may thus be of relatively little importance to high-level fuel cycle 
decisions. 
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Chapter 7: Incentivizing Industry – A Different 
Decision Maker Perspective 

  

Chapters 5 and 6 identify and analyze desirable pathways for nuclear fuel cycle system 

evolution, under the assumption that an “ideal” or powerful decision maker will be able to enact 

decisions at each node. The U.S. government most closely approximates such a decision maker, 

because federal legislative and executive bodies will be able to make policy to radically alter the 

structure of the national fuel cycle system. Government, however, is unlikely to act without 

strong industry collaboration. Rather than mandate the building of certain types of reactors and 

fuel cycle facilities, government will likely create a system of incentives and penalties to 

encourage industry to invest in new technologies. This section explores the implications of a 

different perspective, where government offers incentives to industry in order to steer nuclear 

fuel cycle evolution. 

 

7.1 A Government-Industry Interaction Model  
Private industry currently controls and operates all front-end and electricity production 

elements of the open fuel cycle, including mining, milling, conversion, enrichment, fabrication, 

and nuclear reactor construction and operation. Government is charged with waste management, 

and is supposed to take title to the spent LWR fuel and dispose of it in a permanent repository. A 

model of interaction in the context of a closed fuel cycle is proposed that preserves this basic 

division of labor: industry continues to hold purview over the LWR portion of the cycle and 

operates FRs, while a government entity manages reprocessing and waste disposal. This is a 

notional institutional arrangement which is neither predicted nor advocated; rather, it serves as 

one example for a way to set up the problem. Analysts could insert any number of potential 

arrangements between nuclear fuel cycle actors, and could potentially use the framework to 

compare their impacts. 

Figure 7-1 graphically shows how responsibility would be allocated for this notional 

structure. Utilities operating LWRs would continue to pay a waste fee to the government in 

exchange for the government managing spent LWR fuel. The government would use this 
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revenue to operate a repository and recycling facilities, and would offer fast reactor fuel free of 

charge (and would not charge a waste fee) to any utility operating a fast reactor.  

 
Figure 7-1: Division of labor between industry and government for a closed fuel cycle 
 

 Many different versions of the institutional arrangement governing the closed nuclear 

fuel cycle are possible. For example, a separate governmental corporation could build and 

operate fast reactors, or government could find ways to incentivize industry to build and operate 

reprocessing facilities. Changing the institutional structure entails changing where and how much 

money is exchanged between entities, but the overall system costs will remain the same. The 

division of labor illustrated in Figure 7-1 was chosen to minimize changes from the current once-

through system, and is used to demonstrate one example of how government-industry interaction 

could work and to evaluate the implications for fees and fuel cycle outcomes. Note that this 

structure assumes that fast reactors will always be more expensive than LWRs; if FRs become 

cheaper, the “free fuel” and “no waste fee” policies for FRs would require reevaluation. 

 When making decisions to invest in new sources of electricity generation, utilities choose 

based on the technology that will provide the best returns. This often amounts to choosing the 

cheapest project (with availability and reliability considerations factored into a risk-adjusted 

cost). Assuming that fast reactors are always more expensive to construct and operate than 

LWRs, industry will require incentives in order to ever choose to build an FR over a LWR. One 
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way for government to spur a shift in investment is to charge a higher waste fee on LWRs, such 

that FRs with no waste fee and with free fuel become cheaper. 

 Figure 7-2 shows the net present cost of building and operating FRs and LWRs for 60 

years. The net present cost of an LWR project is $6,515/kWe in 2007 dollars (calculation from 

(Du & Parsons, 2009), adjusted from a 40-year to a 60-year plant lifetime). Because we do not 

know what the FR overnight cost premium will be, the NPV of FR cost is presented for a range 

of cost premiums from 0% to 55%; note that the same premium is applied to decommissioning 

costs, and FR operating and maintenance costs always have a 20% premium over LWR O&M. 

The graph clearly demonstrates that at a low cost premium, an FR project is actually cheaper 

than an LWR project, because LWR operators pay for both fuel and for a 1 mill/kWh waste fee 

whereas FR operators do not. At 10%, FRs and LWRs have the same cost, and above that, FRs 

are more expensive. 

 

 
Figure 7-2: NPV of FR and LWR lifetime costs under proposed government/industry interaction 
structure 
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 Figure 7-2 demonstrates that for any FR cost premium above 10%, the incentives of free 

fuel and a zero waste fee will not be sufficient to incentivize industry to build FRs. LWRs are 

cheaper and will be the consistent choice in that range. Government decision makers have many 

policy options to combine with the suggested regime and further spur FR investment: one 

includes a steeper waste fee for LWR SNF. 

 Figure 7-3 shows how much the waste fee would have to increase from its present value 

at 1 mill/kWh in order to drive industry to build FRs. Below an FR cost premium of 10%, no 

increase would be required: FRs would be the cheapest option. Above a 10% cost premium, the 

waste fee climbs precipitously such that if FRs are 55% more expensive to build than LWRs, the 

fee would need to increase by 5 ¢/kWh. This is an extremely high burden to place on nuclear 

electricity, given that current levelized nuclear electricity costs are in the range of 8.4 ¢/kWh, 

and that nuclear electricity has to compete with coal costing closer to 6 ¢/kWh,(Du & Parsons, 

2009). 

 
Figure 7-3: LWR waste fee required to incentivize industry builds of FRs 
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7.2 System Impacts of Raising the Waste Fee 
If government were to raise the LWR SNF charge, industry might or might not ultimately 

respond by building fast reactors at a desirable time or pace. This section assesses whether the 

pathways identified in Chapter 5 can be achieved through a fee-hike policy instrument. 

Figure 7-4 shows, in decision tree format, the likely result of the government increasing 

the LWR waste fee to a very high level. If the waste fee were far enough above the minimum 

required to spur FR investment, every utility would always to choose to build FRs over LWRs 

and the resulting pathway would be “build TFRs at 100% their allowed rate” throughout the 

century. 

The analyses in Chapters 5 and 6, however, showed that building 100% TFRs throughout 

the entire simulation is almost never a desirable pathway. The five-option, two period tree 

showed that the generally favored options are to build either LWRs or a small number of TFRs 

in the first period, depending on the relative weighting between cost and waste. Neither pathway 

is achievable with a high and static waste fee: industry will only and always build TFRs. 
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Figure 7-4: Industry response to a high waste fee 
 

 Enacting any increase in the waste fee will require a monumental political struggle, 

especially in the current environment where utility groups are suing the government for removal 

of the 1 mill/kWh waste fee.(World Nuclear Association, 2011a) It is highly unlikely that 
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government will be able to raise the waste fee so substantially that all utilities in all markets will 

always choose FRs over LWRs. 

 Far more probable is that government will raise the waste fee by some amount, before 

clear information is available on the cost of fast reactors, and then utilities will respond in a 

variety of ways with some choosing LWRs while others choose FRs or neither. Clearly, if the 

waste fee is too low, zero utilities will build LWRs, and if the waste fee is to high, all utilities 

will build FRs. If the government agency responsible for the fee hike manages to tag the LWR 

SNF fee so that it makes FRs just barely more attractive than LWRs, utilities will make choices 

according to state-level regulations, risk, current generation portfolios, and likely electricity 

prices. No two utilities will perform the same calculation. 

 A comprehensive analysis of the U.S. utility industry and the range of conditions 

companies face is beyond the scope of this thesis. In principle, a detailed model of market 

conditions and industry decision-making could be incorporated into the decision tree model, in 

order to capture the uncertain response industry will have to a raised waste fee. This is left to 

further work. 

 Instead, a simple decision tree is examined, where the industry decision to build FRs vs. 

LWRs is a deterministic function of the waste fee and the FR cost premium. If government raises 

the waste fee, and FR costs turn out to be “high,” utilities will build zero fast reactors. By 

contrast, if government raises the waste fee and costs are “low,” utilities will build TFRs at 100% 

the allowed pace. At each decision node, the government now has the option to increase, keep, or 

lower the waste fee. Lowering the waste fee will cause industry to stop building FRs.  The tree is 

illustrated in Figure 7-5. 
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Figure 7-5: Decision tree for government waste fee decision 
 

 The result of a sensitivity analysis between the probability for high FR cost and the cost 

weight, shown in Figure 7-6, is somewhat counterintuitive. The higher the probability that FRs 

will be expensive, the more attractive it is for government to raise the waste fee in order to 

incentivize fast reactor investment. This is exactly opposite to the result from section 5.2, where 
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for a 2-period tree with similar options, a higher probability of high FR cost makes FRs less 

desirable. 

The phenomenon is similar to that seen in sections 5.4 and 5.5, where the possibility that 

no fast reactors can be built in later years makes building them sooner the better option. We see 

it here because of the particular structure of the tree: if government chooses not to increase the 

waste fee, locking in LWRs only for the first period, a waste fee hike in the second period will 

still produce no fast reactors if FR costs are high. Therefore, if we think FR costs will be high, 

we should increase the waste fee in the first period in order to have the opportunity to raise it 

again in the second period and build FRs despite their high costs. 

 
Figure 7-6: Desirable government waste fee decisions for a range of cost weights and cost 
probabilities 
 

 Adding an extra period, and therefore an extra opportunity to raise the waste fee even if 

LWRs are chosen in the first period, decreases the region of desirability for a waste fee hike but 

maintains the same trends as the two-period analysis. Figure 7-7 shows the three-period waste 
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fee tree. The periods are the same as for the three-period analysis in section 5.5, with the first 

decision at 2025, the second at 2050, and the third at 2075. 

 
Figure 7-7: Three-period tree for waste fee analysis 
 

 The decision tradeoff between the cost weight and probability of high FR cost premium is 

shown in Figure 7-8. The region of desirability for increasing the waste fee has decreased 

dramatically, which makes sense now that there will be more opportunities to change course later 

in the century. Interestingly, however, a high probability of FR cost still makes raising the waste 

fee more, rather than less, attractive. At low- to mid-range estimates for P4, the results echo 
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those of section 5.2 (see Figure 7-9 and compare to Figure 5-6). At those values of FR cost 

probability, waiting until later to increase the waste fee makes more sense. But if we think FRs 

may be expensive, the analysis tells us to increase the waste fee sooner so that we will have more 

opportunity later on to adjust the fee. 

 
Figure 7-8: Sensitivity to cost weight and FR cost of increasing the waste fee in the first period 
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Figure 7-9: Decision sensitivity to first-period growth and cost weight for 3-period waste fee 
analysis 
 

 The takeaway from this analysis is not so much about true political decisions (e.g. that 

expensive FRs means government should actually move to increase the waste fee) as it is about 

learning. We understand from the analyses in Chapter 5 that under most circumstances, waiting 

until later in the century to build fast reactors makes sense. We also discovered that building a 

few fast reactors early on is attractive, even before we consider the fact that we will learn about 

how these reactors operate and at what cost. Here, we see that learning about FR costs is very 

important: if FRs are expensive, the only way they will get built is if the government increases 

the waste fee twice. In essence, the first increase is required to learn about the reactors and what 

they cost, and then the second increase actually spurs the investment. Acknowledging that the 

first policy attempts to incentivize fast reactor builds may not work means that trying earlier to 

learn about them becomes more important.  

 In sum: waiting until later in the century to build FRs is desirable, but we should work 

hard now to understand how they work and how much they will cost so that they are truly 
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deployable. We need to know enough so that the policy instruments used to bring them up to 

fleet scale will be effective when and if the time comes. 
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Chapter 8: Conclusions 
 

The work presented in the previous seven chapters contributes to knowledge about the 

use of canonical decision analysis models applied to complex systems, and increases 

understanding about the nuclear fuel cycle. The following three sections detail conclusions 

drawn from this thesis, limitations to the work and opportunities for further research, and 

contributions to the fields of complex system and nuclear fuel cycle analysis. 

 

8.1 Thesis Conclusions 
Conclusions from this work fall into two categories. The first body of conclusions 

concerns the methodology explored and tested in the thesis, which includes a hybrid decision 

analysis and system dynamics model applied to a complex system. The second body of 

conclusions offers new knowledge on evolution pathways for the U.S. nuclear fuel cycle. 

8.1.1 Methodological Conclusions 

Perhaps the most valuable conclusion to be drawn from this thesis is that a decision-

analytic approach to synthesizing system dynamics results can help illuminate the parameters 

that are important decision drivers, and teach the analyst about the system. For example, it is 

very apparent throughout Chapters 5, 6, and 7 that decision maker preferences are a major driver 

of the decision outcome. The decision space is almost always more sensitive to the weighting for 

cost (which represents [1- the weight for waste]) than it is to the other parameters.  

The parameter ranges were purposefully chosen to span nearly all plausible values, so 

that scenario outcomes would represent the full range of possibilities. We can thus conclude, for 

example, that over the range of possible cost premiums for fast reactors, decisions about closing 

the fuel cycle are not as sensitive to the rate of nuclear power growth as they are to the relative 

preference between cost and waste minimization. Similar conclusions can be drawn with 

confidence for several other parameters examined in Chapters 5 and 6. The particular 

combination of a system dynamics model that calculates outcomes combined with an orderly 

exploration of the parameter space via decision analysis allows us to quickly identify the 

parameters of significance to the decision.  
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A second major conclusion is that we gain important insights by considering both an 

“ideal” and a more realistic decision maker when modeling the system. Neither perspective 

should necessarily be considered in the absence of the other. From the “ideal” decision maker 

analysis, we learned about the effects on general welfare of various uncertainties and new 

structures for alternatives. These represent the best all-around decisions if a decision maker has 

full power over the system. Changing the perspective slightly, so that the decision maker only 

has power over a piece of the system and outcomes become more uncertain, shows that different 

decisions may need to be taken in order to get closest to the “best” decision outcomes. For 

example, the nuclear fuel cycle example of Chapter 7 tells us that the uncertainty in industry 

response indicates an earlier start to fast reactor builds than otherwise might be prescribed if the 

government decision maker had full control. The methodology could be useful for comparing a 

range of ways in which the decision maker could interact with the system (i.e. different policy 

structures) in order to learn about the most robust ways to move toward the “best” decisions, 

given limited decision-maker authority. 

Two further conclusions concern the incorporation of multi-attribute utility analysis into 

the hybrid decision analysis-system dynamics methodology. Multi-attribute utility theory is 

controversial, because existing methods for eliciting proper utility curves and attribute weights 

may not actually account properly for decision maker preferences.(McCord & de Neufville, 

1983)4 Indeed, so far, hybrid DA-SD analyses have avoided consideration of more than one 

attribute (see section 2.3). But this analysis has shown that many of the general trends and 

conclusions are not highly dependent on the utility function shapes or scenario value function 

structure. The most important difference occurred when the utility function for waste changed 

from linear to a diminishing returns function, but conclusions about which parameters are 

important decision drivers and which decisions are robust to a range of preferences remained 

generally the same. Analysts should certainly tread carefully when choosing a utility function 

shape, especially when advising final decisions, but can still draw solid conclusions from this 

style of analysis. 

                                                 
4 McCord and de Neufville in fact question utility theory even more deeply, asserting that the commonly-held axiom 
of decision maker utility curves existing independently of situational probabilities is false. If, however, one believes 
that a utility curve at least exists to describe preferences in the case of a decision tree, the fact that very disparate 
curves produce similar results, as demonstrated in Chapter 6, may mean that the results are believable despite this 
limitation. 



156 
 

The challenges associated with weight elicitation were avoided by employing sensitivity 

graphs to present the analysis results. In this way, readers see the best decision outcomes over the 

whole range of possible decision maker preferences. This approach has two advantages: decision 

makers can see which choices are robust, and arguments about the proper way to elicit weight 

values (or whether it can or should be done) are avoided. One major challenge is that interpreting 

results can be difficult, because explaining the slope of a line in the decision space requires 

simultaneous consideration of many different parameters. Overall, the benefits of showing 

decision robustness outweigh the extra burden on the analyst in explaining decision results. 

Overall, the methodology shows promise for providing insights on the evolution of 

complex systems. Similar decision-making problems, involving high levels of 

interconnectedness and inertia and multiple, ill-defined decision-making groups, may benefit 

from this framework. Potential examples of systems to study include the U.S. electricity system 

as a whole, U.S. transportation infrastructure, and climate change mitigation systems and policy. 

8.1.2 Conclusions for U.S. Nuclear Fuel Cycle Evolution 

The most important fuel cycle conclusion drawn from this work is that the option to 

change course later in the century has a dramatic impact on the desirability of closing the fuel 

cycle now. Indeed, decision makers can wait until later in the century to significantly deploy 

traditional, self-sustaining fast reactors, and doing so will have cost benefits and few drawbacks 

in terms of waste buildup by the end of the century. Waiting to deploy large amounts of TFRs is 

the best decision, as long as the only alternatives are LWRs or EUFRs, and as long as the amount 

of SNF in the temporary stockpile is not an important factor. 

Building a few fast reactors as early as 2040, however, is also highly desirable, and this 

conclusion is confirmed by both the “ideal” and more “realistic” decision maker perspectives. 

From an ideal perspective, building a few fast reactors early will entail a modest waste benefit by 

the end of the century and comes at relatively little added cost. It also provides for a smooth 

building curve (if there are no natural or artificial constraints on fast reactor builds), which could 

allow companies to take better advantage of learning. From a more realistic perspective, 

government will not be able to mandate precise numbers of fast reactors be built by industry, but 

will be able to offer incentives to bring TFRs into the system. This means that the government 

will want to learn quickly about FR costs, so that incentives can be set properly and early enough 

to allow for adjustments enabling a desirable build pattern for fast reactors. Overall, it makes 
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sense to build a small fleet early on, and to reserve judgment about larger-scale deployment until 

later in the century. 

A second conclusion is that the desirability of building FRs in the first period (in this 

case, at about 2040) decreases if nuclear power growth is likely to be low. Though the results of 

sections 5.4 and 5.5 demonstrated that building FRs in the second period will be attractive for 

low growth cases in order to get a waste benefit, a new decision will need to be made when those 

later periods are reached. The conclusion holds that a low likelihood for significant LWR waste 

generation now decreases the urgency of building TFRs. 

A final conclusion regarding the nuclear fuel cycle is that for high-level decisions on 

whether to employ advanced recycling, the price of uranium, the achievable separations 

efficiency for spent fuel, and the shape and size of the cost learning curve are relatively 

unimportant parameters. All three fuel cycle system parameter sets had very little effect on the 

decision results, even when the parameters were varied across their full plausible ranges. This 

model fails, however, to account for some considerations related to the variables, including the 

desirability of uranium/fuel security of supply, the safety implications of different separations 

efficiencies, and others. Under the current paradigm, where the uranium market appears stable 

and safety issues surrounding recycling appear soluble, explicit consideration of the set of related 

issues is unlikely to produce a significant change in the results. This could change, however, and 

further work should explore the impact of these and other considerations of potential importance. 

 

8.2 Limitations and Future Work 
The methodology explored in this thesis has several limitations; decision results should 

thus be used carefully in the context of a deliberative-analytic process, as a guide and source of 

information rather than as direct prescription for action. Several of the most important limitations 

to the methodology are discussed here, with suggestions for future work to understand and 

alleviate them. 

On major limitation of the work presented in Chapters 5, 6, and 7 is that it only considers 

two system objectives. The nuclear fuel cycle, like many other complex systems, involves more 

than two system aspects that must be considered and traded off in making decisions about system 

evolution. This thesis does not consider proliferation resistance or nuclear safety, despite the fact 
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that these are two very important issues for stewards of nuclear power. In principle, further work 

could continue this analysis and incorporate the full complement of system objectives. 

Presentation and interpretation of the results, however, would be extremely difficult. Two- and 

three-dimensional graphs would only show part of the picture, and unpacking the drivers for 

decision space shapes would be made significantly more complicated with even a few more 

parameters. Alternatively, the analysis could be done individually with one attribute traded off 

against another for all possible pairs, but this would be time-consuming and results could be 

difficult to compare. The methodology might thus be best suited to two-objective systems. 

Another limitation of this work is that only bounding point estimates are considered for 

the uncertainties and decision options. This is likely of greatest importance for the decision 

alternatives, which are modeled as stylized and discretized versions of the actual options. Future 

work should relax the discretization assumption, evaluating continuous portfolios of reactor build 

options. Follow-on studies might also consider full distributions for uncertain parameter values 

in place of point estimates. 

A related limitation of the methodology is that any decision alternatives that are not 

modeled are not assessed. This is potentially problematic because there may be other decision 

options that would dominate the choices considered, and this methodology does not help identify 

what they might be or whether they exist. One example includes the possibility that the best 

strategy would involve all three options, where traditional fast reactors mitigate some of the 

existing LWR waste and then the system transitions to exclusively include enriched-uranium fed 

reactors. The decision options follow the same rigid structure as those of traditional fuel cycle 

models, where the type of reactor and date of introduction has to be specified before running a 

scenario. Future work could help alleviate this limitation in two ways. The simplest solution 

might be to employ creativity and brainstorming tools with a decision-making group in order to 

identify a wide range of decision options, and then to evaluate them all. Another option includes 

building a much more complex fuel cycle (or other system) model, upon which e.g. the 

introduction date for a reactor type could be optimized or decisions made endogenously. With 

the latter approach, the basic structure of a decision alternative (reactor type, date of 

introduction, date(s) of change in strategy), would be fixed. Both directions for further research 

could yield insights. 
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Another potential limitation of this approach is that it relies heavily on the accuracy of 

the system dynamics model. This is a challenge often described colloquially as “garbage in, 

garbage out,” indicating that unless the underlying system model adequately represents system 

impacts, the decision model is useless. In this thesis, the underlying fuel cycle model FANTSY 

was checked extensively with widely used fuel cycle codes (see Appendix B), but the decision 

results should nevertheless be confirmed with one of the more sophisticated fuel cycle models. 

Future analysts should be aware of the importance of system modeling accuracy. 

Decision analysis heavily emphasizes the relative values of scenario outcomes (e.g. one 

scenario scores higher than another) without considering differences in magnitude between 

scenario scores. Relative scenario magnitude information is used (but not shown) by TreeAge 

when it calculates and draws the solid-color decision spaces. In general, close to the dividing 

lines between decisions, scenario outcomes are closer in magnitude than elsewhere on the graph. 

Further unpacking of the underlying data reveals which parameters drive the magnitude 

differences, but an understanding of the relative “betterness” of decisions in a certain area is not 

immediately available with the TreeAge visualization options. Future work on advanced decision 

software, focusing especially on graphing features, could help make magnitude variations more 

clear. Use of different colors or contour lines could show places where the scenario value 

difference grows and shrinks, and creative calculations and uses of color might help identify 

which parameters are driving the differences between options. The needed information is 

available, but more research could help illuminate the best ways to display and digest it. 

A final limitation of this work is particular to the fuel cycle system: nuclear power 

growth is modeled as an exogenous variable, so there is no accounting for the potential 

substitution of other electricity sources. Were nuclear electricity to become expensive, other 

types of generation would become more desirable and might reduce demand for nuclear power. 

These relationships are not currently modeled, though the framework does allow examination of 

various scenarios where there are sudden changes in nuclear demand. A more important 

implication of this limitation stems from the fact that government-level decisions made about the 

nuclear fuel cycle will have an impact on the broader electricity market. For example, if the 

government decides to build a fast reactor demonstration, the funds for the project cannot be 

applied to research in renewable energy. Similarly, if the government offers support to fast 

reactors, demand for the nuclear may increase even if it is not the cheapest available option. In 
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essence, the “real” government will be deciding not only on how to evolve nuclear power, but 

also on which sources of electricity more generally are worth supporting. This broader decision 

is not considered here. Future work could address the larger question, for example by linking a 

model of the U.S. electricity market to the nuclear fuel cycle model and then re-framing decision 

analysis questions.  

Despite the limitations listed in this section, the work in this thesis contributes to two 

areas of knowledge. 

 

8.3 Thesis Contributions 
This thesis contributes both to methods for complex system analysis and to an 

understanding of the U.S. nuclear fuel cycle. The major methodological contribution extends the 

field of hybrid decision analysis-system dynamics studies outlined in section 2.3, primarily by 

performing an investigation of a multi-attribute problem. The results in Chapters 5-7 show that a 

hybrid multi-attribute method can elucidate important drivers of system decisions, as well as 

highlight certain options that are robust to a range of uncertainties and preferences. The 

sensitivity analyses in Chapter 6 provide an initial indication that the particular functional form 

of the value equation may not have an enormous effect on most decision results. More work is 

needed to confirm this, especially on a theoretical basis. If the sensitivity results hold, this type 

of multi-attribute approach may prove useful for a wide range of complex system decision-

making problems.  

A second contribution concerns the challenge of considering multiple decision makers in 

the context of canonical system analysis frameworks. As discussed in section 2.1, most decision 

analysis methods were developed to aid a single decision maker. The analytic-deliberative 

approach to decision-making provides a way to incorporate multiple decision makers, but 

requires that the important players physically come together as one group with decision-making 

authority. Game-theoretic models provide another option for analysis with more than one 

decision maker, but the methods work best when decision makers and system states are well-

defined and actions can be clearly assigned to various players. The analysis in Chapter 7, rather 

than pushing toward a comprehensive, multi-decision maker model, offers an incremental 

improvement on the single, all-powerful decision maker characterization. Following (Webster, 
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2008), the government is modeled as only having limited decision-making authority, and the 

actions of industry are modeled as an uncertainty. The contribution of this work is in showing 

that both the “ideal” and “limited” decision maker characterizations produce interesting and 

complementary information. Much work remains in exploring the utility and flexibility of a 

“limited decision maker” approach, but the results here suggest that complex system decision-

making could benefit from two separate passes through a canonical system analysis model: one 

to determine “best” solutions from a general welfare perspective, and one to examine more 

practical sets of options for a more realistic decision maker. 

The final set of contributions lies in the realm of nuclear fuel cycle analysis. Section 2.2 

described traditional approaches to the study of the fuel cycle, all of which have provided 

invaluable knowledge to decision makers and without which this approach would not have been 

possible. The work in this thesis extends dynamic fuel cycle analyses, asking not just “what will 

happen” but “which fuel cycle alternatives are more desirable.” The decision analysis framework 

developed here provides a means to synthesize fuel cycle scenario results, examine tradeoffs, and 

uncover the parameters that matter in the context of a decision about the system. None of these 

insights would be readily obtainable with a system dynamics model alone; indeed, DSARR, an 

important dynamic fuel cycle analysis, does not address these issues. Though decision rules can 

be coded into a system dynamics model, and some sort of scoring mechanism applied, inserting a 

large number of cumbersome if-then statements into a complex nuclear fuel cycle model (e.g. 

VISION with ~1 million input variables and over 30 system dynamics page views of code) is not 

likely to be tenable. The decision-analytic hybrid approach allows for a relatively rapid analysis, 

even with a complex underlying fuel cycle model, that explicitly highlights uncertainties and 

value tradeoffs.  

The MIT Future of the Nuclear Fuel Cycle study (Kazimi et al., 2011) is a good example 

of a more comprehensive, qualitative + quantitative analysis of fuel cycle issues, intended for 

government-level decision makers. The analytic framework and results presented in this thesis 

complement that type of analysis, helping to highlight some of the most important issues worthy 

of further study as well as identifying which alternatives may hold the most promise for a range 

of future scenarios. The results in this thesis are not intended to stand alone as prescriptions, but 

to help decision makers sort through some of the information provided by the MIT study and 

others to come. The author’s sincere hope is that this thesis provides a strong analytic basis for 
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real decision-maker discussions regarding not only the nuclear fuel cycle, but also other long-

lived, complex technological systems that would benefit from a hybrid modeling approach. 
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Appendix A:  The Flexible Advanced Nuclear 
Technology Simulation by Year (FANTSY) 
Source Code  

 

 The FANTSY source code is written in MATLAB, saved as .m files. The wrapper code 

(rapper.m) is called directly from the MATLAB command line, which in turn calls the function 

sbF one time for each scenario simulated. The results from each scenario are then written to an 

Excel file called ToTree.xlsx. 

 The particular version of the code presented below simulates a two-period tree with three 

reactor options (LWR, TFR, and EUFR) and two growth rates per period. The wrapper code is 

adjusted substantially depending on the particular needs of the tree. In this case, several “blank” 

scenarios are coded into the Excel file, in order to more accurately reflect the scenario indexing 

present in the tree. Note also that the wrapper script calls a function xlswrite1; this is distinct 

from xlswrite only in that Excel is opened at the beginning of the write functions and closed at 

the end, rather than opened and closed for each instantiation of xlswrite. This saves hours of 

computing time. 

rapper.m 

% this is the wrapper script which will run through iterations of the fuel 
% cycle model, each time with different inputs corresponding to different 
% branches of a tree 
  
% constants 
initialCR = 1.0; 
  
%DECISION AND UNCERTAINTY VALUE LISTS: CHANGE MANUALLY 
U1 = [0.025, 0.005]; % growth rates in decimal 
CS = [2200]; % centralized storage open 
D1 = {'TFR', 'EUFR', 'LWR'}; % reactor type in period 1 
LS = [0.01]; % loss fractions for TRU/FP 
U2 = [0.04, 0.005]; % growth rates for 2nd period 
D2 = {'TFR', 'EUFR', 'LWR'}; % reactor type in period 2 
P1 = [1, 0.1]; %percent of possible FRs built during period 1 
P2 = [1, 0.5]; % percent of possible FRs built in period 2 
  
ActiveIndices = 1; 
%VECTOR LENGTHS FOR DECISIONS AND UNCERTAINTIES 
U1num = length(U1); 
if U1num > 1; ActiveIndices = ActiveIndices + 1; end 
CSnum = length(CS); 
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if CSnum > 1; ActiveIndices = ActiveIndices + 1; end 
D1num = length(D1); 
if D1num > 1; ActiveIndices = ActiveIndices + 1; end 
LSnum = length(LS); 
if LSnum > 1; ActiveIndices = ActiveIndices + 1; end 
U2num = length(U2); 
if U2num > 1; ActiveIndices = ActiveIndices + 1; end 
D2num = length(D2); 
if D2num > 1; ActiveIndices = ActiveIndices + 1; end 
P1num = length(P1); 
if P1num > 1; ActiveIndices = ActiveIndices + 1; end 
P2num = length(P2); 
if P2num > 1; ActiveIndices = ActiveIndices + 1; end 
%maxScenarios = U1num*D1num*U2num*LSnum*D2num*CSnum*P1num... 
  %*P2num; 
  
maxScenarios = 120; 
%SCENARIO TRACKING 
IndexList = cell(maxScenarios,ActiveIndices); %rows are scenarios 
IndexTitles = {'First Reactors', '% Build1', ... 
  'Growth1', 'Second Reactors', '% Build2', 'Growth2'}; 
  
CostHeader = {'NatU', 'SWU', 'LWRfuelfab', 'FRfuelfab', ... 
  'LWRsConstructed', 'FRsConstructed', 'LWRsOperating', ... 
  'FRsOperating', 'ElectricityLWR', 'ElectricityFR', ... 
  'SNFreprocessed', 'FRreprocessed', 'LWRsDecommd', 'FRsDecommd', ... 
  'LWRdryStor', 'FRdryStor', 'CSbuilt', 'CSoperating', 'CStransport'}; 
WasteHeader = {'SNF', 'FP', 'HLW','SNF-scaled'}; 
CostOutput = cell(maxScenarios,19); % rows are scenarios, cols are  
  % variables (17 vars needed for cost model), 100 years for each var 
WasteOutput = zeros(maxScenarios,4); % waste is a simple matrix 
  % with scenarios as rows and 4 variables assessed at 2109 (SNF, HLW, 
  % FP, SNF stored in CS) 
Output = cell(maxScenarios,20); % final cell is waste output 
  
for index1 = 1:D1num 
  for index2 = 1:P1num 
    for index3 = 1:U1num 
      for index4 = 1:D2num 
        for index5 = 1:P2num 
          for index6 = 1:U2num 
          scenario = 48*(index1-1) + 24*(index2-1) + ... 
            12*(index3-1) + 4*(index4-1) + 2*(index5-1)...  
            + index6; 
          if (index1 == 3 && index2 == 2), break, end 
          if ~(index1 == 2 && index4 == 1) 
          Output(scenario,:) = ... 
            sbF(initialCR,U1(index3),CS,D1(index1),... 
              LS,U2(index6),D2(index4),P1(index2),... 
              P2(index5)); 
          WasteOutput(scenario,:) = Output{scenario,20}(); 
          IndexList(scenario,:) = {scenario ... 
            D1(index1) P1(index2) U1(index3) ... 
            D2(index4) P2(index5) U2(index6)}; 
          display(scenario);   
          else 
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             blank = zeros(100,1); 
             for yo = 1:20 
              Output{scenario,yo} = blank; 
             end 
             sim = sprintf('blank %d',scenario); 
             display(sim); 
             Output{scenario,20} = [0 0 0 0]; 
             IndexList(scenario,:) = {scenario 0 0 0 0 0 0}; 
           end 
          end 
        end 
      end 
    end 
  end 
end 
  
  
CostOutput = Output(1:maxScenarios,1:19); 
years = (2010:2109)'; 
scs = (1:120)'; 
WasteOutput = horzcat(scs,WasteOutput); 
  
Excel = actxserver ('Excel.Application'); 
File='C:\Users\Lara\Documents\MATLAB\ToTree.xlsm'; 
if ~exist(File,'file') 
  ExcelWorkbook = Excel.workbooks.Add; 
  ExcelWorkbook.SaveAs(File,1); 
  ExcelWorkbook.Close(false); 
end 
invoke(Excel.Workbooks,'Open',File); 
  
endrow = 0; 
for is = 1:maxScenarios 
  for iv = 1:19 
    startrow = endrow + 2; 
    headerrow = endrow +1; 
    headspot = sprintf('B%d',headerrow); 
    yearspot = sprintf('A%d',startrow); 
    xlswrite1(File, CostHeader, 'Data', headspot); 
    xlswrite1(File, years, 'Data', yearspot); 
    col = 65 + iv; % ASCII dec code for letters, A is 65 
    column = char(col); 
    spot = sprintf('%s%d',column,startrow); 
    xlswrite1(File, CostOutput{is,iv}(), 'Data', spot); 
  end 
  endrow = startrow + 100; 
end 
  
xlswrite1(File, WasteHeader, 'WasteData','B1'); 
xlswrite1(File, WasteOutput, 'WasteData', 'A2'); 
xlswrite1(File, IndexTitles, 'Scenarios', 'B1'); 
xlswrite1(File, IndexList, 'Scenarios', 'A2'); 
for il = 1:120 
  r1 = IndexList{il,2}; 
  r2 = IndexList{il,5}; 
  ill = il+1; 
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  place1 = sprintf('B%d',ill); 
  place2 = sprintf('E%d',ill); 
  xlswrite1(File, r1, 'Scenarios', place1); 
  xlswrite1(File, r2, 'Scenarios', place2); 
end 
xlswrite1(File, initialCR, 'Data', 'A1'); 
invoke(Excel.ActiveWorkbook,'Save'); 
Excel.Quit 
Excel.delete 
clear Excel 
 
 The code below (sbF.m) is also often adjusted to reflect the particular needs of a decision 

tree. The basic structure, however, is the same for all studies presented in this thesis. 

sbF.m 

function ToPass = sbF(initialCR,U1,CS,D1,LS,U2,D2,P1,P2) 
% function to calculate 100-year mass flows for the U.S. nuclear fuel cycle 
% sbF (base = sbF14)  
 
per1start = 2040; 
per2start = 2065; 
  
year1 = per1start; 
year2 = per2start; 
yrChange1 = year1 - 2010; 
yrChange2 = year2 - 2010; 
growth0 = 0.012; %growth rates in fractional form 
growth1 = U1; 
growth2 = U2; 
  
% set starts and stops to end of simulation (aka never): they 
% will only change if the scenario calls  
EUFRstartyear = 2200; 
FRstartyear = 2200; 
justfastreprocstart = 2200; 
reprocstart = 2200; 
  
if ~strcmp(D1,'EUFR') && ~strcmp(D2,'EUFR') 
  EUscenario = 0;  % no EUFRs are built 
elseif ~strcmp(D1,'TFR') && ~strcmp(D2,'TFR') 
  EUscenario = 1;  % all FRs that start up are EUFRs 
elseif strcmp(D1, 'TFR') && strcmp(D2, 'EUFR') 
  EUscenario = 2;  % some FRs are EUFRs, some are traditional; 
else 
  display('Bad EUFR/TFR scenario'); 
end 
  
% OT or FR flag 
if strcmp(D1,'LWR') && strcmp(D2,'LWR') 
  OTflag = 1; 
else 
  OTflag = 0; % if zero, this is an FR run; if 1, this is an OT run 
end 
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% FR start flags 
if EUscenario == 0 && OTflag == 0 % condition for a TFR-only run 
  if strcmp(D1,'TFR') 
    FRstartyear = per1start; 
  elseif strcmp(D2,'TFR') 
    FRstartyear = per2start; 
  else 
    display('Flag error: FR start flags'); 
  end 
  if strcmp(D2,'LWR') 
    FRstopyear = per2start; 
  else 
    FRstopyear = 2200; 
  end 
  FRstart = FRstartyear - 2010 - 4; 
  reprocstart = FRstart - 5; 
  FRend = FRstopyear - 2010; 
end 
  
% EUFR start flags - set the general FR start flags with EUFR start times 
if EUscenario == 1 && OTflag == 0 % condition for all-EUFR run 
  if strcmp(D1,'EUFR') 
    EUFRstartyear = per1start; 
  elseif strcmp(D2,'EUFR') 
    EUFRstartyear = per2start; 
  else 
    display('Flag error: EUFR start flags'); 
  end 
  if strcmp(D2,'LWR') 
    EUFRstopyear = per2start; 
  else 
    EUFRstopyear = 2200; 
  end 
  FRstart = EUFRstartyear - 2010 - 4; 
  EUFRstart = FRstart; 
  justfastreprocstart = FRstart - 5; 
  reprocstart = 1000; 
  FRend = EUFRstopyear - 2010; 
elseif EUscenario == 2 % condition for TFR switch to EUFR (can't reverse) 
  FRstartyear = 2040; 
  FRstart = FRstartyear - 2010 - 4; 
  EUFRstartyear = 2065; 
  EUFRstart = EUFRstartyear - 2010 - 4; 
  reprocstart = FRstart - 5; 
  justfastreprocstart = EUFRstartyear - 2010; 
  FRend = 1000; % for EUscenario 2, FRs go to end of century always 
end 
  
fractionbuild = zeros(1,106); %fraction of possible FRs actually built 
for i = 1:29 
  fractionbuild(i) = 0; % 2010-2039 
end 
for i = 30:54 
  fractionbuild(i) = P1; % 2040-2064 
end 
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for i = 55:106 
  fractionbuild(i) = P2; % 2065-end 
end 
  
% CS flag - reads in the start year for centralized storage of LWR SNF 
% also initialize CS-related parameters 
CSstart = CS-2010; 
CSbuilt = zeros(1,100); 
CSoperating = zeros(1,100); 
opCS = 0; 
spaceCS = 0; 
CSsnftransported = zeros(1,100); 
CSamountstored = zeros(1,100); 
removalflagoff = 1; 
  
% initialize loss-related parameters 
switch LS 
  case 0.1 
    lossfraction = 0.1; 
    squish = 5; 
  case 0.01 
    lossfraction = 0.01; 
    squish = 20; 
  case 0.001 
    lossfraction = 0.001; 
    squish = 42; 
  otherwise 
    display('bad loss fraction'); 
    return 
end 
  
% constants: these do not change for any run 
legacySF = 53000; % MT 
reactors = [0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ...   
  0  0  3  3  2  6  11 13 2  7  3  3  0  3  4  5  4 ...   
  8  6  9  5  1  2  1  0  0  1  0  1  0  0  0  0  0 ...   
  0  0  0  0  0  0  0  0  0  0  1]; % with legacies 
LWRcapfac = 0.9; 
FRcapfac = 0.85; 
capacity2010 = 104*LWRcapfac; % GWe - 100 for benchmark, 104 otherwise 
SNFfpfraction = 0.053; % Hoffman 100s col D 
EUFRenrichment = 0.195; 
EUFRcoresize = 45.5; % commensurate with CR = 1.0 FR 
CR = initialCR; 
  
if CR == 1.0 
  coreFR = 45.5;  
  yearlyFRneed = 11.19; % total fuel needed yearly (TRU + other) 
  truFractionFR = 0.141; % fraction of FR SNF that is TRU - Hoffman 
  UtruFractionFR = 0.922; % fraction of FR SNF that is HM - Hoffman 
  Ffpfraction = 0.078; % Hoffman 600s col AP 
  fuelperFR = 45.5; % MT per year - from CAFCA 'FR' Fuel Core Mass 
  fuelperyearFR = 11.19; 
  truFracFresh = 0.139; 
  rpnCap = 500; % nominal reproc plant capacity in MTHM/year, acc to CAFCA 
elseif CR == 0.5  
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  coreFR = 25.66;  
  yearlyFRneed = 6.19; 
  truFractionFR = 0.270; 
  UtruFractionFR = 0.859; % fraction of FR SNF that is HM - Hoffman 
  Ffpfraction = 0.142; % Hoffman 600s col AD 
  fuelperFR = 25.66; 
  fuelperyearFR = 6.19; 
  truFracFresh = 0.333; 
  rpnCap = 200; 
else 
  display('Bad Conversion Ratio'); 
end 
  
% initializations of temporary and output vectors 
demandzero = capacity2010; 
demand = zeros(1,106); 
underconstruction = zeros(1,5); 
ReactorsConstructed = zeros(1,100); 
ReactorsOperating = zeros(1,100); 
ReactorsDecommissioned = zeros(1,100); 
  
FRsConstructed = zeros(1,100); 
FRsOperating = zeros(1,100); 
FRsDecommissioned = zeros(1,100); 
underconstructionFR = zeros(1,5); 
makeupfuel = zeros(1,100); 
operatingFRs = 0; 
fastreactors = zeros(1,60); 
  
underconstructionEUFR = zeros(1,5); 
EUFRsConstructed = zeros(1,100); 
NatUforEUFRs = zeros(1,100); 
SWUEUFR = zeros(1,100); 
  
TotalFRsConstructed = zeros(1,100); 
  
% demand vectors 
Forecast = zeros(1,100); 
LWRdemand = zeros(1,100); 
  
%%%% REPROCESSING CAPACITY %%%% 
maxSNFyearlyadd = 500; % amount of MT reproc capacity that can be built 
yearly 
maxFRyearlyadd = 50; 
toProcThermal = 0; 
toProcFast = 0; 
reprocPlantLife = 50; % years reprocessing plants will be in operation 
tRC = 0; 
fRC = 0; 
thermalRP = zeros(1,100); % reprocessing capacity by year in MTHM/year 
fastRP = zeros(1,100); 
FP = zeros(1,100); 
ThFP = zeros(1,100); 
FFP = zeros(1,100); 
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FRfuelfab = zeros(1,100); 
  
%%%% FUEL MODULE %%%% 
  
lwrenrichment = 0.042; 
xf = 0.0071; % feed enrichment (natural uranium at 0.71%) 
xt = 0.0025; % tail assay (0.25%) 
fuelperLWR = 87.76; % MT/reactor 
fuelperyearLWR = 19.73; % MT/reactor/year 
  
  
lwrTRUfraction = 0.0128; % fraction MTIHM - from CAFCA 'LWR':M11 
coolingpool = ones(1,5)*2000; % size of this vector is the wet cooling time 
coolingpoolFR = zeros(1,2); 
  
% yearly front-end output data 
FuelConsumed = zeros(1,100); % MTHM 
NaturalUraniumConsumedlwr = zeros(1,100); 
SWUlwr = zeros(1,100); 
SWU = zeros(1,100); % kg-SWU 
NaturalUraniumConsumed = zeros(1,100); % MT 
LWRfuelfabricated = zeros(1,100); 
FRfuelfabricated = zeros(1,100); 
  
electricityLWR = zeros(1,100); 
electricityFR = zeros(1,100); 
  
electricityOT = zeros(1,100); 
electricityTFR = zeros(1,100); 
electricityEUFR = zeros(1,100); 
  
% yearly back-end output data 
SNFcooled = zeros(1,100); 
FRcooled = zeros(1,100); 
TRUlwr = zeros(1,100); 
TRUfr = zeros(1,100); 
TRUlosses = zeros(1,100); 
TRUstock = zeros(1,100); 
SNFstock = zeros(1,100); 
FRstock = zeros(1,100); 
SNFinventory = legacySF; 
FRinventory = 0; 
TRUinventory = 0; 
SNFreprocessed = zeros(1,100); 
FRreprocessed = zeros(1,100); 
  
  
% nuclear electricity growth and forecasting 
% run through 100 years to create demand vector 
for year = 1:106 
  if year == 1 
    demand(year) = demandzero; 
  elseif year <= yrChange1 
    demand(year) = demand(year - 1)*(1+growth0); 
  elseif year <= yrChange2 
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    demand(year) = demand(year - 1)*(1+growth1); 
  else  
    demand(year) = demand(year - 1)*(1+growth2);     
  end 
end 
   
for year = 1:100 % 100 year simulation, 2010 - 2109 
    if year > 1 
      EUFRstarting = EUFRsConstructed(year - 1); 
    else 
      EUFRstarting = 0; 
    end 
     
    forecast = demand(year + 5); 
    ops = sum(reactors(6:60)); 
    ReactorsOperating(year) = sum(reactors); 
    generation = ops*LWRcapfac + sum(fastreactors(6:60))*FRcapfac... 
      + EUFRstarting*FRcapfac; 
    futuregen = sum(underconstruction(1:4))*LWRcapfac + ... 
      sum(underconstructionFR(1:4))*FRcapfac + ... 
      sum(underconstructionEUFR(1:4))*FRcapfac; 
    forecastedneed = forecast-(generation+futuregen);  
    Forecast(year) = forecastedneed; 
  
% build LWRs     
  if OTflag 
    reactorsneeded = forecastedneed/(LWRcapfac); 
    if reactorsneeded >= 1 
      underconstruction(5) = floor(reactorsneeded); 
    else 
      underconstruction(5) = 0; 
    end 
  end 
   
% FRONT-END FUEL CALCS 
   FuelConsumed(year) = fuelperLWR*reactors(60) + fuelperyearLWR*... 
     sum(reactors(1:59)); 
   NaturalUraniumConsumedlwr(year) = FuelConsumed(year)*(lwrenrichment-... 
     xt)/(xf-xt); 
   vp = (2*lwrenrichment-1)*log(lwrenrichment/(1-lwrenrichment)); 
   vf = (2*xf-1)*log(xf/(1-xf)); 
   vt = (2*xt-1)*log(xt/(1-xt)); 
   SWUlwr(year) = (FuelConsumed(year)*vp + 
(NaturalUraniumConsumedlwr(year)... 
     - FuelConsumed(year))*vt - NaturalUraniumConsumedlwr(year)*vf)*1000; 
   LWRfuelfabricated(year) = FuelConsumed(year); 
    
   % fuel EUFRs that are starting up 
   if EUscenario == 1 || EUscenario == 2 
     if year > EUFRstart 
      fuelEUFR = EUFRcoresize*EUFRstarting; 
      NatUforEUFRs(year) = fuelEUFR*(EUFRenrichment - xt)/(xf-xt); 
      vpEU = (2*EUFRenrichment-1)*log(EUFRenrichment/(1-EUFRenrichment)); 
      SWUEUFR(year) = (fuelEUFR*vpEU + (NatUforEUFRs(year)... 
        - fuelEUFR)*vt - NatUforEUFRs(year)*vf)*1000; 
      LWRfuelfabricated(year) = LWRfuelfabricated(year) + fuelEUFR; 
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     end 
   end 
   
  % totals 
  NaturalUraniumConsumed(year) = NaturalUraniumConsumedlwr(year) + ... 
    NatUforEUFRs(year); 
  SWU(year) = SWUlwr(year) + SWUEUFR(year); 
   
% CALCULATE ELECTRICITY FOR THIS YEAR 
electricityLWR(year) = (sum(reactors)*LWRcapfac)*365*24*10^6; % kWh produced 
electricityFR(year) = ((sum(fastreactors) + EUFRstarting)*FRcapfac)... 
  *365*24*10^6;   
  
   %%% REPROCESS AND FUEL UP %%% 
  
% REPROCESSING - note all FRSNF/SNF has same losses 
if EUscenario ~= 1 && year > reprocstart  
  % build reprocessing capacity 
  if year < 40 
    buildtRC = 500; %MT/year that can be added each year (see Benchmark) 
    buildfRC = 50; 
  elseif year < 55 
    buildtRC = 1000; 
    buildfRC = 50; 
  else 
    buildtRC = 1000; 
    buildfRC = 150; 
  end 
end 
  
if year > justfastreprocstart || EUscenario == 1   
  % build JUST FAST reprocessing capacity 
  if year < 40 
    buildtRC = 0; %MT/year that can be added each year (see Benchmark) 
    buildfRC = 50; 
  elseif year < 55 
    buildtRC = 0; 
    buildfRC = 100; 
  else 
    buildtRC = 0; 
    buildfRC = 500; 
  end 
end 
   
if year > reprocstart || year > justfastreprocstart 
  influxCapT = (SNFcooled(year-1)/1000)*(reprocPlantLife/50); 
  influxCapF = (FRcooled(year-1)/rpnCap)*(reprocPlantLife/50); 
  inventoryCapT = SNFinventory/(50000); % 50 = instantaneous depletion T 
  inventoryCapF = FRinventory/(rpnCap*50); 
   
  thNeeded = (influxCapT + inventoryCapT)*1000 - tRC; 
  fNeeded = (influxCapF + inventoryCapF)*rpnCap - fRC; 
   
  thBuilt = min(buildtRC,thNeeded); 
  fBuilt = min(buildfRC,fNeeded); 
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  if thBuilt < 0, thBuilt = 0; end 
  if fBuilt < 0, fBuilt = 0; end 
   
  tRC = tRC + thBuilt; 
  fRC = fRC + fBuilt; 
   
  thermalRP(year) = tRC; 
  fastRP(year) = fRC; 
   
  if (EUscenario == 2 && year > EUFRstart + 4) || year > FRend 
    toProcThermal = 0; 
    toProcFast = min(fRC, FRinventory); 
  else 
    toProcThermal = min(tRC, SNFinventory); 
    toProcFast = min(fRC, FRinventory); 
  end 
   
  SNFreprocessed(year) = toProcThermal; 
  FRreprocessed(year) = toProcFast; 
  ThFP(year) = toProcThermal*SNFfpfraction; 
  FFP(year) = toProcFast*Ffpfraction/UtruFractionFR; 
  FP(year) = ThFP(year) + FFP(year); 
   
  TRUlwr(year) = lwrTRUfraction*toProcThermal; 
  TRUfr(year) = truFractionFR*toProcFast; 
  SNFinventory = SNFinventory - toProcThermal; 
  FRinventory = FRinventory - toProcFast; 
   
  if toProcThermal > (SNFinventory - CSamountstored(year-1)) 
    removalflagoff = 0; 
    CSamountstored(year) = max(0,(CSamountstored(year-1) - ... 
      (toProcThermal - (SNFinventory - CSamountstored(year-1))))); 
  end 
   
  TRUlosses(year) = lossfraction*(TRUfr(year)+TRUlwr(year)); 
  TRUlwr(year) = (1-lossfraction)*TRUlwr(year); 
  TRUfr(year) = (1-lossfraction)*TRUfr(year); 
end 
  
if OTflag == 0 
% FUEL FAST REACTORS 
  TRUinventory = TRUlwr(year) + TRUfr(year) + TRUinventory; 
  fuelneededFR = (sum(fastreactors(1:59))*yearlyFRneed + fastreactors(60)*... 
    coreFR)*truFracFresh; %fastreactors(60) is zero for EUFR scenarios 
  FRfuelfabricated(year) = fuelneededFR/truFracFresh; 
  
  if fuelneededFR > TRUinventory 
    makeupfuel(year) = fuelneededFR - TRUinventory; 
    TRUinventory = 0; 
  else 
    TRUinventory = TRUinventory - fuelneededFR; 
    FRfuelfab(year) = fuelneededFR/truFracFresh; 
  end 
     
%%%%% BUILD FRs & LWRs %%%%% 
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  unprocessedTRU = (SNFinventory - toProcThermal)*lwrTRUfraction*0.99... 
    + (FRinventory - toProcFast)*truFractionFR*0.99; 
  coolingstorage = sum(coolingpool)*lwrTRUfraction*0.99 ... 
    + sum(coolingpoolFR)*truFractionFR*0.99; 
  
% put EUFRs into normal fast reactor cycle 
fastreactors(60) = fastreactors(60) + EUFRstarting; 
  
% FORECAST FRs 
 if year > FRstart && year < FRend 
  lifetimeTRUneed = (fuelperFR + fuelperyearFR*59)*truFracFresh; 
  fleetforecast = 60*(TRUinventory)... 
    /lifetimeTRUneed; 
  operatingFRs = sum(fastreactors); 
  reactorsneeded = forecastedneed/(FRcapfac);   
  if EUscenario == 0 
    tobuild = min(fleetforecast - operatingFRs, reactorsneeded); 
  elseif EUscenario == 1 
    tobuild = -1; 
    tobuildEUFR = reactorsneeded; 
  elseif EUscenario ==2 && year < EUFRstart 
    tobuild = min(fleetforecast - operatingFRs, reactorsneeded); 
    tobuildEUFR = -1; 
  elseif EUscenario == 2 && year >= EUFRstart 
    tobuild = -1; 
    tobuildEUFR = reactorsneeded; 
  else 
    display('Unknown EU Scenario'); 
    return 
  end 
 else 
   tobuild = -1; 
   tobuildEUFR = -1; 
   operatingFRs = sum(fastreactors); 
 end 
  
 FRsOperating(year) = operatingFRs; 
  
% BUILD FRs 
 if tobuild >= 1 
   actualbuild = tobuild * fractionbuild(year); 
   underconstructionFR(5) = floor(actualbuild); 
 else 
   underconstructionFR(5) = 0; 
 end 
  
 if tobuildEUFR >= 1 
   actualbuildEUFR = tobuildEUFR * fractionbuild(year); 
   underconstructionEUFR(5) = floor(actualbuildEUFR); 
 else 
   underconstructionEUFR(5) = 0; 
 end 
   
 totalconstructionFR = underconstructionFR(5) + underconstructionEUFR(5); 
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% build remaining LWRs 
  remainingneed = forecastedneed - totalconstructionFR*FRcapfac; 
  LWRdemand(year) = remainingneed; 
  reactorsneeded = remainingneed/(LWRcapfac); 
    if reactorsneeded >= 1 
      underconstruction(5) = floor(reactorsneeded); 
    else 
      underconstruction(5) = 0; 
    end 
  
end 
     
    %%% DISCHARGE AND DECOMMISSION %%% 
     
% LWR SNF 
  snfdischarged = reactors(1)*fuelperLWR +... 
    sum(reactors(2:60))*fuelperyearLWR; 
  SNFcooled(year) = coolingpool(1); 
  coolingpool = circshift(coolingpool,[0, -1]); 
  coolingpool(5) = snfdischarged; 
  SNFstock(year) = SNFinventory + SNFcooled(year); 
  SNFinventory = SNFstock(year); 
   
% put SNF into CS 
%{ 
if year >= CSstart && removalflagoff == 1 
  if SNFstock(year) > 20000 && spaceCS < 3000 % build CS facilities 
    CSbuilt(year) = 1; 
    opCS = opCS + 1; 
    spaceCS = spaceCS + 15000; 
  end 
  CSoperating(year) = opCS; 
  if spaceCS > 15 && SNFstock(year) > 15  % transport SNF 
    CSsnftransported(year) = min(2500,SNFstock(year)); 
    spaceCS = spaceCS - CSsnftransported(year); 
    CSamountstored(year) = CSamountstored(year-1) + CSsnftransported(year); 
  end 
end 
%} 
     
   
% FR SNF 
  frdischarged = fastreactors(1)*fuelperFR + ... 
    sum(fastreactors(2:60))*fuelperyearFR; 
  FRcooled(year) = coolingpoolFR(1); 
  coolingpoolFR = circshift(coolingpoolFR,[0, -1]); 
  coolingpoolFR(2) = frdischarged;  
  FRstock(year) = FRinventory + FRcooled(year); 
  FRinventory = FRstock(year); 
   
  TRUstock(year) = TRUinventory; 
   
% step reactor arrays 
   FRsConstructed(year) = underconstructionFR(1); 
   FRsDecommissioned(year) = fastreactors(1); 



 

182 
 

   fastreactors = circshift(fastreactors, [0,-1]); 
   fastreactors(60) = underconstructionFR(1); 
   underconstructionFR = circshift(underconstructionFR, [0, -1]); 
  
   EUFRsConstructed(year) = underconstructionEUFR(1); 
   underconstructionEUFR = circshift(underconstructionEUFR, [0, -1]); 
    
   TotalFRsConstructed(year) = FRsConstructed(year) + EUFRsConstructed(year); 
    
   ReactorsConstructed(year) = underconstruction(1); 
   ReactorsDecommissioned(year) = reactors(1); 
   reactors = circshift(reactors, [0,-1]); 
   reactors(60) = underconstruction(1); 
   underconstruction = circshift(underconstruction, [0, -1]); 
   
end 
  
scaledSNF = sum(SNFreprocessed)/squish; 
  
Waste = [SNFstock(100), sum(FP), sum(TRUlosses), scaledSNF]; 
  
ToPass = {NaturalUraniumConsumed', SWU', LWRfuelfabricated', ... 
  FRfuelfabricated', ReactorsConstructed', TotalFRsConstructed', ... 
  ReactorsOperating', FRsOperating', electricityLWR', ... 
  electricityTFR', SNFreprocessed', FRreprocessed', ...  
  ReactorsDecommissioned', FRsDecommissioned', SNFcooled', ... 
  FRcooled', CSbuilt', CSoperating', CSsnftransported', ... 
  Waste}; 
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Appendix B:  Comparison of FANTSY with the 
MIT Center for Advanced Nuclear Energy 
Systems Benchmark of CAFCA, VISION, 
DANESS, and COSI 

 

The Flexible Advanced Nuclear Technology Simulation by Year (FANTSY) code is a 

dynamic 100-year simulation of the U.S. nuclear fuel cycle. It contains a very simple set of rules, 

which initialize the current reactor fleet and then build light water reactors (LWRs) and fast 

reactors (FRs) according to a nuclear electricity demand profile. The code does not simulate any 

facilities other than reactors, but does contain calculations to limit the amount of reprocessing 

capacity available to the system. One difference between the FANTSY code and the benchmark 

study conducted by MIT CANES is that FANTSY is run for 100 years, from 2010 to 2109, while 

the benchmark study required codes to run from 2005 to 2100. 

 

B.1 Initial Comparison: Benchmark Scenario 3A 
 The CANES benchmark exercise includes several different scenarios. Scenario 3A calls 

for zero increase in electricity demand over the next 100 years (meaning that reactors are only 

built in order to replace decommissioned ones). Fast reactors with conversion ratio 1.0 are 

introduced in 2040. The reprocessing capacity profile is shown below in Figure B-1; this is the 

profile that was implemented by all codes for runs of scenario 3A in the benchmark study. The 

profile was generated by CAFCA. 
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Figure B-1: Reprocessing capacity profile for scenario 3A, provided by CAFCA to the other codes 
for benchmarking purposes in the CANES benchmark study 
 

 FANTSY provides simulation results that track very well with the other codes in this 

benchmark exercise.  
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Figure B-2: Operating reactors by MWe capacity (Case 3A) 
 

Figure B-2 shows the profile of operating light-water reactors over the course of the 

simulation, comparing FANTSY to the results from the four-code benchmark. Figure B-3 and 

Figure B-4 show the FR and total capacity profiles generated by all five codes. All figures 

demonstrate a leveling of LWR capacity at about 45 GWe, at the same time FRs levelize at about 

60 GWe. The number of reactors increases slightly with the introduction of FRs because FRs 

have a lower capacity factor than LWRs (85% vs. 90%). 
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Figure B-3: FR operational reactor capacity (Case 3A) 

 
Figure B-4: Total operational reactor capacity (Case 3A) in benchmark exercise 
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 FANTSY results are next compared to the benchmark runs for one front-end and one 

back-end variable. The yearly natural uranium consumption is calculated by FANTSY, and 

presented in Figure B-5 alongside the results from the other four codes. The profile closely 

matches those from the benchmark study. FANTSY tracks best with CAFCA and VISION, 

though the high peak of uranium consumption reached by FANTSY much more closely matches 

the CAFCA high value. This makes sense because the fast reactor ordering rule in FANTSY 

mirrors CAFCA’s, and other modeling choices made in FANTSY explicitly reflect the CAFCA 

calculation. 

 

 
Figure B-5: Yearly natural uranium consumption rate (Case 3A) 
 

The buildup of separated transuranic material (TRU) similarly shows good agreement 

between FANTSY and the benchmarking exercise. Figure B-6 shows the TRU buildup for 

FANTSY and the benchmarked codes. Note that for this variable, FANTSY tracks better with 

VISION, DANESS, and COSI than CAFCA. This is because CAFCA immediately fabricates 
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any separated TRU as long as FRs are in operation. After FRs are introduced in 2040, CAFCA 

no longer maintains any separated TRU in storage. The design choice in FANTSY was to match 

the non-CAFCA fabrication rules, such that a buildup of TRU happens even after FRs are 

deployed. 

 

Figure B-6: Amount of separated TRU in storage (Case 3A) 
  

 FANTSY does generate more separated TRU during the earlier periods (about 2035-

2065), and generates less TRU during the second major buildup. FANTSY nevertheless exhibits 

the same general behavior as the other codes, showing deltas roughly equivalent to those 

between the benchmarked scenarios. 

  

B.2 Second Comparison: Case 3B 
 Case 3B of the benchmark report involves fast reactors with a conversion ratio of 1.0, and 

a growth rate of 1.5% per year in nuclear electricity demand. For case 3A above, the benchmark 
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in order to get very high agreement. For case 3B, the codes were not so carefully tuned and 

therefore display a range of results. 

 The FANTSY code is no different. Indeed, FANTSY was designed expressly to conform 

to results from the benchmark case 3A, and similarly shows behavior different from the other 

codes as soon as a growth rate is introduced. Some of the difference could be because a single 

timestep for FANTSY is one year, whereas for the other codes it may be smaller (for example, 

VISION and CAFCA perform calculations over month-long timesteps). In general, the results 

provided by FANTSY seem to be within the range of deltas between the four originally 

benchmarked codes. 

 For the benchmark, the reprocessing capacity profile was not directly specified as it was 

in case 3A (codes were allowed to optimize reprocessing capacity additions). The results for case 

3B are thus shown for two profiles incorporated into FANTSY: one mirrors the profile CAFCA 

used in the benchmark study, and one is adjusted to show the effect of tuning the profile toward 

the eventual design decisions made for FANTSY’s reprocessing rules. Figure B-7 shows the 

adjustment made for the thermal reprocessing capacity: the profile is shifted so that reprocessing 

begins two years later, in 2012. This is a very crude way of implementing a 2-year waiting 

period between initializing reprocessing and using reprocessed fuel (some of the benchmark 

codes assume 1 year for reprocessing and 1 year for fuel fabrication before use of the fuel, such 

that 2012 marks the first year reprocessed fuel is available).  

Figure B-8 shows the fast reprocessing profile. In the benchmark study, fast reactor fuel 

reprocessing begins in 2045. A design decision was made for FANTSY to begin building a small 

amount of FR fuel reprocessing capacity in 2035, five years before the introduction of CR 1.0 

reactors which will recycle their own fuel. This way, technology and design issues would 

presumably have a greater chance of being resolved by the time the first spent FR fuel is 

available in 2041. The orange line represents this adjusted reprocessing profile. 
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Figure B-7: Thermal reprocessing capacity: FANTSY adjustment to allow for two-year delay 
between start of reprocessing and use of reprocessed fuel 

 

 Figure B-8: Fast reprocessing capacity adjustment: FR reprocessing starts in 2041 
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Figure B-9 and Figure B-10 show profiles for the operating fleet of reactors. These are 

the most important parameters for the decision analysis study, because both the system cost and 

amount of waste discharged are depend very heavily on the number of reactors. There are some 

significant differences between the FANTSY results and the benchmarked code behaviors. 

 

 
Figure B-9: Installed LWR Capacity by year (Case 3B) 
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Figure B-10: Installed FR capacity by year (Case 3B) 
 

  

The first difference is that the fast reactor buildup in the benchmarked cases is nearly 

always continually increasing (although COSI and VISION demonstrate short periods where FR 

capacity flattens). The number of reactors operating in any given year, however, is 

commensurate with the general pattern exhibited in the benchmark scenarios. Differences are 

most likely due to differences in the ordering algorithm for fast reactors. DANESS, for example, 

shoots for a certain percentage of fast reactors by the end of the century, and only requires a 

minimum of five years of TRU fuel be available. FANTSY, by contrast, will only build fast 

reactors if there is a lifetime supply of TRU available for a fast reactor AFTER all FRs in a given 

year have been fueled. This constraint is similar to the one used in CAFCA, and it leads to 

overbuilding when stocks of potential fuel are high and plateaus later. 
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 The differences seen in the number of LWRs are a direct result of the different patterns of 

FR deployment. Because the slope of FR builds is so steep from ~2072-2090, the LWR capacity 

dips extremely low for the FANTSY case. 

 As expected, adjusting the profile for building reprocessing capacity has an impact on the 

pattern of FR vs. LWR builds. The adjustment for FANTSY (orange curves) involves building 

thermal reprocessing one year later and fast reprocessing earlier. This enables a greater buildup 

of feedstock for FRs, so that the first plateau is higher when thermal reprocessing comes later. 

Readily available FR spent fuel reprocessing then enables a steeper FR buildup later in the 

century. 

 Figure B-11 shows the inventory of separated TRU for FANTSY and for the 

benchmarked codes. One can see that the TRU stock for FANTSY more or less fits within the 

realm exhibited by the benchmarked codes, except for a dramatic rise in TRU inventory when 

CAFCA’s reprocessing profile is used (red dotted curve). Several factors contribute to 

FANTSY’s higher buildup of TRU later in the century. One is that FANTSY (like COSI, but not 

the other codes) includes separated TRU from FR SNF reprocessing. This is a relatively small 

but observable effect. The bigger reason is that the plateaus for FR builds are longer in 

FANTSY, so TRU stocks build up significantly after an overbuild and a lag (five years of 

construction time) once they recover from depletion. This effect is similar in CAFCA, but 

CAFCA continues to fabricate any separated TRU regardless of need, so the TRU stock never 

builds up after the middle of the century. Finally, FANTSY always separates as much TRU as 

possible (using 100% of the available reprocessing capacity as long as feedstock exists). This 

allows for conservatism in the code: given that separated TRU stocks are generally undesirable, 

FANTSY calculates the upper limit. 

Most importantly, Figure B-11 shows that the FANTSY TRU stock profile is consistent 

with the FANTSY reactor builds, given a delay in construction once TRU stocks rise. It also 

shows differences between FANTSY and the other codes of a similar magnitude to the between-

code benchmark differences. Note that by providing a less restrictive reprocessing profile, the FR 

plateaus would shorten and the second peak would decrease in height (see Figure B-12). 

Furthermore, though this parameter exhibits greater differences between FANTSY and the 

benchmark than other parameters, the amount of TRU in storage does not currently factor into 
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the decision framework. Future analyses which take TRU stockpiles into account would require a 

more sophisticated version of the code. 

 
Figure B-11: TRU inventory by year (Case 3B) 
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Figure B-12: TRU stockpile including an agressive reprocessing build profile (lessens second 
buildup) 
 

The natural uranium consumption rate for FANTSY and the benchmarked codes shows 

good agreement, as demonstrated in Figure B-13. The SWU and UO2 fabrication rates closely 

mirror natural uranium consumption, so they are not shown here. Some of the dips shown for 

FANTSY are more dramatic than those for the benchmarked codes. This is due to the rapid 

buildup of FRs in the middle of the FANTSY simulation.  
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Figure B-13: Natural uranium consumed by LWRs (Case 3B) 
 

 Figure B-14 shows the FR fuel fabrication rates. Yet again, one can see plateaus in the 

rate exhibited by the FANTSY code, because fuel is fabricated as needed by the operating FRs 

(which plateau for reasons explained above). In general, the FANTSY results align well with the 

other codes. 
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Figure B-14: FR fuel fabrication by year (Case 3B)  
 

 The final two figures show the cooled UO2 and FR spent fuel stocks over the course of 

the simulation. The UO2 stocks match fairly closely. FANTSY initializes in 2010, and assumes 

63,000 MT spent UO2 in that year (close to the actual amount reported by industry: 62,500 in 

May 2010 by the Nuclear Energy Institute). (Nuclear Energy Institute, 2010) This is slightly 

higher than the amount originally extrapolated by the other codes in 2005. Note also that the 

adjusted reprocessing profile involves a slightly higher buildup of spent UO2, because 

reprocessing is delayed. 
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Figure B-15: Spent LWR fuel in cooled storage (Case 3B) 
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Figure B-16: Spent FR fuel in cooled storage (Case 3B) 
 

 The FR spent fuel stocks show dramatic variation between all codes. The adjusted 

FANTSY run shows very good agreement with COSI and DANESS, producing a smaller 

buildup of spent FR fuel because of a more aggressive FR reprocessing profile. The CAFCA-

based FANTSY scenario (red) includes a bigger FR buildup because of the FR plateau combined 

with a more restrictive profile for spent FR fuel reprocessing. 

 

B.3 Third Comparison: Scenario 1B 
 Scenario 1B consists of the same nuclear electricity demand increase (1.5% per year), but 

now with the introduction of conversion ratio 0.5 (burner) reactors rather than self-sustaining. As 

for case 3B, two reprocessing profiles are employed: the red lines result from CAFCA’s 

reprocessing profile, and the adjusted profile (orange data) involves slightly later thermal 

reprocessing, and an earlier and more aggressive build pattern for FR spent fuel reprocessing 

capacity. 
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The results of the comparison are similar to those for scenario 3B. This time, however, 

the immediate buildup of FRs is even more rapid for the FANTSY code than for the 

benchmarked codes. This leads to an extensive time of zero FR builds, followed by a catching-up 

toward the end of the simulation. About the same number of FRs is eventually built for the 

standard CAFCA reprocessing profile, but the adjusted profile allows for building many more 

FRs due to the greater amount of FR reprocessing capacity. In both cases, the FANTSY build 

pattern is significantly different (see Figure B-17 and Figure B-18). 

 

 
Figure B-17: Operating LWRs (Case 1B) 
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Figure B-18: Operating FRs (Case 1B) 
 

 The two reprocessing profiles produce similar results for FANTSY until the end. This is 

because the greatest difference between them is a much more aggressive FR spent fuel 

reprocessing capacity build (more aggressive than for all other codes), indicating that 

appropriately restricting the FR capacity is important. As for case 3B, the rises and plateaus 

happen because of overbuilding and time lags in FANTSY. The TRU stockpile follows 

expectation for FANTSY, given the build profile for fast reactors (Figure B-19). 
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Figure B-19: Separated TRU (Case 1B) 
 

 The overbuilding and plateau effects in FANTSY occur because there are no restrictions 

on the number of fast reactors that can be built in any given year. The other codes also tend to 

implement restrictions about the size of reprocessing facilities, and require that they maintain a 

high capacity factor while they are operating. While these assumptions may be well-founded and 

representative of how industry will perform its capacity planning, it is also possible that delays 

and overbuilds may characterize fleet construction. FANTSY has the ability to simulate both 

possibilities. 

 In order to make the results from FANTSY smooth, like those in the benchmarking 

exercise, a limit was imposed on fast reactor builds of 2 reactors per year. When applied over the 

entire length of the simulation, the FANTSY code exhibited reactor build behavior similar to 

CAFCA but at a shallower slope and without a resulting plateau (see Figure B-20). 
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Figure B-20: FR capacity, including a restricted FANTSY build (maximum 2 FRs per year) 
 

 Interestingly, this artificial smoothing of the FR builds enables much more predictable 

management of the TRU stocks, which never reach zero. In turn, this means that FR operators 

would never need to turn to enriched uranium to fuel their reactors. This is not the case when 

there is no limit on the pace of FR builds. For the cases above, when the FR operating profile is 

flat, for many of those years there is not enough TRU from LWRs and FRs to completely fuel 

the whole FR fleet. This shows that the system properties are extremely sensitive to the build rate 

of FRs, and whether any industrial constraints exist on building them or reprocessing plants. 
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reprocessing capacity expansion, the master code operates its own capacity calculation based on 

that employed by CAFCA. 

 The code assumes that until 2050, a maximum of 500MT/year thermal reprocessing 

capacity can be added each year. After 2050, this increases to 1000MT/year. Fast reprocessing 

capacity is restricted to 50MT/year built each year until 2065, after which 150MT/year capacity 

can be added yearly. 

 The needed reprocessing capacity is calculated based on the influx of spent nuclear fuel 

to cooling storage and the current inventory. Figure B-21 shows the existing reprocessing 

capacity each year. Figure B-22 shows the resulting profile of reactor builds (note that for the 

master code, the initial fleet is changed to reflect 104 reactors and the associated initial nuclear 

capacity).  

 A factor known in CAFCA as the “instantaneous depletion time” actually determines the 

level of conservatism in building reprocessing plants. A high instantaneous depletion time means 

that more TRU is required in the stocks and flows of spent fuel in order to allow the building of a 

given number of reprocessing plants. Changing this depletion time from 30/33 (thermal/fast) to 

50 (the lifetime of the reprocessing plants) changed the number of thermal reprocessing plants 

built (see Figure B-23) but not the reactor build profile for this particular case. In the end, 50 was 

chosen in order to be conservative and slow the building of fast reactors to make FANTSY 

results closer to those of other codes. 
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Figure B-21: Reprocessing Capacity as modeled by the FANTSY master code for scenario 3B 
 

 
Figure B-22: Operating reactors generated by FANTSY master code for scenario conditions 3B 
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Figure B-23: Reprocessing Capacity as modeled by the FANTSYn50 master code for scenario 3B, 
with a 50-year “instantaneous depletion time” 
 

B.5 Sensitivities of the Fuel Cycle Code 
 The FANTSY fuel cycle code is sensitive to several parameters. The above analyses 

already demonstrated some sensitivity of the results to the profile for building reprocessing 

plants. The results were well-aligned with the benchmarked codes for the CAFCA-esque 

reprocessing curve, so rules somewhat similar to CAFCA were employed in the final code. 

Given that fairly significant adjustments in the reprocessing profile still produce similar results 

(other than the pattern of FR builds), these rules are used consistently throughout the thesis and 

sensitivity analysis is performed on the FR build pattern. 

The results depend much more strongly on the specific year in which FRs are introduced. 

Figure B-24 shows the operating reactor profiles when FRs are introduced in 2060 rather than 

2040 (using the assumptions of case 3B). The later introduction date actually allows about 75 

more reactors to be built by the end of the simulation, because the LWR fleet builds up to 

provide more fuel initially for a rapid FR takeover. 
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Figure B-24: Operating reactor profiles for LWRs and FRs given a 2060 start date for FRs rather 
than 2040 
 

 The profile of TRU in storage differs considerably between the two simulations with 

different FR introduction dates (see Figure B-25 and Figure B-26). Interestingly, the amplitude 

of the TRU stock is roughly the same for both cases; in neither scenario does the TRU stock go 

above 1500 MTHM. There is, however, a stark difference in the timing of maximum TRU in 

storage. 
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Figure B-25: TRU stocks over time when FRs are introduced in 2040 

 
Figure B-26: TRU stocks over time when FRs are introduced in 2060 
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The results are also extremely sensitive to any restrictions on industrial capacity for 

building reactors. If one limits the number of reactors that can be built per year, and if this 

number is lower than the total number of reactors demanded, the results will show dramatic 

differences in the buildup of TRU and the resulting reactor mix. The difference is not so stark for 

a limit of 10 LWRs built per year (see Figure B-27, compare to Figure B-22). 

 

 
Figure B-27: Operating reactors over time with a 10-LWR per year construction limit 
 

 The difference is quite large, however, between the base master case and a case which 

employs a more complex, gradually expanding industrial capacity. The statement added to the 

code controls the maximum amount of each type of reactor that can be built per year: 

 
if year < 2040 
  LWRmax = 5; 
  FRmax = 2; 
elseif year < 2045 
  LWRmax = 8; 
  FRmax = 5; 
elseif year < 2060 
  LWRmax = 10; 
  FRmax = 8; 
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else 
  LWRmax = 13; 
  FRmax = 10; 
end 
 
 Results for this case are shown in Figure B-28. Many fewer fast reactors are built with 

this constraint, indicating that the operating profile is especially sensitive to FR build restrictions. 

 
Figure B-28: Operating reactors over time with complex yearly expanding construction limits on 
LWRs and FRs 
  

The number of reactors built is NOT very sensitive to the amount of legacy fuel in the 

system. 

 

B.6 Conclusions 
Overall, the most important conclusion from this benchmarking exercise is that FANTSY 

produces results within similar ranges to those of four more sophisticated fuel cycle simulations.  

Each of the five codes described here has advantages and disadvantages; VISION and 

COSI, for example, are very detailed and offer an enormous amount of flexibility in simulating 

different scenarios (e.g. with up to 10 different reactor types built simultaneously into the fleet 

for VISION). FANTSY’s primary advantage is its simplicity, allowing for rapid adjustments to 
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the code structure and fast runtime (microseconds versus 5 minutes in VISION for a single 

scenario). Rapid runs are essential for the high numbers of scenario iterations demanded by 

decision trees in this thesis. 

There are some differences between all codes in the amounts and timing of reactor builds 

and material stockpiles. In general, the differences between FANTSY and the other codes occur 

because of the pattern of FR builds, but the ultimate vales attained (of FRs built and related 

parameters) are generally equivalent. The magnitude of difference between FANTSY and other 

codes tends to be the same as the differences among the other four codes, further increasing 

confidence that FANTSY provides valid results. 

Section B6 discussed the primary sensitivities of FANTSY, exploring the reasons for the 

difference in FR build patterns: restricting the industrial building capacity for fast reactors 

smoothes the pace of FR builds, as does increasing the date of FR introduction. These parameters 

are studied explicitly in the body of the thesis to see the effect of the FR build pattern on fuel 

cycle decision making. In this way, the thesis explores a system with delays (the natural “start-

stop” pattern of building exhibited by FANTSY) and a more smoothed introduction of fast 

reactors (generally typified by the other codes). Both patterns of building FRs into the reactor 

system are plausible. 

Choosing rules for FR ordering and material stockpiling is partly an art. It is not clear, for 

example, how industry will assess the market for TRU to start up and fuel a fast reactor when 

making construction decisions. It is also unclear whether market restrictions may limit the pace 

of building fast reactors. Each of the five codes handles these issues somewhat differently. 

Ultimately, however, the codes can be tuned to produce nearly identical results, and otherwise 

give qualitatively similar solutions. FANTSY can thus be trusted to provide a reasonably 

consistent and valid picture of the nuclear fuel cycle.  

 

B.7 The Initial FANTSY Code 
 Note that several versions of the MATLAB code were created during the benchmarking 

process. The code below represents the most “finely tuned” to the CANES benchmarking 

specifications. Like the CANES benchmark, this version of the simulation has a static, built-in 

reprocessing capacity profile. This code mimics the benchmarking scenario 3A. 
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% single-run core file 
% FANTSY7 (base = FANTSY6): restricts the building of reprocessing plants, to 
try  
% to get TRU profile in line with benchmark 
% this file has a "hard constraint" that includes exactly the reproc build 
% profile specified in the benchmark for case 3A 
  
% NOTE: this also fixes the fact that the decision to build FRs is based on 
% TRU stocks *AND* SNF and FR fuel stocks that have not undergone reproc 
  
% OT or FR flag 
OTflag = 0; % if zero, this is an FR run; if 1, this is an OT run 
  
% when to start and stop FR builds 
FRstartyear = 2040; % type in the year to start building FRs; 0 is never 
start 
FRstopyear = 0; % type in the year to stop FRs; zero is never stop 
  
% constants: these do not change for any run 
legacySF = 63000; % MT 
% reactors = [0 0  0  0  0  0  0  0  0  0  0  0  0  0  0 ...   
 % 0 0  3  3  2  6  11 13 2  7  3  3  0  3  4  5  4 ...   
  % 8 6  9  5  1  2  1  0  0  1  0  1  0  0  0  0  0 ...   
  %0 0  0  0  0  0  0  0  0  0  1]; % with legacies 
reactors = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 2 4 8 10 2 6 4 ... 
  3 0 2 3 8 4 9 7 10 7 0 3 1 0 0 1 0 1 0 0 0 0 0 0 0 ... 
  0 0 0 0 0 0 0 0 0]; % benchmark version 
LWRcapfac = 0.9; 
FRcapfac = 0.85; 
capacity2010 = 100*LWRcapfac; % GWe - 100 for benchmark, 104 otherwise 
  
TRUinventory = 0; % assume we will NOT recycle legacy SF; otherwise this >0 
CR = 1.0; 
  
if CR == 1.0 
  lifetimeTRUneed = 705.71*0.139; % MTHM, given  
  coreFR = 45.5;  
  yearlyFRneed = 11.19; 
  truFractionFR = 0.141; % fraction of FR SNF that is TRU - Hoffman 
  fuelperFR = 45.5; % MT per year - from CAFCA 'FR' Fuel Core Mass 
  fuelperyearFR = 11.19; 
  truFracFresh = 0.139; 
elseif CR == 0.5 
  lifetimeTRUneed = 390.87*0.333; % MTHM, given  
  coreFR = 25.66;  
  yearlyFRneed = 6.19; 
  truFractionFR = 0.270; 
  fuelperFR = 25.66; 
  fuelperyearFR = 6.19; 
  truFracFresh = 0.333; 
else 
  display('Bad Conversion Ratio'); 
end 
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% parameters that change by run 
year1 = 2015; 
year2 = 2040; 
year3 = 2065; 
yrChange1 = year1 - 2010; 
yrChange2 = year2 - 2010; 
yrChange3 = year3 - 2010; 
growth1 = 0.0; %growth rates in fractional form 
growth2 = 0.0; 
growth3 = 0.0; 
growth4 = 0; 
% FR start flags 
switch FRstartyear 
  case 0 
    FRstart = 1000; 
    reprocstart = 1000; 
  otherwise 
    FRstart = FRstartyear - 2010 - 5; 
    reprocstart = 2020 - 2010; 
end 
switch FRstopyear 
  case 0 
    FRend = 1000; 
    reprocend = 1000; 
  otherwise 
    FRend = FRstopyear; 
    reprocend = FRstopyear; 
end 
  
% initializations of temporary and output vectors 
demandzero = capacity2010; 
demand = zeros(1,100); 
underconstruction = zeros(1,5); 
ReactorsConstructed = zeros(1,100); 
ReactorsOperating = zeros(1,100); 
ReactorsDecommissioned = zeros(1,100); 
  
FRsConstructed = zeros(1,100); 
FRsOperating = zeros(1,100); 
FRsDecommissioned = zeros(1,100); 
underconstructionFR = zeros(1,5); 
makeupfuel = zeros(1,100); 
  
fastreactors = zeros(1,60); 
  
% demand vectors 
Forecast = zeros(1,100); 
LWRdemand = zeros(1,100); 
LWRdemandfilled = zeros(1,100); 
FRdemandfilled = zeros(1,100); 
  
%%%% REPROCESSING CAPACITY %%%% 
maxSNFyearlyadd = 500; % amount of MT reproc capacity that can be built 
yearly 
maxFRyearlyadd = 50; 
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thermalReprocCapacity = [0 0 0 0 0 0 0 0 0 0 500 1000 1000 1500 2000 2000 ... 
2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2500 ... 
3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 ... 
3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 ... 
3000 3000 3000 3000 3000 3000 3000 3000 3000 2500 2000 ... 
2000 1500 1000 1000 1000 1000 1000 1000 1000 1000 1000 ... 
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 ... 
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 ... 
1000 1000 1000 1000 1000]; 
frReprocCapacity = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 100 150 200 250 ... 
300 350 400 450 500 500 550 600 600 600 600 600 600 ... 
600 600 600 600 600 600 600 600 600 600 600 600 600 ... 
600 600 600 600 600 600 600 600 600 600 600 600 600 ... 
600 600 600 600 600 600 650 700 700 750 800 800 800 ... 
800 800 800 800 800 800 800 800]; 
  
  
%%%% FUEL MODULE %%%% 
  
lwrenrichment = 0.042; 
xf = 0.0071; % feed enrichment (natural uranium at 0.71%) 
xt = 0.0025; % tail assay (0.25%) 
fuelperLWR = 87.76; % MT/reactor 
fuelperyearLWR = 19.73; % MT/reactor/year 
  
  
lwrTRUfraction = 0.0128; % fraction MTIHM - from CAFCA 'LWR':M11 
coolingpool = ones(1,5)*2000; % size of this vector is the wet cooling time 
coolingpoolFR = zeros(1,2); 
  
% yearly front-end output data 
FuelConsumed = zeros(1,100); % MTHM 
SWU = zeros(1,100); % kg-SWU 
NaturalUraniumConsumed = zeros(1,100); % MT 
  
% yearly back-end output data 
SNFcooled = zeros(1,100); 
FRcooled = zeros(1,100); 
TRUlwr = zeros(1,100); 
TRUfr = zeros(1,100); 
TRUlosses = zeros(1,100); 
TRUstock = zeros(1,100); 
SNFstock = zeros(1,100); 
FRstock = zeros(1,100); 
SNFinventory = legacySF; 
FRinventory = 0; 
TRUinventory = 0; 
  
  
for year = 1:100 % 100 year simulation, 2010 - 2110 
% nuclear electricity growth and forecasting 
  if year == 1 
    demand(year) = demandzero; 
    forecast = demand(year)*(1+growth1)^5; 
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  elseif year < yrChange1 - 5 
    demand(year) = demand(year - 1)*(1+growth1); 
    forecast = demand(year)*(1+growth1)^5; 
  elseif year < yrChange1 && year > yrChange1-5 
    demand(year) = demand(year - 1)*(1+growth1); 
    forecast = demand(year)*(1+growth2)^5; 
  elseif year < yrChange2 - 5 
    demand(year) = demand(year - 1)*(1+growth2); 
    forecast = demand(year)*(1+growth2)^5; 
  elseif year < yrChange2 - 5 && year < yrChange2 
    demand(year) = demand(year - 1)*(1+growth2); 
    forecast = demand(year)*(1+growth3)^5; 
  elseif year < yrChange3 - 5 
    demand(year) = demand(year - 1)*(1+growth3); 
    forecast = demand(year)*(1+growth3)^5;    
  elseif year < yrChange3 - 5 && year < yrChange4 
    demand(year) = demand(year - 1)*(1+growth3); 
    forecast = demand(year)*(1+growth4)^5;   
  else 
    demand(year) = demand(year - 1)*(1+growth4); 
    forecast = demand(year)*(1+growth4)^5;  
  end 
   
    ops = sum(reactors(6:60)); 
    ReactorsOperating(year) = sum(reactors); 
    generation = ops*LWRcapfac + sum(fastreactors(6:60))*FRcapfac; 
    futuregen = sum(underconstruction(1:4))*LWRcapfac + ... 
      sum(underconstructionFR(1:4))*FRcapfac; 
    forecastedneed = forecast-(generation+futuregen);  
    Forecast(year) = forecastedneed; 
  
% build LWRs     
  if OTflag 
    reactorsneeded = forecastedneed/(LWRcapfac); 
    if reactorsneeded >= 1 
      underconstruction(5) = floor(reactorsneeded); 
      LWRdemandfilled(year) = underconstruction(5)*0.9; 
    else 
      underconstruction(5) = 0; 
    end 
  end 
   
% FRONT-END FUEL CALCS 
   FuelConsumed(year) = fuelperLWR*reactors(60) + fuelperyearLWR*... 
     sum(reactors(1:59)); 
   NaturalUraniumConsumed(year) = FuelConsumed(year)*(lwrenrichment-... 
     xt)/(xf-xt); 
   vp = (2*lwrenrichment-1)*log(lwrenrichment/(1-lwrenrichment)); 
   vf = (2*xf-1)*log(xf/(1-xf)); 
   vt = (2*xt-1)*log(xt/(1-xt)); 
   SWU(year) = (FuelConsumed(year)*vp + (NaturalUraniumConsumed(year)... 
     - FuelConsumed(year))*vt - NaturalUraniumConsumed(year)*vf)*1000; 
  
   %%% REPROCESS AND FUEL UP %%% 
  
% REPROCESSING - note all FRSNF/SNF has same losses 
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if year > reprocstart   
  % build reprocessing capacity 
  
  tRC = thermalReprocCapacity(year); 
  fRC = frReprocCapacity(year); 
  toProcThermal = min(tRC, SNFinventory); 
  toProcFast = min(fRC, FRinventory); 
   
  TRUlwr(year) = lwrTRUfraction*toProcThermal; 
  TRUfr(year) = truFractionFR*toProcFast; 
  SNFinventory = SNFinventory - toProcThermal; 
  FRinventory = FRinventory - toProcFast; 
   
  TRUlosses(year) = 0.01*(TRUfr(year)+TRUlwr(year)); 
  TRUlwr(year) = 0.99*TRUlwr(year); 
  TRUfr(year) = 0.99*TRUfr(year); 
end 
  
if OTflag == 0 
  
% FUEL FAST REACTORS 
  TRUinventory = TRUlwr(year) + TRUfr(year) + TRUinventory; 
  fuelneededFR = (sum(fastreactors(1:59))*yearlyFRneed + fastreactors(60)*... 
    coreFR)*truFracFresh; 
 
%%%%% BUILD FRs & LWRs %%%%% 
  unprocessedTRU = (SNFinventory - toProcThermal)*lwrTRUfraction*0.99... 
    + (FRinventory - toProcFast)*truFractionFR*0.99; 
  
  if year > FRstart && year < FRend 
% FORECAST FRs 
  fleetforecast = 60*(TRUinventory)/lifetimeTRUneed; 
  operatingFRs = sum(fastreactors); 
  FRsOperating(year) = operatingFRs; 
  
  reactorsneeded = forecastedneed/(FRcapfac); 
   
  tobuild = min(fleetforecast - operatingFRs, reactorsneeded); 
  
  if fuelneededFR > TRUinventory 
    makeupfuel(year) = fuelneededFR - TRUinventory; 
    TRUinventory = 0; 
  else 
    TRUinventory = TRUinventory - fuelneededFR; 
  end 
 
% BUILD FRs 
    if tobuild >= 1 
      underconstructionFR(5) = floor(tobuild); 
      FRdemandfilled(year) = underconstructionFR(5)*0.9; 
    else 
      underconstructionFR(5) = 0; 
    end 
  end 
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% build remaining LWRs 
  remainingneed = forecastedneed - underconstructionFR(5)*FRcapfac; 
  LWRdemand(year) = remainingneed; 
  reactorsneeded = remainingneed/(LWRcapfac); 
    if reactorsneeded >= 1 
      underconstruction(5) = floor(reactorsneeded); 
      LWRdemandfilled(year) = underconstruction(5)*0.9; 
    else 
      underconstruction(5) = 0; 
    end 
  
end 
     
    %%% DISCHARGE AND DECOMMISSION %%% 
     
% LWR SNF 
  snfdischarged = reactors(1)*fuelperLWR +... 
    sum(reactors(2:60))*fuelperyearLWR; 
  SNFcooled(year) = coolingpool(1); 
  coolingpool = circshift(coolingpool,[0, -1]); 
  coolingpool(5) = snfdischarged; 
  SNFstock(year) = SNFinventory + SNFcooled(year); 
  SNFinventory = SNFstock(year); 
   
% FR SNF 
  frdischarged = fastreactors(1)*fuelperFR + ... 
    sum(fastreactors(2:60))*fuelperyearFR; 
  FRcooled(year) = coolingpoolFR(1); 
  coolingpoolFR = circshift(coolingpoolFR,[0, -1]); 
  coolingpoolFR(2) = frdischarged;  
  FRstock(year) = FRinventory + FRcooled(year); 
  FRinventory = FRstock(year); 
   
  TRUstock(year) = TRUinventory; 
   
% step reactor arrays 
   FRsConstructed(year) = underconstructionFR(1); 
   FRsDecommissioned(year) = fastreactors(1); 
   fastreactors = circshift(fastreactors, [0,-1]); 
   fastreactors(60) = underconstructionFR(1); 
   underconstructionFR = circshift(underconstructionFR, [0, -1]); 
  
    
   ReactorsConstructed(year) = underconstruction(1); 
   ReactorsDecommissioned(year) = reactors(1); 
   reactors = circshift(reactors, [0,-1]); 
   reactors(60) = underconstruction(1); 
   underconstruction = circshift(underconstruction, [0, -1]); 
   
end 
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Appendix C:   A Medium-Cost, Waste-Neutral 
Technology Option 

 

Throughout the thesis, nuclear electricity demand is treated as an exogenous variable: 

nuclear power growth may be high or low, depending on the availability and cost of other energy 

generation technologies. This enables an exclusive focus on nuclear technology decisions, but in 

reality, such decisions will be made in the context of the broader energy mix. One natural 

question that arises, and is not easily answered within the framework presented here, is whether 

nuclear technology decisions will be different if an option exists with a cost between LWRs and 

FRs and which neither mitigates nor produces waste. We can imagine, for example, that coal 

plants with carbon capture and sequestration achieve costs below those for FRs, but are still more 

expensive than LWRs. Such plants would not produce any nuclear waste, but also would not 

help with our existing stocks of spent fuel. 

In some sense, EUFRs can approximate the role of a medium-cost, waste-neutral 

technology if we assume costs between those of TFRs and LWRs. If anything, EUFRs are in fact 

likely to cost slightly more than TFRs, because the reactor cores will need to accommodate both 

uranium and transuranic fuels and may include reflectors that would be unnecessary in TFRs. 

The EUFR assumption is further imperfect because EUFRs do produce a small amount of 

nuclear waste during TRU processing and at the decommissioning stage. But this amount of 

waste is very small compared to the waste produced by LWRs, and the cost assumption, while 

likely inaccurate, enables the EUFR to act as a place-holder for a truly waste-free and medium 

cost electricity option. 

This exploration uses the same tree employed in section 5.3, reprinted as Figure C-1. 

Now, however, the cost premium applied to EUFRs that are built will be different from the cost 

premium applied to TFRs. 
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Figure C-1: Two-period tree with partial build options 
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 Two sets of cost premiums are explored for EUFRs (Table C-1). TFRs maintain the 

traditional cost premiums, at 55% above LWR costs when FR costs are high and 5% when FR 

costs are low. The first set of percentage values were chosen to essentially split the TFR 

premium in half, and the second were chosen to see if discounting EUFRs even more would 

cause them to appear in the decision space. 

 

Table C-1: EUFR cost premiums over LWR cost 

% premium 

over LWR cost 

EUFRs  TFRs 

Set 1  Set 2 

High Cost  25%  10%  55% 

Low Cost  2%  1%  5% 

 

 The basic result for set 1 is shown in Figure C-2. Changing the cost premium for EUFRs 

has virtually no effect on the decision space. There is a very slight change: building 10% TFRs 

becomes less desirable by a miniscule amount compared to the result from section 5.3. The 

reason for this shift is that the EUFR scenarios become less expensive, so the range of cost 

values is now smaller, leading to minor changes in the relative utilities of the various options. 

Other decision spaces for this scenario (e.g. for the second-period decisions) exhibit the same 

behavior. Changing the EUFR cost premiums to set 2, making them even more inexpensive, 

merely shifts the decision result very slightly in the same manner (Figure C-3). 
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Figure C-2: Desirable decisions when EUFRs are a medium-cost option 
 

 

Figure C-3: Desirable decisions when EUFRs are even lower-cost 
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 The reason we don’t see a dramatic takeover by EUFRs is that even with a lower cost 

premium, EUFR scenarios are expensive because so many fast reactors are built. Figure C-4 
shows how several of the decision options impact the stockpile of spent LWR fuel. If EUFRs are 

built to take over only 10% of the fleet (expanding to 50% later in the century), many LWRs are 

still built and an increasing SNF stockpile results (dashed green line). Building a 100% EUFR 

fleet, however, provides a significant waste benefit (solid green line). But the 10%  50% TFR 

scenario provides an even greater waste benefit (blue line), and entails building far fewer fast 

reactors than the 100% EUFR scenario. Even with stark differences in the cost of TFRs and 

EUFRs, the TFR scenario remains cheaper because of that vast difference in total number of 

FRs. EUFRs are not able to compete. 

 

 

Figure C-4: Impact of different fast reactor decisions on stocks of SNF 
 

 Of course, as before, if we consider the waste liability (i.e. what happens if reprocessing 

eventually ceases and all reactor waste must then be managed), EUFRs become a desirable 

option because they can phase out LWRs (see section 6.4). If EUFRs are cheaper than TFRs, 

they become even more desirable than before, when same-cost TFRs and EUFRs were assumed 

and the waste liability was taken into account. Figure C-5 shows that EUFRs take over 
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significantly more of the desirable decision space once they are cheaper than TFRs (large graph, 

compare to small graph), and that the decision “build 100% EUFRs” (yellow) now appears. With 

a medium cost, EUFRs are overall much more desirable than they were before.  

 

Figure C-5: Desirable decisions when waste liability is considered 
  

Several lessons can be drawn from this analysis. One is that if reducing stocks of LWR 

spent fuel is of significant concern, TFRs remain the best option because large amounts of LWR 

SNF can be mitigated by building relatively few TFRs. The picture changes somewhat, however, 

when the waste liability is considered. “Mitigating” LWR SNF actually means placing waste that 

would otherwise have gone to a repository into fast reactors: as long as reprocessing plants and 

fast reactors continue operating, spent fuel nuclides stay out of the waste system. If society 

continues reprocessing indefinitely (or at least far enough into the future that wildly different 

waste management strategies become available, such that waste disposal is no longer 

problematic or undesirable), TFRs handle waste well for the near term. If, however, final waste 

disposal of all nuclear fuel a century or so in the future is a concern (i.e. if we imagine the 
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eventual end of the nuclear system), EUFRs become desirable, and even more so if they cost less 

than traditional fast reactors. 

Ultimately, a medium-cost, nuclear waste-free technology is not a desirable option under 

the base assumptions of the thesis analysis: TFRs are better in modest quantities, because they 

reduce existing waste relatively cheaply. If, however, other considerations like the ultimate waste 

liability are important, a mid-cost technology that produces little waste makes sense. 

Furthermore, the current framework does not directly account for other factors affecting the 

competitiveness of nuclear power. For example, if the mid-cost technology were non-nuclear, 

and public tide turned (again) strongly against nuclear power, such a technology could handily 

become more desirable than TFRs or LWRs in the electricity mix. More work is needed to 

determine the desirability of different nuclear technologies under competition with other types of 

electricity generation. 

One final dimension is very important to questions about a mid-cost, zero-waste 

competitive technology in this framework: the time of technology introduction. Developing and 

deploying fuel cycle and reactor systems for TFRs (or for EUFRs) is likely to take decades, and 

will require sustained R&D funding and political support. The licensing process for such wildly 

new nuclear technologies will be challenging and lengthy. Given the barriers to rapid 

revolutionary change in the nuclear industry, it is possible that a non-nuclear technology 

producing no nuclear waste but offering costs just above LWRs will be competitive on the grid 

before TFRs are even developed. If this happens, by 2040 TFRs may no longer be desirable 

because we may decide to manage our existing waste (given that we are not generating much 

more) rather than complete the fast reactor development process. A quantitative analysis of this 

possibility is beyond the scope of the thesis, but is important and left to future work. 
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