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Abstract 

A health care delivery chain is a series of treatment steps through which patients flow. The 

Emergency Department (ED)/Inpatient Unit (IU) chain is an example chain, common to many 

hospitals. Recent literature has suggested that predictions of IU admission, when patients enter 

the ED, could be used to initiate IU bed preparations before the patient has completed emergency 

treatment and improve flow through the chain. This dissertation explores the merit and 

implications of this suggestion. 

 

Using retrospective data collected at the ED of the Veterans Health Administration Boston 

Health Care System (VHA BHS), three methods are selected for making admission predictions: 

expert opinion, naïve Bayes conditional probability and linear regression with a logit link 

function (logit-linear regression).  The logit-linear regression is found to perform best.   

 

Databases of historic data are collected from four hospitals including VHA BHS. Logit-linear 

regression prediction models generated for each individual hospital perform well based on 

multiple measures. The prediction model generated for the VHA BHS hospital continues to 

perform well when predictive data are collected and coded prospectively by nurses.    

 

For two weeks, predictions are made on each patient that enters the VHA BHS ED. This data is 

then summarized and displayed on the VHA BHS internet homepage. No change was observed 

in key ED flow measures; however, interviews with hospital staff exposed ways in which the 

prediction information was valuable: planning individual patient admissions, personal 

scheduling, resource scheduling, resource alignment, and hospital network coordination. 

 

A discrete event simulation of the system shows that if IU staff emphasizes discharge before 

noon, flow measures improve as compared to a baseline scenario where discharge priority begins 

at 1pm. Sharing ED crowding or prediction information leads to best patient flow performance 

when using specific schedules dictating IU response to the information.  

 

This dissertation targets the practical and theoretical implications of using prediction to improve 

flow through the ED/IU health care delivery chain. It is suggested that the results will have 

impact on many other levels of health care delivery that share the delivery chain structure. 
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Chapter 1: An Introduction to Health Care 

Delivery Chains 

In this chapter, the concept of health care delivery chains will be introduced. The chapter will 

begin by discussing the impetus for improving how care is delivered in the US health care 

system. There will be a discussion of the ratio between cost and quality of health care and how 

others have attempted to improve this ratio.  

The generalized discussion of the health care system will lead into the specific approach taken in 

this dissertation, namely, a health care delivery chain framework to improve the provision of 

care. Finally, there will be a generalized description of the primary research questions addressed 

by this dissertation and an outline will be provided that explains how the chapters of the 

dissertation seek to address these research questions.  

1.1 The health care “problem” and selected top down solutions  

Providing health care to growing populations has become one of the world’s most prominent 

issues. One major issue associated with health care is its rising cost. Data has shown that health 

expenditures per capita continue to rise (Figure 1). While national costs continue to rise there is 

little evidence that increasing costs correlate to increased quality [Feldstein 2003, Fisher et al. 

2009]. 

Figure 1 National health expenditures per capita, 1960-2010 [KFF 2012] 

There have been many top down attempts to improve the cost/quality ratio of the health care 

system. One example has been making government level policy changes to affect how insurance, 
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providers, and customers interact and are permitted to work. This is most recently exemplified by 

the Patient Protection and Affordable Care Act (PPACA) [US Senate 2010]. This act included 

many provisions to increase the number of US residents with insurance coverage, in order to 

reduce the number of patients who postpone or forego care due to cost.  These patients often seek 

care only in emergencies, leading to higher cost treatments for issues that may have been 

addressed for less money earlier on. Figure 2 shows how the number of patients postponing care 

has changed over time based on a survey by the US Department of Health & Human Services. 

This insurance provision is simply one part of the act which includes many other provisions 

seeking to improve care by exercising more control over aspects of the health care market.  

 

Figure 2 Percentage of people postponing or foregoing care due to cost 

[Health system Measurement Project 2012b] 

Another attempt to improve the cost/quality ratio is to change how providers are reimbursed. It is 

possible for public and private insurance agencies to use incentives to affect provider decisions. 

For example, in 2007 the Centers for Medicare and Medicaid Services (CMS) began an initiative 

to reduce the occurrence of “never events.” These events were a list of injuries or infections that 

a patient would receive while being cared for at a hospital. It was found that reimbursing for the 

treatment of never events was costing CMS millions of dollars per year. In order to reduce this 
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number, a policy was created that treatment for such events would not be reimbursed and 

therefore the treatment would be at cost for the hospital [Zhan et al. 2006, Pear 2007].  

Another way to reduce costs and improve quality is through organizational change and data 

sharing. An example of this was the creation of Accountable Care Organizations (ACOs) by 

CMS. These organizations are specifically targeted at improving the quality of care by enhancing 

the connectedness of health care providers through increased communication, data sharing, and 

joint decision making. [National Public Radio 2011, CMS 2012a] 

The above are just a few top down options that have been explored for improving the cost/quality 

ratio of health care. There are in fact many examples, which have been segmented into three 

categories: provider change, payment change, and market change [Lee and Mongan 2009]. 

However when looking at the initiatives described above, it is clear that the focus has been 

placed on providers. Whether it is controlling provider behavior, enabling the provider to make 

better decisions, or influencing how providers communicate with one another. The reason for 

this is clear when looking at Figure 3 which shows personal health care expenditures per capita 

by service type [Health System Measurement Project 2012c]. As the figure shows a large portion 

of spending is on hospital care and other areas of direct patient provider interaction. The 

implication of this, is that the areas where health care delivery takes place are reasonable targets 

for high impact attempts to improve the cost/quality ratio.  



16 

 

 

Figure 3 Personal health care expenditures per capita by service type 

[Health System Measurement Project 2012c] 

1.2 Selected methods for hospital performance improvement 

The above discussion has established that areas of health care delivery, particularly hospitals, are 

high impact targets for improving the cost/quality ratio of health care systems. This message was 

very strongly enforced by the Institute of Medicine (IOM) report “Crossing the Quality Chasm” 

[IOM 2001]. In the IOM report general principles were proposed as guidelines for creating a 

better system, however it did not actually introduce many tools or specific solutions for 

achieving improvement.  With that said, there are many methods that have been employed. 

Discussing all of these methods is beyond the scope of this dissertation; however this section 

introduces some of the more common/popular tools. The tools and methods employed in future 
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chapters build upon elements of many of these solutions. In order to enable the discussion the 

solutions are categorized:  

 Electronic Health Records and Health Information Technology,  

 Decision Support Tools,  

 Human Factors,  

 Health Care Supply Chains/Operations Management, 

 Patient Flow,  

 Organizational Change and Systems Re-design,  

 Improvement Frameworks. 

The next subsections will discuss each category, however it is worth noting that there is some 

overlap between them and therefore the categorical lines may not be as clear-cut as this treatment 

suggests.  

1.2.1 Electronic Health Records/Health Information Technology 

Electronic health records (EHR) have become one of largest areas for development, study, and 

industry growth in the health system. Despite the amazing growth in the EHR market, Figure 4 

shows that only a minority of office based physicians and hospitals have adopted even basic 

Electronic Health Record systems [Jha et al. 2009, Health System Measurement Project 2012a]. 

Nevertheless, providers that have adopted EHR systems have claimed to receive many benefits 

including enhanced: access to patient records, patient communication, pharmaceutical 

prescription and medicine reconciliation, streamlined claims processing, reduced operational 

time and fiscal costs, and ability to spend more time at the patients bedside [Gans et al. 2005, 

Poissant et al. 2005]. 
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Figure 4 Percentage of hospitals and office based physicians that have adopted even basic EHR systems 

[Health system Measurement project 2012a] 

Section 1.1 discussed CMS’s negative incentive towards improving care by not paying for 

“never events.” CMS has also used positive incentives. An example of this is the EHR Incentive 

Programs. 

“The Medicare and Medicaid EHR Incentive Programs provide incentive payments to 

eligible professionals, eligible hospitals and critical access hospitals as they adopt, 

implement, upgrade or demonstrate meaningful use of certified EHR technology. Eligible 

professionals can receive up to $44,000 through the Medicare EHR Incentive Program 

and up to $63,750 through the Medicaid EHR Incentive Program.” [CMS 2012b]  

The goal of this program is to encourage the spread of EHRs around the country and capture the 

quality improvements and financial savings that can come from the implementation of an EHR 

system. 

While EHR is often implemented by itself, EHR is merely a way of storing patient data on a 

computer rather than in paper files. The use of information technology in health care is more 

extensive than that. These other uses, and EHR, fall under the more general term of Health 

Information Technology (HIT). The adoption of HIT has also been encouraged by government 

initiatives, such as the American Recovery and Reinvestment Act of 2009 [Blumenthal 2009]. 

HIT has the ability to go beyond recording EHRs, it can dynamically monitor patients, prescribe 
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medications, detect potential medical errors, act as a platform for decision support tools, enable 

tele-health, and has many other uses [Chaudhry 2006].  

1.2.2 Decision Support Tools 

The treatment of patients is often seen as a combination of science and art. The health care 

system depends upon practitioners who make diagnoses often using uncertain data and relying 

on the knowledge gained by experience and education [Gawande 2002]. As medical research and 

knowledge continue to grow and medical professions continue to specialize it is becoming more 

difficult for practitioners to keep track of all there is to know about medicine. At the same time, 

this information is being shared online with patients on a growing basis.  

In order to enable medical professionals to access state of the art data and best treatment 

practices for a disease, decision support tools are becoming increasingly popular. The types of 

decision support tools that have been discussed in health care are clinical decision support 

systems (CDSS) and knowledge management systems (KMS). Often these systems are defined 

using electronic terms, however in a more general sense they do not necessarily have to be built 

into an electronic system (thus making the decision support tools distinct from HIT).  

CDSS can be defined as any system “designed to aid directly in clinical decision-making, in 

which characteristics of individual patients are used to generate patient-specific assessments or 

recommendations that are then presented to clinicians for consideration”[AHRQ 2012]. KMS 

can be defined as “a tool that selectively provides information relevant to the characteristics or 

circumstances of a clinical situation but which requires human interpretation for direct 

application to a specific patient” [AHRQ 2012]. CDSSs and KMSs have been implemented 

during health care delivery using many different outlets and for many different purposes. Some 

purposes include preventative care (such as suggesting immunizations if a patient is travelling), 

diagnosis (given certain symptoms outputting a probable cause), treatment planning (suggesting 

drug dosages and schedules, alerts for potential drug interactions, suggesting dates of treatment 

steps), and cost reduction (suggesting alternative treatments that can be effective but less 

expensive) [Berber 2009]. Some outlets for decision support tools include being built into an 

HIT system, paper based tools, smart phone applications, web based applications and more 

[Pearson 1994, Hunt 1998, IMPROVE 2011, AHRQ 2012]. 
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Decision support systems are used in many industries for various purposes. Recent studies on the 

use of decision support systems in health care have been primarily focused on those described 

above. Despite this, there have been some efforts towards developing tools that fit in a third kind 

of decision support system for health care, management support systems. There is no universal 

name for these systems, but here they will be called Health Care Management Support Systems 

(HMSS). HMSSs are defined in this paper as tools for facilitating operational decisions and 

aligning resources with the goal of achieving increased health care delivery quality in a timely 

and cost effective manner [Forgionne 1996]. Examples of HMSS are common though they may 

not be consistently categorized as HMSS. Some of these examples are resource scheduling tools, 

bed boards, and hospital bed assignment tools [Clerkin et al. 1995, Bose 2003, van Merode et al. 

2004, van Essen et al. 2012]. 

1.2.3 Human Factors 

Human factors, the understanding of interactions among humans and other elements of a system, 

are fundamental in health care. In health care delivery, humans are not only the employees; the 

health outcome of a human is also the product and that same human is the customer. It is 

therefore not surprising that human factors engineering is often seen as the first tool applied to 

improving hospital efficiency and quality. This application of human factors engineering is often 

attributed to the early 1900s work of Frank and Lillian Gilbreth who performed motion study 

techniques to reduce motion and improve efficiency of health care workers in the hospital setting 

[Smalley 1982]. 

While it is important to understand the limitations of the processes and tools employed in health 

care delivery, it is also necessary to understand how these factors interact with the people who 

use them and the people upon whom they are used [Vicente 2005]. Besides simply looking at 

how people act as agents of a process, each person in a health system derives a different type of 

value from the system. Understanding these values is the key to avoiding conflicting goals and 

outcomes based on perverse incentives [Kolker and Story 2012].    

An example of the importance of human factors can be seen in the implementation of decision 

support tools. When implemented, these tools have shown effectiveness when carefully worked 

into the normal process flow of the hospital. This integration makes them more easily 
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remembered and accessed by the humans that would use them [AHRQ 2012]. A similar 

understanding of human factors must also be included in HMSS in order to ensure that the 

expected efficiency gains are not compromised by designs that make it impractical for the human 

users to access or act upon the recommendations of an HMSS.  

Human factors have also been utilized when looking at variation in health care delivery quality. 

For instance, quality can be affected by clinician fatigue. One example is a case where blood 

sugar medication was provided to a patient who needed an anti-coagulant. The vials for both 

drugs were similar and it was late at night. As a result, the tired nurse accidently confused the 

two medications and the patient died. Human factors engineering can suggest ways to improve 

the system by making the bottles different shapes, not storing them next to each other, having 

bright labels, etc. [Spear 2009] 

1.2.4 Health Care Supply Chains/Operations Management 

Adopting a previously developed graphic one can look at the development/supply chain process 

as shown in Figure 5. Adding the final step of “Treat Patient” makes Figure 5 into a depiction of 

a health care supply chain [Simchi-Levi et al. 2003].  

 

Figure 5 Health care development and supply chain 

If a person works for a company that plans or designs, sources or produces products that end up 

being used in the treatment of a patient they may be considered a part of the health care product 

development chain. Likewise, one can be part of a company that makes supplies for producers of 

medical products, actually produces medical products, or distributes or sells medical products, 
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and people in these companies can be considered a part of the health care product supply chain. 

The need to manage the process depicted above to decrease health care costs has been noted 

[McKone-Sweet 2005]. Also related to this chain is the cost/benefit trade off of seeking new 

products and diagnostic machines to maximize quality, but at greater financial expense.  As new 

products enter the market, hospitals compete to have the most up to date treatment methods. The 

cost of new products increases as old products are discarded in the name of improving quality 

[Feldstein 2003, Fuchs and Emanuel 2005]. It is possible to take an even wider view of the 

health care supply chain and consider the insurance providers who must be willing to pay for 

certain supplies or treatments for a patient. The complexity further increases when considering 

the large number of products that are used in any one patient engagement. This means that there 

are many development chain/supply chain combinations leading into a single patient treatment 

step.  

Figure 5 is a simplified representation of a development/supply chain. In reality these chains are 

often networks of chains and whole fields of study are devoted to the management of these 

complex networks. The field of Operations Management focuses on how to best design these 

chains, where to place inventory and to invest resources in order to make these chains optimally 

efficient [Cachon and Terwiesch 2009]. In the health care context, such optimization becomes 

more complicated as hospitals often need to hold inventory for critical products.  

Another way to take a wider perspective on health care supply chains is to go beyond the supply 

of products and instead consider the supply and scheduling of larger resources such as hospital 

beds, medical staff, and expensive diagnostic machines [Uzsoy 2005]. These resources are more 

equivalent to managing the production equipment and staff in a factory as opposed to the 

products that flow through them. This is still an important part of operations management, and is 

similarly important in health care/hospital operations management. Many tools, including 

HMSS, have been developed to improve hospital efficiency (the cost/quality ratio) by optimizing 

the scheduling of more expensive resources. Using the principles that have been employed in 

factory optimization and management has led to improvements in the operations of hospitals and 

other health care delivery systems. There have been applications of the theory of constraints 

towards improving general flow in the hospital, optimization techniques for scheduling staff and 

other resources, forecasting of demand to improve scheduling, the application of statistical 
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process control, the development of “takt” times for steps within health care treatment processes, 

as well as other methods and tools [Carey 2003, Mclaughlin 2008, Kolker and Story 2012].  

1.2.5 Patient Flow 

The study of patient flow is focused on effecting how patients move through the system as if 

they are a product. When studying a health care delivery system it is possible to assume that the 

arrival rate and service rate of patients cannot be changed. With those assumptions in place a 

hospital manager can employ hospital supply chain and operations management techniques in 

order to designate resources to meet the need of those patients in the least expensive way 

possible. In contrast, the study of patient flow assumes that arrival and service rates of patients 

can be controlled to a certain degree. Patient flow is focused less on cost and more on the 

reduction of unnecessary waiting, movement, and processing of patients. The metrics of patient 

flow often have direct correlation to quality (as will be discussed in the context of the Emergency 

Department later). The connection between quality and flow arises when patients do not receive 

timely access to care, often leading to an exacerbation of their symptoms or illness. Alternatively 

a relatively healthy patient who is waiting for prolonged periods in the hospital has an increasing 

risk of acquiring a new condition from within the hospital. Not only do these cases have bad 

implications for quality, they also have bad financial implications. Hospital revenue is generally 

based on the number of patients treated. If patient flow is poor, then that number of treated 

patients (and associated revenue) decreases, but the overhead costs of the hospital do not. If poor 

patient flow leads to a patient acquiring a new illness, that patient must be treated. Often these 

hospital acquired issues are considered “never events” by CMS and the hospital may not be 

reimbursed for the extended treatment of that patient. The value of the study of patient flow 

comes in the understanding that patients moving through the system are the primary driver of the 

system. History has shown that improving how patients flow will improve cost, quality, and 

patient satisfaction [Hall 2006, McLaughlin 2008].  

Common methods that have been applied specifically to improving patient flow include: queuing 

theory, process mapping, point-to-point diagrams, computer simulation, staffing and scheduling 

tools, and forecasting [Smalley 1982, Hall 2006, Graban 2008, McLaughlin 2008].  
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1.2.6 Organizational Change and Systems Re-design 

How a system is organized and designed is a key to its performance. It is possible for two health 

care organizations with the same resource levels, staff of equal competence, and the same input 

demands to perform differently. This can be explained by considering organizational and design 

issues. Like a machine or a computer program, an organization will perform the way it is 

designed and built to perform, whether that was the intention or not. The ways that information is 

shared in an organization, how performance in that organization is measured and rewarded, the 

unique values of each of the organizations stakeholders, and other factors can enable or limit the 

final performance of the organization, regardless of how much money is spent on resources 

[Nightingale and Srinivasan 2011]. How different organizational and communication structures 

affect performance has been studied for many years, including in hospitals [Longest 1974, 

Shortell et al. 1976].  Despite this there is still a great deal more to be learned about the 

comparative effectiveness hospital organization structures and how to translate organizational 

successes from one hospital to another [Fradinho 2011]. 

1.3 Pulling methods together through frameworks 

1.3.1 Continuous improvement frameworks 

The above discussion focused on the range of tools that are currently employed to improve the 

cost/quality ratio of providing care in the hospital environment. It is also common to integrate 

and sustain the use of these methods, and others, through continuous improvement frameworks. 

One long standing example is Continuous Quality Improvement (CQI) or Total Quality 

Management (TQM). One study described the use of CQI/TQM in hospitals through the 

application of five principles: 

“(1) a focus on underlying organizational processes and systems as causes of failure 

rather than blaming individuals; (2) the use of structured problem-solving approaches 

based on statistical analysis; (3) the use of cross-functional employee teams; (4) 

employee empowerment to identify problems and opportunities for improved care and to 

take the necessary action; and (5) an explicit focus on both internal and external 

customers.”  [Shortell et al. 1995] 
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Looking at these principles it is possible to see a relationship to the categories of improvement 

methods that have been suggested in the prior sections; “organizational processes and systems” 

as in section 1.2.6, “statistical analysis” which is used in operations management and “employee 

empowerment” and focus on “customers” which relates strongly to human factors. In this way 

CQI/TQM enables the collection of these tools. A limitation of CQI/TQM is that it does not 

necessarily encourage large scale, long time frame projects that may have the largest impacts. 

Instead this framework relies on encouraging and sustaining smaller projects performed by 

general staff members, which may limit the complexity of the tools that are applied to a specific 

problem. 

Lean is another improvement framework that has been applied in the hospital setting, and high 

profile successes such as Virginia Mason Hospital have increased interest in this approach 

[Kenney 2010]. Lean was created as a derivation of the Toyota Production System, based on the 

efforts of the MIT International Motor Vehicle Program, with the goal of reducing waste and 

focusing on delivering value [Womack et al. 1991, Womack and Jones 2003].  Since then it has 

taken on many forms which vary with hospitals that apply it. In general, lean tools fit into the 

categories that were described above; value stream/process mapping, standard work (like that 

suggested by the Gilbreths), inventory management, statistical analysis, patient flow analysis 

tools, and employee engagement through organizational re-design [Graban 2008]. One 

description of lean in health care health care identifies seven critical flows: Flow of patients, 

flow of clinicians, flow of medication, flow of supplies, flow of information, flow of equipment, 

flow of process engineering. The tools and methods for dealing with these flows fit into the 

categories that have already been discussed [Black and Miller 2008].  

1.3.2 Looking at health care delivery systems through the lenses of Enterprise 

Architecture 

The National Academy of engineering and Institute of Medicine joint publication, Building a 

Better Delivery System, introduced the concept of a health care delivery system (HCD) in a 

paper entitled “Changing Health Care Delivery Enterprises.” As part of this introduction the full 

complexity of HCDs is described. 
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“HCD enterprises are very large complex operational systems comprised of numerous 

people and machine elements. Tens of thousands of people are involved as providers 

patients support staff and mangers organized into specialties, departments, laboratories, 

and other organizations… Perhaps most important, these processes involve large numbers 

of interactions within units, among units, and across processes… We need better ways of 

analyzing systems of this magnitude.” [Bonder 2005] 

Analyzing complex systems is a difficult task. An HCD is a complex adaptive system, comprised 

of many different interacting parts including a significant human element. The action in one part 

of the system may have unforeseen consequences later in the system. “Heath Care Systems are 

adaptive because unlike mechanical systems, they are composed of individuals… their actions 

are not always predictable, and… can be seen as contributing to huge variation in the delivery of 

health care” [IOM 2001]. It is for this reason that while all of the methods for hospital 

performance improvement that have been described above are valuable, they become most useful 

when employed in combination with one another as is done in the continuous improvement 

frameworks. 

Continuous improvement on its own does not address some of the more complex issues that 

require a full systems view. The tools of Systems Architecture allow systems engineers to better 

understand, predict or even control the systems, to some degree, despite their complexity. 

“System architecture is an abstract description of the entities of a system and the relationships 

between those entities” [ESD 2004].  In other words, system architecture is a representation of a 

complex system, and by creating this abstraction one can begin to understand the many different 

connections in the system and begin to predict and control emergent behavior. 

Many of the human systems that exist today, particularly in service sectors such as health care, 

can also be described as an Enterprise. Enterprises have been defined as “complex, highly 

integrated systems comprised of processes, organizations, information, and supporting 

technologies, with multifaceted interdependencies and interrelationships across their boundaries” 

[Nightingale and Rhodes 2004]. The approach to abstracting, understanding, designing and 

controlling enterprises is called Enterprise Architecture (EA). Given the definition of the 

complexity of HCDs provided earlier and this definition of an enterprise there can be no question 

that a hospital can be considered a complex enterprise system and the tools of EA are applicable.   
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One EA framework uses a holistic approach to representing a complex system and is comprised 

of 8 views: 

1. Strategy: “Business model, business strategies, internal/external strategic drivers, enterprise 

metrics, and objectives” [Nightingale and Rhodes 2012]. Health care delivery enterprises may be 

for profit, not-for-profit, or government hospitals. Many academic hospitals choose a 

specialization strategy and become well known for a specific area of health care delivery, such as 

cardiac care or cancer care. In contrast many community hospitals have the strategy of providing 

the best broad spectrum of care so that they better serve the entire community. These are just a 

few examples of how hospitals can differ in strategy, which can then influence many other 

elements of the enterprise [Lee and Mongan 2009]. 

2. Policy: “Policies that impact the enterprise as well as policies internal to the enterprise that 

affect performance” [Nightingale and Rhodes 2012].  Earlier in this chapter policies for 

improving the health care system were mentioned. These policies have direct impacts on health 

care delivery enterprises [Feldstein 2003]. One policy mentioned earlier encourages the 

purchasing of HIT systems, but also regulates how the HIT systems must be used. As will be 

discussed in the next chapter, there is a policy that mandates every emergency department to 

treat any patient that presents. Such policies force the hospitals to create strategies, processes, 

etc. in order to respond to the external demands. Hospitals may also have internal policies; these 

policies may focus other enterprise views towards the achievement of one specific task. A 

famous example was the Pittsburgh Regional Health Care Initiative where member hospitals 

adopted the policy of eliminating central line infections, focused all views on achieving this goal, 

and had great success [Spear 2009]. 

3. Process: “Key business processes, and activities that capture, manipulate, and manage the 

business information to support business operations” [Nightingale and Rhodes 2012].   Hospitals 

have many different processes; there are treatment processes, administrative processes, data 

sharing processes, etc. How these are managed and how well the processes integrate with the 

other enterprise views can strongly influence the performance of the hospital. In the next chapter 

there will be some discussion of how processes are changed in the emergency department to 

improve flow [Graban 2008]. 
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4. Organizational: “The organizational structure of the enterprise, major operations performed by 

organizations, types of workers, work location, and distribution of organizations to locations” 

[Nightingale and Rhodes 2012]. Organizational redesign was already discussed as a method for 

improving how a hospital performs. Indeed how a hospital organizes itself physically, through 

the hierarchy of staff, or the assignment of duties can have major implications on performance 

[Spear 2008, Fradinho 2011]. It is partly for this reason that there is an emergence of mid-level 

providers with more authority in hospitals [Brown et al. 2012]. Similarly reorganizations in how 

care is provided have led to the rise of team based care in hospitals [IOM 2001, Carter et al. 

2009]. 

5. Knowledge: “All information and knowledge needed to perform the enterprise business 

operations and relationships among that information” [Nightingale and Rhodes 2012]. 

Knowledge is of the utmost importance in health care. Providers on all levels go through 

extensive training build a knowledgebase of symptoms, diseases and treatments. As mentioned 

earlier, there are attempts at better standardizing and documenting knowledge through decisions 

support systems yet, for the moment, knowledge continues to remain primarily with 

practitioners, this sometimes hinders reforms in other enterprise views.  

6. Information Technology: “Key IT infrastructure (both hardware and software) that supports 

the enterprise” [Nightingale and Rhodes 2012]. HIT has already been described as an emerging 

tool for improving the quality and organization of health care delivery. In hospitals, HIT systems 

are being implemented to manage/organize significant portions of the care process. These tools 

have become primary methods for communication, in some cases eliminating the need for two 

staff members to communicate directly. EHRs have been used in order to improve 

communication, continuity, and quality in health care delivery organizations and the US 

government is continuing to invest in HIT with the belief that more gains are yet to come 

[Chaudhry 2006, CMS 2012b] 

7. Product: “Products are developed by the enterprise; key platforms; modular vs. integral 

architectures, etc.” [Nightingale and Rhodes 2012]. While a hospital’s ultimate output is focused 

on the service of health care delivery there are many products that are produced in a health care 

delivery system. For example, the hospital’s internal pharmacy mixes and distributes 

medications or a podiatrist uses machinery for creating custom orthotics. A health care delivery 
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enterprise produces many such products which contribute to a patient’s future health. Health care 

delivery organizations also consume a great deal of products. The quality and availability of 

these products can have significant impacts on other factors of a health care delivery enterprise.  

8. Services: “Services delivered and or supplied by the enterprise” [Nightingale and Rhodes 

2012]. One of the primary goals (if not the only primary goal) of a health care delivery enterprise 

is to provide the service of improved health for a patient. It is this goal that drives the other views 

of the enterprise. If a view is not properly aligned to improve the service of health care delivery 

this is often a prime target for system redesign.   

The enterprise views allow a user of the framework a certain amount of structure in order to 

collect the necessary information and understand the key elements of their enterprise. However 

the high level nature of the views allows a user to bring in tools from other fields and 

frameworks and apply them in the context of the larger framework. Finally in order to help the 

user of the framework draw conclusions about how all of the views interact, EA integrates the 

views into a high level map. This map shows a flow of influence between the different views and 

allows the user to derive a certain amount of emergent behavior, similar in effect to System 

Dynamics, though with less quantitative overhead and consequently less specificity [Sterman 

2000]. The map is shown in Figure 6 below.  

 

Figure 6 Map of EA framework views [Nightingale and Rhodes 2012]. 

Looking at Figure 6 it can be understood that any improvement that is to be made to a health care 

delivery enterprise must take all of the views into account. Policies that are made must be aware 
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of which services/products they are trying to influence and how the policy will impact the 

strategies of delivery enterprise. Those who set the strategies for a health care delivery enterprise 

must be aware of how process, organization, and the exchange/location of knowledge interact in 

order to enable the delivery of a quality product or service. Finally, information technology can 

have an overarching influence on all of these views.  

Supply chain management is an example of how all of the lenses can be brought together in 

order to improve a system, however it can also fail when not all views are considered. By 

looking at the flow of products, supply chain management improves processes such as 

manufacturing and distribution. Areas of supply chain management also study the organizations 

that perform those processes, the knowledge that was held and shared between parts of the chain 

and what information should collected throughout the chain. Each of these areas of supply chain 

management have the potential to improve total outcomes, however if the entirety of the 

enterprise views are not considered in conjunction, it is possible to only achieve pockets of 

improvement and local optimizations. Successful management of an entire supply chain must 

also consider enterprise wide strategies that take all of these lenses into account in order to 

optimize the performance of the supply chain as a whole.  

It is common in health care delivery improvement to see each treatment step as a single 

occurrence that can be optimized. However just as in a supply chain, optimization of 

performance metrics for a single step may not be best for the entire enterprise. Hospital 

improvement should also be approached on an enterprise level. Using the EA descriptions above 

to consider a hospital it is reasonable to start with the service view as the basis for organizing the 

other views. The service of health care delivery is not provided in a single moment but occurs 

over time in a series of patient encounters. Understanding the health care delivery organization 

as a connected enterprise, makes it clear that studying patient flow goes beyond modeling “unit 

processes” as is usually done, but must include all of the lenses of EA in order to quantify and 

control flow rather than react to it [Uzsoy 2005].  In other words, improvements to patient flow 

are an improvement to the service of the hospital, however to do this properly it is important to 

understand the entire patient flow process on the enterprise level, rather than in a single patient 

interaction. This approach includes understanding how the organization of the hospital is 

equipped to react to enterprise patient flow and how HIT can be used to generate knowledge 
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about flow and facilitate the processes to respond to flow needs. Similarly strategies can be 

developed that take into account the higher level policy issues (like those discussed in section 

1.1) and drive flow improvement on an enterprise level. Finally, in an ideal enterprise, the 

experiences that come from the improvements should feedback to future policy decisions in 

order to enable more improvement. 

With all of the above in mind, it is necessary to find a solid starting point for an EA approach to 

improving health care delivery. It was suggested that the service of health care delivery and its 

relationship to patient flow are the core of a health care delivery enterprise; therefore the next 

section introduces health care delivery chains as a method for mapping and understanding the 

flow of patients through the services of the health care delivery enterprise. Then, the chapters to 

follow will describe a study of an example chain where all enterprise views are considered in 

developing a method for improving patient flow.  

1.4 Defining health care delivery chains 

An article on enterprise resource planning for hospitals discusses the need to control a hospital 

and plan resources by not only understanding long term trends, but also by looking at patients in 

the system at a moment in time [van Merode et al. 2004]. Although some work continues on the 

use of enterprise resource planning in hospitals, the common assumption in operations and 

supply chain management as well as patient flow studies in hospitals is that patients are not 

controllable, they arrive when they arrive and leave when their treatment complete. The key to 

using an enterprise view of hospital improvement is to understand that in many cases the flow of 

the patient is indeed knowable and can therefore be anticipated and controlled. 

In Figure 5 above, a key simplification is made in the characterization of the health care delivery 

portion of the chain as one block, “treat patient.” In fact the treatment of a patient is a long 

process that involves many treatment steps, each with supply and development chains attached. 

Figure 7 shows this more complex image of the health care supply chain with multiple treatment 

steps.  
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Figure 7 Health care supply chain with multiple treatment steps 

The chain of health care treatment steps that runs through the middle of Figure 7 can be called 

the “health care delivery chain” and when it is combined with the supply and development 

chains one can see a larger conception of the flows in a health care delivery enterprise. This 

network of flows is similar in concept to the seven flows in health care discussed earlier; 

however it takes them to another level by showing the interaction of these flows rather than 

dealing with each separately [Black 2008]. A concept similar to this was called for in a recent 

article on supply chain management in health services [Vries and Huijsman 2011]. When taking 

an enterprise architecture view of the system it is clear that understanding the interaction 

between the flows is a key aspect of improving the system as a whole.  

Admit Supply Supply 

Treatment Step 1 Supply Supply 

Treatment Step 2 Supply Supply 

Discharge Supply Supply 

Treatment Step N Supply Supply 

. .
 . 
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The health care delivery chain can be summarized in many cases as: Admit, Treatment Step 1, 

Treatment Step 2, through treatment step N and Discharge. It is the connection of steps/processes 

through which a patient flows in order to receive their treatment, and offers a new dimension of 

analysis for optimizing health care delivery. Like the supply chain depiction in Figure 5, 

simplifying this into one chain is not quite correct. A health care delivery enterprise actually 

contains many networks of health care delivery chains, supply chains, and product development 

chains. The time it takes for a product or patient to flow through each of these many chains can 

vary from seconds to years. In many cases it is also possible to connect the end of the chain 

“discharge” to a block called “home care” which then feeds back to admission, creating what can 

be called the health care delivery lifecycle chain (Figure 8). This may be similar to product 

supply chains that use recycled parts which feed back into the supply chain continuously. 

However in this case, rather than recycling parts, it is the humans that move through the chain 

continuously throughout their, literal, life cycle. Truly optimizing health care delivery means 

optimizing the flow of the patient across this entire lifecycle chain.  

 

Figure 8 Health care delivery life cycle chain 

Often in the organization of a patient’s care, the immediate unit processes or steps in the delivery 

chain are the key considerations of medical personnel. However it is becoming increasingly 
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common to find care organizations focusing on how the patient cares for themselves while at 

home. This new emphasis is often referred to as “the medical home” and is an acknowledgement 

that the care at home is a significant part of the health care delivery lifecycle chain, and may 

have large quality and cost impacts [Starfield and Shi 2004, Rosenthal 2008].  

Examples of health care delivery chains can be seen on many abstracted levels of the 

organization: 

In department level: Where a patient moves between treatment steps in one department. 

Such as an exam which leads to ordering a test (such as an x-ray, blood test or CT scan), 

preparation time/patient waiting time, and then the test.  A trip to the hospital may begin with 

a visit to an emergency department. This trip has many treatment steps that follow each other 

sequentially from the time the patient’s information is taken to the time that a doctor makes 

the decision to have the patient admitted to the hospital. The time scale for this level is on the 

order of minutes to hours. 

Cross department level: Where a patient moves between two departments of one 

organization. Such as when a patient is discharged from an emergency department and is 

waiting for the inpatient unit bed preparation and admission. The patient then receives 

treatment in the inpatient unit leading to a discharge out of the hospital. The time scale for 

this level is on the order of days. 

Cross organizational level: Where a patient has multiple points of contact with the health 

system through administratively unrelated (or loosely related) providers, such as primary care 

followed by a specialist. Similarly a cross organization chain may be the patient flowing 

through the hospital and being discharged to a nursing home. The time scale for this level 

may be on the order of months or years. 

On all levels, the path has a similar series of steps, all that changes is the level of abstraction. 

Similarly, methods developed for improving one level may be applicable to improving another 

level. The key aspect of working with any of these health care delivery chains is the 

understanding that state information in the earlier steps of the chain can be used to plan and 

control steps later in the chain. However doing so properly requires the interaction of many 

lenses of the health care delivery enterprise that contains the chain of interest.  
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1.5 Dissertation goals and outline 

This dissertation seeks to further develop the concept of health care delivery chains by 

approaching a well-known issue in health care delivery and patient flow from the health care 

delivery chain perspective. The chain that will be studied is that which flows through a hospital 

and connects the emergency department and inpatient unit. This is an example of a cross 

department chain. It is hoped that the methods that are described will be applicable to chains of 

other abstraction levels and provide insight into how other chains can be identified and 

improved.  

Chapter 2 will set the stage for the rest of the dissertation. In this chapter, the details of the 

Emergency Department/Inpatient Unit chain will be discussed. This discussion will include a 

characterization of the quality metrics that are studied in the emergency department. It will be 

seen that these quality metrics are heavily influenced by the rate of patient flow in the emergency 

department and that this patient flow is tightly linked to the performance of the inpatient unit. 

Past studies that focused on improving emergency department patient flow will be reviewed and 

placed in the context of the improvement methods described in section 1.2. These past studies 

will conclude with a recent suggestion: If it were possible to predict that a patient would require 

admission early in their treatment, then this prediction could be passed to the inpatient unit, 

improving the timeliness of response when the patient is ready for admission. This in turn would 

improve flow and quality metrics in the emergency department. This is followed by a discussion 

of prediction in the health care delivery setting, with some examples of what methods are used to 

make predictions and how those predictions have been applied.  Prediction studies specific to the 

emergency department will then be discussed.  

Studying prediction in the emergency department leads to three primary research questions that 

will be answered by the research presented in the following chapters: 

1. What predictive methods work best to predict downstream demand in the context of a 

single Emergency Department/Inpatient Unit health care delivery chain?  

2. How portable or robust are these prediction methods to multiple hospital contexts? 

3. Given advance demand predictions, what possible adaptive actions can a hospital system 

take to improve flow given (a) perfect and (b) imperfect downstream demand prediction?  
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Chapter 3 will be focused on answering Question 1. In this chapter, the reader will be introduced 

to the Veterans Health Administration hospital in West Roxbury, Massachusetts, (VHA West 

Roxbury) where the primary research for this dissertation has taken place. After this 

introduction, there will be a discussion of the methods chosen to study prediction at VHA West 

Roxbury: expert opinion, naïve Bayesian conditional probability, and logit-linear regression.  

While introducing methods for making predictions, this chapter will also introduce concepts for 

using these predictions in a practical setting. These practical applications will drive the 

evaluation of the predictive measures.  The results of this chapter will show that the logit-linear 

regression was the best performing prediction method and worth attempting in other settings. 

Chapter 4 will build upon the conclusions of chapter three and describe a study aimed at 

answering Question 2. In this chapter, three other hospitals will be introduced. These hospitals 

will have varying sizes and economic strategies. For each hospital the process for creating a 

logit-linear regression, prediction model in VHA West Roxbury will be repeated in order to 

judge the portability of this methodology to the new contexts.   There will also be a dataset 

collected for VHA West Roxbury where live nurses performed prospective data coding, this will 

be used to test how robust the early prediction model is when applied to a live implementation. 

This chapter will conclude that prediction is indeed possible in multiple contexts. 

Chapter 5 will describe a two week live implementation of the prediction system at VHA West 

Roxbury. For this time period, admission predictions were made in real time, based on codes 

input by triage nurses, and shared with hospital staff. Studying the results of this implementation 

is a step towards answering the third research question. When the study was designed it was not 

known exactly how sharing predictions would influence hospital performance, therefore 

quantitative and qualitative data were collected. The results of these two methods of data 

collection will be presented followed by a discussion of their interpretation and value.  

Chapter 6 will further seek to understand the potential quantitative results of using prediction in 

the Emergency Department/Inpatient Unit chain. While Chapter 5 will show some interesting 

qualitative outcomes of using prediction, no quantitative improvements were found during the 

short implementation time period. In order to further answer Question 3 and explore the value of 

perfect and imperfect prediction over a long time period, a discrete event simulation was 

developed and tested. The simulation was based on VHA West Roxbury. This chapter will begin 
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with a description of the use of computer simulation in the health care delivery. This will be 

followed by a description of the simulation that was developed for this study and a validation and 

verification of the simulation using data from VHA West Roxbury. Finally multiple scenarios 

will be tested for relative hospital performance when driving hospital behavior using emergency 

department crowding information, imperfect prediction information, perfect prediction 

information, and time based strategies. The outcomes of these scenarios will also be tested for 

sensitivity to changes in the hospital process design and resource levels. 

Chapter 7 will close the dissertation with a discussion of the results from the previous chapter 

and their contributions to the study of emergency department/inpatient unit patient flow 

improvement, as well as health care delivery chain management. This chapter will include a 

discussion of the limitations of the study designs as well as future work that could stem from this 

research. 

  



38 

 

Chapter 2: The Emergency Department and 

Inpatient Unit Delivery Chain 

Having established the key role played by hospitals in accounting for cost in the health care 

system this chapter adopts the health care delivery chain framework to discuss one of the core 

processes of hospital care delivery: the flow of patients from the emergency department (ED) to 

the inpatient unit (IU). The chapter will begin by discussing the importance of EDs to the US 

health care system and how ED crowding is affecting the system. Past solutions to ED crowding 

will be discussed in an input/throughput/output (ITO) paradigm that has been introduced in the 

ED literature. These solutions will also fit into the solution categories introduced in Chapter 1. 

The result of this literature review is the recognized need to focus more on the output side of the 

ED. In other words, solutions that deal with the total ED/IU delivery chain are expected to have 

higher impact on ED patient flow. This will set the stage for a discussion of the ED/IU system as 

a health care delivery chain. Together, these discussions will enable an introduction to the studies 

described in the chapters to follow, focused on improving the management of this chain using 

prediction. The chapter will end with a discussion of prediction methods in health care and the 

ED in particular setting the stage for Chapter 3.  

2.1 Background and Motivation for Emergency Department Improvement 

2.1.1 The role of the Emergency Department 

The Emergency Department (ED) is one of the most commonly studied parts of a hospital. In 

many hospitals, the majority of patients that are admitted, enter through the ED. Despite the large 

amount of patients that enter the hospital from the ED, typically only small percentages of ED 

patients are admitted to the hospital (20-35%). This means that the ED deals with a significant 

amount of patients that are never even seen by the rest of the hospital.  

The US health care system relies heavily on EDs. Often a patient is concerned about their health 

and feels that the issue is too urgent to wait for an appointment with a primary care physician. 

This is not a rare occurrence given that a primary care an appointment can take up to 44 days for 

a new patient in Massachusetts [MMS 2012]. In this case the patient goes to an ED. Similarly 

patients will go to the ED when faced with true emergencies such as traumatic injuries, cardio-
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vascular events, acute mental illness, and other issues that cannot wait for any length of time, let 

alone days. EDs are open 24/7, they are conspicuous in their communities, and it is possible to 

call transport (ambulances) if needed. Furthermore patients know that if they arrive at the ED 

they cannot be turned away as “the Emergency Medical Treatment and Active Labor Act 

(EMTALA) mandates that any individual who presents to a hospital ED must receive a medical 

screening examination and, if an emergency medical condition is identified, be offered treatment 

to stabilize that condition or offered safe transfer to an appropriate facility” [Asplin 2006]. Given 

the convenience of the ED and the confidence that a patient has of being seen, it is little wonder 

that the volume of ED visits continues to rise, as seen in Figure 9. Despite the increase in ED 

visits over recent years, the number of operating EDs is actually dropping. This in conjunction 

with hospital budget cuts means that operating EDs are required to treat more patients with 

unchanging or reduced resources [US GAO 2003, CDC 2011].  

 

Figure 9 ED visits vs. Operating EDs [CDC 2011] 

It is also interesting to note, that the increase in ED usage can be attributed to patients who do 

have private insurance. This usage is a testament to the perceived need for emergency/immediate 

care and the convenience of the ED [Weber et al. 2008, Cunningham 2011]. Nonetheless, it is 

with uninsured and vulnerable populations in mind that many have referred to the ED as the 

“safety net” of the health care system [Fields 1999, Asplin et al. 2003]. Although not the original 

intent, this title can also be based on the fact that it is the last chance for the health care system to 

compensate for a lack of accessibility, even for patients with resources who have otherwise 
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navigated the system correctly. Despite the importance of the ED to the health care system, the 

ratio of supply and demand continues to be mismatched.  

2.1.2 The Emergency Department System 

Until this point, the ED/IU system has been referred to in general terms, before continuing, it is 

worthwhile defining the system more clearly. An understanding of the system will facilitate the 

definition of terminology and make improvement targets and quality measures more tangible in 

later discussions. Recalling the health care delivery chain generalized picture shown in Figure 7, 

of Chapter 1, the supply chains can be removed leaving the simple health care delivery chain 

shown in Figure 10.  

 

 

Figure 10 Simple health care delivery chain 

The ED/IU system depicted in this way can be seen in Figure 11. The figure is a very simplified 

representation, but emphasizes that this is indeed the ED/IU health care delivery chain with two 

primary steps. 

 

Figure 11 ED/IU health care delivery chain 

Figure 12 depicts this chain with increased complexity by adding more detail to the flow of 

patients through the system. As can be seen in the figure, there are two ways that patients can 

arrive at the ED, by walking in or by an ambulance. While patients wait to get a bed in the ED 

they may leave without being seen (LWBS). Also if the ED declares, to local authorities, that it 

is crowded, in some states, ambulances will be diverted to other EDs (this will be discussed more 

in the next section). When the patient completes their ED treatment they may get discharged to 

their home, they may be transferred to another hospital, they may leave against medical advice, 

they may pass away, or they may be admitted to the IU.  
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Figure 12 General patient flow model through ED/IU system 

In most EDs, approximately one third of the patients get admitted to the IU. Although this 

becomes the majority of patients who are admitted to the IU, patients can also enter the IU 

through transfers from other hospitals or elective admissions, for procedures that were scheduled 

ahead of time. Finally patients leave the IU through discharge, transfer, or when they pass away.   

Looking into the ED process in more detail it is possible to see the in-department level delivery 

chain. This is shown in Figure 13. Improving this delivery chain is the focus of many studies, 

some of which will be discussed in Section 2.2. However, looking at this chain is also useful in 

order to better understand quality metrics that are used in the ED. These metrics will be 

discussed in more detail in the next section.  

 

Figure 13 Emergency department in-department level delivery chain 
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The micro processes in each ED and IU can differ, however in order to better understand the 

process, the following is a description of patient flow through the ED/IU system for the VHA 

West Roxbury system which Chapter 3 will introduce in more detail. As described earlier, a 

patient may enter the ED by walking in or through ambulance delivery. These patients are 

entered into the computer system by a greeter, which begins the recording of time for that 

patient. If it is clear that the patient cannot wait, the greeter can get ED staff to expedite the 

patient into a bed and triage is done at the bed side. Otherwise the patient waits in a waiting area 

until they are brought to a triage room by a medical practitioner.  

In triage, the practitioner will do a basic exam and potentially order some preliminary tests. The 

practitioner in triage also will assign a triage level to the patient. The initial purpose of triage 

levels was to prioritize patients based on urgency or acuity. In practice triage is also used for 

assigning patients to other units such as an urgent care or fast track [Gilboy et al., 2005, 

Hauswald 2005, Peck and Kim 2010].  The most common system for assigning triage levels is 

known as the Emergency Severity Index (ESI). ESI Level is assigned by the triage staff based 

upon the medical urgency and expected resource usage of the patient [Gilboy et al. 2005]. 

Patients are then assigned beds in an order based on the judgment of a charge nurse who is taking 

into account: ESI level, order of arrival, and distribution of nurse work load.  

Once the patient is in their bed they will receive a nurse and doctor analysis, the “time to doctor” 

is a commonly measured treatment milestone as will be described in the next subsection. The 

patient then goes through a series of exams, tests, and treatments, until finally a doctor decides 

whether the patient requires admission to the hospital or not. If so, the ED doctor will enter an 

order for an IU bed into the computer system; this order appears on the bed management system 

that is being monitored by hospital bed managers.  

Upon receiving a bed order, the bed managers find an appropriate staffed bed for the patient or 

wait for an acceptable opening. Nurses are assigned to a specific unit within the hospital and 

treat the patients in beds on that unit. Doctors can be assigned a patient on many different wards, 

these assignments are based on a system in the hospital that accounts for the doctor’s current 

patient panel, loads the doctor has had in recent days, and (to some extent) location of the 

patient.  If the patient is not chosen for admission to the hospital, arrangements are made for a 

transfer, patient pickup, or patient walk out.  
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The simple ED/IU chain depiction in Figure 11 can also be made to contain more information by 

adding a time dimension. This is shown in Figure 14. This abstraction of the system exposes the 

level of overlap between the ED step and IU step caused by the need to coordinate beds in the IU 

to accommodate a patient who is being admitted from the ED as described above. As can be 

seen, while the coordination is taking place the patient holds a bed in the ED, even if they are no 

longer receiving emergency treatment.  

 

Figure 14 ED/IU delivery chain with time element 

2.1.3 Measuring the quality of care in the emergency department 

Having provided an understanding of the ED/IU system, it is worth looking at the relevant 

metrics of quality for this delivery chain. There are metrics for quality related to all diseases that 

will pass through a hospital, however when considering a chain and the flow of patients that go 

through that chain, quality is related to timeliness of patient flow. In the emergency environment, 

disease specific and operational metrics of quality are primarily defined by how quickly a patient 

gets to and through required treatment [Graff et al. 2002, Bernstein et al. 2009, Horwitz et al. 

2010].  

Deficiencies in patient flow through the ED/IU chain are often summarized as “Emergency 

Department Crowding.” While crowding implies an issue of too many patients per unit area, the 

term has gone well beyond this in the literature. Crowding is a flow issue and to define the 

problem as crowding is misleading. When a sink is filling with water we do not claim that the 

problem is a filled sink; we claim the problem is a clogged drain. This concept has not been 

completely lost in the ED literature [Asplin et al. 2003]. However, despite a growing 

understanding that ED crowding is really an issue of ED flow the literature continues to struggle 

to define crowding. The definition has settled upon a mix of its consequences and causes [US 

GAO 2009]. Whether looking at EDs as being crowded or as having poor flow, there are many 

quality measures that have been studied in the ED that are influenced by this issue. 
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An example of a specific disease related metric is “time to antibiotics” for patients with 

pneumonia. The amount of time it takes for a patient to receive an antibiotic for their pneumonia 

is directly related to the quality of their treatment outcome. This direct link has caused studies to 

focus on how the flow of patients through the ED can impact this “time to antibiotic” and 

consequently the quality of care for the patient. While this measure is disease specific, the goals 

of studies using this metric were to study the link between flow/crowding and quality of care as a 

whole, the authors simply choose quality of pneumonia care as a proxy for total care [Fee et al. 

2007, Pines et al 2007]. 

Another common example of a quality measure that gets its roots in flow, but focuses on a 

specific disease, is time to echocardiogram and balloon inflation. In this case, patients who may 

be suffering from a myocardial infarction are the target patients and there is an established 

quality benefit from ensuring that they are diagnosed and treated quickly [Braunwald et al. 2002, 

Antman et al. 2004, Diercks et al. 2007]. 

On a similar note, a measure that uses a specific group to generally judge ED quality and flow is 

the time to diagnosis and treatment of critically ill patients. As was mentioned earlier, there are 

patients who absolutely, medically cannot wait to enter the ED (often designated ESI 1 or 2). 

Due to physical limitations of the ED space, finding an area to place one of these patients and 

getting a practitioner to find a safe moment to stop their current action and move to the new 

urgent patient can take varying amounts of time. How quickly an ED responds to these urgent 

patients is an important measure of quality as it touches on the true purpose of the ED, to treat 

those in an emergency situation [Cowan and Trzeciak 2005, Clark and Normile 2007]. 

While patients who are in a severe amount of pain may not be in mortal danger, they are also an 

important group to diagnose quickly and provide initial treatment. Time to pain assessment and 

analgesic has become a commonly studied metric of ED flow and quality. What makes this 

metric distinct from others, is that these patients may not necessarily need a bed immediately, 

just treatment. So, while some of the other measures target how quickly a patient gets to a bed, 

this metric simply targets how quickly the patient is seen [Hwang et al. 2008, Pines and 

Hollander 2008]. This is a justification for having practitioners who can prescribe and dispense 

medication available at triage. 
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Not all quality/flow metrics are disease specific. Some use more systematic measures that affect 

all patients. One such quality measure is the number of patients who leave without being seen 

(LWBS). LWBS was mentioned in the flow model of the ED in Figure 12. In essence this is 

when a potential patient balks from the ED bed queue. LWBS may not seem to be tied to how 

quickly a patient gets to and through treatment; however it is in fact closely linked to the average 

waiting time. Patients will LWBS for many reasons such as; frustration with the wait, 

reconsidering the need for treatment, concern for the cost of treatment, actual waiting room 

crowding, etc. The major concern about LWBS is that it does not follow the intuition that only 

low acuity patients (patients who are not urgent) LWBS. In fact sometimes patients with high 

acuities will leave, causing them to return to an ED later with their emergency exacerbated by 

the delay [Baker et al. 1991, Bindman et al. 1991, Weiss et al. 2005, Asaro et al. 2007]. 

When flow through the ED is delayed, patients will remain in treatment for a longer period of 

time. Thus another systematic quality issue related to the flow of patients through the ED is 

exposure to safety risks. As described earlier when flow is poor, the ED becomes crowded and 

this increases the opportunity for a patient to catch a disease from another patient. Physically 

crowded conditions can also increase chances of accidental physical injuries. Also when patients 

are not flowing quickly through the system, and the ED is getting crowded, practitioners must 

continually change which patient they are attending, increasing the chance for medical errors 

[Trzeciak and Rivers 2003, Hollander and Pines 2007].   

As mentioned earlier, in many local hospital systems, it is possible for an ED to declare 

ambulance diversion status. This means that they will not accept ambulances unless that 

ambulance is carrying someone who cannot survive being diverted to a farther hospital. The idea 

behind ambulance diversion is to turn off the faucet when the sink gets full. However it was 

found that this didn’t really help the system (since many hospitals in one area would go on 

diversion at the same time) and many states have outlawed this practice. For those areas that still 

practice diversion it is often used as a proxy measure for being crowded, which in turn is a proxy 

measure for bad flow. Since diversion can be harmful to patients, the amount of time that a 

hospital spends in diversion status can be seen as another quality measure that has its roots in 

flow issues [Kelen et al. 2001, Asplin 2003, Schull et al. 2003, McConnell et al. 2005, Patel et al. 

2006]. 
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As can be seen, many of the flow/crowding measures, are rooted in symptoms as opposed to 

direct measures. This is because most of the studies have been done by practitioners. 

Practitioners are more interested in proving how flow affects quality, rather than studying flow 

itself. Despite the fact that flow was not the target of these studies, thanks to the research that has 

been done by these practitioners, it has been proven that flow has a direct implication on quality 

of care. It is therefore possible to study the health care delivery chain by purely using flow 

measures, knowing that improvements in flow will indeed impact care. 

One example of a more direct measure of flow is general time to provider. This measure can 

have two different meanings, some may consider the time to provider to be the time to triage 

where the patient will often see a nurse, physician assistant and sometimes a physician. 

Alternatively time to doctor is also a commonly used measure that is more concerned with when 

the patient is seen by a physician only. Measures like this cause some hospitals to invest in 

placing a physician in triage in order to improve performance. In truth, this is merely playing 

with the metric and does not necessarily have impact on the flow issues that may have been 

delaying the patient from getting to a bed and the traditional physician exam [CDC 2011, Hing 

and Bhuiya 2012].  While the measure can possibly be gamed by a hospital, with a clear 

definition it could be more valuable as it closely relates to the disease specific measures 

discussed above. There was a recent study that collected data from the Center for Disease 

Control’s National Hospital Ambulatory Medical Care Survey (leading up to 2009) which shows 

that average waiting times to see a provider has changed over time. The results are redisplayed in 

Figure 15.  As can be seen, time to provider seems to be rising, which may correlate to the 

shrinking resource/patient visit ration data provided in Figure 9.  
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Figure 15 Growing waiting time to see an ED physician [Hing and Bhuiya 2012] 

All of the measures discussed above are important depending on what perspective one has when 

looking at ED flow and crowding. However if one considers the higher level view where the 

ED/IU delivery chain is considered as a whole, connected system, it is important to look at the 

metrics that directly tie the links in the chain. The first such metric that will be used throughout 

this dissertation is “waiting time.” For this study, waiting time is defined as the time period 

beginning when a patient enters the chain (in the admit phase of the generic chain or arrival in 

the ED specific chain) and when they enter the first treatment step (for this study, the ED bed). 

The second treatment step of the ED/IU chain is entering the IU, therefore the next measure that 

is important to consider in this chain is “boarding time,” or the waiting time between when an 

ED practitioner decides that the patient will need admission, to the time that the patient actually 

leaves the ED and is placed in an IU bed. Indeed these measures have been discussed as 

important in this system [Solberg et al. 2003, Wilson and Nguyen 2004, Olshaker and Rathlev 

2006, Falvo 2007, US GAO 2009, Wong et al. 2010]. The next section will discuss solutions to 

ED crowding that have been studied leading to an understanding that those which focus on 

reducing boarding time have some of the greatest impact on waiting time as well. 
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2.2 Past Solutions 

Studies in the ED have not only focused on measuring the causes and effects of poor patient 

flow. There have also been many studies focused on solutions to the issue. The solutions have 

been categorized as “increased resources, demand management, and operations research” [Hoot 

and Aronsky 2008]. To some degree these solutions and the above categories reflect the ITO 

model of ED patient flow [Asplin et al. 2003]: 

 Input (demand management),  

 Throughput (increased ED resources and operations research),  

 Output (increased IU resources and operations research) 

The ITO model was mentioned earlier when discussing the flow of patients through the ED. This 

model is credited with being one of the first clinically originated models to frame ED flow as a 

complex problem that could be improved through better understanding of the larger system in 

which the ED operates. This is in contrast to believing that solutions can be generated within the 

ED alone. Many solutions that fall into the ITO categories can be found in summary articles that 

have been published [US GAO 2003, Olshaker and Rathlev 2006, Bernstein and Asplin 2006, 

ACEP 2008, Moskop et al. 2009, US GAO 2009]. For the sake of understanding, some of these 

solutions as categorized by the ITO framework are presented here. Many of the presented 

solutions also fall into the categories that were presented in Chapter 1: Electronic health records 

and health information technology, Decision support tools, Human factors, Health care supply 

chains/Operations management, Patient flow, Organizational change and systems redesign, 

Improvement frameworks. 

2.2.1 Input 

The input side of ED improvement solutions is focused on better controlling what patients arrive 

at the ED, how those patients are organized once they arrive at the ED, and better mitigating the 

negative effects of ambulance diversion. One example of an input solution that was suggested is 

adding more registration clerks to the front/greeting desk. These clerks would help answer 

patient questions, better prepare patients for their ED treatment and improve overall flow 

[McGuire 1994]. This is also an example of a system redesign.  
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Another solution used decision support tools to suggest exams that a nurse could order for a 

patient when they are first seen in triage. The system would facilitate having the exams 

completed or ready when the patient enters their bed [Kirtland et al. 1995]. This is actually 

delivery chain solution as it takes the ED in-department chain into account by using in input 

treatment step to improve a later treatment step.  

Earlier the concept of having ED physicians perform triage was mentioned as a way of reducing 

the time to doctor, however another benefit was found to this in terms of better controlling what 

patients actually enter the ED. Having a doctor in triage satisfies the EMTALA legal 

requirements that every patient who enters the ED be seen but also allows the doctor to send a 

patient to a less resource limited treatment area before they add to the ED load, such as an acute 

care unit or other non-emergency walk in option [Kelen 2001, ACEP 2008].  This may be 

considered a patient flow based system redesign.  

Another common suggestion for controlling the input of patients is to increase the availability of 

primary care through increased insurance [Richardson 2002]. As mentioned earlier it is unclear 

whether this will in fact reduce the number of patients using the ED, since the majority of 

patients who enter the ED are insured [Weber et al. 2008]. In the end the value from increasing 

capability to pay for primary care is limited until the capacity of primary care is increased; the 

combination of interventions may increase access [Parchman and Culler 1999, Paradise et al. 

2011]. This solution was discussed in Chapter 1 as a large policy level issue. 

Earlier, ambulance diversion was mentioned as a measure of quality affected by patient flow. To 

some degree diversion was also initiated as a solution to patient flow issues. Diversion tries to 

cut off a portion of the ED input in order to give the ED a chance to reduce its crowding. Some 

studies accept diversion as a useful tool but understand that it has some quality implications. 

These studies focused on how to allow diversion but reduce its impact by improving geographic 

coordination or being more specific about where to send patients based on their needs [Wilson 

and Nguyen 2004, Patel et al. 2006, Shah et al. 2006, US GAO 2009]. These improvements use a 

mix of system redesigns and decision support tools.  

While it is possible to make more primary care available to patients through increased insurance 

and capacity, this does not necessarily mean that the patients will still choose primary care over 
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ED care. Often patients go to the ED simply because they don’t know that other options exist. 

For this reason some studies have looked at how community education can reduce the number of 

patients that go to the ED. These education interventions result in some patients choosing 

another treatment option during a particular event, but also make use of primary care options that 

reduce the need for the ED [Michelen et al. 2006, Gawande 2011]. This is another larger policy 

based solution. 

2.2.2 Throughput 

While many input interventions may help reduce who is coming into the ED which may reduce 

the crowding symptom of poor patient flow, there would still be the issues that caused flow 

problems in the first place. Turning off ones sink does not mean the drain is no longer clogged. 

Therefore while input solutions may help in the short run, as the population grows and ED 

capacity does not, EDs would be faced with the crowding issue again. With this in mind there are 

many studies that focus on how to improve throughput in the ED. For the sake of this discussion, 

throughput can be defined as the amount of time it takes between when the patient has been 

triaged and the ED completes the tests and procedures involved with the patient’s treatment, 

culminating in a discharge/admit decision. Many of the studies about ED crowding are initiated 

by ED personnel. Therefore they are limited to making changes within the ED. For this reason 

throughput based solutions are more common than input or output based solutions. The 

following are a sampling of such solutions. 

From a cost perspective, it is ideal to be able to leave staffing levels alone and change processes 

in order to improve flow, however, ED flow may be limited by the availability of staffed beds. 

This means that a viable solution to ED flow issues may be redistribution of staff or changing 

staffing levels entirely. Queuing theory is a mathematical method that uses the average rate and 

variability of patient arrivals and service in order to calculate a staffing level necessary in order 

to achieve a target average waiting time. For organizations that have the resources and flexibility 

to respond to these staffing recommendations, this may be the most straightforward method for 

improving flow. Similarly it may be possible to use queuing theory by holding staffing constant 

and seeing what average service speed would be needed to achieve a waiting time goal. This 

service speed can then be set as a target for other improvements. This application of queuing 

theory may be necessary when the limitation on staffed beds is not the staff, but the number of 
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beds or rooms physically available or when finances are limited [Vassilacopoulos 1985, Green et 

al. 2006].  

In order to make the problem mathematically tractable, the application of queuing theory often 

requires some simplifying assumptions. In many cases these assumptions are reasonable; 

however in cases where more detail about the department needs inclusion, computer simulation 

can also be used for the same purpose [Rossetti et al. 1999, Samaha et al. 2003]. More discussion 

on the use of simulation in health care and the ED/IU system in particular will take place in 

Chapter 6. Queuing and simulation fall into the operations management and patient flow 

categories of solutions. 

Studies of patients who were waiting for long periods of time in the ED, and causing crowding in 

the literal sense, found that low acuity patients waited the longest. This is unsurprising, given the 

nature of the triage process. While letting patients of lower acuity wait may be medically and 

morally justified, as mentioned earlier, there are health hazards associated with patients waiting 

too long without being seen and having physically crowded spaces. Hospitals also desire a 

reputation for a positive customer experience. One popular solution to alleviate the buildup of 

low acuity patients is Fast Track. Fast Track is a set of resources designated for treating low 

acuity patients that are not expected to need extended treatment. Fast Track allows an ED to 

quickly process the low acuity patients and thereby relieve the potential complications of having 

patients wait for too long. While Fast Track has been found to reduce average waiting times, it 

has been noted that the resources set aside for low acuity patients must be minimal (such as a 

nurse and bench), if Fast Track resources are capable of treating higher acuity patients (bed, 

nurse and doctor) then the ED may have a moral obligation to accept patients of higher acuity 

and let low acuity patients wait as before [Meislin 1988, Rubino 2007, ACEP 2008, Peck and 

Kim 2010]. This solution can be seen as organizational change and systems redesign. 

A great deal of the work is done in the ED, independent of the hospital to which it is attached. It 

is cost effective to keep the ED attached to the hospital as the connection enables access to a 

wider variety of testing and diagnostic tools. This connection can sometimes mean that hospital 

support services, used by the ED, may not make the ED a first priority and may delay the 

treatment of ED patients [Peck et al. 2010]. For this reason flow can sometimes be improved by 

designating some support services that are strictly used by the ED. One example of designating 
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support services to the ED, in order to improve flow, is building a mini-laboratory within the ED. 

This mini-laboratory could be used to handle more common tests ordered by the ED (enough to 

keep the mini-laboratory utilization high) and reduce reliance on the hospital laboratory which 

may have conflicting priorities [Lee-Lewandrowski et al. 2003]. This is another example of a 

systems redesign. 

While it is often the case that the delay for an ED bed is the bottleneck in the system, there are 

other times where the ED may have been quiet for some time and then receives a sudden 

increase in arrivals. In this case, the resources set aside for triage and registration of a patient 

may act as the bottleneck for giving a patient a bed, rather than the limitation of available ED 

beds. For this reason, some systems redesign solutions focus on eliminating this bottleneck. One 

example of this is moving patient registration to the bedside. An ED is legally bound to see a 

patient irrespective of their ability to pay; consequently, there is no requirement to do a full 

registration of the patient before they are in a bed. By performing registration at the bed side, it 

can be done while a patient is waiting for treatment reasons and therefore does not disrupt flow 

[Gorelick 2005, ACEP 2008]. Taking this to a greater level, if hospital staff are willing to enable 

an organizational redesign that allows for variable actions, all front end operations (triage and 

registration) can be bypassed when there are opened beds. This is called a “direct to bed” 

methodology, however the staff would have to be constantly aware of the ED bed situation and 

be willing to move between offering front end triage or not based on ED’s state. This lack of 

standard flow may be frustrating for staff but is working well in the VHA West Roxbury ED and 

at other hospitals [Bertoty et al. 2007].  

One more common operations management technique that has been applied to improving ED 

flow is assigning standard times to specific processes in the ED. While much of what is done in 

the ED is variable (based on practitioner and patient) there are some tasks such as lab tests that 

have tighter bounds on how long they should take. This makes it possible to look for best 

performance levels for a task and assign a maximum allowable time that this task should take. 

This approach may be used to reduce flow times or variability in flow times [McGuire 1994]. 

It has been shown in manufacturing that having electronic displays can be used to improve 

communication and illuminate areas that need attention. This has similarly been found to be the 

case in the ED. Many EDs have adopted HIT systems that include an electronic tracking board. 
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These tracking boards enable all nursing staff to gain a quick understanding of how the ED is 

performing. Often these boards include indicators of how long a patient has been waiting and 

will chime, flash, and/or change the color of a patients name when the patient has been waiting 

for longer than a predetermined time. The boards often color code patients based on their triage 

urgency level which can be updated as the patient is treated. The boards also include information 

about the patient that make it easier for nursing managers to quickly make decisions about 

moving a patient or asking patients to share a room  [Boger 2003]. It is possible to take the 

boards even further by combining the information on the boards with other information in the 

hospital and in patient records to create patient flow based decision support tools for hospital and 

ED management [Gordon and Asplin 2004]. Another example of a quick way to get the state of 

the ED using a decision support system is an ED crowding index. Multiple types of crowding 

indexes or measures have been explored that are calculated using multiple different 

methodologies and definitions of crowding. Some EDs use these crowding indexes in order to 

display whether the ED is crowded or not throughout the hospital. This ED state can be used to 

enable decision making by hospital management with a systematic view, or merely serve as a 

warning to potential future ED visitors [Bernstein et al. 2003, Weiss et al. 2005, Jones et al. 

2006, Epstein and Tian 2006, McCarthy et al. 2008]. 

One of the most popular tools of the improvement frameworks described in chapter one is the 

use of process mapping. Often when a problem is identified, the first task taken by a team is to 

map the process around it and look for areas of waste. Excess processing, excess communication, 

excess movement, and other areas of waste can be identified when looking at a process map and 

then a new process can be created which does not include wasteful steps. Often guidelines of 

types of waste are written in order to help facilitate the process mapping activity. Process 

mapping and waste identification tools have been implemented in EDs as well as other health 

care systems [King et al. 2006, Graban 2008, Black and Miller 2008, Dickson et al. 2009]. In 

many cases the identified waste is that of excess movement. ED staff may be walk back and forth 

across the ED many times a day between supply rooms and patient rooms. A way to fix this that 

has shown great improvements in productivity is changing the physical layout of the ED or by 

creating mobile supply carts [Miro et al. 2003]. 
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2.2.3 Output 

While there has been a great deal of effort put into the input and throughput aspects of the ED, 

often the newest solutions focus on the output side of the ED. Indeed it is now understood that 

the interface between the ED and where patients flow out of the ED, the IU, is “the single most 

important factor” [Olshaker and Rathlev 2006] attributed to flow problems experienced by the 

ED [US GAO 2003, 2009].  

As discussed earlier, when a patient is approaching the end of their emergency treatment, an ED 

doctor may recommend the patient for admission to the IU, and bed coordination begins. The 

time it takes to assign a bed to a patient can be long. While a patient waits for admission they 

hold a bed in the ED, also known as boarding. Patient boarding delays the ED from taking a new 

patient even if the treatment on the current patient is complete [US GAO 2003]. It is for this 

reason that the wait time between the ED and IU is directly tied to waiting time for other patients 

to enter the ED [Falvo et al. 2007]. With the impact of ED boarding in mind, many techniques 

have been studied to reduce this output flow delay.  

The concept of using queuing models to make staffing and resource decisions has already been 

introduced in the context of improving ED throughout. However when considering the ED/IU 

system, ED boarding time can also be re-defined as the waiting time to get into the IU system. 

Thus, just as queuing theory was applied to the ED to reduce ED waiting time it can equally be 

applied to the IU in order to reduce IU waiting time/ED boarding time [Green and Nguyen 2001, 

de Bruin et al. 2007]. Once again, similar studies can be performed using simulations if 

mathematical models are undesirable [Levin et al. 2008]. Just as before, the use of these tools is 

an acceptable approach when the hospital has the financial resources to act upon the 

recommendations and shift or add staffing/beds. To that end, the simple addition of resources is 

also a solution even when not analyzed using models [McConnell et al. 2005]. As described 

earlier, without financial resources and staff flexibility, the models can only act as a goal setting 

tool. 

When a system has resources to expend on the issue of output there are other operations 

management based solutions that can be considered. While increasing IU resources may actually 

improve output flow, sometimes funding and administration may be disconnected and the ED is 

on its own to reduce the symptoms of poor output flow. In this case one solution that has been 
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studied is adding a buffer of beds between the ED and IU. Buffers reduce the impact of boarding 

patients, but do not eliminate the quality issues of having extra patients in the ED. Buffers are 

also subject to overflowing and result in the same boarding issues if output flow is badly blocked 

[McGuire 1994, Kolb et al. 2008, ACEP 2008]. In order to reduce some of the quality issues of 

having extra patients in the ED, it is also possible to invest in transition teams of midlevel 

providers who watch boarding patients and unburden ED physicians [Ganapathy and Zwemer 

2003]. 

As has already been suggested, in the case of beds and hospital staff, the absence of funds to 

increase staffed bed capacity can be compensated with some flexibility to match scheduled 

capacity with expected demand at different times of day. Increased IU capacity can be reached 

by moving staffing schedules around or it may be accomplished through better coordinating the 

flows of patients into the IU, that compete with the flow coming from the ED. Many hospitals 

accept patients for elective and surgical admissions that are not emergencies; these patients use 

IU beds just like patients coming from the ED but are scheduled for arrival. These schedules can 

be better controlled to match expected bed demand from the ED or can be cancelled when 

unexpected demand from the ED occurs [ACEP 2008]. Better planning of elective admissions 

increases effective capacity for patients being admitted from the ED, however many of these 

elective admissions can become emergencies if delayed for too long, they are also significant 

revenue generators. With this in mind, hospital administration may have a difficult decision 

between ED quality measures and other important hospital performance measures when 

controlling elective admission schedules. 

Just as in the ED, process mapping, improvement frameworks, and organizational redesign can 

be equally useful when improving flow between the ED and the IU. By looking at the process of 

ordering an IU bed for an ED patient and how that bed eventually gets assigned, it is possible to 

find many areas of waste that will reduce the efficiency of this flow. One noted example of waste 

is the policy to have ED physicians request an IU consult to visit the ED to decide whether a 

patient can be admitted. Waste can be reduced by having the ED physician make the decision. 

While the original policy may increase the likelihood that a patient only gets admitted if they 

really need it, or that the patient is admitted to the best ward for their illness, it also significantly 

reduces the flow rate out of the ED. Instead, it is possible to use a set of hospitalists whose job is 
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to facilitate admissions, this reduces variability, increases the speed of the process and it also 

overcomes incentives that consults may have to keep their ward less crowded [Howell et al. 

2004]. Another approach to improving the flow of patients between the ED and IU is to create 

teams that facilitate the patient’s admission [Moss et al. 2002]. An administrative way to reduce 

admission delays is to institute hospital bed managers. These managers can be used in many 

ways. Bed managers may pressure inpatient staff to fill empty beds, search the hospital for beds 

that could be emptied soon, or enforce an ED physician’s decision to admit a patient. The use of 

such bed controllers continues to grow and show reductions in ED boarding time [Moskop et al. 

2009].  

Often flow from the ED into the IU is delayed due to a mismatch in the time that ED based 

demand for IU beds grows and the time when the supply of beds is replenished through 

discharges [Williams 2006]. One solution that has been suggested to this problem is to increase 

awareness of crowding in the ED by displaying crowding measures (discussed earlier) 

throughout the hospital.  These methods are often accompanied by a system of colors to express 

the urgency of ED crowding. Another method is to simply increase communication between the 

ED and IU through regular updates [Howell et al. 2008]. While these methods may work in some 

hospital cultures, increasing communication can be time consuming for inpatient staff that have 

other work to do. IU staff also may not necessarily begin to work more urgently knowing that the 

ED is busy if they do not internalize the connection between ED business and future IU business. 

For this reason, other solutions have been created that more directly specify IU staff actions in 

order to improve ED flow.  

One popular heuristic solution to this problem is called the discharge by noon system. In this 

system, doctors are encouraged or incentivized to discharge any patient (that can be safely 

discharged) before noon. The early discharge policy enables beds to be ready for the 

characteristic surge of ED admissions just after noon. This system has proved successful in many 

hospitals however it is often displeasing to doctors who may feel that forcing early IU discharge 

means that they cannot spend their mornings treating patients, this may be counter to their 

incentives and to treatment quality. IU staff may also feel that their efforts would be wasted if the 

number of opened beds is greater than future need [Rubino et al. 2007, ACEP 2008].  
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Another method to encourage IU staff to work faster and alleviate the pressure of ED boarding is 

the controversial hallway admissions strategy. In this case, rather than have patients board in the 

ED they are placed in beds in the IU hallways. This strategy puts pressure on IU staff to get these 

patients into rooms, has been shown to successfully reduce ED boarding and waiting times, 

however it only shifts the burden of waiting patients and does not alleviate it from the whole 

system [ACEP 2008, Viccellio et al. 2009].  

In response to the limitations of current solutions to improve flow between the ED and IU, recent 

literature has suggested that if IU admission could be predicted and communicated to the rest of 

the hospital, when a patient enters the ED, then the IU could begin preparations before the 

patient has completed emergency treatment. Overlapping emergency treatment and bed 

coordination should reduce boarding time and consequently ED waiting time [Yen and Gorelick 

2007]. The concept of using prediction in this way is shown in principle in Figure 16. By making 

a prediction of likely admission at an early step such as triage, the bed prediction could serve as a 

signal of demand to the IU. This would cause the bed coordination process to begin while the 

patient is still undergoing their emergency treatment. While this would reduce the bottleneck that 

exists in the current system, it would add uncertainty to the system. The IU would have to decide 

how often to respond to predictions that could be incorrect, as the ED provider would still make 

the final decision whether to really admit the patient or not.  

 

Figure 16 Timeline conception of using prediction to reduce boarding time 
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The suggestion to use prediction was made in other studies in an off handed way and it is natural 

for a medical practitioner to feel a little discomfort with the idea of using prediction. There is a 

great deal of uncertainty in health treatment. When a medical practitioner makes a diagnosis, 

100% confidence is rarely, if ever, achieved. In an environment of such uncertainty it may be 

desirable to have moments of absolutism. However waiting for the concrete decision (such as the 

decision to admit a patient), though comfortable, is not necessarily what is best for flow. This 

delay for certainty allows the bottleneck of assigning patients between the ED and IU to become 

significant. On the other hand by introducing some uncertainty, it is possible to improve flow 

and productivity. Looking at a simple inventory model, it is possible to wait until customers 

order a product before beginning production; however that means long wait times. To solve this, 

prediction can be used to guess product demand, start production early and supply the predicted 

amount of customers in a timely manner.  

The logic behind using prediction is a byproduct of the fact that the ED and IU are indeed parts 

of a health care delivery chain. It is therefore hoped that the study of using prediction to improve 

flow in the ED/IU chain can lead to similar work in other chains which are similarly connected. 

While the study will focus specifically on the ED/IU chain the goal is to be an example of how 

this approach may be used in other chains. To begin the exploration of prediction in the ED/IU 

chain, there will now be a discussion of prediction in health care as a whole, followed by a 

discussion of prediction in the ED in particular. These discussions will set the stage for the rest 

of the dissertation, focused on studying the application of prediction to an ED.  

2.3 Prediction  

Although formalized prediction is not particularly common in the daily activities of a health care 

delivery organization, ED admission is not the first health care context in which prediction was a 

recommended solution. The use of prediction to allow proactive care has been listed as one of 

the “new rules” for redesigning and improving care in the IOM report, “Crossing the Quality 

Chasm” [IOM 2001]. Specifically, the report calls for the anticipation of needs: 

“Under the current approach, health care resources are marshaled when they are needed. 

The system works largely in a reactive mode, awaiting complications and underinvesting 

in prevention. The new system would not wait for trouble. It would use patient registries 

to track patients and draw them into care. It would use predictive models to anticipate 
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demand and allocate its resources according to those predictions, thereby smoothing 

flow.” In short this means that we should “organize health care to predict and anticipate 

needs based on knowledge of patients, local conditions, and a thorough knowledge of the 

natural history of illness” [IOM 2001]. 

The “anticipation of needs” as described by the IOM has two components. The first is the actual 

prediction. The prediction can be based on a known, deterministic, series of actions (for example, 

if a patient is diagnosed with an issue then there is a series of steps that all patients must follow), 

or the prediction may be based on a forecast of need (for example a situation where not all 

patients go through the same exact steps but a prediction can be made for each individual patient, 

such as the ED). The second piece of “anticipation of needs” is the actual action that follows the 

anticipation. Whether the future steps are deterministic or forecasted, the system must be set up 

in order to respond. The IOM specifically suggests developing responses based on the allocation 

of resources (such as medical supplies and staff), but other actions may include changes in 

decision making, improved scheduling, increased coordination between providers, etc. While it 

is not always done, responding to predetermined needs is relatively straight forward, however 

responding to predicted needs is not. This section will discuss more what is meant by predicting 

needs by mentioning methods for making these predictions in the context of their applications. 

2.3.1 Prediction in Health Care 

Prediction in health care can be broken down into multiple dimensions. The first dimension is 

how the prediction is to be used. Just as decision support systems were broken down into those 

that are used for clinical purposes (CDSS) and those that were used for operational purposes 

(HMSS), so too can predictions, which are often the heart of the decision support systems.  

A clinical prediction is also often called a prognostic. Given a set of symptoms that a patient has, 

the predictor can provide an assessment of likely conditions that may be causing the symptoms. 

A CDSS may take this likelihood assessment and assist a medical professional in choosing tests 

and other diagnosis tools in order to narrow down the patient’s true condition.  

An operational prediction can focus on a patient but can also focus on a health care delivery 

system as a whole. In the case of a patient, the operational prediction can assess the likely future 

state of a patient, such as needing a transfer, being admitted to a long term care facility, needing 
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re-admission in the future, missing a scheduled appointment, etc. These predictions are used 

(often as part of an HMSS) to help managers choose actions that facilitate or prevent future steps 

the patient may make. In the case of a health care delivery system, data from historical patient 

visits, historical system performance, or aggregation of current system states could be used in 

order to predict potential long term or near term states of the system, which can then be applied 

towards facilitating or avoiding these states.  

The second dimension of predictions is based on the type of data used in order to make the 

prediction. The data can be exogenous, a type of data that is unrelated to the system, such as time 

of day, day of year, temperature outside etc. Alternatively data can be endogenous, a type of data 

that is specific to the system, such as number of patients currently in the system, current values 

of key metrics, number of staff who are on duty, current number of available beds, patient 

attributes, etc. Two hospitals that are geographically adjacent to one another would always have 

the same exogenous variables but not necessarily the same endogenous variables.  When one 

considers predictions (or forecasting, which is often used interchangeably) one or both of the 

types of variables can be applied to make a prediction.  

Often, supply chain management is concerned with matching supply with demand by optimally 

coordinating all parts of the supply chain. To better plan the supply chain ahead of the arrival of 

actual demand, prediction is a common tool. If one considers the interactions of two parts of the 

chain (just as the ED and IU are being considered here) there are studies of how predictions can 

be shared in order to improve coordination and performance [Simchi-Levi et al. 2003, Kurtulus 

et al. 2011]. Often these predictions rely simply on historical demand over time which may be 

considered an exogenous variable. However other supply chains that have returning customers, 

contract agreements, or subscription members are able to use the endogenous variable, number 

of customers tied to the supply chain by a standing agreement, in order to plan future production. 

This is known as advanced demand information (ADI) because the system knows in advance 

some level of demand that it will have, however it must contend with the fact that some orders 

may be cancelled and some new orders may be generated. Thus, although the data are based on 

information that is known, the future outcomes of this advanced demand is not always known 

perfectly, thus ADI is often studied in terms of its usefulness when information is perfect vs. 

imperfect [Chen 2001, Gayon et al. 2009].  
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In the medical field a clinical prediction is usually based on endogenous variables. These are the 

symptoms that the patient has when they present to the practitioner. However it is also possible 

to mix exogenous variables into the diagnosis. For example, a doctor is much more likely to 

predict that a patient with a fever, stuffy nose and weakness has the flu during flu season versus 

during the summer. When considering the operations based predictions in health care, exogenous 

variables are far more commonly used in order to predict demand and control resource 

scheduling, examples will be provided in the next sub-section.  

The use of endogenous system variables to predict and control future states is done in 

manufacturing systems which have longer lead times, as in the ADI studies, similar work can be 

done for health care delivery chains that are on the cross organizational level. However when 

considering the daily or hourly time frame, ADI and short term forecasting are less popular in 

supply chain management as these systems are more deterministic for those times frames. In a 

hospital there is a significant amount of variability, decisions made and actions taken in short 

time frames. These short term activities have impact on whole system performance, thus there is 

room for more study into how forecasting can improve performance in these short time frame 

systems, which may not have direct analogies in supply chain literature. The study presented in 

the following chapters is one such example. The study does have similarities to the long lead 

time studies performed with ADI in supply chains in the general approach taken, but also differs 

somewhat in results due to the volatility and time frame of demand. 

The third dimension in prediction, and final dimension described here, is how the prediction is 

made. The fields of statistics, data mining, machine learning, and artificial intelligence all 

contain tools for taking data and making conclusions based on the data. While each of these 

fields have some different tools and methods associated with them, the exact distinctions 

between the fields are not completely clear [Witten and Frank 2005, Shmueli et al. 2007, 

Montgomery et al. 2011]. When discussing health care prediction, the most common method is 

not a part of any of the above fields, expert opinion. Every day medical personnel are making a 

form of prediction. Medical professionals use historical observations of patients, lists of 

symptoms learned in text books and gut feelings in order to make predictions about what 

condition a patient has. Over the course of a patients treatment these predictions are verified or 

discounted based on the efficacy of treatments or through diagnostic tests/exams. This personal 
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ability to predict a patient’s condition is what contributes to the belief that medicine is a 

combination of art and science [Gawande 2002].  

In training, medical students will be faced with constant differential diagnosis sample cases, 

these cases teach the students likely outcomes based on sets of symptoms and test results. Over 

time, the students learn the different conditions that are related to these results, begin to form 

impressions of the likelihood of each condition, and recognize the further tests needed to 

distinguish between two conditions with similar symptoms. These intrinsic understandings of 

likelihood or probability are in some way based on the sheer number of times that an event 

occurs, however they can also be based on less rational beliefs formed by recent events. The 

fields of data analysis, mentioned earlier, seek to mimic and improve upon the decision making 

process that occurs within a practitioners mind. In creating a tool, there is no accidental emphasis 

placed on recent outcomes or specific symptoms, any method for analyzing the data must be 

programmed in, and emphasis on specific events only occurs when it is shown to improve the 

accuracy of future predictions. Just like training a medical student, mathematical methods use 

historical data in training sets in order to draw probabilistic connections between different 

symptoms and specific conditions. Similar to clinically based predictions, management based 

expert opinions are also derived from experiences and are subject to bias. Again mathematical 

management predictions will be programmed to be bias or unbiased based on performance. 

There are many different mathematical tools for making predictions; therefore rather than 

explain each tool on its own, the next sub-section describes different studies that used prediction 

and the tools that they employed.  

2.3.2 Sample prediction based studies in health care  

As mentioned earlier, prediction is regularly used in health care when a doctor makes an initial 

diagnosis of a patient. However as early as the 1950s, studies began to emerge that compared the 

ability of a statistical predictor to suggest the correct final diagnosis versus an expert [Meehl 

1954]. The study of computer/mathematics based diagnosis continues to evolve today and the 

studies that have been published use a wide variety of tools, such as Neural Networks, Multiple 

Linear Regression, Baysian Networks, Fuzzy Logic, etc. [Gustafson et al. 1971, Szolovits et al. 

1988, Long 1989, Szolovits 1995, Grove et al. 2000, Patel et al. 2009]. Despite the fact that 

diagnosis tools are being developed, they are largely used as decision support tools rather than 
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replacing a clinician and it is unclear how much these tools are used even for support. For 

example one study implemented a simple probability based prediction rule to identify patients at 

risk of acute myocardial infarction amongst patients with chest pain, however, it was found that 

without being coerced, doctors rarely consulted the tool [Pearson et al. 1994]. Another study 

suggested the use of a Baysian belief network assist providers in triage to assess the urgency of a 

patient with greater consistency, however, it was not implemented [Sadeghi et al. 2006, Paul and 

Sambhoos 2010].  

While the use of prediction for clinical applications is interesting, it is less pertinent to health 

care delivery chain management, except perhaps for using predictions of diagnoses upstream to 

better staff downstream delivery steps. However, there is a long history in health care of using 

predictions for operational purposes as well. In 1966, one study proposed using the expert 

opinions of doctors and nurses about the length of stay of patients in order encourage staff to 

focus on patients who are expected to be discharged and thereby reduce artificial variability in 

patient length of stay [Robinson et al. 1966]. In 1968 one study attempted to predict the length of 

stay of patients in a hospital to assist future planning of elective admissions as well as resource 

scheduling. This study explored five different methodologies for prediction: expert opinion, 

multiple linear regression, Baysian conditional probability, historical means, and direct posterior 

odds estimation [Gustafson 1968]. Research on predicting discharges and length of stay for the 

purpose of improving resource allocation and budgeting continues to this day. The methods 

applied vary from well-established to relatively new, such as: generalized stochastic models 

[Trivedi 1980], hazard models [Liu et al. 1991], neural networks [Walczak et al. 1998, Walczak 

et al. 2003, Adams and Wert et al. 2005], Baysian belief networks [Marshall et al. 2001, 

Michalowski et al. 2006], multiple linear regression [Omachonu et al. 2004], discrete Markov 

process [Perez et al. 2006], autoregressive moving average time series analysis (ARIMA) 

[Rathlev et al. 2007], binary logistic regression [Park et al. 2009], and quantile regression [Ding 

et al. 2009].  

Another significant area of research that uses prediction in hospitals is the prediction of 

readmissions. This research area seeks to identify patients who are likely to return to the hospital 

after being discharged recently. Although predicting readmissions can allow a system to better 

organize its resources and prepare for the admission operationally, the literature tends to make 
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these predictions for quality purposes. In other words if a readmission can be predicted, steps can 

be taken just after the patient is discharged to maintain their health and avoid the readmission. 

Many of the studies are specific to certain disease categories, rather than the entire population. 

These studies employ a variety of prediction tools such as: logistic regression [Anderson and 

Steinberg 1985, Boult et al. 1993, Lyons et al. 1997, Friedmann et al. 1997], proportional 

hazards regression [Luchansky et al. 2000], and expert opinion [Allaudeen et al. 2011]. 

There are many other areas where prediction may be used in hospitals and in health systems in 

general. The examples shown here are specific to hospitals but in any area where there are trends 

in demand these trends can be used to predict future demand. This can be done in primary care, 

in flu shot demand, demand for small clinic services, and almost any other health service one can 

imagine [Smalley 1982].  

2.3.3 Prediction in the Emergency Department 

There are few consistently studied applications of prediction in health care for operational 

purposes. While length of stay and readmissions are important topics, they are just the beginning 

of the many health care delivery chains that exist in a hospital system, or in the entire health 

system. One area that does attract attention is the ED/IU health care delivery chain. This is likely 

due to the prominence of this system as described earlier in this chapter. 

Clinically speaking, diagnosis tools can be particularly useful in the ED, considering the amount 

of time it takes to reach a diagnosis is directly linked to quality. Going beyond that, the ESI 

triage system described earlier takes expert opinion of a patient’s urgency and likely resource 

usage into account [Gilboy et al. 2005]. This in itself is a mix of a clinical and operational 

prediction. The clinical benefits of ESI triage are achieved by knowing which patients need to be 

treated first. The operational benefits come from how the ESI levels are used to assign staff to a 

patient. Although it is not a formalized process, nursing managers will often use the ESI levels to 

manage the work load of their nurses by giving a mix of acute and less acute patients. It was 

mentioned earlier that studies have sought to improve triage accuracy through statistical decision 

support using Baysian networks. These studies were framed in the clinical context however they 

also provide value by creating consistent triage performance, which can be used to formalize 

processes for optimally assigning patients to medical staff in the ED [Sadeghi et al. 2006, Paul 

and Sambhoos 2010].  
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Other operational predictions have been suggested in the ED based on the desire to prepare for 

crowding. Crowding indexes discussed earlier are not just based on the amount of patients that 

are in the ED but they are also based on the acuity and resource demands of the patients in the 

ED. This means that the indexes can be used or modified to create work indexes. An ED with a 

high work index level is likely to become delayed and therefore this index can predict future 

crowding which can then be used by management to take preventative actions [Epstein and Tian 

2006]. While crowding measures use endogenous variables to predict crowding it is also possible 

to use a mix of endogenous variables and exogenous variables. For example one study made an 

ARIMA model to directly predict long term crowding trends [Schweigler et al 2009]. Another 

study used a discrete event simulation that takes a current ED census and service rates into 

account but then uses exogenously based, expected arrival rates to predict conditions into the 

future [Hoot et al. 2008], similar work has been done using a Markov chain [Au et al. 2009], 

another study used a simulation method called Petri-nets to study the flows in the ED which lead 

to a crowded condition [Chockalingham et al 2010]. 

An exogenous variable built into many of the tools that predict crowding is the forecast of patient 

arrival. The crowding prediction tools use the forecast to influence short term resource decisions, 

but the forecast itself is often also used for long term resource and staff scheduling. This has 

been done using many different models, with varied success, over different time periods. Some 

examples of methods used to make long term forecasts of ED demand are: ARIMA [Jones et al. 

2002], Poisson regression [McCarthy et al. 2008], multivariate time series [Jones et al. 2009], 

review of many methods [Wargon et al. 2009], and a general linear model [Wargon et al. 2010]. 

In one case, binary logistic regression was applied and was combined with a practical application 

for avoiding surge based overcrowding by comparing the forecast to staff scheduling [Chase et 

al. 2012]. Another study made the translation between the ED and the IU and made an ARIMA 

model that predicts long term IU demand from the ED based on future ED demand [Abraham et 

al. 2009].  

The above studies forecasting ED arrivals over time are useful for long term planning of 

generalized capacity and scheduling, however they do not allow for planning reactions to daily 

surges. To this end it is worth returning to the concept that initiated the prediction discussion: 

predicting the likelihood of individual patients being admitted to the IU from the ED. This 
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involves making predictions of short term demand based on the endogenous variables associated 

with each individual patient, and can be seen as a type of ADI in the ED/IU system. Some 

attempts at individual prediction have had clinical objectives. These studies focused on 

predicting whether specific categories of patients will be admitted: Neural network for children 

presenting with bronchiolitis [Walsh et al. 2004], Expert opinion on patients with acute coronary 

symptoms [Arslanian-Engoren 2004], Expert opinion on patients arriving by ambulance [Levine 

et al. 2006, Clesham et al. 2008].  

Some recent studies have seen the operational benefits to making predictions and focused on the 

entire ED population. These studies used the following methods: Baysian network [Leegon et al. 

2005], support vector machines, naïve Bayes [Li et al. 2009], and logistic regression [Sun et al. 

2011]. The studies are valuable for developing prediction models; however they fall short from 

describing how the models could be used in a practical manner to improve flow. Only one of the 

studies looks at multiple methods for making the prediction. While the study shows that one 

method performs a little bit better than others, by not addressing the practical value of the 

predictions, it is unclear whether it is worth investing in more complicated methods to achieve 

more accurate predictions [Li et al. 2009]. Another of the studies uses a relatively simple method 

but uses patient variables that may not commonly be available in hospitals when they are not part 

of a nationalized health care system [Sun et al. 2011]. In each of the studies, there is a reliance on 

the historic conclusion that predictions should be useful but they do not explore how the models 

can be applied.  

While demonstrating the ability to predict IU admission from the ED is a contribution towards 

studying the ED/IU delivery chain, it falls short of showing how prediction can be used to 

manage the chain. Similarly, these studies do not fulfill both parts of anticipation of need as 

suggested by the IOM: making the prediction and acting on the prediction. The rest of this 

dissertation will focus on applying simple methods of predicting admission to the IU from the 

ED with a focus on how to apply these predictions to meaningfully influence decisions in the IU 

and improve key metrics in the ED/IU delivery chain. This will begin with the exploration of 

three prediction methods in Chapter 3 leading to the selection of linear regression as a high 

performing prediction method in this context. This will be followed, in Chapter 4, by a study to 

expand the practicality of the findings of Chapter 3 by showing that the regression method and 
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variables it used are generalizable to other hospitals. Having shown the potential for the 

regression to predict admission in many hospitals Chapter 5 will describe an implementation 

study that seeks to understand the more practical aspects of using prediction in the ED/IU 

delivery chain. Finally Chapter 6 will apply discrete event simulation towards showing the 

potential for prediction to improve flow in a controlled hospital environment.  
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Chapter 3: Predicting Emergency 

Department Admissions
1
 

As discussed in Chapter 2, Emergency Department (ED) crowding is a major problem nationally 

and occurs when there is a mismatch between the demand and supply of the resources needed to 

evaluate, treat and discharge patients from the ED.  Resource constraints may be related to 

resources controlled within the ED such as nurse and provider staffing, or from resource 

constraints external to the ED such as the availability of support services capacity or the 

availability of open inpatient beds.  In Chapter 2 it was described that availability of inpatient 

beds to receive ED patients is arguably “the single most important factor” related to ED flow 

problems [Asplin et al. 2003, US GAO 2003, Olshaker and Rathlev 2006, Williams 2006, Falvo 

et al. 2007, Hoot and Aronsky 2008, US GAO 2009]. 

Organizational solutions to address this problem can be categorized as static ones such as 

“discharge by noon” procedures and dynamic ones that are activated based on specific situations 

within the ED. Examples of dynamic solutions include placing boarding patients in inpatient unit 

(IU) hallways, encouraging IU staff to schedule discharges to match historical patterns of 

expected admissions, and activation of inpatient resources based on the level of ED crowding 

[Rubino et al. 2007, ACEP 2008, Viccellio et al. 2009]. 

As was suggested in Section 2.2.3 flow in the ED may be improved by estimating the likely 

number of patients who will be admitted at a point in the near future and sharing this information 

with IU staff who may then mobilize resources before crowding becomes an issue. Most studies 

that predict admission have focused on either the entire ED population [Li et al. 2009, Sun et al. 

2011] or specific categories of patients [Arslanian-Engoren 2004, Walsh et al. 2004, Levine et al. 

2006, Clesham et al. 2008] and treat admissions as binary in the sense of estimating “yes” or 

“no” at the patient level. This approach may be less useful when the goal is to predict aggregate 

demand.  Pooling of patient admission probabilities across all ED patients should theoretically 

provide more precise predictions of near future aggregate demand for inpatient beds [Hopp and 

Spearman 2001]. The primary objective of this chapter is to describe and evaluate three simple 

                                                 
1
 The majority of the material in this chapter has been previously published as [Peck et al. 2012] 
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methods for generating admission predictions based on patient characteristics, available at the 

time of patient triage.  The secondary objective of this chapter is to introduce a new method for 

using predictive information by aggregating the individual patient predictions into a summative 

measure of near future IU bed demand, rather than sharing single patient predictions. 

3.1 Methods 

3.1.1 Study Design 

Three methods to predict IU admission at the time of ED triage were developed and tested: 

expert opinion, naïve Bayes conditional probability and generalized linear regression with a logit 

link function (logit-linear regression). Retrospective patient visit data was collected to form two 

datasets. Statistical models were created using a development dataset. To avoid overestimation of 

model performance due to over fitting, the models were assessed using a separate validation 

dataset and final logit-linear regression and naïve Bayes models were identified. A third test 

dataset was developed during a study of triage nurse expert opinion predictions. The 

performance of the final statistical models was then assessed on this test dataset, which allowed 

for direct comparison of expert opinion and the two statistical models.    

All portions of this study were approved by the Institutional Review Board of VHA BHS. All 

analysis was performed using The MATLAB (R2011b-7.13.0.564), MathWorks, Inc., and 

Microsoft Office Excel 2007. 

3.1.2 Study Setting 

This study took place at VHA West Roxbury. VHA West Roxbury is a federal tertiary care, 

referral hospital devoted to the care of the USA veteran population. It serves both the local 

community and acts as a referral hospital for the six other VA Medical Centers in the New 

England region.  The hospital is affiliated with two medical schools and has house staff from 

affiliated programs. VHA West Roxbury has a 13 bed ED with an annual volume in 2010 of 

12,672 visits; there are six inpatient wards and four specialty care units comprising 

approximately 170-180 staffed beds. The hospital receives a capitation based budget but can also 

receive compensation from private insurers. The ED receives local ambulances carrying patients 

from the surrounding communities and will accept all patients whether they are veterans or not.   
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This study was performed in partnership with the staff of the VHA West Roxbury ED, including 

the direct involvement of the ED director Dr. Stephan Gaehde and the Nurse Manager John 

Marinello. The project was also performed with the consistent feedback and support of the entire 

ED staff. The enthusiasm for improvement that is demonstrated by the participation of the staff is 

also demonstrated by the consistently high performance of the ED.  

This performance can be seen through key metrics in the ED. Figure 17 shows the how the 

volume of ED visits has grown from 2006 to 2011, yet at the same time the waiting time to be 

seen has decreased.  

 
Figure 17 Patient visits to VHA West Roxbury ED by year 

Figure 18 shows ED visits broken down by month, exposing a seasonal pattern in arrivals, 

however Figure 19 shows that there was no seasonal trend seen in waiting times. This suggests 

that ED resources may not be working at a utilization level that would lead to visible sensitivity 

to fluctuations in arrivals. The explanation for continued improvements in performance may 

originate from within the ED itself. It may also come from flow improvements from the inpatient 

unit, or (most likely) some combination of the two. Nevertheless, the ED staff continues to work 

towards improved performance using proven techniques such as those discussed in Chapter 2, as 

well as new possibilities such as prediction.   
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Figure 18 Monthly patient arrival pattern 

 

Figure 19 Monthly average waiting time pattern 

3.1.3 Study Protocol 

The expert opinion portion of the study was conducted from September 22, 2010 to November 

26, 2010 between the hours of 7am and 5pm. During the study hours, separate triage rooms were 

operational. Due to lower patient volume, between 5pm and 7am, patients are sent directly to ED 

beds and are triaged at the bedside, consequently, bypassing the expert opinion process which 

took place at the triage stations.  During the study period 1160 patients entered the ED, 767 of 
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the 1160 patients were triaged in the triage stations.  Triage nurses classified each patient’s 

likelihood of admission, using their expert judgment, into one of 6 categories (Figure 20).  

 

Figure 20 Expert opinion triage questionnaire 

Nursing staff were treated as an IRB defined vulnerable population and their predictions were 

not shared with any other ED staff or supervisors. Triage nurses were blinded to the specific 

purpose of the study but were aware that it was being conducted to improve ED patient flow. 

Structured interviews conducted with each of the triage nurses identified 6 possible patient 

characteristics available at the time of triage for possible inclusion in the predictive model. These 

were: 

 Patient Age: Continuous range of values 

 Primary Complaint: Free text entered by triage nurse 

 ED Provider: Provider assigned to the patient 

 Designation: Fast track or standard ED bed 

 Arrival Mode: Stretcher, Wheelchair, or Ambulatory  

 Urgency (ESI) Level: 1, 2, 3, 4, 5 

For the development of the statistical models, retrospective triage data on all patients who 

entered the ED was collected from January 1, 2010 to May 6, 2010 totaling 4187 patient visits. 

Using this development dataset, ANOVA analysis was performed for each of the selected factors 

identified from the expert opinion study and they were found to be significantly associated with 

hospital admission. A validation dataset for model assessment and selection of the optimal mode 

was composed of ED visits between May 7, 2010 to May 31, 2010 and September 1, 2010 to 

 How likely is it that the patient will need admission to the 
hospital? 

 Definitely Yes (95-100%)  
 Highly Likely (75-94%)  
 Likely (50-74%)  
 Unlikely (25-49%)  
 Highly Unlikely (5-24%)  
 Definitely No (0-4%) 
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September 21, 2010, totaling 1614 patient visits. Table 1 summarizes basic patient characteristics 

for the patients included in the development dataset, validation dataset and test dataset. 

Table 1 Basic patient characteristics between development, validation and test datasets 

Patient Counts: 
Development 

Dataset 

Validation 

Dataset 

Test 

Dataset 

 (24 Hours) (24 Hours) (7am-5pm) 

Urgency 

1 7 1 1 

2 56 26 7 

3 2441 892 585 

4 1347 388 318 

5 336 302 249 

Arrival Mode 

Ambulatory 2844 1139 860 

Stretcher 895 308 156 

Wheelchair 448 167 144 

Age 

10-19 1 0 0 

20-29 248 103 37 

30-39 196 70 55 

40-49 311 123 66 

50-59 697 309 215 

60-69 1052 403 315 

70-79 770 293 209 

80-89 779 278 228 

>90 133 35 35 

Sex 

Female 200 78 53 

Male 3987 1536 1107 

 

The statistical approaches make use of event probabilities and conditional probabilities which 

require categorical data. Age was categorized into decades. Primary complaint was coded using a 

previously established system slightly modified to remove the free text options, resulting in 62 

complaint categories [Aronsky et al. 2001].
 
All other factors were already categorical. Table 2 

lists examples of categories from each factor and their corresponding empirical probabilities 

estimated from the data, where P(X) means the unconditional probability of event X (used as the 

independent variable values in the logit-linear regression models) and P(X|Y) is the conditional 
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probability of event X given that event Y has occurred (used in the naïve Bayes models). For 

example, reading from the fifth row, historically 10.69% (or 0.1069) of all patients (admitted to 

an IU or not) arrive by wheelchair, whereas 15.49% (0.1549) of all admitted patients arrive by 

wheelchair and 49.11% (0.4911) of those patients arriving by wheelchair were admitted. The 

complete table can be found in Appendix A.  

Table 2 Factors tested for admission prediction ability and the empirical probabilities of occurrence 

Factor/code Probability of 

code 

Probability of code 

given admit 

Probability of admit given 

code 

Designation P(Designation) P(Designation | Admit) P(Admit | Designation) 

ER 0.6237 0.9888 0.5383 

Fast Track 0.3763 0.0112 0.0101 

Arrival Mode P(Mode) P(Mode | Admit) P(Admit | Mode) 

Ambulatory 0.6793 0.4035 0.2014 

Stretcher 0.2138 0.4415 0.7006 

Wheelchair 0.1069 0.1549 0.4911 

Urgency Level P(Urgency) P(Urgency | Admit) P(Admit | Urgency) 

1 0.0017 0.0042 0.8571 

2 0.0134 0.0211 0.5357 

3 0.5830 0.9415 0.5477 

4 0.3217 0.0267 0.0282 

5 0.0802 0.0063 0.0268 

Patient Age P(Age) P(Age | Admit) P(Admit | Age) 

10-19 0.0002 0.0000 0.0000 

20-29 0.0592 0.0070 0.0403 

30-39 0.0468 0.0134 0.0969 

40-49 0.0743 0.0479 0.2186 

50-59 0.1665 0.1606 0.3271 

60-69 0.2513 0.2690 0.3631 

70-79 0.1839 0.2085 0.3844 

80-89 0.1861 0.2458 0.4480 

90-99 0.0318 0.0479 0.5113 

Provider P(Provider) P(Provider | Admit) P(Admit | Provider) 

1 0.0262 0.0126 0.1636 

2 0.0160 0.0134 0.2836 

3 0.0105 0.0112 0.3636 

4 0.0086 0.0112 0.4444 

5 0.1150 0.1019 0.3008 

… … … … 

Primary Complaint P(Complaint) P(Complaint | Admit) P(Admit | Complaint) 

Abdominal pain 0.0480 0.0685 0.4850 

Abdominal 0.0504 0.0749 0.5048 
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problems  

Abnormal Labs 0.0134 0.0275 0.6964 

… … … … 

Cardiac arrest  0.0065 0.0148 0.7778 

Cardio-vascular 

complaint  
0.0310 0.0516 0.5659 

Chest pain  0.0480 0.0862 0.6100 

Cold/Flu 0.0595 0.0106 0.0605 

… … … … 

Fainting/syncope 0.0074 0.0155 0.7097 

Fall  0.0250 0.0311 0.4231 

Fever  0.0158 0.0297 0.6364 

… … … … 

Joint Problems 0.0353 0.0056 0.0544 

Kidney and Liver 

Failure 
0.0151 0.0219 0.4921 

Laceration  0.0096 0.0035 0.1250 

Medication refill  0.0247 0.0000 0.0000 

… … … … 

Psychiatric/social 

problems 
0.0429 0.0523 0.4134 

Respiratory 

problems 
0.0909 0.1801 0.6728 

Skin 

complaint/trauma 
0.0420 0.0162 0.1314 

Total Probability 

of Admit 
0.3395 

  

 

A naïve Bayesian model and a logit-linear regression model were then created for each of the 63 

possible combinations of the 6 identified factors. For instance, a naïve Bayes Model and a logit-

linear regression model were created for the case where just patient age is used as a predictive 

factor, then patient age and primary complaint are used, then patient age, primary complaint and 

mode of arrival are used, etc. These models are then applied to the validation dataset in order 

evaluate their performance. A final model that has a balanced performance in each measure was 

then selected and applied to the test dataset enabling the comparison of predictions for each of 

the three prediction methods.  
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3.1.4 Data Analysis/Measures  

Each of the logit-linear regression and naïve Bayes models were constructed using the 

development dataset of 4187 historical patient points and evaluated for predictive ability using 

the 1614 patient points that were included in the validation dataset.  

To illustrate how the naïve Bayesian method works [Witten and Frank 2005, Shmueli et al. 

2007] given three hypothetical factors “F1”, “F2”, and “F3”, the admission probability for any 

particular patient is estimated as 

P[F3]*] P[F2*] P[F1

P[Admit]*Admit]| P[F3*Admit]| P[F2*Admit]| P[F1
  F3]F2,F1,|P[Admit 

.

               

If the model is a combination of patient age and complaint the equation would only use those 

two factors, if the model is the combination of all six of the identified triage factors the equation 

would use all six factors. The data for each factor is calculated using the development dataset 

and a sample is displayed in Table 2. The naïve Bayes models were calculated using Microsoft 

Excel. 

The logit-linear regression method that was employed uses the conventional log-odds link 

function and is calculated as  

Log(P[Admit]/1-P[Admit]) = β0 + β1*P[Admit|F1] + β2*P[Admit|F2] + β3*P[Admit|F3] 

The admission probability then is estimated via the inverse logit as 

F3]|P[Admit* + F2]|P[Admit* + F1]|P[Admit* + 

F3]|P[Admit* + F2]|P[Admit* + F1]|P[Admit* + 

3210

3210

e + 1

e 
  F3]F2,F1,|P[Admit







 

The size of the β coefficients represent the amount of influence of each factor has on admission 

probability. Both methods can be calculated in standard spreadsheet or statistical software. The 

logit-linear regression models were calculated using the statistical package built into Matlab. 

As described in the introduction, other published models for making admission predictions in the 

ED seek to assign a yes/no value to the patient. This use of predictions can indeed facilitate early 

admission coordination, by simply placing the admission order sooner. One common method to 

evaluate a prediction model that has the goal of suggesting a yes or no prediction is the receiver 
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operating characteristic (ROC) plot’s area under the curve (AUC). This value was calculated for 

each model and allows the user to calibrate the model to reduce false orders.  

A qualitative method was also applied for evaluating model accuracy by categorizing patients 

into probability groups and judging whether the model accurately categorizes patients. For 

instance if 20-30% of patients assigned an admission probability in the 20-30% range are 

actually admitted, then the model is seen as accurate in that range.  

Binary prediction of admission increases estimation error by forcing the computed probability of 

admission from a fractional value to 1 or 0.  While this may be useful strategy for early 

communication of likely IU admission for an individual patient, it increases estimation error 

when the predictions are summed across a group of patients to provide an estimate of aggregate 

near-future IU bed demand.   Instead an ED can maintain an aggregate measure of future bed 

demand based on the summation of raw probabilities.  

This ‘running bed demand’ can be calculated using any method that generates an admission 

probability, such as those applied in this study. The resultant probabilities are totaled across all 

patients currently in the ED as shown in Figure 21 to produce a total momentary predicted bed 

demand. For example, given n ED patients each with IU admission probabilities of p1, p2, and so 

on, the estimated total number of admissions, E(T), to expect is  = p1 + p2 + … pn. Since the 

actual number may be higher or lower, the standard deviation of total admissions, (T) can be 

estimated as (T) = ) ) p-(1 ...p+) p-(1 p+) p-(1 (p nn2211  and, for more advanced 

applications, this can be used to generate confidence bounds on the number of predictions. Using 

these calculations, at any moment of a day, bed demand information can be compared with 

hospital wide availability and appropriate actions taken. 
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Figure 21 Conceptual illustration of real time bed demand forecast (Running expected number of admissions 

and standard deviation) 

Two methods are employed in order to evaluate how accurately each model generates the 

running bed demand. The first method is to use visual inspection. Over the course of the day, the 

running bed demand and the cumulative admissions are plotted side by side and it can be seen 

whether the two are well correlated. The peak value of the bed demand for each day can then be 

compared to the peak number of admissions to see how well informed the IU staff were when 

they received this value.  

Another mathematical way to assess model performance at generating the running bed demand is 

to simply add all of the predictions for each day and to compare these predictions to the actual 

number of patients that were admitted each day by generating an R
2
 correlation value. Noting 

that an R
2
 correlation does not reflect errors in magnitude, this can be combined with a study of 

model residuals to achieve a better understanding of how well the model aggregates predictions. 

None of the methods described above are perfect evaluators on their own; however in 

combination they provide a good sense of how well the model performs. 

3.2 Results 

The 63 naïve Bayes and 63 logit-linear regression models created with the development dataset 

were applied to the validation dataset. Using, ROC AUC, R
2
, residual analysis, and goodness of 
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fit into prediction categories, final models were selected for application to the test dataset. 

Although multiple models performed well in some evaluative measures, a few performed 

consistently well in all. Consequently the final models chosen are not the only options but 

provide a basis for comparing methodologies and a sense of model potential. It is likely that the 

unique traits of a hospital exploring this methodology will influence the weighting of factors that 

emerge as better predictors and the chosen model for that specific hospital.  

When applied to the validation dataset, the logit-linear regression model that performed 

consistently high in all analyses (and highest in some) comprised of patient age, primary 

complaint, designation, and mode of arrival.  In contrast the naïve Bayes methodology incurred 

many tradeoffs and the final model was chosen for consistent high performance in all categories, 

though it was the best in none. When applied to the test dataset, these final models had AUCs of 

0.841 and 0.887 for the naïve Bayes model and the logit-linear regression model respectively. In 

contrast, the worst performing models were those that just used the ED provider as the predictive 

factor with an AUC of 0.5 for both the naïve Bayes and logit-linear regression versions of the 

model.  

Figure 22 compares how well the triage nurse predictions, the final naïve Bayes model, and the 

final logit-linear regression model assign patients into admission probability categories, using the 

test dataset. For the latter two cases’ probabilities, which were continuously assigned by the 

models, were grouped into the same ranges used in the expert opinion for comparison; e.g. all 

patients assigned a probability between 0-4% were put in the “definitely no” category. As shown, 

the logit-linear regression results best fit the mid-point of each category in all but the “definitely 

no” tail (where naïve Bayes appears better), whereas expert opinion significantly under-estimates 

admission in all categories.  
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Figure 22 Categorized predictions of patient admissions versus percent of patients admitted from each 

category 

Table 3 summarizes the significant factors for the best performing logit-linear regression model. 

Note that all listed primary factors (patient age, primary complaint, designation, arrival mode) 

are highly significant statistically (p << .0001 in all cases). 

Table 3 Model parameters for best fitting logit-linear regression 

Factor or Interaction 
Coefficient 

(β) 

Significance 

(p-value) 

Constant -7.02 1.4e-56 

Designation (fast track or not) 5.48 1.0e-21 

Primary Complaint 2.89 5.3e-24 

Patient Age 3.39 1.9e-05 

Mode of Arrival  2.69 2.8e-21 

 

Figure 23 compares continuous actual versus predicted bed census (as described by Figure 21) 

for 15 days using expert predictions (top), logit-linear regression, and naïve Bayes (bottom). This 

data was generated by breaking up the test dataset into hourly ED census. For each hour, the 

model predictions of admission probability for each patient were added together, with the 

probability of boarding patients taken to be a 1. For expert opinion, admission probability was 

0

10

20

30

40

50

60

70

80

90

100

Definitely Not Highly Unlikely Unlikely Likely Highly Likely Definitely Yes
(0-4%)     (5-24%)   (25-49%)   (50- 74%) (75 – 94%) (95 - 100%) 

Predicted Admission Category

A
ct

u
al

 P
er

ce
n
t 

o
f 

A
d
m

is
si

o
n
s 

p
er

 C
at

eg
o
ry

 (
%

)

1.08
4.62

7.29

32.10

51.11

67.44

3.28 9.35

34.12

50.00

60.00

70.83

0.58

22.62

34.76

52.63

72.48

100.00Expert Opinion

Naïve Bayes

Linear Regression



81 

 

taken as the midpoint for each category (ie. 84.5% for patients in the highly likely category) and 

based only on patients who physically went through triage as opposed to all patients in the ED 

leading to reduced numbers in the chart. As shown, the logit-linear regression method appears to 

match actual admit volumes most accurately, with all three methods providing several hours 

advance notice. Over all 2 months of data used in the validation dataset, the difference between 

predicted peak bed demand and actual demand for the expert opinion, naïve Bayes, and logit-

linear regression methods on average were 0.82, 0.69, and -0.26, respectively (with standard 

deviations of .93, 1.81, and 1.59). These predicted peaks occurred on average 3.0, 3.7, and 3.52 

hours before the actual peaks, respectively (with standard deviations 1.96, 2.20, and 1.96).  

  

 

Figure 23 Real time, statistically predicted-expected and actual number of cumulative admissions  

Figure 24 compares actual and predicted total daily admissions, for the test dataset, using expert 

opinion, naïve Bayes, and logit-linear regression respectively. The R
2
 value for the logit-linear 

regression is the greatest at 0.5826 followed by 0.5775 for the naïve Bayes model, and 0.5243 for 

expert opinion. None of the methods perform well at predicting small admission volumes (since 

ideal fits would pass close to the origin as demonstrated by the horizontal line in each figure).  
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Figure 24 Correlation between predicted admissions and actual admissions based on expert opinion (top), 

naïve Bayes (middle), and logit-linear regression (bottom) approaches 

As mentioned earlier, R
2
 is a measure of how well the prediction trend follows the actual trend. 

On its own R
2
 does not prove the accuracy of a model, it is therefore valuable to analyze the 

residuals of the models. Figure 25 illustrates the residuals (predicted minus actual) for each 
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model. The residuals expose the tendency of each method to over-predict to some degree. Logit-

linear regression appears to perform the best having consistent performance while the other 

models seem to increase in error as predicted values increase.  

 

Figure 25 Prediction residuals (predicted minus actual) based on expert opinion (top), naïve Bayes (middle), 

and logit-linear regression (bottom) approaches 
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3.3 Discussion 

As discussed in Chapter 2, timely patient ED discharge to IU remains a major contributor to ED 

crowding. Most prior studies have focused on predicting individual patient admission or have 

focused on methods to predict longer term admission trends. Common approaches, for example, 

focus on resource planning and staffing for future days [Tandberg and Qualls 1994, Jones et al. 

2002, Jones et al. 2008, Abraham et al. 2009], predict short term ED visit surges [Hoot et al. 

2009, Schweigler et al. 2009] or use ED crowding indexes to predict ED congestion in the near 

future [Bernstein et al. 2003, Weiss et al. 2004, Epstein and Tian 2006]. While forecasting can 

help set a baseline staff level, these forecasts are not based on same-day demand and therefore do 

not sufficiently inform real-time bed management and encourage behavior based on immediate, 

direct incentives. Alternatively, while predictors of short term ED demand surges or measures of 

crowding may inform hospital staff and increase the pace of work and sense of urgency, these 

measures do not necessarily translate to high IU demand/admissions, and therefore can mislead 

IU staff who choose their actions based on these measures.  

In response to this, one suggestion to improve ED-to-IU flow is to predict admission demand 

when patients arrive to the ED [Yen and Gorelick 2007]. In contrast, to ED crowding measures, 

admission predictions are a more direct measure of incoming IU demand and can be used to 

more accurately inform the actions of IU staff. This chapter described a method to aggregate 

individual patient admissions predictions into a summative measure of near future IU bed 

demand which may be useful for informing hospital wide decisions on a daily, real-time basis. 

The three prediction methods discussed in this chapter are fairly easy to implement, with logit-

linear regression being the most accurate in the test setting, followed by the naïve Bayes 

approach. ROC curve results suggest that these models could be used as part of the current work 

flow, where orders for admission are made for specific patients using predictions rather than 

waiting for the final provider’s order. However, all three methods that have been explored in this 

chapter also enable risk pooling of individual admission probabilities and thus may be more 

accurate at the aggregate level than methods that dichotomously classify each patient as “admit” 

or “not admit”. (More complex approaches - e.g. Bayesian belief networks, neural networks, 

others – also tend to fall in this latter category.) For example, three ED patients each with a 45% 

IU admission probability might each be classified as “no admit” by such a method, spurring no 
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action, whereas expected admissions under the proposed approach is 0.45 + 0.45 + 0.45 = 1.35 

with a standard deviation of 0.86, suggesting the IU probably should open at least one bed and 

perhaps as many as three (using the mean plus 2 standard deviations).  

The results in Figure 23 also suggests that predicted admission information can allow bed 

managers to start planning for peak demand significantly earlier than what currently occurs. 

Other benefits may result from sharing these data hospital-wide, such as allowing medical staff 

to better prioritize clinical activities, discharge ready patients in timelier manners, or manage bed 

preparations and room assignments for specific kinds of patients. 

A practical question concerns how many beds to prepare relative to the expected demand, 

standard deviation, and likely range. That is, if a demand for 8.7 beds is predicted with a 95% 

interval ranging from 5.8 to 11.6 beds, it is not clear if a bed manager should plan for 6, 9, 12, or 

some other number of beds. This decision might be based on the relative costs of being over 

versus under prepared. This decision also may evolve as a day progresses and knowledge is 

gained as to which early ED patients in fact were admitted. Admission likelihood estimates also 

could be updated during a patient’s ED visit, such as based on test results, doctor evaluations, 

and changes in physiologic status. Additionally, it could be useful to predict each ED patient’s 

length of stay in order to better estimate IU bed demand timing (e.g. estimated ED-arrival-to-ED-

discharge time) over the course of each day. 

The final models that were chosen in this chapter may give rise to questions of face validity, 

given that many would consider patient urgency/triage level as the likely candidate for best 

predictor. Although models that used this factor did perform well, they may not be the best 

performers because age and primary complaint and mode of arrival (which were in both of the 

final models) strongly influence ESI level and therefore it could be acting as a surrogate variable 

that may then include other less predictive parts such as predicted resource usage. Another 

possible explanation is that the study site may not assign ESI levels the same way as other 

hospitals where ESI data would be more predictive.  

3.4 Limitations  

While the methods described above are simple and effective, a few limitations exist. The 

simplicity of the models allows for a reduction in the data requirements necessary to achieve 
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useful results. This makes the models and methods easily implemented by hospital staff with 

limited knowledge and software. However this simplicity may also lead to reduced performance 

compared to more complicated models, such as those used in some of the other studies discussed 

in Chapter 2 [Witten and Frank 2005].  

Predictive models only remain accurate if the underlying behavior of the system being modeled 

remains stationary.  Therefore models may need to be recalibrated when there are substantial 

shifts in admission patterns. For instance such change may occur due to introduction of more 

effective treatment methods, treatments that shift care from the inpatient to the outpatient setting, 

changes in insurance practices, or payment structures. Similarly the methodology for applying 

ESI in another site may lead to it becoming a more (or less) predictive factor as described in the 

discussion. This will be explored further in Chapter 4. 

From an implementation perspective, both probability methods require initial effort to develop a 

coded dataset, including coding primary complaints, and to calculate the probabilities and 

coefficients used in the logit-linear regression and naïve Bayes methods. Additionally, while this 

study adapted a previously published coding scheme for convenience, it is unclear whether this 

scheme is best for prediction purposes. Any coding method also may suffer from inter-coder 

reliability; the coding in this study was all performed by the same investigator. When 

implementing the proposed methodology in an ED setting, multiple people would be entering 

codes which may reduce or improve the functionality of the chosen models. How this 

implementation effects model performance, and whether implementing predictions does indeed 

improve patient flow are other important directions for future research.  

3.5 Conclusions 

This chapter described and evaluated models for using data available at the time of triage to 

predict ED-to-IU admissions using expert opinion and two simple statistical models. This 

chapter also introduced a method for combining these predictions into a summative measure of 

near term ED demand for IU beds. The logit-linear regression model performed the best, with an 

AUC of .887 and an R
2
 of 0.58 and a daily average estimation error for the summative model of 

0.19 beds.  This method was based on four readily available inputs (patient age, primary 

complaint, designation, and arrival mode).   Recent studies have suggested that ED flow can be 
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improved by anticipating IU bed demand. The proposed summative measure provides a reliable 

estimate of near-future IU bed demand that replaces traditional ED crowding measures for 

influencing IU staff behavior and decisions. This is in contrast to a yes/no predictor that seeks to 

preempt provider bed orders in current work flow paradigms.  

The prediction models in this chapter were developed from data at one site and the above results 

have not been demonstrated to generalize to other EDs. Furthermore the ED where the model 

was developed receives a low patient volume and resides in a small tertiary care VHA hospital, 

providing care to a specialized population. The set of factors that leads to an admission at a small 

hospital should be similar in larger hospitals, but that cannot be known without replicating the 

study in a larger site. Chapter 4 will describe a study where the logit-linear regression method is 

applied to three more hospitals. Additionally, a new test dataset is generated for VHA West 

Roxbury’s logit-linear regression model where nurses perform the necessary coding. This will 

begin to establish the potential generalizability of the results found in here in Chapter 3.  
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Chapter 4: Generalizability of the 

Emergency Department Prediction Model
2
 

As discussed in the previous chapters, prediction can be used to improve organizational factors, 

without increasing resources, by offering information that helps hospital staff prioritize their 

work. While a long term predictive method may be accurate over time, on any one day the 

natural variability of the hospital system may cause a spike in demand that is not accounted for 

in long term predictions. These spikes can be mitigated through the use of real time 

methodologies such as predicting admissions as patients enter the ED. Chapter 2 introduced 

some studies that used data collected early in a patient’s treatment (such as in triage or even in an 

ambulance) to predict whether that patient would eventually require admission to the hospital IU. 

This prediction allows hospital staff to reduce ED boarding times by preemptively mobilizing 

inpatient admission resources while the patient is still receiving their emergency treatment. 

Consequently, when the patient finally is ready for admission, downstream resources have 

already been aligned and the patient’s boarding time would be reduced [Levine et al. 2006, 

Clesham et al. 2008, Li et al. 2009, Sun et al. 2011, Peck et al. 2012]. 

Chapter 2 described the development and study of a linear regression with a logit transform 

(logit-linear regression) model for assigning a probability of hospital admissions at the time of 

ED triage. That study focused on predicting patient admission at VHA West Roxbury and 

focused on answering Question 1 of this dissertation “what predictive methods work best to 

predict downstream demand in the context of a single Emergency Department/Inpatient Unit 

health care delivery chain?” Given that all hospitals have organizational differences and two 

hospitals with identical resource levels and community demographic may still perform 

differently, it is important to explore the generalizability of prediction models to other settings 

[Hoot et al. 2009b]. This is the basis of Question 2 of the dissertation, “How portable or robust 

are these prediction methods to multiple hospital contexts?” 

                                                 
2
 *The majority of the material in this chapter is being prepared for publication as [White Paper 

et al. 2012].  
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The objective of this chapter is to study the generalizability of the prediction model/methodology 

introduced in Chapter 2. A second objective of this chapter is to explore how the model performs 

when data coding is performed by nurses in real time rather than by a single investigator 

retrospectively. 

4.1 Methods 

4.1.1 Study Design 

In order to study the generalizability of the logit-linear regression approach discussed in Chapter 

2, retrospective patient visit data was collected from four hospitals:  VHA West Roxbury (VHA 

1), VHA Medical Center 2 (VHA 2), a Small Private hospital, and a Large Public hospital. 

Separate development, validation and test datasets were collected for each hospital.  In each case, 

the development set was used to create logit-linear regression models using a variety of 

combinations of factors. The models were then applied to the validation set, used to select a best 

performing factor combination. Finally the selected model was applied to the test set which was 

used to generate final performance results for comparison. Each dataset was coded by the author 

of this dissertation. In order to study the effect of generalizability due to live implementation of 

the model, an additional dataset was collected and coded by triage nurses prospectively at VHA 

1.  

All portions of the study were approved or granted exemption by the respective institutional 

review boards of each hospital. Approval for complete study design and implementation was 

provided by the institutional review board of VHA 1. 

4.1.2 Study Setting 

Four hospitals were chosen for this study, all located in the northeastern United States. This 

study sample included two small public hospitals, VHA 1 and VHA 2, one small private 

community hospital, and one large public teaching hospital. Based on the development datasets 

collected for this study, Table 4 summarizes the characteristics of the participating hospitals and 

corresponding EDs.  
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Table 4 Characteristics of participating hospitals based on development datasets 

Characteristics VHA 1 VHA 2 Small Private Large Public 

Medical Center Properties 

Bed Count 170 181 313 386 

Trauma Level Level 3 Level 3 Level 3 Level 1 

Population 
Adult 

Veterans 

Adult 

Veterans 

Adults and 

Children 

Adults and 

Children 

Funding Public Public Private Public 

Community Urban Urban Suburban Urban 

Emergency Department 

Bed Count 13 9 36 53 

Triage System 5 level ESI 5 level ESI 5 level ESI 5 level ESI 

~ Monthly Volume 1200 1200 4700 5200 

Admission Percentage 32% 28% 26% 28% 
 

4.1.3 Study Protocol 

In Chapter 2, six factors collected at the VHA West Roxbury/VHA 1 triage were found to have 

value towards predicting whether a patient will eventually require admission to the hospital. 

These factors were: patient age, primary complaint, ED provider, designation, arrival mode, and 

Urgency (ESI). 

In order to apply the logit-linear regression and choose a final model, three retrospective datasets 

were collected for each hospital. A development set was used for creating a logit-linear 

regression model using each combination of factors (listed in Table 5) [Witten and Frank 2005, 

Shmueli et al. 2007]. Not all of the hospitals in the sample for this study collect the same data at 

ED triage. Table 5 summarizes which factors were collected by each hospital and the data 

options for each factor. Even amongst the two VHA hospitals different data are being collected.  
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Table 5 List of factors collected at triage 

Factors VHA 1 VHA 2 Small Private Large Public 

Patient Age Continuous Continuous Continuous Continuous 

Primary Complaint Free Text Free Text Free Text Free Text 

ED Provider Provider Set Provider Set Provider Set Provider Set 

Designation Fast Track Not Tracked Not Tracked North Ward 

  ED   South Ward 

     Urgent Care 

Mode of Arrival Ambulatory Ambulance/Police Ambulatory Not Tracked 

  Stretcher Ambulatory Stretcher  

  Wheelchair Clinic Wheelchair  

   Nursing Home Other  

   Police   

   Transfer   

   Other   

Urgency ESI Level 1-5 ESI Level 1-5 ESI Level 1-5 ESI Level 1-5 
 

Table 6 Dataset attributes 

Dataset Attributes Dates 

Collection 

Hours 

Number of 

Patients Coder 

VHA 1     

Development Set 1/1/2010 - 5/6/2010 24hr 4187 Investigator 

Validation Set 
5/7/2010 - 5/31/2010  and 

9/1/2010 - 9/21/2010 
24hr 1614 Investigator 

Test Set - Retrospective 9/22/2010 - 11/26/2010 7am - 5pm 1160 Investigator 

Test Set - Prospective 6/13/2012 – 7/13/2012 7am - 5pm 910 ED Nurses 

VHA 2     

Development Set 5/9/2011 - 8/31/2011 24hr 4077 Investigator 

Validation Set 10/13/2011 - 11/30/2011 24hr 1648 Investigator 

Test Set 1/1/2012 - 2/6/2012 24hr 1270 Investigator 

Small Private     

Development Set 1/17/2007 - 2/28/2007 24hr 4910 Investigator 

Validation Set 3/1/2007 - 3/15/2007 24hr 1712 Investigator 

Test Set  3/20/2007 - 3/31/2007 24hr 1394 Investigator 

Large Public     

Development Set 3/1/2011 - 3/24/2011 24hr 4020 Investigator 

Validation Set 3/25/2011 - 3/31/2011 24hr 1150 Investigator 

Test Set  6/1/2011 - 6/10/2011 24hr 1723 Investigator 
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It was unclear which combination of factors would generate the best performing model for a 

specific hospital. Therefore a model was created for every possible combination of the 6 or less 

factors collected at triage in each hospital. In other words, for each hospital, a linear model was 

created for each factor on its own, then every combination of two factors, three factors, etc. A 

validation set was used for each site to study the performance of each of the generated models. 

The results of this performance evaluation lead to the selection of a final model. The final model 

was then applied to a test set which is used for the reported model performance. Table 6 shows 

the attributes of each of the datasets for the four hospitals as well as a second test dataset that 

was prospectively generated for VHA 1, to test the effects of live implementation on model 

accuracy.  

In order to create these models, some data needed to be categorized. The coding for the 

retrospective datasets was performed by the author and the prospective dataset was coded by 

triage nurses in real time. Age was categorized into decades and primary complaint was 

categorized using a modified version of a previously published ED complaint coding system 

[Aronsky et al. 2001]. All other factors were already in a categorized format.  

The probability of admission was calculated for each value of each categorized factor. This 

probability of admission given a factor can be represented as P[Admit|Factor]. These probability 

values are used as the independent variable values in the logit-linear model. When generating the 

model the historical dependent variable has the values 0 (no admit) and 1 (admit). The model 

was fit using a logit-link function to ensure that predictions remain between 0 and 1. Table 7 

shows examples of these probability values for factors that are tracked in each hospital. The 

complete table can be found in Appendix B. 
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Table 7 Example admission probabilities given selected factors 

Probabilities of admission given factor VHA 1 VHA 2 Small Private Large Public 

Urgency Level: P(Admit | Urgency) 

ESI 1 0.86 0.25 0.82 0.96 

ESI 2 0.54 0.55 0.46 0.57 

ESI 3 0.55 0.34 0.26 0.29 

ESI 4 0.03 0.13 0.03 0.02 

ESI 5 0.03 0.11 0.00 0.00 

Patient Age: P(Admit | Age) 

<20 0.00 0.00 0.12 0.06 

20-29 0.04 0.09 0.09 0.08 

30-39 0.10 0.09 0.13 0.14 

40-49 0.22 0.10 0.17 0.22 

50-59 0.33 0.26 0.22 0.32 

60-69 0.36 0.27 0.30 0.46 

70-79 0.38 0.32 0.44 0.58 

80-89 0.45 0.36 0.52 0.71 

>90 0.51 0.39 0.62 0.74 

Primary Complaint (sample): P(Admit | Complaint) 

Abdominal pain 0.49 0.28 0.29 0.36 

Abdominal problems  0.50 0.39 0.26 0.35 

Abnormal Labs 0.70 0.66 0.54 0.56 

…     

Cardio-vascular complaint  0.57 0.40 0.38 0.49 

Chest pain  0.61 0.46 0.41 0.38 

Cold/Flu 0.06 0.16 0.14 0.08 

…     

Fainting/syncope 0.70 0.48 0.48 0.40 

Fall  0.42 0.24 0.24 0.34 

Fever  0.64 0.61 0.28 0.22 

…     

Joint Problems 0.05 0.07 0.04 0.07 

Kidney and Liver Failure 0.79 1.00 1.00 0.88 

Laceration  0.10 0.00 0.04 0.01 

…     

Psychiatric/social problems 0.41 0.40 0.63 0.36 

Respiratory problems 0.67 0.40 0.47 0.64 

Skin complaint/trauma 0.13 0.07 0.04 0.10 

Total Probability of Admit 0.34 0.28 0.24 0.28 
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4.1.4 Data Analysis/Measures  

Chapters 2 and 3 introduced two methods for utilizing predictions in order to improve patient 

flow. The first method was to use predictions within the current work flow of an ED and preempt 

a doctor’s order for a specific patient. For this method, a prediction model would assign a ‘yes 

admit’ or ‘no admit’ to a patient which would be used as a coercive prediction to order an 

inpatient bed. This is then confirmed or overturned by the doctor at the end of the patient’s ED 

treatment. The models that were generated for each hospital in this study were evaluated for how 

well they can perform within this work flow using area under the Receiver Operating 

Characteristic Curve (AUC) and the Hosmer-Lemeshow goodness of fit test (GOF) [Hosmer and 

Lemeshow 2000].  

As described in Chapter 3, although it is important how well a model assigns the admission 

probability of a single patient, this method does not take complete advantage of risk pooling. In 

order to enable risk pooling, it was proposed that adding the probabilities of all patients in the 

ED can create a non-coercive running expected bed demand that can inform the behavior and 

decisions of IU staff. The summation of probabilities also allows for practical nuances involved 

with variance and confidence as discussed earlier.  

Just as in Chapter 3, the models generated in this study were evaluated for how well they would 

create a running expected bed demand by calculating the total predicted bed orders for each day 

of test data and comparing that demand to the actual number of admissions for each day. These 

values could be compared using an R
2
 correlation along with the residuals created by the 

difference between the predictions and the actual admission values. For the purpose of 

comparison, the larger volume hospitals are evaluated for R
2
 by quarter days. As in Chapter 3, 

neither R
2
 nor residuals are an accurate measure of prediction accuracy on their own, however, 

the combination provides useful insight. 

4.2 Results 

For each hospital, no single combination of factors created a model that performed best in all 

measurement categories: AUC, GOF, R
2
 and daily residuals. Therefore, a model was chosen for 

each hospital based on high performance in each category. The chosen models are as follows: 
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 VHA 1: Patient age, primary complaint, designation, and mode of arrival 

 VHA 2: Patient age, primary complaint, and mode of arrival 

 Small Private: Patient age, primary complaint, mode of arrival, and urgency 

 Large Public: Primary complaint, location, urgency 

The coefficients for each of these models are shown in Table 8. 

Table 8 Chosen models and coefficients for each hospital 

Model Coefficients VHA 1 VHA 2 Small Private Large Public 

Constant -7.02 -5.06 -5.5 -6.15 

Patient Age 3.39 4.99 4.52 - 

Primary Complaint 2.89 5.76 3.98 4.1 

ED Provider - - - - 

Designation 5.48 NA NA 8.53 

Mode of Arrival 2.69 2.92 2.64 NA 

Urgency - - 4.77 3.68 

Significance P << 0.01 for all values    

 

Table 9 shows the quality of the prediction models when applied to the test sets, using the 

measurements that were described earlier. As can be seen, the models perform well using any 

measure. An exception is the GOF for VHA 2, which had a P > 0.03 when applied to the 

validation set and P = 0.002 when applied to the test set. Figure 26 shows a plot of how well 

each model categorizes patient admission likelihoods into probability deciles.  

Table 9 Quality of predictive models when applied to test sets 

 
VHA 1 

Retrospective 

VHA 1 

Prospective 
VHA 2 

Small 

Private 

Large 

Public 

AUC 0.89 0.86 0.80 0.86 0.82 

R
2
 0.58 0.82 0.90 0.68 0.84 

Average daily 

residual 
0.50 -0.33 -0.96 -0.37 -0.31 

GOF P = .02 P = 0.04 P = 0.002* P = 0.09 P = 0.07 

* P> 0.03 in validation set, explanation provided in discussion 
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Figure 26 Comparison of predicted vs. actual admissions by probability decile 

Although the total values for the R
2
 and the average daily residuals are useful, it is also important 

to analyze the distribution of points that lead to these values. Figure 27 shows the plot of actual 

vs. predicted daily admissions as well as the resultant residuals for VHA 1 (retrospective and 

prospective) and VHA 2. Figure 28 shows actual vs. predicted quarter daily admissions as well 

as the resultant residuals for the Small Private and Large Public Hospitals. 
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Figure 27 VHA 1 and VHA 2: daily actual vs. predicted admissions and residuals 
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Figure 28 Small and Large Public hospital: quarter daily actual vs. predicted admissions and residuals 

4.3 Discussion 

In the past, models to predict whether a patient will require admission to the hospital from the 

ED have been developed with the goal of being coercive [Li et al. 2009, Sun et al. 2011]. These 

models assign a yes/no value of admission to a patient and can be used to place preemptive bed 

orders to the hospital. The models studied in this chapter show potential for being used in a 

coercive manner at the respective hospitals. When applied to the test datasets, all of the models 

had areas under the ROC curve of greater than 80%; this means that the models can identify 

patients who will need admission, reasonably well. The results of the GOF analysis showed that 

all of the models except the one applied to VHA 2 had a high GOF. Visual inspection of Figure 
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26, shows that the model created for VHA 2 can categorize patients into probability decile bins 

relatively well. In fact, the GOF for VHA 2 when applied to the validation set was in an 

acceptable range. It is possible that the GOF for VHA 2 shifted between sets because the value is 

sensitive to how many measurements are taken in each decile and in the case of VHA 2’s test set, 

the model had some decile bins with a low number of patients. While this understanding may be 

a reason for moving forward with the model developed for VHA 2, it could also bring the GOF 

results for the other models into question. Therefore, while GOF is a useful measure, it must be 

used alongside the other measures presented in the data analysis section and the visual analysis 

of Figure 26. With that in mind, the combination of measures does show potential for all models 

to generate useful coercive predictions.  

Implementing the models for coercive use would require further study of the ROC curves, in 

order to choose a prediction probability cutoff point for ordering a bed that best balances the 

positive effects of early action against the negative effects of early incorrect actions. The use of a 

coercive prediction measure also introduces questions of health decision quality where 

predictions become self-fulfilling. A doctor may believe that a bed is already open for a patient, 

or rely too much on the prediction model and therefore simply admit that patient, even if they 

would not have done this without the prediction. This is considered automation bias, which is a 

common issue with decision support systems [Skitka et al. 1999, Cummings 2004]. The details 

of this situation are a question of provider psychology and medical decision making which is 

beyond the scope of this study.  

In order to avoid the issues associated with a coercive prediction model, Chapter 3 introduced the 

creation of a running bed demand index that would encourage hospital staff to make treatment 

and discharge decisions that are mindful of the current needs of the ED [Peck et al. 2012]. This 

index would not be used to order beds for specific patients but would replace ED crowding 

scales as a method of informing inpatient staff of ED demand [Bernstien et al. 2003, Jones et al. 

2006]. This aggregate measure would be a more direct connection between ED demand and IU 

demand. Aggregating predictions is also a means of risk pooling which should improve overall 

accuracy.  

There is no single statistic to measure accuracy of the models when demand is aggregated. The 

measures used to judge individual patient prediction accuracy also are a basis for evaluating the 
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use of the aggregate measure (if it is accurate for one patient, it will be accurate for many). 

However aggregation also enables the use of the R
2
 statistic which measures whether an increase 

in actual daily bed demand is met with a proportional increase in predicted bed demand. This is a 

good measure of whether the model is dynamically working correctly but does not measure the 

raw prediction accuracy. For this reason the R
2
 analysis is accompanied by a residuals analysis. 

This analysis shows that, as one would expect, errors get larger as predictions get larger. The 

analysis also shows that the models have ranges for which they work best but generally perform 

well on the average. Although model inaccuracy is a concern, it actually would be mitigated in 

practice since the measure would be updated in real time. In other words, as the day goes by a 

patient with an incorrect prediction would leave the ED and the model would be corrected, while 

in the R
2
 analysis errors add up for the entire day.  

While all of the hospitals studied in this paper have a similar system where the ED feeds into the 

rest of the hospital, not all hospitals follow the same processes for facilitating this flow. 

Variations occur on all levels of the organization from the actual medical decision making to the 

logistical decision making. In this way, despite the similarity in the macro system, significant 

performance variation can be expected between hospitals. The results of this are evident in the 

creation of the prediction models. It was seen that the predictive value of each factor varied by 

hospital. This can be the result of how practitioners use each factor. For example, the ESI system 

may be implemented differently at each hospital, which may explain why the ESI 1 admission 

probability was strangely low for VHA 2. It can also be a difference in how the factors are 

collected, for example the use of ED versus fast track in VHA 1 and the use of North Ward, 

South Ward and Urgent care at the Large Public hospital. Whatever the cause, absolute 

generalizability of predictive factors was not found across the hospitals. Instead generalizability 

has been shown here to be based on the process of creating a prediction model (using multiple 

factors collected at triage to create a logit-linear regression), rather than the specific resultant 

models themselves.  

In this study all retrospective data was coded by a single investigator, while in practice the 

person doing the coding would likely be a medical practitioner. It was just discussed that the type 

of data and method of collection for each factor could impact that factor’s predictive value. This 

is also true for complaint coding and, therefore, the person performing the coding can have an 
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impact on the success of a model that uses primary complaint. It is for this reason that the study 

included a test dataset which was prospectively coded by nurses in real time. The results of this 

piece of the study showed that the VHA 1 model continued to perform well when applied to data 

coded by nurses in real time which suggests that the predictive models generated by the process 

described in this paper are likely generalizable to live implementations, however this must be 

done in other sites to be proven. 

Given basic triage level data, a prediction model was developed for each hospital that performed 

fairly similarly. Generalizability of the factors that went into the model could not be proven since 

the actual information collected by each hospital was different. For this reason it is impossible to 

prove (or disprove) that, if all hospitals collected the same data, in the same format, then they 

would all use the same model. However this seems unlikely, since Table 7 shows that even 

factors that are the same, such as ESI level and age, have different admission probabilities at 

each hospital. 

The above are descriptive conclusions where the prediction models characterize the behavior of 

the respective hospitals by explaining which variables are predictive. However, creating 

prediction models for multiple hospitals also can lead to prescriptive conclusions. By looking at 

the data it can be seen that both non-VHA hospitals had urgency in their selected prediction 

models. This may be coincidence, it may be a reflection of the patient population, or it may also 

suggest that the implementation of the ESI scale is different at these hospitals and is more 

effective for predictive purposes.  It can also be seen that both the Large Public Hospital and 

VHA 1 tracked patient location, and both had this information in their predicative models. 

Therefore one may conclude that it would be valuable for the other hospitals to track this 

information (if separate designations exist in those hospitals). Similarly all hospitals but the 

Large Public Hospital has arrival mode in their chosen models, which suggests that it may be 

useful for the Large Public Hospital to begin tracking this information.  

4.4 Limitations  

The prediction methodology that was adopted here is a relatively simple method which was able 

to provide results with a reasonable amount of data. This is particularly important when an 

investigator is coding each primary complaint. It also means the study may be repeatable by a 
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practitioner with limited statistical experience. Nonetheless, there are many other methods that 

exist and can be implemented by those with more advanced experience; these may require a 

significantly larger database [Shamuli et al. 2007, Whitten and Frank 2005].  

Any conclusions that can be drawn by comparing the four hospitals in this study are limited 

because four sites do not comprise a complete sample. By demonstrating that accurate predictive 

models can be generated for all four hospitals, it may be reasonable to assume that similarly 

accurate models can be generated for any hospital. The limited sample is enough to prove a 

negative: not all hospitals with similar characteristics will necessarily perform the same, given 

that the two VHA hospitals of similar size had different predictive models. Finally, although the 

model was applied to a smaller private hospital and a larger public hospital, the conclusions 

made are specific to those institutions and should not necessarily be applied to all large and small 

private/public hospitals.  

A previously existing primary complaint coding methodology was adopted. How the datasets are 

coded can strongly affect how models using those codes perform. The system used, adopts a mix 

of terms that encompass symptoms (such as chest pain) and other terms that are diagnoses (such 

as cardiac arrest). Another system may require coding cardiac arrest as chest pain, which would 

significantly reduce the estimated probability of admission for a patient who enters the ED while 

suffering a cardiac arrest, reducing the quality of the predictor. Just as it is clear that predictions 

can be made worse, based on a different coding system, it is also possible that predictions can be 

improved by using a different coding system.  

4.5 Conclusions 

The study in this chapter showed that logit-linear prediction models can be developed for 

multiple different hospitals of varying size and administrative structures. Generalizability is 

shown for the methodology rather than for specific models that were derived by the 

methodology. In one hospital it was shown that the prediction model continues to perform well 

even when coding is performed by triage nurses prospectively. These prediction models can be 

used in a coercive system for driving specific behaviors or a non-coercive system for sharing 

information and encouraging resource allocation decisions that are based on larger system 

knowledge. The next two chapters will discuss studies focused on characterizing the potential 
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value of sharing the ED admission information in a non-coercive way. Chapter 5 will introduce a 

live implementation study where the running bed demand measure, introduced in Chapter 3, is 

actually calculated and shared in real time at VHA West Roxbury/VHA 1 for two weeks. 

Understanding that short term, live implementations have limitations; Chapter 6 will describe a 

computer based simulation study that seeks to further understand the potential benefits of using 

prediction by studying a controlled environment.  
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Chapter 5: Implementation of the 

Emergency Department Prediction Model 

In Chapters 3 and 4 a methodology was introduced for predicting and sharing the likelihood that 

a patient would be admitted from an ED to an IU based on information gathered in ED triage. It 

was shown that a logit-linear regression model can be used to make relatively accurate 

predictions compared to the naïve Bayes and expert opinion methods. It was also shown that the 

logit-linear regression method could be consistently applied in multiple hospitals, as well as in a 

live implementation, where nurses perform the coding. The studies described in the previous 

chapters were focused on answering the first two questions proposed in Section 1.5. The next 

two chapters will be focused on answering the final question: “Given advance demand 

predictions, what possible adaptive actions can the hospital system take to improve flow given 

(a) perfect and (b) imperfect downstream demand prediction?” 

This question resonates with the second of two components of the IOM “anticipation of need” 

described in Section 2.3 [IOM 2001]: 

1. The Prediction – making forecasts about the future needs, progress, processes or 

steps of the patient. 

2. The Response – taking definite actions in response to the prediction.  

As discussed in Chapter 2, in supply chain management the use of prediction in order to improve 

coordination between multiple components is well established [Simchi-Levi et al. 2003]. The 

previous chapters have suggested that the coordination of care between a hospital’s ED/IU health 

care delivery chain is comparable to the coordination between a two parts supply chain. It was 

suggested that better coordination, through prediction, can reduce the amount of time between an 

ED provider’s admission decision and the patient’s assignment of an IU bed, also known as 

boarding time. This boarding time has been identified as a major barrier to improving ED 

crowding and quality [Asplin et al. 2003, US GAO 2003, Falvo et al. 2007, Hoot and Aronsky 

2008, US GAO 2009, Viccellio et al. 2009]. 
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It has been discussed that some ED forecasting models have been developed with coercive 

actions in mind, whether it is long term forecasts to define resource allocation decisions [Jones et 

al. 2002, Jones et al. 2008, Abraham et al. 2009, Wargon et al. 2010] or predictions to expedite 

admission procedures for a specific patient [Arslanian-Engoren 2004, Walsh et al. 2004, Sun et 

al. 2011, Li et al. 2009].  

While predictions may seem inherently useful, the question of how to best use them remains 

unanswered. Strong leadership and systematic studies can be used to develop an optimal coercive 

response to individual forecasts. However, such high handed actions may not be well accepted in 

hospitals, deterring adoption. For this reason it is desirable to find a prediction system that still 

relies on the ability of IU staff to weigh the costs and benefits of acting upon this prediction, as 

they understand them. Other studies used ED crowding scales and predictors in order to 

influence inpatient staff decisions in a non-coercive way [Bernstein et al. 2003, Jones et al. 

2006]. These studies suggested that IU staff will respond appropriately when they see that the 

ED is crowded. However there is not always a direct connection between ED crowding and IU 

demand. This disconnect may make IU staff less likely to respond to a crowding index. Chapter 

3 described use of admission predictions in the ED in order to create a running bed demand 

index. This bed demand index is comprised of demand directly related to the IU and would more 

directly inform inpatient staff of incoming demand, in order to influence priorities and decisions 

[Peck et al. 2012].  

When using the bed demand index in a non-coercive way, the decision to prioritize patients who 

need discharge or those that need treatment is based on the individual perspective of the decision 

maker. While a hospital manager may value a reduction in waiting times and lengths of stay, a 

practitioner may have other values, both systematic and selfish. How the practitioner weighs 

these values when provided with information of a distinct format influences the effectiveness and 

value of sharing that information. This chapter seeks to better understand the individual and 

systematic effects of a live implementation of the running bed demand index prediction system. 

The goal of this implementation is to understand the results of sharing the prediction, both in 

terms of quantitative measures that are tracked by the hospital as well as qualitative measures 

captured by surveys and interviews. The results will inform possible improvements that can be 

made to the prediction model for future long term implementations. 
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5.1 Methods 

5.1.1 Study Design 

The study took place at VHA West Roxbury which is described in Section 3.1.2. A trial 

implementation was run for two business weeks, 10 Days, July 2nd 2012 through July 13th 2012. 

During this trial the predicted bed demand was calculated every half hour from 7am through 

7pm. This demand was then shared on the hospital internal homepage, which is displayed each 

time a staff member opens the default web browser, Microsoft Internet Explorer 8. The 

quantitative measurements taken during this trial included waiting time for patients entering the 

ED and the boarding time between admit decision and inpatient bed assignment. This data was 

analyzed through a time series analysis comparing performance during the experiment, data from 

the year leading up to the experiment, data for two months after the trial, and data from 2011 (to 

rule out seasonal effects and long term trends).  

Qualitative data was focused on understanding the staff actions and thoughts during the trial 

period. The qualitative data included specific ways that staff used the predictions towards their 

own priorities as well as the thoughts of staff members on how to make a prediction model more 

useful. This data was collected through a mix of interviews and surveys. Surveys were sent out to 

all hospital employees in order to capture any unexpected effects of the predictor, interview 

requests were for a sample of hospital management, nurse managers, in-patient ward residents, 

hospitalists, environmental management services (including housekeeping) and hospital bed 

managers.  

The protocol for the study including interview questions, survey questions, data tracking 

mechanisms and data sharing mechanisms were approved by the VHA BHS institutional review 

board. All numerical analysis is performed in Microsoft Excel.  

5.1.2 Study Protocol 

This study implemented the logit-linear regression prediction model and the summative bed 

demand measure discussed in Chapter 3. It will be recalled that the prediction method assigns a 

probability of admission to each patient that enters the ED. This probability is based on four 

factors: patient age, primary complaint, designation (emergency room or fast track), and mode of 
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arrival (stretcher, wheel chair, or ambulatory) [Peck et al. 2012]. For each patient that entered the 

VHA West Roxbury ED during the trial period (7/2/2012 – 7/13/2012), a nurse would input the 

patient’s data into a computerized data entry form shown in Figure 29. This form had dropdown 

menus where nurses could select the appropriate categorized data for each patient. The full list of 

these categories is in Appendix A. The last four digits of the patient’s social security number 

were combined with the patient’s date of entry, to create a unique patient ID for data 

reconciliation purposes. All identifiable data remained on a closed secure network.  

 

Figure 29 Data entry form at patient arrival 

The data entry form was used to populate a web-based Microsoft SharePoint database that would 

use the logit-linear regression formula introduced in Section 3.1.4, with the coefficients in Table 

3, to assign a probability of admission to each patient based on the data entered by the nurse. On 

trial days, every half hour from 7am to 7pm an investigator would access a Microsoft Excel 

spreadsheet that automatically downloaded the information from the SharePoint web-database. 

The investigator would then pull an updated ED record from the VHA health information system 

and enter this data into the Excel spreadsheet which would cross reference the two data sources 

to update the current status of each patient to one of four options: 

1. ED Patient,  

2. Admit – ED Boarding,  
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3. Admitted, 

4. Discharged 

A patient’s status is routinely updated in the VHA health information system as nurses enter data 

for patients in the connected ED information system. This process ensured that no extra data 

entry was required of nurses after the initial patient entry. 

The spreadsheet then calculated three variables to be shared with hospital staff. These were the 

“Predicted Bed Orders,” “Current Beds Ordered,” and “ED Admits Already on Floors.” Noting 

that the number of patients entered into the computer system can exceed the 13 ED beds, due to 

the use of chairs and hallway beds, the variables were calculated as follows: 

1. Predicted Bed Orders – The sum of the calculated admission probability for all patients 

who have the status ‘ED Patient.’ 

2. Current Beds Ordered – The count of patients who are in the ED and have the status 

‘Admit – ED Boarding.’ 

3. ED Admits Already on Floors – All patients who entered the ED during that day and 

have the status ‘Admitted.’ 

Note that patients with status ‘Admit – ED Boarding,’ do not contribute to the Predicted Bed 

Orders, despite currently residing in the ED. Also note that ED Admits Already on Floors is a 

cumulative measure that resets to 0 each day of the trial at 12am while the other measures are 

variable based on current ED status. Finally note that patients with the status of discharged had 

no effect on any measure. 

The variables described were shared with all staff in the hospital through a prominent display on 

the VHA West Roxbury intranet homepage. This was the website that appears every time a staff 

member opens Internet Explorer (the default web-browser for all computers on the VHA 

network). The homepage featured the following description: 

“The VHA West Roxbury Emergency Department is working on a crystal ball: 

Wouldn’t it be great if we could predict what is coming in the future, even just a few 

hours? The West Roxbury campus Emergency Department (ED) is working on just that. 

Over the past year ED staff members, along with the New England Veterans Engineering 
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Resource Center (NE VERC), have gained national attention for working on a system 

that will predict, hours in advance, how many patients will need admission to the 

hospital. However, it remains unclear how this information can be used to improve 

quality of care for our Veterans. So help us out. Take a look at the predicted numbers 

shared here:” 

This was followed by the real time updating display of the variables described above, shown in 

Figure 30. 

 

Figure 30 Public display of prediction variables 

Table 10 Historical average and standard deviation values of prediction variables provided as reference for 

hospital staff during implementation period 

Hour 
Avg. Beds 

Predicted 

+ 1 Std. 

Dev. 

Avg. Total 

Admits 

+ 1 Std. 

Dev. 

6am 0.17 0.55 2.46 5.16 

7 0.18 0.55 2.83 5.83 

8 0.21 0.62 3.15 6.41 

9 0.21 0.62 3.15 6.41 

10 0.33 0.85 3.44 6.97 

11am 0.54 1.26 3.80 7.58 

12pm 1.16 2.52 4.36 8.58 

1 1.32 2.82 4.65 9.08 

2 1.41 3.06 4.89 9.52 

3 1.41 3.06 4.89 9.52 

4 1.49 3.19 5.11 9.89 

5 1.41 2.99 5.34 10.37 

6 1.51 3.13 5.89 11.39 

7 0.86 1.90 6.10 11.78 

8pm 0.69 1.60 6.31 12.19 

*Based on data from: 1/1/2010 - 5/31/2010 
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The image was followed by the contact information of the investigators as well as a link to a 

supplemental webpage with more information about the prediction model and its development. 

Also included on the supplemental page was a chart of historical data for the variables in order to 

give staff some information for comparison, shown in Table 10. 

Before the beginning of the experimental period the author of this dissertation presented at the 

nurse manager meeting (attended by the head nurse of each ward in the hospital), resident 

morning rounds (an educational session for the medical residents that was held each morning), 

and the patient flow committee meeting (a group of hospital staff tasked with studying and 

managing patient flow including the hospital bed managers).  

The homepage content was posted for 10 business days, spanning from 7/2/2012 – 7/13/2012. 

During this time, the variables were updated every 30mins. Patient flow data was routinely 

collected by hospital software and this served as the data collection mechanism for the 

experiment. This data was analyzed for any quantitative effects of the trial. At the end of the trial 

a link to a web-based survey was sent to all staff members who attended one of the pre-

experiment presentations. In addition to the survey, individual interviews were performed with a 

sample of hospital staff in order to generate information about the value of the predictions. 

Interview sampling was a mix of purposive and snowball sampling. Specific members of the 

hospital staff were chosen for interviews. These staff members then suggested others who had 

shown interest in the prediction system or who were in positions that may derive value from the 

prediction system.  

The sampling technique led to 10 semi-structured interviews. These interviews consisted of three 

sets of questions. The first set was to establish the expertise of the interviewee, the second set of 

questions were to establish whether the interviewee was aware of the prediction trial and if they 

used the information that had been shared. The final section of the interview was to better 

understand the potential value of predictions from the ED and what changes could be made to the 

tool, in order to achieve this potential value. Some of the questions also enabled an open ended 

dialog. The survey had the same format as the interviews, with essay boxes for the open ended 

questions. 
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5.2 Results 

The results collected from the intervention were both quantitative and qualitative. The purpose of 

capturing both types of data was to get a more complete understanding of how the prediction 

information could be used. In particular, efforts were made to capture unexpected benefits or 

issues that arise from sharing the prediction information, besides facilitating flow between the 

ED and IU.  

Before analyzing the results of sharing the prediction information, it was worth evaluating the 

accuracy of the information shared. This is the dataset that was used as the prospective test 

dataset for VHA 1 in Chapter 4. It will be recalled that predictions were made prospectively 

using nurses as coders during an extended time period including the trial, 6/13/2012 – 7/13/2012. 

The area under the receiver operating characteristic curve for this time period was 0.89, the R
2
 

correlation between daily total predicted beds needed and actual beds needed was 0.82 with an 

average daily residual of -0.33 beds. Finally the individual patient predictions had a Hosmer-

Lemeshow goodness of fit of p = 0.04 [Hosmer and Lemeshow 2000]. All of these measures 

show that the model was working accurately during the trial period.  

As a visual indicator of the performance of the predictor during the trial period, Figure 31 shows 

the normalized sum of the predicted and current bed orders throughout the trial and the 

normalized amount of current bed orders already on the floors throughout the trial. As can be 

seen in the figure, there is a close relationship between high peaks in predicted beds and high 

peaks in cumulative admissions for a particular day. It is also possible to see that the peak in 

predictions occurs, on average, 3 hours prior to the peak in actual admissions.  
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Figure 31 Normalized predicted and current bed orders compared with normalized ED admits already on 

floors during trial period 

Having established that the prediction data had some accuracy, it is now worth exploring the 

results of sharing this data. Two primary measurements were collected for the trial time period. 

First was the waiting time between when a patient enters the ED and when they are assigned an 

ED bed. Figure 32 shows the weekly average and standard deviation of waiting time for the time 

period of 6/1/2011 – 8/31/2012, from 7am to 7pm. The weeks of the trial are highlighted. 

Due to a complication with data entry, true boarding time is not tracked perfectly, thus boarding 

time was estimated as the difference between the average length of stay of admitted and non-

admitted patients. Figure 33 shows the average and standard deviation of boarding times, for the 

same time period as Figure 32. 
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Figure 32 Average (top) and Standard deviation of (bottom) ED waiting times by week 
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Figure 33 Average (top) and Standard deviation of (bottom) ED boarding times by week 
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The 10 interviews and survey data were summarized into comments related to how the prediction 

information was, or could be, used. Five categories for uses of the prediction information 

emerged from an analysis of the comments: 

1. Admission Planning  

2. Resource Scheduling 

3. Personal Scheduling 

4. Resource Alignment 

5. Hospital Network Management 

The interview notes were then coded into these five categories. All comments used for the 

following data are kept anonymous. 

5.2.1 Admission Planning 

The primary intended goal of using a prediction system, as described by previous chapters, was 

to enable admission planning. During the trial period there were some cases of this occurring. 

For example, when the “predicted bed orders” number got high (in the opinion of a senior 

resident at that moment) senior residents would sometimes walk to the wards, let the residents 

know about the prediction value, suggest that the residents start focusing on discharges and 

admissions. Some of the residents looked at the prediction number themselves. This turned out to 

be a new incarnation of behavior that sometimes takes place anyway. Bed controllers and 

residents both suggested that, in the past, they would look at the ED bed board and try to guess 

which patients would be admitted and this would inform their decisions. The prediction number 

in some ways provided an easier method for getting the information that would otherwise require 

accessing the ED system.  

Despite the fact that those involved in admitting a patient sought out the prediction information, 

there were some aspects of the information, and sharing method, that undermined the final value 

of the predictions. While the aggregation of admission prediction information creates a more 

accurate measure of incoming bed demand, it also creates a level of abstraction. Doctors must 

see this single number and then understand how this translates into crowding or into future work 

load. Without being exposed to the model for a longer period of time, the practitioners did not 

have a good sense of how a specific ED prediction state, as displayed by Figure 30, would 
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translate into future work load. While historic data for the prediction variables was provided 

(Table 10), the practitioners did not intrinsically trust it. The practitioners needed to gain their 

own sense of the current ED prediction state relative to other ED prediction states that they had 

experienced firsthand.  

The lack of ability to directly translate a prediction number into a full understanding of future 

business became an issue when staff members were considering taking preemptive admission or 

discharge actions. These staff members were concerned with the opportunities for wasted work 

caused by overreacting to a prediction state. Comments on this issue were always clarified with 

the addendum that if the staff member had acted on the prediction and it was indeed correct, then 

time would be saved and the actions would be worthwhile, but they were not comfortable with 

the risk. 

Finally, acting upon a prediction for the purpose of admission planning was further undermined 

by the lack of specific predictions tied to individual patients. While the hospital staff did find it 

useful to see aggregate numbers when they wanted a quick understanding of the system, they 

also desired specific predictions for each patient, when they had time to look at the data in more 

detail. These specific predictions become important when one considers patients with special 

needs such as medical vs. surgical, telemetry, negative pressure, contagion precautions etc. Such 

needs limit which rooms a patient could be assigned too and make it necessary to know if the 

prediction number included patients that would need special conditions and the specific 

prediction number for those patients. Putting work into expediting an admission could lead to 

negative consequences and wasted effort if the patient that gets admitted needs specialty care and 

the newly opened bed is not appropriate.  

5.2.2 Resource Scheduling 

As discussed in Chapter 2, scheduling has been recognized as a key use for long term prediction 

models. However, that is in terms of baseline schedules. The interview and survey results 

showed a possibility for using real time predictions for short term resource scheduling. The 

residents’ weekend schedule is often difficult to manage and requires some guess work for the 

senior residents on Friday at the end of the day. During the trial period, senior residents used the 

prediction model on Friday afternoon to get a better sense of what the hospital would look like 
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over the weekend. In the past they only knew who was in the IU at the moment they were doing 

the scheduling, during the trial, at the very same time of day, they had a more accurate sense of 

what the hospital would look like, because they also knew what demand was incoming. 

Resident teams on the wards also used the prediction for short term staffing issues. The main 

teams go off duty around 7pm, a small group of night doctors and some residents manage the 

later shift. At 6pm, the teams were able to look at incoming demand from the ED and better 

prepare for their hand off. Alternatively, leadership could use the predicted demand to ask teams 

to stay longer in order to smooth the transition. The demand on night staff was also felt to be 

directly correlated to demand on morning staff. Consequently, it was suggested that knowing 

incoming demand at the end of the day could be used to better plan for the morning. Before this 

trial, demand was less clear when the administrative staff left for the day; during the trial, 

administrative staff felt more capable of making decisions for the next day, before leaving.  

Another use for predictions in resource scheduling was suggested for Environmental 

Management Services (EMS). These are the staff members who clean rooms after patients have 

been discharged and prepare rooms before patients are admitted. These staff members can only 

clean a room when the order has been placed in the computer system. While they are scheduled 

to be evenly distributed around the hospital, it is possible to move staff around the hospital to 

accommodate surges of patients into certain wards. However, they can only plan for this if they 

are given an idea of where the surge will be going. In this way, the current system relies on 

others to use the predictions to make preemptive orders to which EMS would have the flexibility 

to respond. 

The uses above have some limitations that were mentioned during the interviews. The first is in 

terms of timing. While the prediction model does predict well about 3-3.5 hours ahead of time, 

when a staff member looks at the displayed prediction, they don’t have an exact sense of what 

will be happening in the very near future. The number does not suggest how many of the ED 

patients only recently entered the ED, how many have been receiving treatment for some time, 

and how many will likely request admission very soon. Even if time was known, the flexibility 

of staffing becomes an issue. While EMS felt that it is possible to move staff around, this is not 

as easily done on the medical wards. One interviewee expressed frustration at seeing the 

predictions and not having the power to call in more staff or move staff around. 
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5.2.3 Personal Scheduling 

Personal scheduling relates to how predictions cause staff members to make decisions related to 

their own time, rather than adjust the times of others. At VHA West Roxbury, practitioners in the 

IU were often shielded from misalignments between bed availability and demand. This is 

because they only heard about a patient when bed control assigned that patient to an IU bed. 

Often, IU practitioners were unaware of the patient that was waiting for bed control to be given a 

free bed to work with. The prediction state, as shown in Figure 30, showed ward staff how many 

patients were waiting for beds, it also showed how many already had been given beds earlier in 

the day. This provided them with a sense of the limitations on bed supply and whether it would 

meet incoming demand.  

Knowledge of incoming demand was important to the medical residents. These staff members 

felt that it was often forgotten that physical beds were not the only potential bottleneck in the 

system, but that they could only perform a certain amount of tasks in a given time frame. Each 

admission requires a process, which takes time; therefore, even when beds are available, staff 

can only admit a limited number of patients in a certain time frame. The residents felt that by 

knowing the prediction state of the ED and how tight resources may be, they could better choose 

how to prioritize their activities. This was important in the morning when discharged patients 

seemed low priority compared to patients that have not been seen that day. The prediction 

knowledge may cause residents to prioritize morning discharge and prepare an admission in 

order to avoid a bottleneck later on. Similarly throughout the day, there were educational 

sessions for the residents, these sessions could be missed occasionally and the residents may use 

the ED prediction state as a basis for choosing whether to attend or not. Decisions of this nature, 

again, lead to the issue mentioned earlier in terms of potential to do unnecessary work. Another 

issue that arose when considering personal scheduling is that a staff member may merely hope 

that the incoming demand wouldn’t be assigned to them and choose to proceed with their normal 

routine. This is reflective of the human element in this system. There are some practitioners who 

like the potential for control over the system, others are comfortable dealing with issues as they 

come and would avoid looking for information on the future and trying to act upon it.  

Nursing staff similarly found the predictions to be useful for personal scheduling. They also used 

it for prioritization. Nursing managers felt that the prediction state of the ED at the end of the day 
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may cause them to stay later in order to smooth the transition into the night shift. This was a 

work around for the fact that they didn’t have the option to schedule other people to stay later or 

come in, but they were able to make the personal decision to stay.  

A final, personal scheduling based, value to sharing the prediction model was the mental 

preparedness that occurs when the future was better known. All interviewees felt that simply by 

knowing that the future would be busy they were better prepared to deal with it. This may not 

directly translate into any ED performance improvements but may have effects on job 

satisfaction and other quality measures.  

5.2.4 Resource Alignment 

A common point that was made by all interviewees was the issue of coordinating with other 

staff. There were times when the prediction state of the ED encouraged some staff members to 

prioritize a patient for discharge but they were awaiting the actions of another person or office. A 

doctor could not discharge a patient without knowing that there was a place for the patient to go; 

this required the efforts of the patient care coordinators, social workers and discharge planners. 

Often these other key personnel were not given advanced notice that a patient would be ready to 

leave and they would first start to work with families or other facilities to arrange for the patients 

discharge, when they received word that the patient was ready to leave. While doctors are 

waiting for some parts of the hospital to coordinate the patients discharge, nurses are not able to 

perform the discharge procedures until the doctor has written a discharge note. Similarly, getting 

outgoing prescription orders filled by the hospital pharmacy, or having out bound tests 

performed, required coordination with further support services. After these process delays, that 

some interviewees suggested could take days, the empty bed would finally be entered into the 

computer, enabling a bed cleaner prepare the bed for the next admission.  

Each interviewee identified at least one other service within the hospital as needing to use the 

prediction in order to better drive behavior. This information should not be seen as placing the 

blame, but rather, as recognizing true process steps that prevent a staff member from completing 

a discharge or performing an admission. A bed controller noted that the prediction system was 

useful for overcoming this systematic grid lock, by providing more data to bring to morning 

discharge meetings, that would enable communication and future planning across departments.  
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5.2.5 Hospital Network Management 

While the initial primary goal of the prediction model was to improve flow between the ED and 

IU, actually sharing predictions with the hospital uncovered the importance of understanding 

flow across a hospital network. VHA West Roxbury was part of three hospital networks. The 

first, more direct network is the VHA BHS, this system was comprised of four hospital 

campuses; VHA West Roxbury has the ED, the other three campuses had urgent care units that 

also sent a significant amount of patients for admission to the VHA West Roxbury IU. Similarly 

VHA West Roxbury was a part of the greater New England Veterans Integrated Service 

Network, which was comprised of 10 hospital campuses (including the 4 that comprise the VHA 

BHS). Each of these hospitals may seek to transfer a patient for admission to VHA West 

Roxbury, either from their ED/Urgent Care departments or from their own IUs. Finally VHA 

West Roxbury was part of the greater network of hospitals in the local region. Private hospitals 

in the region would regularly transfer Veterans that have been brought to their EDs, or have been 

admitted, to VHA West Roxbury once the patient is stabilized. Each of these sources of 

admission did not individually outweigh the load sent from the VHA West Roxbury ED, but 

together comprised a significant number of admissions that do not necessarily follow the same 

trend as the VHA West Roxbury ED. It was therefore suggested that prediction numbers be 

generated for as many of these other sources as possible (most easily the three urgent care units 

that are part of VHA BHS). These additional predictions would avoid occasions when the 

prediction coming from the VHA West Roxbury ED gave the impression that the day would be 

lighter and, to the contrary, the IU ended up getting a heavy load from the VHA BHS urgent care 

units.  

Another suggested network management use for the prediction was as a determinant for 

choosing to deny potential transfers from one of the many networked hospitals. Transfer requests 

would sometimes arrive before the IU was busy, however, after the transfer was accepted the ED 

bed requests would begin to rise and the bed manager would regret accepting the transfer. The 

prediction state enabled the bed managers to postpone or reject transfers based on knowledge of 

incoming demand. Finally it was suggested that the prediction states could encourage IU staff to 

connect with hospital outlets such as assisted living homes, rehabilitation centers, and other long 
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term care facilities, to improve flow out of the hospital, by engaging the outward end of the 

network. 

5.3 Discussion 

The earlier chapters of this dissertation have suggested that patient flow in the hospital setting 

could be improved by predicting a patient’s likelihood of IU admission when they enter the ED 

sharing this prediction information with the hospital. Many studies have developed such 

prediction models; few have taken the next step, by discussing how the predictions should 

actually be used. Rather these studies default to the use of predictions as being coercive and 

replacing or preempting the decisions of ED physicians. In contrast this dissertation was inspired 

by the health care delivery chain conception of the ED/IU system to suggest a method for sharing 

predictions by aggregating patient admission probabilities into a total expected bed demand 

[Peck et al. 2012]. Based on the literature review performed for this study, no cases were found 

where a real time prediction system had actually been tested. One case did perform an interview 

based study, with a hypothetical prediction system, seeking an understanding of what would be 

needed to make it useful [Jessup et al. 2010]. However, based on preliminary interviews 

performed by the author of this dissertation, it was clear that without actually being faced with a 

prediction, hospital staff were unsure about what they would do with it. This was a complication, 

as an ideal prediction model would be tailored to the ways that it would be used, leading to a 

“chicken and egg” scenario when considering how to implement a prediction model.  

For this reason, the prediction generation and sharing method described in this chapter was 

developed in order to provide a simple prediction system that favored less data rather than more. 

In this way practitioners would not be overwhelmed with data but would still have the 

opportunity to judge what value the predictions provided. Despite the simplicity of the model 

used, there was some complication in choosing the data categories that were displayed in Figure 

30, as many people use different terminology. For example, while some would say a patient is 

boarding, others would call it a bed order. Similarly while some people refer to the inpatient 

units, others refer to the floors, or the inpatient wards. The final terminology used in the display 

was chosen by consensus of the investigation team and hospital management. Despite the 

complications, the trial was permitted to proceed with the belief that the data collected could act 

as a guide for future refinements of the prediction model and data sharing methodology.  
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Looking at the results of the trial shown, in Figures 32 and 33, it can be seen that there is a trend 

of improvement over the entire data collection period (6/1/2011 – 8/31/2012). This is consistent 

with the trends described in Chapter 3. Also, as in Chapter 3 there did not seem to be any notable 

seasonal effects on waiting or boarding time that would need to be accounted for in an analysis. 

With this in mind, looking at the trial period itself, there is no statistically significant difference 

between the two weeks of trial period, the weeks before the trial, and the weeks after the trial. In 

fact, the ED performance during the trial period seem to almost perfectly match that which 

would be predicted based on a historic trend, when no trial was attempted. This is not surprising 

given the short duration of the trial. As the interviews later confirm, staff members did start to 

find ways to use the predictions, however, the staff members did not have enough time to fully 

systematize these methods. Also those that were using the predictions did not have enough time 

to encourage colleagues to use them. However, the interview and survey data provide reason to 

believe that future work with a prediction method may yield the desired improvements. 

Looking in more detail at the interview and survey results, there are some notable concepts that 

arise, and future work to be performed. The initial purpose of using a prediction model in the 

hospital system is to better enable admission planning. Based on the interviews it is clear that 

hospital staff did indeed consider using the prediction information for this purpose. However, as 

was discussed, many of the hospital staff members who attempted to pre-emptively work on the 

admission and discharge processes, found it difficult due to missing information, and were 

hesitant about taking actions that may be wasted effort. When faced with the decision to 

prioritize admission and discharge processes, versus treating patients, the health practitioner is in 

a situation similar to the newsvendor model that is commonly studied in operations management.  

The newsvendor model receives its name from an example case: in the morning a newsvendor 

must choose how many newspapers to stock for the day. The optimal solution to this issue comes 

by comparing the relative cost of overstocking and the opportunity cost of under-stocking to the 

probability that a certain number of newspapers will be purchased by the end of the day [Cachon 

and Terwiesch 2009].  Similarly a health practitioner must consider the probability that a patient 

will be admitted and decide whether that admission probability warrants risking the cost of over 

reacting (opening a bed when no bed ends up being needed) versus the opportunity cost of under-

reacting (not opening a bed that does end up being needed) and causing a bottleneck until they 
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eventually get to it. Finding this optimal balance of over and under reacting is a clear direction 

for future work.  

The value of prediction may increase when one considers how to better enable the potential 

benefits of resource planning, that were identified by the hospital staff. As was mentioned in the 

results of the interviews, many managers would have liked to move their staff, but did not have 

the power to do so. The goal of a real time prediction model is to enable real time reactions to the 

data that it generates. Reactions require resources. While hiring more staff to be on standby may 

be possible, it may also be possible to cross train staff, creating flexibility, such that a nurse or 

doctor can move between units as needed. In the case of physical resources, it may be 

worthwhile investing in more flexible treatment areas that can be made to fit a larger diversity of 

patient needs and reduce some of the potential costs of opening an inappropriate bed. 

Personal planning was a common way of using the predictions expressed in the interviews. All 

interviewees occasionally looked at the prediction information, wanted to use it to make 

decisions about their own scheduling, and to prioritize their own duties. However, there was a 

definite variety in risk aversion to over reacting and under reacting as described above. The 

perceived value of making changes to one’s schedule is unique to that person. Therefore, without 

a method of suggesting specific reactions to specific ED prediction states, the personal planning 

responses to predictions will remain inconsistent, reducing effectiveness.  

Issues with resource alignment when sharing prediction information are tied to the variety in 

personal planning responses. This is because many groups of staff members must rely on each 

other in order to complete the discharge and admission processes. This reliance on others leads to 

all members of the hospital staff feeling that “you are telling the wrong person” when they are 

being pushed to facilitate a process. This situation can be summarized by considering a utility 

matrix as shown in Table 11 [Fundenberg and Tirole 1991, Pindyck and Rubinfeld 2009]. In this 

table we can simplify the hospital into two groups, the medical teams in the IU (comprised of 

residents, nurses, and interns) and the hospital support services (such as radiology, social 

workers, case managers, and the pharmacy). Each group can choose to prioritize discharge or 

treatment. If we assume that treatment is always prioritized in the current state, then we can say 

that the payoff of prioritizing treatment is 0, the base line. Then we can consider the case (bottom 

left of Table 11) where the medical teams react to predictions and prioritize discharge, but the 



124 

 

support services don’t. Despite the efforts of the medical teams, the patient remains in the IU 

occupying a bed. In this case the support services still accomplished treatment work, thus they 

get the baseline pay off, but the medical teams wasted time by discharging when they could have 

been treating, thus they get a payoff of -1. This works in the opposite direction as well. When 

medical teams prioritize treatment (0) and support services prioritize discharge (-1). However, 

following the initial hypothesis of the value of prediction, if both groups prioritize discharge 

based on predictions and open a bed for predicted patients, then there may be a benefit above the 

baseline state for all parties, with a payoff of 1. 

Table 11 Pay off matrix of prioritizing discharge versus treatment 
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Prioritize Discharge Prioritize Treatment 
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s Prioritize Discharge 1,1 -1,0 

Prioritize Treatment 0,-1 0,0 

 

As logical actors, it is likely that each of the groups will want to avoid the -1 payoff; therefore, 

they both stick to treatment, leaving the hospital at the baseline. However, it may be possible to 

force collusion, by having hospital management dictate specific instances when both groups 

should prioritize discharge. For example, patients who will soon be ready for discharge can be 

given red flags in the computer system. If a certain prediction state is reached in the ED, hospital 

management can force all groups to prioritize patients with red flags. This makes it clear how to 

expedite the discharge patients for all parties and may create the optimal situation. This is similar 

to expediting concepts used in manufacturing and the theory of constraints [Goldratt and Cox 

2004]. Actually finding the correct ED prediction state that warrants encouraging all parties to 

expedite discharges would require more research and is the focus of Chapter 6.  

Finally, the potential for hospital network management is an unexpected outcome of the 

prediction system implementation. Currently, network effects may be limited for many hospitals. 

However, the size of hospital networks continue to grow, in the US, as hospitals seek to gain 

economies of scale [Cuellar and Gertler 2003]. Therefore, the use of real time predictive models 



125 

 

can enable a whole new level of bed control on the network level. This could be used to inform 

when and to where patient transfers should occur and improve the ability for related hospitals to 

level their loads and share resources in an optimal way. The study of optimal hospital network 

management is another significant area for future research. 

5.4 Limitations  

There are some notable limitations with the study described here. The first comes from the 

limited length of the prediction trial. One of the consistent difficulties with research in a hospital 

environment is the potential to hinder the treatment of patients. The ability to try a “what if” 

scenario without damaging the system is the reason simulation methodologies are popular 

[Banks et al. 2010]. While simulations are helpful, a live implementation often provides insights 

that a simulation cannot. However, the implementation experiment was limited due to the need 

for nurses to enter extra data into the prediction system. Ideally, all of the data would be captured 

by the current health care information system used at the hospital and this would automatically 

feed into a prediction algorithm, thus removing the need for extra data entry and enabling a 

longer trial. Efforts are being made at VHA West Roxbury to achieve this.   

Another limitation of this study is the fact that sampling was used for choosing interviewees. 

Ideally all hospital staff members could be interviewed and this would provide a more complete 

understanding of how the prediction information was or could be used. However, such a study 

may also place an undue burden on the hospital.  Nevertheless, the current study protocol was 

able to capture a wide range of opinions and derive value from the data set.  

5.5 Conclusions 

Chapters 2 through 4 were based on the premise set forth by past studies, suggesting that systems 

to predict, when a patient enters the ED, whether that patient will require admission to the 

hospital could be used to encourage IU staff to facilitate that future admission and improve 

flow/quality. Some studies were found that made these predictions and Chapters 2 and 3 

described how such predictions could be made and shared. However, no studies were found that 

focused on establishing whether such a system would indeed improve flow, nor understand the 

realities of developing such a system.  
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The study described in this chapter was an initial attempt towards implementing and studying an 

admission prediction system. For two weeks predictions were made in the ED and shared with 

the IU, during this time no change was found in key patient flow metrics. This was likely due to 

the short time period of the trial.  

In order to capture qualitative effects of sharing predictions a sample of hospital staff in multiple 

different positions around the hospital was taken and interviewed. The results of these interviews 

showed potential uses for prediction in terms of admission planning, resource scheduling, 

personal scheduling, resource alignment, and hospital network management.  

The results of this study suggest that the initial belief that prediction could be used to improve 

flow in the ED/IU chain may be true. While the results do not actually quantify any flow benefit 

from prediction, the interviews suggested some human and system factors that prevented the 

achievement of any potential benefits. These factors may be overcome through future work. 

Chapter 6 will seek to gain a fuller understanding of the use of prediction in this system through 

the use of computer simulation. Chapter 6 will describe the use of simulation in health care as 

well as the development of a model for capturing the behavior of the ED/IU system, with some 

simplifying assumptions. This model will show the maximum potential value for prediction in 

the ED/IU delivery chain and offer insights into how to achieve these results in reality.  
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Chapter 6: Simulation of the Emergency 

Department Prediction Model 

In Chapter 2 and throughout this dissertation it has been established that metrics of quality in an 

ED are defined by how quickly a patient gets to and through their emergency treatment [Graff et 

al. 2002, Bernstein et al. 2009, Horwitz et al. 2010]. This characterization of quality in the ED 

has led to this dissertation’s adoption of ED waiting time as a primary measure of ED flow 

improvement. It was also discussed that the output process of admitting a patient to an IU has 

significant impact on ED waiting time [US GAO 2003, Olshaker and Rathlev 2006, Falvo et al. 

2007, US GAO 2009]. This led to the adoption of ED/IU boarding time as the second primary 

measure used in this dissertation. The two measures combined, provide a sense of how patients 

flow through the entire ED/IU health care delivery chain. 

The previous chapters adopted the suggestion that prediction of IU admission early in a patient’s 

ED treatment can be used to improve flow in the ED/IU chain. Chapters 3 and 4 discussed how 

to make these predictions and the potential to operationalize these predictions, by generating a 

running bed demand value that combines the predictions assigned to all patients in the ED. 

Chapter 5 was focused on how this running bed demand may be interpreted and used in a live 

implementation. The results of the implementation suggested some interesting applications for 

the prediction system, however, there was no improvement found in the key flow metrics. It was 

suggested that the lack of notable flow improvements could be due to the limited implementation 

length. It was also suggested that lack of notable improvements could be due to a lack of 

alignment between the many treatment and support services teams throughout the hospital. The 

goal of this chapter is to gain a fuller understanding of the potential for prediction in the ED/IU 

chain by using computer-based, discrete event simulation (DES) to create a model of the system 

that can be studied without time restraints and where resources can be better controlled.  

6.1  A conceptual model of the ED/IU “Pull” System 

Creating a DES of a system is a process. This process begins with the problem entity, or system 

to be modeled, which is the ED/IU chain. The next step in the process is the conceptual model. 

The conceptual model “is the mathematical/logical/verbal representation of the problem entity 
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developed for a particular study” [Sargent 2000]. In Chapter 2, Figures 12 through 14 were 

depictions of the ED/IU system with varying details. Each of these figures can be considered a 

different conceptual model of the ED/IU system and each would result in a different 

computerized model, the creation of which is the last step in the modeling process. With this in 

mind, it is necessary to discuss the conceptual model of the ED/IU system that enables the use of 

predictions; this lays the conceptual structure for the computer model that was generated and will 

be discussed. 

Those who have studied the ED/IU health care delivery chain and who have some understanding 

of process improvement methodologies often suggest that the ED/IU system be improved by 

becoming a pull system. A traditional pull system (Figure 34a) is based on sharing information to 

closely match upstream production with downstream demand [Hopp and Spearman 2001, 

Simchi-Levi et al. 2003]. In typical supply systems, such as grocery stores, an order originates 

downstream (at the store) and then the downstream step pulls a new item from the resource 

buffer at the upstream step (manufacturing or storage facility), triggering the production of a new 

product to replace the one that was taken. If this method were to be directly adopted in the 

ED/IU system, it would be expected that the IU would not wait for a bed to be ordered by the 

ED. Instead, the IU would preemptively seek to open beds with the plan of pulling a patient from 

the ED. Although this may initially sound reasonable, there is a practical limitation. The ED does 

not have a controlled stock of patients and without knowing that patients are waiting in the ED, 

the IU staff does not have the incentive to open a bed and pull a patient. Therefore, flow in the 

ED/IU health care delivery chain lacks the information and incentive structure to enable a 

traditional pull system. 

By graphically representing the flow of patients through the ED/IU system (Figure 34b) it can be 

seen that demand originates upstream rather than downstream. Therefore the downstream step, 

IU, would not know to pull a patient; IU staff does not know the patient exists. Instead the IU 

staff will focus primarily on the real demands of patients already in the wards, who need 

treatment. In response to this issue, the health information technology systems within a hospital 

can be leveraged in order to create an information based pull system. This type of pull system is 

really an information-based push system, where the upstream step sends a signal to the 

downstream step that it will be producing a product/patient and that the downstream step should 
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be prepared to pull the patient when ready. This system differs from a normal push system in that 

it gives the downstream step some time to prepare and control the flow to a certain degree. This 

is the conceptual basis for using prediction in the ED/IU chain and is depicted in Figure 34c. The 

running IU bed demand value, proposed in the earlier chapters, serves as the signal that suggests 

that the IU pull patients from the ED. It has been proposed in this dissertation and in previous 

studies that sharing this prediction information to create an information-based pull system could 

improve the bed coordination process and improve flow [Yen and Gorelick 2007, Sun et al. 

2011, Peck et al. 2012]. Using the conceptual model in Figure 34c the rest of this chapter focuses 

on characterizing the patient flow benefits of sharing predictive information between an ED and 

IU. This characterization begins by discussing the development and structure of the DES model. 

Then there will be a discussion of the logic and results of scenarios for exploring how a 

hospital’s health information system can be leveraged in order to share ED state information and 

how sharing this information with the hospital may affect ED patient flow and, consequently, 

treatment quality.   
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Figure 34 a) Traditional pull system, b) current ED/IU push system, c) potential ED/IU information based 

pull system 
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6.2 Methods 

To some, creating a prediction based pull system in the ED may have intuitive benefits. However 

since human lives are at risk when changes are made in health systems, simulation is a popular 

tool for exploring “what if” scenarios [Jacobson et al. 2006]. One type of simulation that is 

commonly used for studying the ED/IU system is DES [Baesler et al. 2003, Connelly and Bair 

2004, Kolb et al. 2008, Li and Howard 2010, Paul et al. 2010, Peck and Kim, 2010]. The DES 

model in this study was built in Rockwell Automation, Inc.’s ARENA DES software version 

13.5. The model is based on the ED/IU chain at VHA West Roxbury. VHA West Roxbury has a 

13 bed ED which received approximately 1200 patients per month in 2010. The hospital IU has a 

varying resource level of approximately 170-180 staffed beds. The IU beds are shared between 

elective admissions from local VHA clinics, transfers from other VHA hospitals, veteran 

transfers from non-VHA hospital facilities, and local veteran and non-veteran emergency 

patients.  

The simulation model assumes 100 beds are reserved for ED patients. The logic of the model is 

shown in Figure 35 and is comprised of four primary sub-models: Arrival, the Emergency 

Department, the Inpatient Unit and Bed Management. 

 

Figure 35 Discrete event simulation model logic 

The arrival sub-model consists of a creation module that generates patients based on the actual 

patient arrival pattern, derived from the VHA West Roxbury data. After a patient is created, they 

are assigned a probability of being admitted. This was done by creating a probability distribution 
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of probabilities of being admitted, based on the logit-linear regression predictions on the test 

dataset from Chapter 3. A simulated patient is assigned a probability of admission from this 

distribution which was fit, using Arena’s input analyzer, to be a beta distribution with the 

following equation: 

P(admission) = .94 * BETA(0.345, 0.878) 

Rather than use predictions as a yes/no diagnostic tool, the model uses the suggestion of the 

earlier chapters and adds patient probabilities together, generating a running expected bed 

demand. The running bed demand could be shared with the IU, enabling the accuracy benefits of 

risk pooling. The model calls the running bed demand, based on the logit-linear regression 

predictions, the imperfect predicted index of demand for IU beds from the ED.  Patients then 

move through a decision module which assigns whether the patient will indeed require admission 

using that patients assigned probability value. This predetermined decision is used to generate a 

perfect predicted bed demand index by counting all patients who were chosen for admission.  

Both of the bed indexes are shared with the bed management sub model described later.  

In summary, when the arrival process is complete, patients have two attributes, and the system 

has two running variables. 

Attributes:  

1. Imperfect predicted Bed Need, a continuous probability from 0-1 

2. Perfect predicted Bed Need, 1 or 0 

Running Variables, which are the sums of the respective prediction attributes over all patients in 

the ED: 

3. Total imperfect bed demand  

4. Total perfect bed demand  

Upon receiving their admission predictions, patients enter the ED which is comprised of 13 beds, 

just like the VHA West Roxbury ED. Patients then seize a bed for their treatment duration, again 

the length of this treatment is based on the distribution of treatment times observed at the actual 
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hospital, using the test dataset from Chapter 3. Arena’s input analyzer fit an Erlang distribution 

to this data as follows: 

ED treatment time = -0.001 + ERLA(78.2, 2) 

While the simulation is running, the number of ED beds that are full is being tracked and shared 

with the bed management module. After completing their ED treatment, those patients who were 

predestined for admission enter a queue to seize an IU bed while continuing to hold an ED bed. 

At this point the patient’s imperfect admission prediction is updated to a 1 while discharged 

patient admission predictions are reduced to 0 and the admission indexes are updated 

accordingly. 

The IU sub model contains 100 beds based on the assumption that a significant number of VHA 

West Roxbury’s 170-180 beds are reserved for elective admissions. To capture how information 

can affect decisions, and consequently flow, the model also assumes that the doctors are the 

decision maker and limited resource in the IU and that all other support services have unlimited 

capacity. This eliminates the issue of coordinating priority between the medical teams and 

support services. Figure 36 is a representation of the model logic. As can be seen in the figure, a 

patient first seizes a doctor for treatment. The patient can only be treated or discharged by this 

unique doctor from that point on. The patient then releases the doctor and goes through some 

randomized amount of value added treatment. At the end of the cycle, the amount of time the 

patient spent is deducted from the patient’s total value added IU length of stay (LOS). The value 

added length of stay was calculated by analyzing 32,156 patient visits to the VHA West Roxbury 

IU, spanning all visits from 10/02/2008 to 6/30/2011. The Arena input analyzer fit the length of 

stay data to a log-normal distribution as follows: 

Patient IU LOS = -0.001 + LOGN(8.89, 17.1) 

The LOS dataset was based on the true LOS of patients and included non-value added (NVA) 

waiting times. Since the model needed to capture changes to this NVA time, the LOS assigned to 

a patient was divided by a LOS reduction variable. The value of this variable was chosen to be 

2.5 based on calibration efforts in the validation stage, using a baseline scenario (Scenario 1) that 

will be described later.  
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The simulated patient continues to go through this cycle, of doctor treatment and value added 

treatment, until they have depleted their assigned LOS. At this point, rather than re-enter the 

treatment queue, the patient enters the queue to seize a doctor for discharge orders. In this way 

those patients waiting for discharge are in direct competition for doctors with patients who are 

still receiving treatment. To manage this competition, the bed management module has the 

ability to shift priority between the two processes, when certain conditions are met; these 

conditions are based on the scenarios described below. Doctors only accept patients from 7am to 

8pm, at 8pm the doctors will finish processing patients that are in the queues but all others are 

held back until the next day. 

 

Figure 36 Doctor Decision Cycle 

6.2.1 Simulation Scenarios 

Six primary scenarios were studied using this simulation model, below these are described in 

words and in equation form where: 

T = time 

EDn = designates ED bed n where n = {1,2,3,4,5,6,7,8,9,10,11,12,13} 

I = number of patients in the ED or waiting room 

PTi= designates patient i in the ED or ED waiting room i= {1,2,3 … I} 

IUBeds = available IU beds 
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S(t) = designated time varying sensitivity level 

Prio = {
                                          

                                          
 

Scenario 1: This is the baseline scenario where priority is set to discharge beginning at 1pm and 

ending at midnight. 

 if T > = 13 then Prio = 1 else Prio = 0 

Scenario 2: At a predetermined time of day priority is set to discharge for three hours. 

for t = 0 through 23 

if T >= t or T < t + 3 then Prio = 1 else Prio = 0 

Scenario 3: Priority is set to discharge while a time varying designated difference between the 

number of occupied ED beds and available IU beds, or Crowding Index, has been reached or 

exceeded. 

F(EDn) = {
                         
                      

 

Crowding Index = ∑       
  
  – IUBeds 

while Crowding Index >= S(t), Prio = 1 else Prio = 0 

Scenario 4: Priority is set to discharge while a time varying designated difference between the 

imperfectly predicted IU bed demand and IU bed availability, or Imperfect Index, is reached or 

exceeded. 

P(PTi) = Imperfectly predicted probability that patient ‘i’ will be admitted, 1 if patient 

has completed ED treatment and is awaiting admission. 

Imperfect Index = ∑       
 
  – IUBeds 

while Imperfect Index >= S(t), Prio = 1 else Prio = 0 
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Scenario 5: Priority is set to discharge while a time varying designated difference between 

the perfectly predicted IU bed demand and IU bed availability, or Perfect Index, is reached or 

exceeded. 

Admit(PTi) = Perfect prediction that patient ‘i’ will  {
                  

             
 

Perfect Index = ∑           
 
  – IUBeds 

while Perfect Index >= S(t), Prio = 1 else Prio = 0 

Scenario 6: The current best practice of discharging by noon where discharge is prioritized for 

any time before noon. 

for t = 0 through 23 

if T < 12 then Prio = 1 else Prio = 0 

Each of these scenarios can be tested for sensitivity, using factors that have been built into the 

model. Sensitivity was studied through three cases. Case 1 had no non-value added (NVA) 

admission delay and 25 IU doctors, making a four to one patient to provider ratio. The second 

case had the same patient to provider ratio but had a variable NVA delay, between the ED and 

IU, which is normally distributed with a mean of 30 minutes and a standard deviation of 15. This 

delay occurs after an IU bed is assigned, but before the ED bed is released. This delay can be 

interpreted as delay of ED staff in receiving the assignment, delay of hospital bed managers from 

communicating the assignment, extra cleaning requirements, room set up delay, transportation 

delay, or many other possible sources of delay. The third case, has no NVA delay but changes 

the patient to provider ratio to five to one by reducing IU doctor capacity to 20. 

6.2.2 Calibration and Validation 

There are multiple frameworks for validating a simulation model [Balci 1995, Sargent 2004, 

Banks et al. 2010]. To validate the model in this study, the authors relied primarily on face 

validity and historical data validation. Face validity was established by presenting the model to 

medical experts to get their opinion on the logic. Historical Validity is established by looking at 

the outputs of the model and comparing them to the true VHA Boston data.  
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As the simulated system processes input data, it is likely that the outputs will begin to diverge 

from the true system data. While it is unlikely to achieve a perfect match between the real and 

simulated systems for all outputs it is important to judge whether the two remain close. Figure 37 

shows the pattern of patient arrivals to the ED, these are, and should be, almost exactly the same 

as the input data, since no processing has been done to the patients at that point. 

 

Figure 37 Simulated and real VHA Boston daily patient arrival rates by hour 

After some processing in the ED, admission requests from the ED to IU are generated. Figure 38 

shows the pattern of requests for the simulated and real system. As can be seen there is a 

difference between the simulated and real admission request rates. This difference is likely due 

to the fact that the model sought simplicity in the ED module and did not differentiate ED LOS 

for admitted patients and non-admitted patients when creating the LOS distribution. 
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Figure 38 Simulated and real VHA Boston daily admission request rates by hour 

Those patients who are admitted to the IU proceed through the process described in Figure 36. 

The simulation is a simplified model of the true IU system and therefore is likely to distort 

resulting simulated outputs from the true outputs. Figure 39 shows the hourly IU discharge rates 

for the real and simulated systems. Despite the simplified model of the IU, these patterns seem 

close in shape. 

Figure 40 shows the IU LOS pattern for the real and simulated systems. Note that Figures 39 and 

40 are normalized. The VHA West Roxbury discharged patient data collected did not include 

patient origins, thus it was not known how many came from the ED versus other sources, making 

a direct comparison of rates impossible.  
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Figure 39 Simulated and real VHA Boston daily, normalized, IU discharge rates by hour 

 

 

Figure 40 Simulated and real VHA Boston patient IU LOS 
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Finally, Table 12 compares key performance and demographic values for the real VHA West 

Roxbury system and the simulation, for the case when discharge priority begins at 1pm and ends 

at midnight (Scenario 1). 

Table 12 Simulation output data vs. VHA Boston monthly average data for validation 

 
West Roxbury Model Units 

Total Patients 1240.5 1137.7 Patients 

Percent Admitted 34 28 % 

ED Wait Time 0:17 0:11 Hours 

ED LOS Admitted 4:01 3:05 Hours 

ED LOS No Admit 2:19 2:36 Hours 

Boarding time 0:28 0:28 Hours 

IU LOS 10.2 7.53 Days 

 

The simulated results closely match or are similar to the actual values. This is an important 

confirmation that the simulation is using the correct internal data and assumptions to generate its 

final results. The Simulation results are dependent on the emergent behavior of the cyclical IU 

model and other internal processes. Therefore, although the model is a simplification of the true 

system, the data being generated by the model reflects that of the true ED/IU system and serves 

as evidence that the model is a reasonable representation of the system. The validated baseline 

suggests that the results of other scenarios would also have some resemblance to the results that 

would be generated by running these scenarios in the real ED/IU system. Naturally, with all 

models, there is no guarantee of this and one must make the tradeoff between value of the model 

and cost of further development and refinement [Sargent 2004].  

The validation figures and table show that the pattern for the real hospital and for the simulated 

hospital are not exactly the same, however, the simulated pattern is not unreasonable for a 

realistic fictional hospital. Although this means that the model is not a perfect fit for the VHA 

West Roxbury ED/IU system, the results are close enough to suggest that the real and simulated 

systems have similar dynamics, therefore simulation scenario results may be applicable to the 

real system, with adjustment. 
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6.3 Results 

As described earlier, all results are shown for three cases:  

Case 1: the default case, where there was full IU doctor capacity of 25 and no NVA 

delay. 

Case 2: where there was a 30min NVA delay after a patient was assigned an IU bed but 

before they release their ED bed. 

Case 3: where IU doctor capacity was reduced to 20 but there was no NVA delay. 

All scenarios were run for each case. The error bars in each figure represent the 95% confidence 

interval for the data point based on 5000 replications of the simulation. 

For each of the three cases, Figure 41 shows how IU boarding time changes with the time of day 

that discharges are emphasized. Each discharge emphasis shift lasts for 3 hours, this is Scenario 

2 described earlier. The figure suggests that emphasizing discharge is more valuable early in the 

day and detrimental later in the day, just as has been asserted by the popular discharge by noon 

heuristic. Thus, when considering sensitivity levels to the crowding and predicted indexes (as 

described in section 6.2.1), it would be logical to want a greater sensitivity earlier in the day and 

a lesser sensitivity later, however this may have exceptions based on the dynamics of the 

simulated hospital. 
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Figure 41 Average IU Boarding time (and 95% confidence intervals) with shifting 3 hour discharge priority 

start times without an Case 1 (top), Case 2 (middle), Case 3 (bottom). 
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To explore the potential for varying sensitivity to crowding and predicted admissions throughout 

the day, the simulation was built to enable variation in index sensitivity, S(t), where a different S 

can be chosen for each hour. In order to approach the optimal daily schedule of sensitivities, the 

sensitivity level for each hour was entered as a separate variable into the simulation. These 

variables were then entered into the optimization software built into Arena, OptTek Systems 

Inc.’s OptQuest for Arena. The optimization objective was to minimize boarding time (the time 

that an ED patient waits in the queue to receive an IU bed). Figures 42, 43 and 44 show the 

optimized sensitivity schedules when using the ED Crowding Index, Imperfect Index and Perfect 

Index (Scenarios 3-5 above) in each of the three cases. 

For comparison of quality outcomes, Figure 45 shows the IU boarding and ED wait times in each 

of the three cases for the baseline scenario (Scenario 1), the optimized index scenarios (Scenarios 

3-5), and the discharge by noon scenario (Scenario 6). Tables 13, 14, and 15 show the results of 

evaluating the significance in the difference between the average IU boarding times for the 

optimized, time based and baseline scenarios. 
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Figure 42 Optimized sensitivity schedule using Crowding index for Case 1 (top), Case 2 (middle), and Case 3 

(bottom) 
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Figure 43 Optimized sensitivity schedule using Imperfect index for Case 1 (top), Case 2 (middle), and Case 3 

(bottom) 
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Figure 44 Optimized sensitivity schedule using Perfect Index for Case 1 (top), Case 2 (middle), and Case 3 

(bottom) 
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Figure 45 IU wait time and ED wait time for optomized scenarios and time based scenarios 
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Table 13 Difference in average IU boarding times between scenarios: Case 1  

Case 1: Average time difference (minutes)*, p-value** 

*µx - µy, x = column, y = row, µ = average wait time 

**Hypothesis: µx = µy for IU boarding times with no NVA delay,  rejecting p <0.05 

 
Crowding Index Imperfect Index Perfect Index Time Based Baseline 

Crowding Index = 
    

Imperfect Index NA , 0.32 = 
   

Perfect Index 1.68 , 0.02 2.46 , << 0.05 = 
  

Discharge by Noon NA , 0.10 NA , 0.54 -2.94 , << 0.05 = 
 

Baseline -2.94 , << 0.05 -2.16 , << 0.05 -4.62 , << 0.05 -1.68 , 0.03 = 

Improvement 
over Baseline 

11.69% 8.59% 18.38% 6.68% = 

 

Table 14 Difference in average IU boarding times between scenarios: Case 2  

Case 2: Average time difference (minutes)*, p-value** 

*µx - µy, x = column, y = row, µ = average wait time 

**Hypothesis: µx = µy for IU boarding times with no NVA delay,  rejecting p <0.05 

 
Crowding Index Imperfect Index Perfect Index Time Based Baseline 

Crowding Index = 
    

Imperfect Index NA , 0.16 = 
   

Perfect Index NA , 0.93 NA , 0.19 = 
  

Discharge by Noon -2.04 , << 0.05 NA , 0.18 -1.98, << 0.05 = 
 

Baseline -4.62 , << 0.05 -3.60 , << 0.05 -4.56 , << 0.05 -2.58 , << 0.05 = 

Improvement 
over Baseline 

17.58% 13.70% 17.35% 9.82% = 

 

Table 15 Difference in average IU boarding times between scenarios: Case 3  

Case 3: Average time difference (minutes)*, p-value** 

*µx - µy, x = column, y = row, µ = average wait time 

**Hypothesis: µx = µy for IU boarding times with no NVA delay,  rejecting p <0.05 

 
Crowding Index Imperfect Index Perfect Index Time Based Baseline 

Crowding Index = 
    

Imperfect Index NA , 0.26 = 
   

Perfect Index NA , 0.27 NA , 0.90 = 
  

Discharge by Noon -7.32 , << 0.05 -8.94 , << 0.05 -8.28, << 0.05 = 
 

Baseline -12.96 , << 0.05 -14.58, <<0.05 -13.92 , << 0.05 NA, 0.14 = 

Improvement 
over Baseline 

13.71% 15.43% 14.73% NA = 

 



149 

 

6.4 Discussion 

From the results above, it is clear that the simulation has a great deal of variability. Although this 

makes analysis of data more difficult, this was planned to make the system more realistic. 

Beginning with the results in Figure 41 it can be seen that waiting time does decrease as the 

emphasis of discharge is moved earlier, up to the point where doctors are no longer on duty. This 

is in line with the discharge by noon heuristic that has become a popular method for reducing 

waiting times [ACEP 2008]. 

As would be expected from the cyclical nature of the simulation, there is some resonance in the 

system that will either dampen or exacerbate waiting time depending on when discharge is 

prioritized. This can be seen in Figure 41 where the benefits of early discharge are not quite 

achieved when beginning discharge priority at 7am as opposed to 8am. This may be due to the 

fact that early in the morning, doctors begin with discharges, causing patients to wait for 

treatment until later in the day. This delays the patient’s entry into the treatment cycle and may 

be reducing how many times a patient can be seen each day, thus hurting performance. This is 

directly analogous to the real hospital system where a doctor will likely want to see their 

treatment patients first, so that they can schedule a series of tests throughout the day. If they miss 

this meeting, the patient may not be able to get all of the necessary tests that day and their length 

of stay will be extended. It is therefore worth noting that it may be unwise to be overly strict in 

enforcing the discharge by noon heuristic and incur this negative situation.  

There are also boarding time peaks when discharge priority begins in the afternoon; these may be 

the result of doctors not seeing treatment patients in the afternoon which causes them not to be 

seen until the next day, thus hurting performance. These peaks may purely be a result of how the 

model was designed, however an argument can be made that a real hospital may also have 

schedules in place that cause resonance. Staffing schedules, lunch hours, clinic hours, patient 

arrival patterns, educational sessions, and other recurring factors may mean that efforts at 

improving flow by encouraging discharges at a specific time may negatively affect flow by 

interacting with the hospitals emergent schedule.  

The resonant peaks may also be the cause of the spikes in the sensitivity schedules shown in 

Figures 42 through 44. The optimization algorithm uses an advanced searching mechanism. The 
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searches likely identified times where sensitivities were harmful and created schedules that 

avoided those times. These schedules changed when the NVA delay was added or when 

resources were reduced because these systematic changes affected the resonance times for the 

entire system. This flexibility in scheduling, when using predictive and crowding indexes 

allowed the system to compensate for the NVA delay and reduced IU doctor capacity. This 

compensation lead to consistently larger improvements in waiting/boarding times than the 

discharge by noon scenario, when compared to the baseline. Also, while discharge by noon does 

seem to have some added benefit in the case of the NVA delay, it was not effective at managing 

the system when resources were reduced, leaving it statistically similar to the baseline case.  

It is worth noting that the schedules presented may not be the true optimal schedules, and a 

schedule may exist that is more logical for each index. However the schedules were found to be 

high performing by the software and were verified as locally optimal based on manual 

adjustments. The manual adjustments however only changed one hour at a time. Likely this 

missed the complex interactions that would occur by changing two or more hours simultaneously 

as was done by the software and would be required if further optimization was desired.  

The optimized schedules perform very well using the IU boarding time metrics. Average values 

and variability for the index scenarios are significantly reduced compared to the baseline and 

time based scenarios. This means that, when combined, an index and a carefully chosen 

sensitivity schedule have the potential for greater performance than the discharge by noon 

heuristic that is currently the industry standard. When looking at ED waiting time, the 

improvements are less clear in Case 1, however they become more pronounced in Cases 2 and 3. 

This may mean that in Case 1 ED performance is less impacted by the inpatient unit. However 

when adding the delays and resource reductions the IU begins to have more impact on the ED 

and managing the connection between the two units becomes more important.  

Finally it is worth noting that, using the optimized schedules, all three index types (crowding, 

perfect, and imperfect) were capable of generating superior performance. It is unclear that one 

index was significantly better than another. This means that using the imperfect prediction 

method described in Chapters 3 and 4 may be good enough in the true hospital and investment in 

a more perfect method could be a waste of resources. Similarly it means that a crowding metric 
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could be used, however if the system is not guided by a sensitivity schedule and associated 

definitive actions, it is unlikely to have the same intuitive pull incentive as the prediction values. 

6.5 Limitations/Conclusions  

The study presented in this chapter has some inherent limitations in that it is simulation based. 

Despite calibrations made to the system, the validation procedure shows that the simulation does 

not directly match the true hospital system. To that end, the exact dynamics of the simulation are 

different than the true hospital and therefore the schedules that were created to optimize flow, 

based on these dynamics, are likely not directly transferable to the true hospital. The primary 

take away from the results is that schedules can be made to optimize flow, using prediction and 

crowding indexes. A limitation also exists in terms of variability built into the system and its 

effects on the results. Even using 5000 repetitions of the simulation, there is still a great deal of 

uncertainty about the true average waiting times and boarding times in each scenario. Limitations 

in computing power meant that the optimization tool had to use only 1000 repetitions to create 

the schedules and only the final result was tested at 5000 repetitions. Had 5000 or more 

repetitions been used by the optimization software, the schedules would likely be even closer to 

the true optimal; this would have taken an unacceptable amount of computing time.  

While there is a clear benefit to finding the optimized schedules and showing that such a 

schedule may exist in the real hospital, it is unlikely that an hourly schedule can ever be truly 

found in VHA West Roxbury. Instead, more practical value will be derived from applying this 

simulation to finding semi-optimal simplified solutions where sensitivity is held at a specific 

level for 2, 3, or even 4 hours, rather than varying on an hourly basis. While this is interesting, 

the goal of this chapter was to find the maximum potential of using prediction, so the search for 

practical schedules is saved for future work.   

The suggestion explored in the earlier chapters of this dissertation (prediction can be used to 

improve flow in the ED/IU health care delivery chain) naturally leads to the development of an 

information based pull system in the chain. This chapter showed that, in a simulated hospital, the 

creation of such a system does indeed have the ability to improve flow and reduce the effects of 

non-value added delays and resource limitations. The prediction based scenarios showed a 

consistent improvement of 8-18% in ED/IU boarding time, compared to baseline scenarios. The 
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impacts of this boarding time improvement on ED waiting time do not emerge until Cases 2 and 

3 where the IU must be having a greater impact on the ED. Achieving this improvement required 

schedules that dictate hourly sensitivity to ED crowding and admission prediction indexes, that 

do not negatively interact with the emergent schedule of the hospital. 
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Chapter 7: Conclusions, Contributions, and 

Future Work 

7.1 Conclusions and contributions of studies 

Recent studies recommended exploring methods for formally translating methods from supply 

chain management into improving systems of connected health treatment steps [Vries and 

Huijsman 2011]. The primary goal of this dissertation was to introduce and study health care 

delivery chains. In order to do this, the Emergency Department (ED)/Inpatient Unit (IU) health 

care delivery chain was selected as a sample. This sample was selected because it is well known 

and commonly studied. The volume of studies focused on this chain made it possible to draw a 

more clear distinction between a health care delivery chain approach and other approaches that 

have been taken in the past.  

In Chapter 2, background was provided about the ED/IU chain. This chapter described how flow 

of patients is directly tied to quality of care in the ED/IU chain. Chapter 2 also identified the 

primary measures to be used in this dissertation: waiting time (the time between when a patient 

registers at the ED welcome desk and when they are placed in an ED bed) and boarding time (the 

time between when an ED physician decides to have a patient admitted to the IU and they are 

placed in an IU bed). Chapter 2 also described historic approaches to improving flow in the 

ED/IU chain by targeting the input, output, and throughput elements of the chain. This 

discussion led to a common theme in recent literature, that the reduction of boarding time should 

be a primary goal of ED flow research. To this end, some studies suggested that if a patient’s 

likelihood of admission could be predicted when they entered the ED then this information could 

be shared with the IU in order to allow the hospital to prepare for the admission. This preparation 

would reduce the administrative and process delays that impact boarding time. 

The suggestion that prediction can be used to improve flow shows that the literature approached 

the concept of treating the ED/IU system as a chain without necessarily defining it as such. The 

suggestion has a direct correlation to the use of predictive information to improve product flow 

in a supply chain. Specifically, the idea that predictions can be made on patients who have 

already arrived in the ED, has direct comparison to the use of advanced demand information 
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(ADI) to manage supply chains. This is in contrast to the use of long term forecasting predictions 

that are also used in both supply and health systems.  

Chapter 1 introduced the primary research questions of this dissertation, targeting the concept of 

using prediction to improve flow in the ED/IU health care delivery chain. Through the chapters 

that followed, studies were described that sought to answer these questions. Below is a summary 

of the results and contributions of each study, structured by how these results apply to one of the 

three questions. 

7.1.1 Question 1 

What predictive methods work best to predict downstream demand in the context of a single 

Emergency Department/Inpatient Unit health care delivery chain?  

Before studying exactly how prediction could be used to manage the ED/IU health care delivery 

chain, it was first necessary to understand how admission predictions can be made on patients. 

Question 1 is based upon this necessity.    

Chapter 3 was targeted specifically at answering Question 1. In Chapter 3, a study at VHA West 

Roxbury was described that used three simple methods for making admission predictions on 

patients, using data that can be collected at ED triage (the first time a medical professional sees 

that patient and collects their data). The three methods were: expert opinion, naïve Bayes 

conditional probability and a linear regression with a logit link function (logit-linear regression). 

It was found that the logit-linear regression performed best at making admission predictions.  

The answer to Question 1, provided in Chapter 3, represents a contribution to the field of health 

systems research and to quantitative data analysis fields such as artificial intelligence, machine 

learning, data mining, and statistics. On the most basic level, the conclusions of Chapter 3 

contribute to the study of the ED/IU health care delivery chain by providing an understanding of 

the applicability of simple, replicable methods for making predictions in the ED. The study also 

contributes on a broader level. Despite the early successes in applying prediction methods to 

health care systems, as described in Chapter 2, there remain many new areas where predictive 

methods can be applied. The study described in Chapter 3 deepens the knowledgebase of health 

care systems that can use predictions. It also serves as an example of how such a system is 
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structured, so future health care researchers may identify similar systems with prediction 

potential.  

In terms of the quantitative science of prediction, Chapter 3 contributes to the number of 

successful applications of prediction methods to new areas; this means that future researchers 

can safely consider using these methods in similar situations. Furthermore, the results of Chapter 

3 deepen the knowledge of how three methods for prediction perform compared to one another, 

which can inform future method selection. Finally, those who wish to develop and study more 

complex methods, have a new domain for application and a baseline model performance for 

comparison. 

7.1.2 Question 2 

How portable or robust are these prediction methods to multiple hospital contexts? 

Showing that logit-linear regression was successful in one hospital was an important first step. 

However, it was worthwhile exploring whether the methodology to develop the model and its 

accuracy was truly valid, rather than a random coincidence due to the unique nature of the 

original hospital. This exploration was the goal of Chapter 4, which varied the context of the 

prediction in two dimensions: (1) the hospital to which the model was applied and (2) whether 

the model is applied to retrospective, investigator coded data or prospective, nurse coded data.  

The results of Chapter 4 showed that the specific combination of factors in the final model of 

Chapter 3 were not generalizable; however the process of using basic triage level data to create a 

linear regression model to predict admissions was generalizable to different hospital settings. It 

was also found that the prediction model developed in Chapter 3 continued to perform well when 

applied to prospectively collected nurse coded data. Despite not having the conditions for a 

perfect experiment, the results of the study in Chapter 4 did suggest some prescriptive 

conclusions, about data that would be useful for a hospital to collect, and some descriptive 

conclusions on the potential effects that different internal processes may have on the accuracy 

and development of that hospital’s model.   

While answering Question 2, the results of Chapter 4 make a significant contribution to the study 

of health care systems and to the study of quantitative prediction methods. There have been 
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many published studies that show single successes using quantitative methods in health care 

systems. This leads some people to believe that many of these successes are isolated incidents 

and cannot be generalized to other contexts. The study in Chapter 4 contributes to the study of 

health systems by better describing exactly what is meant by “generalization” and by showing 

the process of searching for generalizability in this system. The results are a contribution to the 

quantitative study of prediction models by exploring the robustness of the logit-linear regression 

methodology that was selected. 

7.1.3 Question 3 

Given advance demand predictions, what possible adaptive actions can a hospital system take to 

improve flow given (a) perfect and (b) imperfect downstream demand prediction? 

The answer to Question 3 has evolved throughout the dissertation, with the final conclusions in 

Chapters 5 and 6. Chapter 2 used figures to explain the general idea of how prediction could be 

used in the ED/IU chain in order to improve flow; however the chapter did not discuss the 

practical implications of implementing a prediction system. Chapter 3 began the discussion of 

using predictions on an individual basis or by aggregating predictions to create a running bed 

demand value that IU staff could monitor. Chapter 4 further discussed this differentiation and 

introduced measures that could be used to explore the quality of an individual based prediction, 

which can be used coercively to order beds, or an aggregate prediction, that could be used to 

inform inpatient staff decisions based on awareness of the entire system. While Chapter 3 and 4 

suggested that the aggregate prediction tends to have more accuracy, it was unclear how it could 

actually be used in a live implementation. Gaining insight into this was the goal of Chapter 5.  

Chapter 5 described a live implementation of the prediction system where aggregate ED to IU 

bed demand was shared in real time with the staff of VHA West Roxbury. While there was no 

significant improvement in the key flow measures, the qualitative results showed a variety of 

people who found the prediction system useful for five different application categories. 

However, it was also found that the variety of potential applications required a variety in data 

details, some applications required patient specific predictions, rather than the aggregate 

prediction that was shared. It was also found that the complex interactions between the multiple 
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stakeholders in the patient care process could result in reduced effectiveness in responding to 

predictions when there is a lack of alignment.  

In order to gain a better quantitative understanding of how prediction could be used in the ED/IU 

chain, Chapter 6 described the development and study of a discrete event simulation (DES) 

model of the system. The value of the DES model is that it was able to simplify the system by 

removing the complex interactions between multiple stakeholders and some resource restrictions. 

This makes it possible to get a “perfect world” understanding of how much improvement could 

be expected using prediction, simply given the overarching dynamics of the hospital and patient 

arrival patterns. The simulation results were promising, showing an 8-18% reduction in ED/IU 

boarding time when prediction measures are shared.  

While answering Question 3, the results of Chapters 3-6 provide contributions to many areas of 

research. As with the results from Questions 1 and 2, the results of answering Question 3 make a 

significant contribution to the area of health systems research. In particular the results show new 

methods for managing the ED/IU health care delivery chain, in a way that may be implemented. 

These methods include the concept of aggregating predictions to make decisions in a health care 

system, which was not found in any other study and has the potential to change how health 

systems researchers choose to use predictive methods in health care.  

Another contribution is made towards the field of implementation science. The methods for 

studying the implementation of a research based system, in order to achieve effective and 

reliable results, are continuing to develop. The study in Chapter 5 serves as a case study of an 

implementation and for learning from interviews. The case study also exposes the complications 

that arise from the short time period and necessary limitations in experimental design. These 

results can inform future implementation studies, whether they are focused on a health care 

system or not. Chapter 5 also contributed to the understanding of the organizational behavior in 

the hospital, by exposing the potential for misalignment between stakeholder decisions, that 

could prevent the optimization of patient flow. This is a key concept that must be understood 

clearly before any truly effective solutions can be developed. 

Chapter 6 makes significant contributions towards the field of discrete event simulation (DES). 

The first contribution is the application of the DES method to a complex system. While DES has 
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been applied to the ED in other studies, by once again applying the tool to this system and by 

including a discussion of the validation of the model, Chapter 6 further solidifies the value of 

DES for studying this and similar systems. The model described in Chapter 6 also contributes to 

the field of DES by describing a method for modeling the complex flows and provider decisions 

in a hospital as influenced by a centralized control system. The cyclical model logic described in 

Figure 36 is a method for representing a system where one resource serves two queues and where 

non-value added time is affected by how the resource is managed. This model logic may be 

applicable to many other models of health care and non-health care systems. Finally, the use of 

optimization packages in DES models continues to grow. By applying the optimization software 

for finding optimized crowding/prediction sensitivity schedules within the simulation, the study 

showed a new application of optimization.  

7.2 Future Work on the ED/IU Health Care Delivery Chain 

7.2.1 Question 1 

While the results of the study in Chapter 2 approach a solution to Question 1, there are some 

limitations that arise from the study design. It was found that the logit-linear regression approach 

performed the best of the three approaches that were chosen. This does not mean that logit-linear 

regression is the absolute “best” method for making predictions in the ED. There are many other 

methods that exist or are being developed in the fields of artificial intelligence, machine learning, 

data mining, and statistics. The methods that were chosen in the study were selected due to their 

ease of use, which increases the likelihood that they can be replicated in practice. This was listed 

as one of the main contributions of the study. Nevertheless, future research should be devoted 

towards finding the absolute best method for making admission predictions. These other methods 

would have to be accompanied by tools that enable hospitals to use the models without requiring 

an advanced knowledge of quantitative methods, without this, the models may be ignored in 

practice. 

7.2.2 Question 2 

The value of the logit-linear regression model was further exposed by exploring its 

generalizability while answering Question 2. Fully understanding the generalizability of the 

model would require a greater sample of hospitals, including multiple hospitals that have exactly 
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the same characteristics. It would also be useful to create a more controlled experiment where 

data are collected at each hospital in the exact same format.  

Despite the short comings in perfect experimental design, that are expected when working with 

large complex human systems, the investigators were comfortable enough with the results of the 

study in Chapter 4 to explore the possibilities of actually implementing the system. Although the 

results were enough to satisfy the investigators, there remains future work that could focus on 

creating a more complete experiment of generalizability. Such an experiment should continue to 

focus on the multiple levels of generalizability and use a more complete sample of hospitals, 

which would result in more conclusive results. The goals of such research would be to suggest 

the best data and data format to collect at triage in order to make predictions of admission. The 

study would also seek to identify properties that may make two hospitals have similar predictive 

models and other hospitals have different models. 

7.2.3 Question 3 

While the results of Chapter 5 and 6 begin to answer Question 3, there is still a great amount of 

work to be done refining these approaches. Future work can be performed to refine the live 

implementation in Chapter 5. It is worthwhile finding a method to collect and share the 

predictions in a more passive way. This would reduce the amount of extra effort that must be 

done during an implementation and enable longer term experimentation. With more automation 

it may be possible to run experiments across locations where the type of shared information is 

varied. This experimental design would seek to find the most effective data sharing format and 

system for reducing the key flow metrics. Also, while implementing over a long period of time, 

it is possible to identify, in real time, the organizational issues that reduce the usefulness of the 

predictions and address them while the implementation is still running. This may lead to a more 

complete understanding of these issues, rather than studying them after the fact and trying again. 

This approach may lead to dynamic solutions that may be applicable elsewhere. If improvements 

are performed one at a time, it may be possible to watch data trends to identify which ones had 

the largest impact.  

The DES model introduced in Chapter 6 can also continue to be refined to show more realistic 

methods for controlling the hospital using prediction data, which will be more easily translated 
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into a live hospital. For example it may be possible to create simpler crowding/prediction 

sensitivity schedules made with multi-hour time blocks rather than allowing for an hourly change 

in sensitivity level. It may also be worth further developing the model to better reflect the 

limitations that arise from the complexity of the real system. A more complicated model would 

allow for the exploration of solutions to these limitations as they are discovered during the long 

term, live implementation. 

7.3 Health Care Delivery Chains 

7.3.1 Contribution to/Invention of Health Care Delivery Chain Management 

It is possible to structure the series of studies presented in this dissertation as approaches 

specifically to improving Emergency Department patient flow, and ignore the conceptual 

development of Health Care Delivery Chains. Indeed by answering the questions, as described 

above, this dissertation has made a valuable impact on this issue. However, Chapter 1 established 

that the overarching goal of this collection of studies was to explore the concept of Health Care 

Delivery Chain Management.  

The purpose of focusing on a specific example of a health care delivery chain is to better define 

the concept. Seeing “a thing” helps one know “a thing” and makes it possible to recognize 

another in the future. It is the hope of the author that, by describing the example ED/IU health 

care delivery chain (Figure 46), it will be possible for other researchers or practitioners to 

identify when an issue in a health system originates from the interaction between a series of 

health care delivery steps, linked together by a flow of patients. This may be represented by the 

generic health care delivery chain (Figure 47). 

 

Figure 46 ED/IU health care delivery chain 

 

Figure 47 Generic health care delivery chain 
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Once this recognition is made it is then possible to consider the types of improvement methods 

that have been applied to other examples of these chains, rather than just tools that have been 

applied to isolated delivery units. While the literature on methods specific to health care delivery 

chains remains small, or not recognized as applying to the domain, it is the hope of the author 

that the studies described here provide a repeatable example of a method that can be applied to 

other chains. It is also hoped that the studies here provide an example of seeking comparable 

supply chain methodologies and converting them to health care delivery chains (note converting 

as opposed to simply applying).  

By exploring the ED/IU delivery chain, this dissertation introduced one method for improving 

flow in all health care delivery chains, using predictions on incoming patients to better prepare 

downstream resources. A similar situation can be imagined for chains of the three different 

abstraction levels presented in Chapter 1 Section 4:  

In Department: Predictions can be made on patients entering a specific unit that will define 

resource demands within that unit later. One example of this was described in Chapter 2 where 

the emergency severity level (ESI) of a patient is a prediction based on acuity and likely resource 

requirement. To assign this level, triage nurses actually predict the specific resources that the 

patient will need. Therefore triage is a step in a chain upstream from ED treatment and 

predictions associated with ESI level can be used to better manage testing and treatment 

resources in the ED Treatment step. In fact, current practice often allows a triage nurse to 

preemptively order tests so that all set up is complete, or results are available when the patient 

arrives in their bed. This practice has impact on total patient flow. 

Cross department: Just as the flow of patients from the ED to the IU is important, so too is the 

flow from the IU to a long term stay facility. Such a facility may benefit from receiving predicted 

information from the hospital in order to better prepare for future patient arrivals or enable the 

scheduling of more efficient patient pick-ups.  

Cross Organizational: In an integrated health system, specialty care physicians may be able to 

expect incoming future demand, based on the properties of patients being seen by the primary 

care physicians in that system, months ahead of time. This interaction re-emphasizes the concept 
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explained in Figure 8 where the knowledge of patients currently in one chain can feed back into 

planning for other chains over an entire lifecycle. 

7.3.2 Next Steps 

It is worth noting that methods currently used in Supply Chain Management cannot easily be 

translated to health care delivery chain management. In fact it may not always be easy to 

translate a tool from one health care delivery chain to another. This is due to the complex 

interactions between the different views of a health care delivery enterprise as described in 

Chapter 1, Section 3. A health care delivery chain is more than just the flow of patients; this flow 

is directly linked to the organization, processes, knowledge exchange etc. within the enterprise. 

While in a more controllable supply chain where the product is not human and the 

resource/capacity limitations are machine based, some assumptions can be made, resulting in 

models that remain true when implemented in reality. This is not the case in a health care 

delivery chain. As was seen in this dissertation, the results in Chapter 6 were not realized during 

the implementation in Chapter 5. It was for this reason that the studies presented here and any 

study into health care delivery chains must include some dedication to understanding the true 

system and the complex interactions between enterprise views, or else the results will have less 

meaning and applicability. The methods for understanding the human piece of a system are 

central to health care delivery chain management, while they may be considered a peripheral 

piece of supply chain management.  

With the above considerations in mind, next steps in exploring the field of Health Care Delivery 

Chain Management should focus on developing many example cases of health care delivery 

chains. These examples should include the enterprise context of the chain and how improvement 

methods applied to the chain took this context into account. Through studying these many cases 

it may be possible to create a health care delivery chain tool kit containing clear methods that can 

be applied in specific contexts.  
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Appendix A: Probability values for 

admission prediction models – VHA West 

Roxbury 

Factor/code 
Probability of 

code 

Probability of code 

given admit 

Probability of admit 

given code 

Designation P(Designation) P(Designation | Admit) P(Admit | Designation) 

ER 0.624 0.989 0.538 

Fast Track 0.376 0.011 0.010 

Mode of Arrival P(Mode) P(Mode | Admit) P(Admit | Mode) 

Ambulatory 0.679 0.404 0.202 

Stretcher 0.214 0.441 0.701 

Wheelchair 0.107 0.155 0.491 

Urgency Level P(Urgency) P(Urgency | Admit) P(Admit | Urgency) 

1 0.003 0.008 0.857 

2 0.018 0.029 0.538 

3 0.587 0.918 0.520 

4 0.240 0.033 0.045 

5 0.152 0.012 0.027 

Patient Age P(Age) P(Age | Admit) P(Admit | Age) 

10 0.000 0.000 0.000 

20 0.059 0.007 0.040 

30 0.047 0.013 0.097 

40 0.074 0.048 0.219 

50 0.167 0.161 0.328 

60 0.251 0.269 0.364 

70 0.184 0.208 0.384 

80 0.186 0.246 0.448 

90 0.032 0.048 0.511 

Physician P(Physician) P(Physician | Admit) P(Admit | Physician) 

1 0.026 0.013 0.164 

2 0.016 0.013 0.284 

3 0.010 0.011 0.364 

4 0.009 0.011 0.444 

5 0.115 0.102 0.301 

6 0.000 0.000 0.000 

7 0.000 0.001 1.000 

8 0.005 0.002 0.130 

9 0.017 0.020 0.408 

10 0.060 0.063 0.356 
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11 0.095 0.129 0.460 

12 0.037 0.038 0.344 

13 0.033 0.025 0.255 

14 0.000 0.001 1.000 

15 0.026 0.019 0.248 

16 0.004 0.004 0.333 

17 0.000 0.000 0.000 

18 0.016 0.011 0.224 

19 0.003 0.001 0.077 

20 0.004 0.004 0.294 

21 0.000 0.001 1.000 

22 0.004 0.001 0.125 

23 0.015 0.011 0.254 

24 0.024 0.032 0.460 

25 0.048 0.069 0.488 

26 0.007 0.016 0.742 

27 0.010 0.005 0.171 

28 0.019 0.010 0.175 

29 0.000 0.000 0.000 

30 0.002 0.000 0.000 

31 0.000 0.000 0.000 

32 0.157 0.139 0.300 

33 0.029 0.025 0.292 

34 0.006 0.006 0.308 

35 0.009 0.010 0.359 

36 0.002 0.002 0.300 

37 0.032 0.039 0.412 

38 0.020 0.031 0.518 

39 0.091 0.074 0.274 

40 0.027 0.038 0.478 

41 0.017 0.025 0.500 

Primary Complaint P(Complaint) P(Complaint | Admit) P(Admit | Complaint) 

Abdominal pain 0.048 0.069 0.485 

Abdominal problems 0.050 0.075 0.505 

Abnormal Labs 0.013 0.028 0.696 

Admission 0.001 0.003 1.000 

Allergies/hives/med 

reaction/sting 
0.004 0.000 0.000 

Assault, rape 0.001 0.000 0.000 

Back pain 0.039 0.013 0.111 

Bites 0.004 0.001 0.056 

Body aches 0.026 0.008 0.111 

Burns 0.002 0.000 0.000 

Cardiac arrest 0.006 0.015 0.778 

Cardio-vascular 

complaint 
0.031 0.052 0.566 
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Chest pain 0.048 0.086 0.610 

Cold/Flu 0.060 0.011 0.060 

Convulsions, seizures 0.006 0.013 0.792 

Dental, toothache 0.005 0.000 0.000 

Diabetic problems 0.008 0.013 0.514 

Dizzy 0.015 0.013 0.290 

Ear/nose/throat 

problems 
0.013 0.007 0.185 

EDEMA/Swelling 0.024 0.022 0.307 

Eye problem 0.009 0.001 0.027 

Fainting/syncope 0.007 0.016 0.710 

Fall 0.025 0.031 0.423 

Fever 0.016 0.030 0.636 

Flank pain 0.008 0.006 0.235 

Fluid/nutrition 

alteration 
0.003 0.008 0.917 

Follow-up/Health 

Maintenance 
0.049 0.005 0.034 

Foreign body 0.002 0.000 0.000 

Genito-urinary 

problem 
0.026 0.016 0.211 

Gun-shot wound - - - 

Gynecological 

problem 
- - - 

Headache 0.010 0.006 0.220 

Hemorrhage 0.003 0.001 0.091 

Industrial/machinery 

accidents 
0.000 0.000 0.000 

Infection 0.027 0.032 0.402 

Ingestion (accidental) - - - 

Joint Problems 0.035 0.006 0.054 

Kidney and Liver 

Failure 
0.015 0.022 0.492 

Laceration 0.010 0.004 0.125 

Medication refill 0.025 0.000 0.000 

Neck pain 0.006 0.001 0.077 

Needle Stick/Exposure 0.004 0.000 0.000 

Neurological 

complaint 
0.007 0.008 0.400 

Obstetrical problem 0.000 0.000 0.000 

Orthopedic injury 0.012 0.013 0.353 

Other (FT) 0.007 0.004 0.200 

Overdose (intentional) 0.000 0.001 1.000 

Peripheral vascular/leg 

pain 
0.045 0.013 0.102 

Procedure 0.011 0.004 0.111 
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Psychiatric/social 

problems 
0.043 0.052 0.413 

Respiratory problems 0.091 0.180 0.673 

Skin complaint/trauma 0.042 0.016 0.131 

Stabbing - - - 

Stroke/CVA 0.005 0.010 0.700 

Substance abuse 0.021 0.033 0.528 

Temperature related - - - 

Traffic injury 0.004 0.001 0.067 

Traumatic injuries 0.000 0.000 0.000 

Unconsciousness 

/unresponsive 
0.000 0.001 1.000 

Unknown 

Problem/Lethargy 
0.002 0.006 0.800 

Vision problems 0.004 0.007 0.667 

Weakness 0.024 0.045 0.646 

Total Probability of 

Admit 
0.339 
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Appendix B: Probability values for 

admission prediction models - Four sample 

hospitals 

Probabilities of admission 

given factor 
VHA 1 VHA 2 

Small 

Private 
Large Private 

Total Probability of Admit 0.34 0.28 0.24 0.28 

Urgency Level: P(Admit | Urgency) 

ESI 1 0.86 0.25 0.82 0.96 

ESI 2 0.54 0.55 0.46 0.57 

ESI 3 0.55 0.34 0.26 0.29 

ESI 4 0.03 0.13 0.03 0.02 

ESI 5 0.03 0.11 0.00 0.00 

Patient Age: P(Admit | Age) 

>20 0.00 0.00 0.12 0.06 

20-29 0.04 0.09 0.09 0.08 

30-39 0.10 0.09 0.13 0.14 

40-49 0.22 0.10 0.17 0.22 

50-59 0.33 0.26 0.22 0.32 

60-69 0.36 0.27 0.30 0.46 

70-79 0.38 0.32 0.44 0.58 

80-89 0.45 0.36 0.52 0.71 

>90 0.51 0.39 0.62 0.74 

Primary Complaint: P(Admit | Complaint) 

Abdominal pain 0.48 0.28 0.29 0.36 

Abdominal problems 0.50 0.39 0.26 0.35 

Abnormal Labs 0.70 0.66 0.54 0.56 

Admission 1.00 0.95 0.75 1.00 

Allergies/hives/med 

reaction/sting 
0.00 

0.00 0.07 0.10 

Assault, rape 0.00 0.19 0.00 0.10 

Back pain 0.11 0.13 0.15 0.04 

Bites 0.06 0.05 0.00 0.07 

Body aches 0.11 0.16 0.16 0.17 

Burns 0.00 0.00 0.00 0.00 

Cardiac arrest 0.78 - 1.00 1.00 

Cardio-vascular complaint 0.57 0.40 0.38 0.49 

Chest pain 0.61 0.46 0.41 0.38 
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Cold/Flu 0.06 0.16 0.14 0.08 

Convulsions, seizures 0.79 0.35 0.40 0.42 

Dental, toothache 0.00 0.00 0.03 0.02 

Diabetic problems 0.51 0.27 0.52 0.43 

Dizzy 0.29 0.22 0.23 0.13 

Ear/nose/throat problems 0.19 0.06 0.03 0.05 

EDEMA/Swelling 0.31 0.24 0.17 0.25 

Eye problem 0.03 0.00 0.00 0.03 

Fainting/syncope 0.68 0.48 0.48 0.40 

Fall 0.42 0.24 0.24 0.34 

Fever 0.62 0.61 0.28 0.22 

Flank pain 0.24 0.11 0.18 0.17 

Fluid/nutrition alteration 0.92 0.53 0.50 0.50 

Follow-up/Health 

Maintenance 
0.03 

0.01 0.15 0.05 

Foreign body 0.00 0.06 0.09 0.10 

Genito-urinary problem 0.22 0.13 0.13 0.17 

Gun-shot wound - - - - 

Gynecological problem - 0.00 0.17 0.00 

Headache 0.22 0.09 0.09 0.10 

Hemorrhage 0.09 0.50 0.29 0.57 

Industrial/machinery 

accidents 
0.00 

- - - 

Infection 0.40 0.39 0.13 0.29 

Ingestion (accidental) - - 0.00 0.00 

Joint Problems 0.05 0.07 0.04 0.07 

Kidney and Liver Failure 0.79 1.00 1.00 0.88 

Laceration 0.13 0.00 0.04 0.01 

Medication refill 0.00 0.02 0.00 0.06 

Neck pain 0.08 0.12 0.12 0.03 

Needle Stick/Exposure 0.00 0.00 0.00 0.00 

Neurological complaint 0.40 0.32 0.24 0.56 

Obstetrical problem 0.00 0.00 0.13 0.20 

Orthopedic injury 0.35 0.03 0.08 0.16 

Other (FT) 0.20 0.25 0.43 0.55 

Overdose (intentional) 1.00 0.50 0.63 0.38 

Peripheral vascular/leg pain 0.10 0.22 0.16 0.08 

Procedure 0.11 0.15 0.04 0.27 

Psychiatric/social problems 0.41 0.40 0.63 0.36 

Respiratory problems 0.67 0.40 0.47 0.64 

Skin complaint/trauma 0.13 0.07 0.04 0.10 

Stabbing - - - 0.45 
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Stroke/CVA 0.70 0.40 0.74 0.77 

Substance abuse 0.53 0.56 0.26 0.20 

Temperature related - 0.00 0.33 1.00 

Traffic injury 0.07 0.00 0.03 0.09 

Traumatic injuries 0.00 0.00 0.00 0.46 

Unconsciousness 

/unresponsive 
1.00 

0.00 0.43 0.67 

Unknown Problem/Lethargy 0.80 0.73 0.60 0.66 

Vision problems 0.67 0.29 0.38 0.06 

Weakness 0.65 0.53 0.67 0.58 

Designation: P(Admit | Designation) 

ER 0.54 - - - 

Fast Track 0.01 - - - 

North - - - 0.33 

South - - - 0.33 

Urgent - - - 0.01 

Designation: P(Admit | Mode of Arrival) 

Ambulatory 0.20 0.24 0.15 - 

Stretcher 0.70 - 0.43 - 

Wheelchair 0.49 - 0.36 - 

Ambulance/Police - 0.52 - - 

Clinic - 0.38 - - 

Nursing Home - 0.64 - - 

Transfer - 0.60 - - 

Other - 0.29 0.25 - 

Designation: P(Admit | Provider) 

1 0.17 0.17 0.23 0.00 

2 0.28 0.27 0.22 0.43 

3 0.36 0.27 0.29 0.22 

4 0.44 0.28 0.20 0.00 

5 0.30 0.44 0.08 0.19 

6 0.00 0.30 0.23 0.29 

7 1.00 0.33 0.28 0.00 

8 0.13 0.26 0.14 0.16 

9 0.41 0.21 0.21 0.40 

10 0.36 1.00 0.31 0.12 

11 0.46 0.31 0.08 0.00 

12 0.34 0.28 0.09 0.32 

13 0.26 0.26 0.13 0.38 

14 1.00 0.13 0.19 0.00 

15 0.25 0.33 0.28 0.39 
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16 0.33 0.19 0.30 0.38 

17 0.00 1.00 0.20 0.31 

18 0.22 0.29 0.05 0.27 

19 0.08 0.00 0.28 0.00 

20 0.29 0.30 0.27 0.31 

21 1.00 0.24 0.26 0.00 

22 0.13 0.29 0.24 0.27 

23 0.25 0.46 0.46 0.00 

24 0.46 0.14 0.26 0.31 

25 0.49 0.50 0.01 0.49 

26 0.74 0.44 - 0.02 

27 0.17 0.35 - 0.33 

28 0.18 0.00 - 0.00 

29 0.00 0.15 - 0.30 

30 0.00 0.28 - 0.00 

31 0.00 0.33 - 0.44 

32 0.30 0.25 - 0.16 

33 0.29 0.17 - 0.00 

34 0.31 0.35 - 0.00 

35 0.36 0.34 - 0.38 

36 0.30 0.23 - 0.37 

37 0.41 0.23 - 0.13 

38 0.52 0.20 - 0.24 

39 0.27 0.20 - 1.00 

40 0.48 0.15 - 0.02 

41 0.50 0.36 - 0.00 

42 - 0.31 - 0.34 

43 - 0.32 - 0.17 

44 - 0.24 - 0.25 

45 - 0.36 - 0.00 

46 - 0.28 - 0.26 

47 - 0.45 - 0.42 

48 - 0.19 - 0.07 

49 - 0.16 - - 

50 - 0.33 - - 

51 - 0.15 - - 

52 - 0.23 - - 

53 - 0.12 - - 

54 - 0.23 - - 

55 - 0.67 - - 

56 - 0.00 - - 
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