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Abstract

Recent advances in autonomous system capabilities have improved their performance sufficiently to
make the integration of unmanned and autonomous vehicles systems into human-centered civilian
environments a realistic near-term goal. In these systems, such as the national highway system, min-
ing operations, and manufacturing operations, unmanned and autonomous systems will be required
to interact with large numbers of other unmanned vehicle systems as well as with manned vehicles
and other human collaborators. While prior research provides information on the different methods
of controlling unmanned vehicles and the effects of these methods on individual vehicle behavior, it
has typically focused on only a small number of unmanned systems acting in isolation. The qual-
ities that provide the desired behavior of an autonomous system behavior in isolation may not be
the same as the characteristics that lead to desirable performance while interacting with multiple
heterogeneous actors. Additionally, the integration of autonomous systems may include constraints
on operations that limit interactions between manned and unmanned agents. It is not clear which
constraints might be most effective in promoting safe operations and how these constraints may
interact with unmanned system control architectures.

Examining the effects of unmanned systems in these large, complex systems in reality would
require significant capital investment and the physical construction and implementation of the un-
manned vehicles of interest. Both of these aspects make empirical testing either difficult or impossible
to perform and may also limit the ability of testing to fully examine all the parameters of interest
in a safe and efficient manner. The objective of this thesis is the creation of a simulation envi-
ronment that can replicate the behavior of the unmanned vehicle systems, manned vehicles, and
human collaborators in the environment in order to enable an exploration of how parameters related
to individual actor behavior and actor interactions affect performance. The aircraft carrier flight
deck is chosen as an example domain, given that current operations require significant interactions
between human collaborators and manned vehicles and current research addresses the development
of unmanned vehicle systems for flight deck operations. Because the complexity of interactions be-
tween actors makes the creation of closed-form solutions of system behavior difficult, an agent-based
modeling approach is taken. First, a list of actors and their characteristic tasks, decision-making
processes, states, and parameters for current aircraft carrier flight deck operations was generated.
Next, these models were implemented in an object-oriented programming language, enabling the
definition of independent tasks, actors, parameters, and states. These models were later extended
to incorporate features of unmanned vehicle control architectures by making minor modifications
to the state, logic functions, or parameters of current agents (or tasks). This same tactic can be
applied by future researchers to further pursue examinations of other influential aspects of system
performance or to adapt the model to other domains.

This model, the Multi-Agent Safety and Control Simulation (MASCS), was then compared to
data for current flight deck operations to calibrate and partially validate simulation outputs, first
addressing an individual vehicle task before proceeding to mission tasks utilizing many vehicles at
once. The MASCS model was extended to incorporate models of different unmanned vehicle control
architectures and different safety protocols that affect vehicle integration. These features were then

3



tested at different densities of mission operations on the flight deck and compositions (unmanned vs.
manned) of missions in order to fully explore the interactions between variables. These results suggest
that productivity on the flight deck is more heavily influenced by the safety protocols that influence
vehicle integration as opposed to the types of unmanned vehicle control architecture employed.
Vehicle safety is improved by increasing the number of high-level constraints on operations (e.g.
separating unmanned and manned aircraft spatially or temporally), but these high-level constraints
may conflict with implicit constraints that are part of crew-vehicle interactions. Additional testing
explored the use of MASCS in understanding the effects of changes to the operating environment,
independent of changes to unmanned vehicle control architectures and safety protocols, as well as
how the simulation can be used to explore the vehicle design space. These results indicate that, at
faster operational tempos, latencies in vehicle operations drive significant differences in productivity
that are exacerbated by the safety protocols applied to operations. In terms of safety, a tradeoff
between slightly increased vehicle safety and significant increases in the risk rate of crew activity
is created at faster tempos in this environment. Lastly, the limitations and generalizability of the
MASCS model for use in other Heterogeneous Manned-Unmanned Environments (HMUEs) was
discussed, along with potential future work to expand the models.

Thesis Supervisor: Mary L. Cummings
Title: Visiting Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

While unmanned and autonomous vehicle systems have existed for many years, it is only recently

that these technologies have reached a sufficient maturity level for full-scale integration into human-

centered work environments to be feasible. Already, integration of these vehicles into military (Office

of the Secretary of Defense, 2013; Naval Studies Board, 2005) and commercial environments (Scan-

lon, 2009; Rio Tinto, 2014) is beginning to occur. Most previous implementations of automated and

unmanned vehicles, however, have been predicated on a complete separation of unmanned vehicles

from the rest of the environment (Federal Aviation Administration, 2014a). For these heterogeneous

manned-unmanned systems, which include mining, warehouse operations, and aircraft carrier flight

decks, this strategy of complete separation will not be feasible: these domains will require close

physical coordination and interaction between the humans, manned vehicles, and unmanned or au-

tonomous vehicles in the world. Increasing the safety of operations will require a different tactic: the

implementation of safety protocols that dictate when and where human-vehicle interactions occur

and tasks can be performed.

The scale and complexity of these systems implies that conducting empirically would be both

time-consuming and resource intensive, assuming that the unmanned or autonomous vehicles of

interest to be integrated have been constructed and are available for testing. This dissertation

describes a simulation and assessment methodology constructed specifically for evaluating system

design tradeoffs in these dynamic human/autonomous vehicle work environments. In particular, it

explores the relationship between the safety protocols, the human-machine interface, and system

performance in terms of both safety and productivity. The simulation is constructed for a single

representative environment — the aircraft carrier flight deck — but the methodology can be used

to construct models of other domains, allowing system designers and other stakeholders to estimate

the likely outcomes of unmanned vehicle integration in their own domains.
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1.1 Autonomous Robotics in Complex Sociotechnical

Systems

The terms “unmanned” and “autonomous” systems are often used interchangeably to describe a vari-

ety of complex vehicle systems, which must further be differentiated from “automated” systems. The

most recent Department of Defense roadmap for autonomy defines an “unmanned” aircraft as one

“that does not carry a human operator and is capable of flight under remote control or autonomous

programming” (Office of the Secretary of Defense, 2013). When remotely-controlled by a human

operator, other applicable terms include “teleoperated” (Sheridan, 1992) and “Remotely-Piloted”

or “Remotely-Operated” aircraft (Federal Aviation Administration, 2014b). In these remotely-

controlled systems, a human operator is still the primary source of lower-level control inputs to the

vehicle system. Alternatively, “autonomous” and semi-autonomous systems offload some of these

activities to the vehicle system, allowing it “to be automatic or, within programmed boundaries,

‘self-governing’ ” (Defense Science Board, 2012). This promotes the human operator to a role of

“supervisor” in which they provides instructions as to where the vehicle should travel (waypoints)

rather than directly controlling steering, acceleration, and braking. The term “automated” then

refers to the assignment of a singular, often repetitive, task to an individual machine.

While various automated technologies are common in manufacturing enterprises, autonomous or

semi-autonomous robots are not commonly seen traveling through the halls of a hospital, rolling along

an urban sidewalk, or flying through the skies loaded with cargo. However, the success of DARPA’s

Grand Challenge (Seetharaman, Lakhotia, & Blasch, 2006) and Urban Challenge (Buehler2009,

2009) as well as the development of Google’s autonomous car (Markoff, 2010; Thrun, 2010) have

demonstrated that fully-autonomous road vehicles are not far away. Unmanned aerial vehicles, using

only a limited form of autonomy to communicate with and execute commands from a remote pilot,

have been used for years in both U.S. military operations; in Japan, remotely piloted helicopter have

been used in large numbers for years for agricultural crop dusting (Sato, 2003). The Association of

Unmanned Vehicle Systems International (AUVSI) forecasts massive growth potential for unmanned

systems in U.S. agriculture and public safety (Jenkins & Vasigh, 2013), and the FAA’s recent award-

ing of six Unmanned Aerial Vehicle (UAV) test sites should aid in the commercial deployment of

such vehicles within the United States. In a very different context, a variety of work is also currently

addressing the personal service robotics field, where a major focus is the development of robots to

care for the growing elderly population (Roy et al., 2000), as well as a new generation of manufac-

turing robots that can better understand the actions of their human collaborators, improving their

ability to understand human intentions in the context of work tasks (Nikolaidis & Shah, 2012).

Two primary concerns exist for the integration of unmanned and autonomous systems into these

human-centered environments: safety and productivity. Autonomous vehicles must be capable of
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safely moving near to and interacting not only with the humans that can control or influence their

behavior, but also with other bystanders (both human and manually controlled vehicles) that have

no influence over them otherwise. They must also be able to do so without significantly reducing the

efficiency of operations: for instance, in highway driving, autonomous cars must navigate effectively

in traffic, merging in seamlessly with both human-controlled vehicles and pedestrians on or near

the roadway. Aerial vehicles in public domains must adhere to the same sense-and-avoid actions

that human pilots take, similar to the “rules of the road” that autonomous surface vessels must

adhere to in navigating the seas amid other ships. Personal robots must attend to whatever tasks

are required of them without running into, or over, their human companions or other items within

the household. These environments can all be characterized as Heterogeneous Manned-Unmanned

Environments (HMUEs), highlighting the fact that different types of both manned and unmanned

vehicles (including humans) operate in close proximity within a given area. Figure 1-1 provides a

notional representation of these domains.

While a great deal of research currently addresses the development of individual unmanned

or autonomous systems, or small teams of them working together, very little research currently

examines their integration into these larger HMUEs. These large-scale systems, in both size and

number of active agents, are problematic to test for several reasons. First, the number of actors in

Figure 1-1: Notional diagram of Heterogeneous Manned-Unmanned Environments (HMUEs).
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systems like the national highway system is so large that real-world testing at appropriate scales

requires the participation of many individuals (in and of itself a challenge to organize), would incur

significant expenses in terms of time and money, and would require substantial infrastructure to

support operations. Additionally, because the autonomous systems are unproven, there may be

substantially increased risk levied on the human participants in the system or to bystanders in

the area. While small-scale tests could occur, for many of these complex sociotechnical systems,

properties at the smaller scale (one or only a few vehicles) do not typically scale to larger systems

(several dozen systems) due to non-linear relationships and trends in the system. Furthermore, the

systems of interest may only be in the prototype (or earlier) stage and not actually be able for

physical testing in the world, even if the other obstacles could be overcome.

One potential method of addressing these limitations is the creation of realistic simulations of

HMUEs that replicate the logic and behavior of unmanned vehicles, manned vehicles, and human

operators and bystanders in the world. A valid simulation of such environments would allow designers

to explore the effects of design choices in both the unmanned vehicles and the rules that govern their

implementation and integration into the system to be tested more quickly, less expensively, and over

more possible scenarios than empirical, real-world testing would allow. This dissertation examines

the use of agent-based modeling, a bottom-up approach that attempts to model the individual

motion and decision-making of actors in the environment, to create simulations of these complex

sociotechnical systems for the purposes of exploring the effects of safety protocols (the methods of

integrating unmanned vehicles into operations) and methods of robotic vehicle control on system

safety and productivity.

1.2 Research Statement

The goal of this dissertation is to develop a simulation of aircraft carrier flight deck operations

as a case study in exploring the effects of implementing unmanned vehicles into Heterogeneous

Manned-Unmanned Environments (HMUEs). In this exploration, the key interest is in how un-

manned vehicles affect the safety and productivity of the system as a whole, rather than focusing

on individual vehicles. Variations in these measures amongst different types of unmanned vehicle

control architectures enables the identification of the key design parameters that drive performance

along metrics of safety and productivity.

1.2.1 Research Approach

The differences between unmanned vehicles integrated into HMUEs lie in the low-level interactions

between vehicles with the world, with other vehicles, and with other human collaborators in the

world. This thesis utilizes agent-based model as its approach, as agent-based modeling is constructed

in a bottom-up fashion by modeling low-level behaviors and interactions of actors in the environment.
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When the simulation model is executed, it begins with a set of initial conditions for the agents and the

world; the behavior rules and decision-making procedures of the agents, all working in a decentralized

fashion, then dictate how the simulation evolves from that point forward. If properly constructed,

when given a set of initial conditions, an agent-based model should evolve in the same fashion as

the real system it is intended to replicate.

In addition to the behavioral and decision-making rules, defining agents in the system also

requires defining the key states and parameters that characterize tasks that are performed in the

world and how agents observe the world. Agent states define their current location in the world,

speed, orientation, as well as other features such as current goal and health. Parameters define the

range of available speeds that at which agents may travel or the range of times a task may take when

executed. The behavioral rules then define, given the current state of the agent and observable states

of the environment and other agents, (1) what its current goal should be, (2) the tasks it should

perform to achieve that goal, and (3) whether or not it can execute those tasks. The defined agent

parameters then describe how agents perform the prescribed tasks. Agent models may include not

only the actors in the system (people, vehicles, etc.) but machinery, equipment, and other resources

within the environment as well as the environment itself. Together, the definitions of agents, tasks,

and states should characterize not only individual behavior, but the interactions between individuals

in the environment.

Agent-based modeling has been used to explore a variety of systems, ranging from pure decision-

making models in economics to models of human and vehicle motion in the world. In one study

of human motion, researchers explored ways to improve fire safety evacuations of crowds. The

non-intuitive result from this work was that placing a column directly in front of the exit door

improved egress performance: agents self-organized into a more efficient and orderly exit pattern

than observed in simulations without the column (Helbing, Farkas, & Vicsek, 2000). Agent-based

models have also been used extensively in highway traffic safety modeling (Gettman & Head, 2003;

Archer, 2004; Yuhara & Tajima, 2006) in order to better understand accident prevention without

risking the safety of potential test subjects or bystanders.

A difficulty in modeling futuristic HMUE environments is that, by definition, futuristic envi-

ronments do not exist and that models of futuristic environments cannot be validated. However,

if a current operational environment is similar to the futuristic one, then a valid model of current

operations can be used as a template for future operations and lend validity to these futuristic

models. One such example of this is aircraft carrier flight deck operations, which this dissertation

takes as its point of investigation. The modern U.S. aircraft carrier flight deck is an example of a

heterogeneous manned environment, where humans and manned vehicles interact and coordinate

within close physical spaces. The United States Navy is currently investigating the inclusion of

unmanned aerial vehicles into flight deck operations, where the vehicles will be required to interact

43



CHAPTER 1. INTRODUCTION

with the flight deck crew and other manned aircraft in a similar fashion as manned aircraft currently

do. The modeling of futuristic aircraft carrier flight deck operations begins with the modeling and

calibration of an agent-based model of current aircraft carrier flight operations before proceeding to

the development and integration of unmanned vehicles into the simulation. This final simulation is

then used as an experimental testbed, comparing the performance of various forms of UAV control

and safety protocols in flight deck operations.

1.2.2 Research Questions

This thesis addresses several questions concerning the simulation of heterogeneous manned-unmanned

environments and the examination of safety protocols and control architectures therein:

1. What are the specific agents and their related states, parameters, and decision-making rules

required to construct an agent-based model of carrier flight deck operations?

2. What are the key parameters that describe variations in unmanned vehicle control architectures

and their interactions with the world, in the context of an agent-based model of flight deck

operations?

3. In the context of the modeled control architectures, how do these key parameters drive perfor-

mance on the aircraft carrier flight deck? How do these parameters interact with the structure

of the environment, and how do the effects scale when using larger numbers of aircraft in the

system?

4. If high-level safety protocols are applied to operations, what effects do they have on the safety

of operations? Do the safety protocols leads to tradeoffs between safety and productivity in

the environment?

1.3 Thesis Organization

This dissertation is organized as follows:

• Chapter 1, Introduction, describes the motivation, objectives, and research questions.

• Chapter 2, Literature Review, describes prior research into unmanned vehicle control, safety

protocols applied to unmanned vehicles, and prior simulation methods for both human inter-

action with unmanned systems and safety.

• Chapter 3, Model Development, provides background on current aircraft carrier flight deck

operations and the construction of the agent-based model of this environment. This includes

descriptions of the empirical data used to describe vehicle behavior, the stochastic variables

used to model vehicle performance, and the logic functions used to replicate decision-making

by humans and vehicles in the environment.
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• Chapter 4, Model Validation, describes the process of validating aspects of this model, including

the empirical data used in testing, the series of tests executed, and key results that support

that the model is a reasonable simulation of flight deck operations.

• Chapter 5, Multi-Agent Safety and Control Simulation (MASCS) Experimental Program, de-

scribes the implementation of new unmanned vehicle and safety protocols into the simulation

model, the experimental matrix used in the testing process (the independent variables varied

throughout testing), performance metrics used in the analysis, and the results of testing.

• Chapter 6, Exploring Design Options, describes other potential applications of the MASCS

model in examining the interactions between Control Architectures, Safety Protocols, and

mission settings in the context of a design space exploration.

• Chapter 7, Conclusions, describes the important conclusions from this work. This includes

both key results regarding the integration of unmanned vehicles into aircraft carrier flight deck

operations, how these results inform unmanned system integration into other environments,

and lessons learned regarding the use of agent-based modeling methods in this work.
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Chapter 2

Literature Review

“... To cast the problem in terms of

humans versus robots or automatons is

simplistic... We should be concerned with

how humans and automatic machines can

cooperate.”

Telerobotics, Automation, and Human

Supervisory Control (1992)

Thomas B. Sheridan

A Heterogeneous Manned-Unmanned Environment (HMUE) requires close physical interaction

between humans, manned vehicles, and unmanned, autonomous, or robotic vehicles. Currently,

HMUE environments are rare, but there exist several heterogeneous manned environments (human

collaborators and manned vehicles) that are seeking to integrate unmanned vehicles into their oper-

ations. This ranges from airborne operations such as aircraft carrier flight decks and other military

air operations, ground operations such as autonomous “driverless” cars and automated forklifts, and

human-centered environments, such as interactive manufacturing robots and assistive robotics for

personal and medical use. In each case, unmanned vehicles bring with them new capabilities and

limitations, and the rules that traditionally govern interaction with manned vehicles may no longer

be appropriate. Ultimately, the effectiveness of the unmanned robotic systems are contingent upon

their capabilities to perform tasks and interact with the environment and the safety with which these

operations and interaction occur. This chapter reviews prior research in these two areas. The first

section examines prior research on the safety of unmanned vehicle operations in terms of the rules

that govern their interaction with the environment — the “Safety Protocols” that dictate when,

where, and how vehicle interact with the world. The second section addresses the types of “Control

Architectures” used to control unmanned vehicle systems, which dictate their capabilities to move,
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observe, and interact with the world. The third section then describes how the nature of Safety

Protocols and Control Architectures relates to the use of agent-based simulation models.

2.1 Safety Protocols for Heterogeneous Manned-Unmanned

Environments

Over the past few decades, a variety of competing ideas regarding the causes of accidents in com-

plex systems have been developed. Some have argued that complex systems always eventually

fail (Perrow, 1984), while others have demonstrated that this is not necessarily true for certain

systems (Rochlin, La Porte, & Roberts, 1987; Weick & Roberts, 1993; LaPorte & Consolini, 1991).

Others have explored the distinctly human contributions to error, including problems that develop

over time due to both individual and organizational factors (Reason, 1990; Reason, Parker, & Law-

ton, 1998; Dekker, 2005). More recently, a systems perspective has been applied to safety (Leveson,

2011, 2004). The common theme within this research is that preserving safety — preventing ac-

cidents — is a behavioral concern. Errors (incorrect actions taken by individual), hazards, and

accidents ultimately occur because certain aspects of the system — human or otherwise — did not

behave as expected and the constraints and processes put in place to prevent accidents all have

failed. Additionally, failure to execute the processes, as well as human behavioral factors, cause the

system to degrade over time. Reason referred to this as the generation of “latent” failures in the

system that lie in wait for the right set of circumstance to become active (Reason, 1990). This is

encapsulated in Fig. 2-1.

To prevent the occurrence of an accident, a behavioral constraint at some level must intervene.

These can be applied at the organizational and supervisory levels, dealing with topics such as

Figure 2-1: Adaptation of Reason’s “Swiss Cheese” model of failures (Reason, 1990).
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“just culture” and proper training of staff. In the context of human interaction with unmanned

vehicles, significant concerns also exist at the lower levels, in that operators and vehicles must

avoid unsafe acts and preconditions to those unsafe acts. Unsafe acts in these contexts most often

correspond to failures of vehicles to stop in time to prevent a collision (be it not receiving the order

to stop, attempting to stop and not being able to, or incorrectly interpreting the stop command) and

failures of the crew and supervisors to command that certain actions not occur in parallel (failures

of communication, simple human error, and similar cases). While these are known issues, there

is again little past literature on how unsafe control actions (and other hazards and accidents) are

avoided or otherwise mitigated. The following sections review research into unmanned vehicle safety

as well as examples of safety protocols used currently within heterogeneous manned environments.

Within the context of the latent failure framework, these sections attempt to characterize common

methods of increasing safety in unmanned and robotic operations.

2.1.1 Safety Protocols for Unmanned Vehicles

Research concerning safe autonomous robotic systems addresses a variety of cases, but the pri-

mary focus is on a single vehicle interacting with the world. Various studies have addressed au-

tomated manipulator robots (Heinzmann & Zelinsky, 1999; Kulic & Croft, 2005; Tonietti, Schiavi,

& Bicchi, 2005; Alami et al., 2006; Kulic & Croft, 2006; Nikolaidis & Shah, 2012), Unmanned

Aerial Vehicles (UAVs) (Schouwenaars, How, & Feron, 2004; Teo, Jang, & Tomlin, 2004; Sislak,

Volf, Komenda, Samek, & Pechoucek, 2007), Unmanned Ground Vehicles (UGVs) (Johnson, Naf-

fin, Puhalia, Sanchez, & Wellington, 2009; Yoon, Choe, Park, & Kim, 2007; Burdick et al., 2007;

Campbell et al., 2007), Unmanned Surface Vehicles (USVs) (Larson, Bruch, Halterman, Rogers, &

Webster, 2007; Bandyophadyay, Sarcione, & Hover, 2010; Elkins, Sellers, & Monach, 2010; Hunts-

berger, Aghazarian, Howard, & Trotz, 2011), and personal robots (Jolly, Kumar, & Vijaykumar,

2009). In the context of safety, the major concern is the motion of the unmanned systems near to

human collaborators and other manned and unmanned vehicles. As such, the focus of safety research

lies on path planning and navigation systems of the vehicles — the primary decision-making action

of vehicles in the aforementioned studies. For collisions between unmanned robotic systems and

other humans, vehicles, and objects, the system attempts to avoid the hazardous states that could

lead to collisions. Examples of hazards might include (1) being too close and not having sufficient

stopping distance, (2) turning the wrong direction (applying an incorrect action), or (3) not seeing

an obstacle (and thus unable to apply the correct control action). Safety protocols can act to avoid

this hazardous state entirely (by maintaining an appropriate distance between vehicles), move out

of a hazardous state if it exists (by moving away or past the obstacle), or at worst, attempt to

minimize the damage caused if an accident actually happens (by decreasing speed).

Three general methods of Unmanned Vehicle (UxV) collision avoidance are observed in the
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literature: a) path planning prior to the start of movement, b) reactive collision avoidance during

movement, and c) damage/injury mitigation at contact if collision occurs. Each applies some form

of constraint to vehicle behavior, either restricting their possible paths or speeds, in order to prevent

the occurrence of the hazardous state of being too close to other objects. Ideally, option a) is taken,

and the motions of all vehicles in the environment are planned such that no collisions are ever likely

to occur (Kulic & Croft, 2005; Schouwenaars et al., 2004; Teo et al., 2004; Johnson et al., 2009). To

do so requires knowledge of the current position and trajectory of all nearby agents in the world and

accurate predictions of how they will move over time. Given this information, paths for the vehicles

are constructed simultaneously with the minimum safe “buffer” distance applied through all paths

at all times. However, these plans will likely not evolve as intended given uncertainty in sensor data

and stochasticity in both the environment and task execution. As such, many autonomous vehicles

will also utilize software that employs method b) — a reactive collision avoidance system working in

real time, continually monitoring the motion of nearby obstacles and adjusting the vehicle’s path to

avoid them (again using the declared buffer distance), otherwise referred to as “detect, sense, and

avoid” (Kulic & Croft, 2006; Sislak et al., 2007; Yoon et al., 2007; Burdick et al., 2007; Campbell

et al., 2007; Larson et al., 2007; Bandyophadyay et al., 2010). In cases when contact is inevitable,

such as a robotic manipulator arm working closely with human colleagues, the system ensures that

collisions occur at low kinetic energy levels in order to minimize injury or damage (Heinzmann &

Zelinsky, 1999; Tonietti et al., 2005; Alami et al., 2006; Jolly et al., 2009). In general, however,

these protocols attempt to do two things: maximize the distance between vehicles at all times and

minimize the speed of impact if a collision cannot be avoided. However, these two concepts are fairly

limited in scope, applying only to collisions between vehicles. Complex systems such as the HMUEs

of interest in this work can have a large host of other hazardous states that lie outside of simple

vehicle collisions and may require additional protocols. Some examples of these are reviewed in the

next section.

2.1.2 Safety Protocols in Related Domains

While HMUEs are currently rather rare in practice, there are a variety of similar domains that

can provide some guidance as to common hazards of human-machine interaction and the protocols

that are used to prevent them. A first example is the manufacturing domain, which has utilized

automated systems for several years. These systems lack the intelligence and path planning capa-

bilities of the systems in the previous section, and thus a different tactic has been utilized in order

to ensure safe operation near human beings — physical isolation (Marvel & Bostelman, 2013). One

common practice is to place these systems within a physical cage where no human coworkers are

allowed, preventing any possible collisions between human and machine (Fryman, 2014). However,

the International Organization for Standardization (ISO) is currently developing standards for more
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integrated human-robot interaction that address both manipulator arms and mobile robotic systems

(ISO/DST15066 (ISO, unpublished)). In these draft standards, four potential safe operating modes

are identified: (1) stopping in a predetermined position when a human enters the area, (2) manual

guiding of robot activities by the human, (3) speed and separation monitoring, and (4) power and

force limiting (Fryman, 2014). The first option is, in essence, still a form of isolation: the robot and

human are not operating in the same space at the same time. The second is a form of teleoperation,

with the human in full control the robot’s activity from a safe distance away. In the third and fourth,

the robot is allowed to operate autonomously near the human collaborator, with key behavioral rules

encouraging safety. In the third option, attempts are made to ensure no contact ever takes place; in

the fourth, contact is allowed, but only at low impact forces.

The general rule for manufacturing systems, then, has been to keep human operators separate

from the robotic systems when at all possible. Enabling greater collaboration means allowing collab-

oration, but ensuring that collisions either do not occur or are of low danger if they do occur. These

same principles of separation have also been used in more advanced mobile robotic systems like the

Kiva “mobile-robotic fulfillment system” used in some Amazon.com and Zappos warehouses (Scan-

lon, 2009). In this warehouse management system, rather than requiring human workers to move

about the facility locating and loading packages onto carts or forklifts, Kiva’s robots retrieve small

shelving units from the shop floor and deliver them to human packers. These packers remain in a

fixed location in the warehouse; the robots include of sophisticated path planning algorithms that

allow them to safely move around each other, but they cannot account for the presence of a human

coworker. In these systems, it is the human who is kept isolated from the robots, staying within a

specific area while shelves and packages are brought to them.

Two final domains — naval aviation and commercial mining — both involve the use of very

large, mobile vehicles that directly require human interaction to perform tasks in the world. On the

aircraft carrier deck, upwards of forty aircraft interact with over one hundred human crewmembers

and a dozen support vehicles to fuel, load, launch, and land aircraft in rapid fashion. In open

pit mining, 300-ton “haul trucks” work in close spaces with front loaders, dumping chutes, and

human supervisors traversing the site in smaller vehicles (typically small pickup trucks and sport

utility vehicles) to move loose ore from blast pits to processing sites. These tasks typically require

close interaction and maneuvering of vehicles, as well as navigation of roadways and intersections

similar to that on more typical civilian road systems. Additionally, each of these two domains is

actively investigating the introduction of UxV systems into operations. The United States Navy is

currently engaged in developing an unmanned, autonomous combat vehicle for use on the aircraft

carrier deck (McKinney, 2014; Hennigan, 2013) while the mining industry (Rio Tinto, 2014; Topf,

2011) is exploring the development and use of autonomous hauling trucks for use in open pit mining.

Given the dangerous nature of operations in these environments, a high priority is placed on safety in
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operations, resulting in the development of numerous safety protocols to safeguard system operations.

Published standards were not located for the mining and aircraft carrier domains, but a variety

of information on operations was obtained from training manuals, interviews with subject matter

experts, and observations of operations. These sources of information were used to compile a set of

safety protocols that work within the system. In reviewing this documentation, a framework was

defined to describe an accident in terms of the potential hazards that generated the accident that the

safety protocols (rules of behavior) put in place to avoid the hazards. This resulted in 33 different

combinations for aircraft carrier operations (10 different accident types, 25 different hazards, and 18

safety protocols) and 35 for mining operations (7 general accident types, 15 different hazards, and

11 different safety protocols). Examples of these appear in Table 2.1 below, with a full list appearing

in Appendix A. Together with the examples from prior sections, three general areas of focus appear

to emerge, based on the types of hazards being mitigated in each case. These three major safety

“principles” of Collision Prevention, Exclusive Areas, and Task Scheduling are explained in more

detail in the next section.

2.1.3 Defining Classes of Safety Principles

The types of safety protocols that act within manufacturing, aircraft carrier, and mining environ-

ments appear to fall within three general categories, listed within Table 2.2. These three safety

principles provide a framework both for classifying current safety protocols observed in heteroge-

neous vehicle environments and for creating new protocols that could be applied. The first principle,

Collision Prevention, includes safety protocols that govern the spacing of vehicles when in motion.

Table 2.1: Examples of accidents, hazards, and safety protocols from the mining and aircraft carrier
domains.

Hazard Accident Aircraft Carrier Flight
Deck

Mining

Vehicle
collision while

in transit

Collision
between
vehicles

(Observation) During transit
on deck, Aircraft Directors
maintain a large spacing

between vehicles.

In travel mode, automated
trucks in the mine site are
not allowed within 50 m of

human workers.
Interference

with a
dangerous

task

Collision, fire,
human injury

and death

Do not enter catapult area if
aircraft is on catapult.

Automated trucks may never
enter within 5 m of a

stationary human worker.

Interference
between

dangerous
tasks

Collision, fire,
human injury

and death

Crew are instructed to never
fuel and load weapons onto

an aircraft at the same time.

Excavators only load one
truck at a time.

Accidental
vehicle motion

Collision
between
vehicles,

human death

Tie down aircraft if inactive
(prevent accidental motion).

Lockdown vehicles that are
in use (prevent accidental

operation).
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This category would include the “buffer” areas included in the unmanned vehicle motion protocols

covered in Section 2.1.1 and the “speed and separation monitoring” operating mode in the draft

ISO (ISO, unpublished) standards discussed in Section 2.1.2.

The second safety principle is Exclusive Areas, in which certain areas should not be accessed

while certain systems are operating. One example from aircraft carrier operations is that the area

immediately surrounding a catapult is off-limits while an aircraft is being attached and launched;

this decreases the risk that a crewmember or other vehicle will be in the launch path and will be

struck during a launch. From the ISO standards, the first operating mode — which requires that

robotic systems not be operation while a human collaborator is near — would also fit within this

classification.

Task Scheduling protocols, the third class, describes constraints on task execution – that two

actions either should not be performed at the same time, should not occur in a certain order, or

should not occur within a certain period of time of one another. In the aircraft carrier domain, one

example is that aircraft fueling and weapons loading do not occur at the same time; a fuel accident

and fire occurring while weapons are being loaded could be catastrophic. This can also include

cases in which a task is inserted solely to reduce risk in operations. For instance, an example from

the aircraft carrier environment concerns waiting for appropriate crew to escort a vehicle across

the deck. While an aircraft could begin a taxi motion without the full escort group, doing so may

significantly increase the likelihood of an accident occurring on the deck. The first and second modes

of operation in the draft ISO standard might also fit in this category, as the robotic systems would not

be allowed to work simultaneously with humans in the environment. The primary difference between

Task Scheduling and Exclusive Areas is in how many different regions exist within the environment:

if multiple areas exist, Exclusive Areas would allow parallel operations in each individual region.

Otherwise, Task Scheduling would describe the ordering of tasks within the single region.

Table 2.2: The three general classes of safety principles elicited from HMUE source materials (Rio
Tinto, 2014; Topf, 2011) and observations.

Principle Class Constraints

Collision Prevention Safety is enforced through sensing of nearby vehicles and ob-
stacles. Vehicles in motion must maintain a minimum safe
separation distance from other vehicles at all times.

Exclusive Areas Safety is enforced through physical segregation. The working
environment is divided into separate regions for manned and
unmanned operations. Vehicles must operate within their pre-
scribed regions at all times and should not exit their prescribed
regions.

Task Scheduling Safety is enforced through scheduling. Tasks are performed
only in a specified order to reduce risk in operations. This may
apply to multiple tasks for a single vehicle or for separating
entire groups of vehicles/humans.
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The three safety principles listed above all share a common feature: each describes a type of

constraint on individual behavior (human and vehicle, manned and autonomous) in the environment,

addressing when, where, and how agents perform tasks in the world. Dynamic Separation protocols

require additional logic and decision making about the paths vehicles are allowed to travel and

requires them to monitor the world around them, looking for conditions where they should adjust

their speed or path. Exclusive Area protocols require additional logical functions to know when

vehicles can enter a given area, if ever. Task Scheduling protocols address the logic behind task

execution, describing when and under what conditions tasks should or should not be performed.

The common feature of these constraints is that behavioral rules describe what the vehicle should

do: this is a feature of the software of the unmanned and autonomous vehicles and are not direct

properties of the physical hardware. As such, modeling the effects of safety protocols in HMUEs

requires modeling the logic behind these actions, in the context of the motion of agents in the world

and their interactions with others.

These safety principles, when applied to a specific domain and specific set of operations, form

the set of safety protocols (Table 2.2) that apply to specific vehicle behaviors and tasks in the world.

In this work, these principles are applied to aircraft carrier flight deck operations (which will be

described further in Chapter 3). In applying these principles, protocols take the form provided in

Table 2.3, described in terms of vehicle separation. The Collision Prevention principle describes

the “Dynamic Separation” of vehicles in motion, where aircraft should maintain a minimum safe

distance between themselves and other aircraft in front of them. This protocol would be used in

both manned-only and heterogeneous manned-unmanned environments, although the minimum safe

distance may vary between vehicle systems and operating conditions. Exclusive Areas translates

into an “Area Separation” protocol in which the flight deck is divided into forward and aft sections.

Manned and unmanned aircraft begin in separate areas and are only allowed to operate within

those areas. Task Scheduling becomes a “Temporal” separation, with operations organized such

that manned aircraft begin operations first with unmanned aircraft remaining inactive until manned

operations complete. Additional details as to how these rules are encoded for specific actors and

agents will be provided in Chapter 5.

Testing the effects of these Safety Protocols on productivity and safety of HMUE operations

requires generating models of the manned and unmanned aircraft that operate within them. Models

of manned, or manually controlled, vehicles can be created through empirical observations and

measurements that characterize their decisions and movements within the world. However, because

by definition futuristic unmanned vehicle systems do not yet exist, their models must be constructed

through different means. Many of these systems exist only with laboratory environments or as basic

simulation designed to explore new graphical user interfaces, both far from being at sufficient fidelity

for observation and modeling. However, this research does provide sufficient background to describe
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Table 2.3: The three general classes of safety protocols that will be applied to unmanned carrier
flight deck operations.

Safety Protocol Definition

Dynamic Separation Aircraft in motion should maintain a minimum safe distance
of one vehicle length forward of the aircraft while in motion on
the flight deck.

Area Separation Operations will be planned such that manned and unmanned
aircraft begin parked in separate regions of the flight deck.
Operations are planned such that aircraft are only assigned to
and taxi within their specified areas of operation.

Temporal Separation Operations are planned such that manned aircraft are the first
to operate on the flight deck. Unmanned aircraft are not al-
lowed to begin taxi operations until manned aircraft complete
their taxi operations.

how these systems might be utilized in the future and provide some guidance as to their capabilities.

The next section describes several different classes of unmanned vehicle systems, classified according

to how a human operator interacts with them — their “Control Architectures.”

2.2 Human Control of Unmanned Vehicle Systems

The key element of HMUEs is the presence of unmanned vehicles in the system. However, the

term “unmanned” can describe a variety of different systems with varying types and degrees of

capabilities. Some systems have highly advanced autonomous capabilities and can navigate the

world largely on their own; other unmanned vehicles are simply remote-controlled systems, with

little onboard intelligence and requiring the same inputs from human operators that manned aircraft

do. The changes in these systems can be characterized along three different axes: the location of

the human operator, what control inputs they provide, and how they provide them. Changes along

these axes have significant effects on the performance of the human-vehicle team in terms of how

they acquire information on the state of their surroundings, determine what tasks to perform, and

execute those tasks in the world.

This section covers five main types of control architectures: Local Teleoperation (LT), Remote

Teleoperation (RT), Gestural Control (GC), Vehicle-Based Human Supervisory Control (VBSC),

and System-Based Human Supervisory Control (SBSC). These are compared to a baseline concept

of Manual Control (MC), where a human provides control inputs directly to the vehicle while seated

within it. An overview of the differences between the systems appears in Figure 2-2. Because local

and remote teleoperation are identical (except for the distance from operator to vehicle), they are

combined in a single column at this time. Beginning with the first row (operator location), all

unmanned vehicle systems involve the relocation of the human operator from the vehicle to some

location outside of the vehicle. For the remaining two rows (control inputs and input modality),

moving from left to right moves from physical input of low-level control inputs (acceleration, steering,
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etc.) to more abstract definitions of tasks (“go to this area and monitor for activity”) input through

a Graphical User Interfaces (GUIs) using symbolic interactions. Subsequent sections explain how

these differences in control architecture definition affect performance of these systems. Together,

these changes shift the operator from providing highly-detailed control inputs to a single vehicle to

providing highly abstract instructions to multiple vehicles, moving from managing the behavior of

one vehicle to optimizing the performance and interaction of many.

2.2.1 Manual Control

In this work, Manual Control (MC) is defined as a system where the operator is seated within the

vehicle and provides low level control inputs directly to the vehicle through physical devices. Consider

a basic general aviation aircraft: the pilot controls pitch, yaw, and roll by directly manipulating the

yoke, throttle, and rudder pedals. The pilot thus dictates the direction and speed of the vehicle,

performing all tasks related to guidance and navigation, and is responsible for reacting to the world

and all external inputs and closing all control loops1. These actions can be characterized in terms

of three main functions: sensing the world around them, selecting a response given those sensor

inputs, and executing the selected response. The general pattern of behavior of the human operator

is characterized by Wicken’s information processing loop (Wickens & Hollands, 2000), shown in

Figure 2-3.

The operator acquires information on the world through their senses, which is then translated

into general perceptions about the state of the world and its relationship to the operator’s intended

goals. Operators then move through a process of response selection, supported by both short-term

(storing current information) and long-term (recalling similar experiences) memory. Once the action

1While, in certain systems, automatic control systems and autopilots may also be used, they are not the default
state of the system and are not necessarily active throughout the entirety of vehicle activity.

Figure 2-2: An overview of the variations between the five different control architectures described
in this section.
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Figure 2-3: Human Information Processing loop (Wickens & Hollands, 2000).

is selected, it is implemented physically, providing control inputs to the vehicle, which then responds

to the control inputs. While depicted as a staged process, the operator is actually in a continual state

of monitoring the vehicle and all relevant inputs, often monitoring multiple sources of information

at once.

This processing loop is also accurate for unmanned vehicles, with the key change being that the

implementation of actions is no longer done through physical artifacts attached to the vehicle. The

processing loop thus extends to include the vehicle as a separate entity and various intermediaries

connecting operator to vehicle. The most commonly cited model of this is Sheridan’s Human Super-

visory Control (HSC) loop, pictured in Figure 2-4 (Sheridan & Verplank, 1978; Sheridan, 1992). A

variety of systems are architected as shown in the figure, with the human operator providing input

to a computer or other mediator than transmits commands to the vehicle platform (which itself

may include a computer). This can take a variety of forms; in some cases, it is simply a Ground

Control Station (GCS) with a communications link, while in others, it is a more complex computer

system with intelligent planning algorithm. These changes in communications patterns change what

information the operator provides, what they receive, and what is required of the vehicles in the

world. The remaining sections describe different types of these control systems, beginning with the

ones most similar to manual control. Teleoperated systems require the operator to provide the same

control inputs in the same manner as MC, but does so from a GCS that may be either nearby or

beyond line-of-sight communications.

2.2.2 Teleoperation of Unmanned Vehicle Platforms

A teleoperated system “extends a person’s sensing and/or manipulating capability to a location

remote from that person” (Sheridan, 1992). This might refer to teleoperated manipulator arms or

two mobile vehicles. In current military operations, most unmanned aircraft are teleoperated, with
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Figure 2-4: Human Supervisory Control Diagram, adapted from Sheridan and Verplank (Sheridan
& Verplank, 1978).

the human operator providing largely the same control inputs to the vehicle, using the same physical

devices, as they would in manual control. As such, these are often referred to as “remotely piloted

aircraft, or RPAs. For these systems, the Ground Control Station (GCS) used by the human operator

includes a throttle, yoke, and rudder pedals similar to those of the actual aircraft; which are used in

the same fashion as before. In this case, however, the control inputs are then translated by the GCS

into computer data, transmitted to the vehicle through some fashion, and then reinterpreted into

control actuator commands. This same transmission mechanism is also used to provide information

on the state of the vehicle back to the operator, which is then displayed on the GCS. All information

on the state and orientation of the vehicle, including views of the surrounding world as conveyed by

onboard cameras, is received through the GCS. The pilot’s perception of the world is thus limited

in three ways: their visual field is limited by both the onboard cameras and the size of the displays

on the GCS, while their physical location removes any haptic and proprioceptive information about

accelerations and orientation.

Just as in Manual Control, the human operator has the responsibility of closing all control

loops on the vehicle; anything that happens in the environment requires the operator to determine

and implement the appropriate response. The earliest teleoperation systems, and the majority

of early research, concerned nuclear materials handling, exploration of the moon, and underwater

exploration (Sheridan & Ferrell, 1963) – tasks not easily or safely performed by a human being.

The purpose was not to increase the performance of the system, but to remove the human operator

from physical danger. Given this goal, the costs of implementation — a reduced ability to observe

the system and, in many cases, the presence of substantial latency in data transmission — were

acceptable. Both of these elements (visibility and signal lag) have been shown to be detrimental

to the ability of the human-vehicle combination to perform tasks in the world in studies involving

telemanipulation systems (McLean & Prescott, 1991; McLean, Prescott, & Podhorodeski, 1994) and

ground vehicles (telerovers) (Spain & Hughes, 1991; Scribner & Gombash, 1998; Oving & Erp, 2001;

Smyth, Gombash, & Burcham, 2001). These tasks are similar to what will occur with teleoperated

aircraft on the flight deck and are chosen as the focal point for modeling. In each of these studies,
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the lone change in the system was a change from human operator “direct viewing” (seated within the

vehicle) to some alternative form of visual display; these ranged from helmet-mounted systems linked

to cameras on top of the vehicle (such that the operator was still seated within) to the mounting of

computer displays within the vehicle to the use of remote ground stations.

In general, the experimental tasks for telerovers involved navigating a road course of some form,

with performance measured by time to complete the task and error measured by the number of

course deviations or markers hit by the vehicle. Similar measures were used for the telemanipulation

tasks. Results from those studies (McLean & Prescott, 1991; McLean et al., 1994; Spain & Hughes,

1991; Scribner & Gombash, 1998; Oving & Erp, 2001; Smyth et al., 2001) demonstrated a range

of results in both measures. The increase in task completion time for teleoperated systems ranged

from 0% to 126.18%, with a mean of 30.27% and a median of 22.12%. The tasks used in these

experiments typically required drivers to navigate a marked course that required several turning

maneuvers. In these tasks, drivers showed a significantly higher error rate (defined as the number of

markers or cones struck during the test) as compared to non-teleoperated driving. Percent increases

in errors ranged from 0% to 3650.0% with a median of 137.86% and a mean of 60%. While these

elements are difficult to translate to other types of tasks, conceptually, they signify a difficulty in

high-precision alignment tasks — a skill required of several tasks on an aircraft carrier flight deck.

The studies described above were all instances of “local” teleoperation, with delays in communi-

cations between vehicle and operator being much less than one second; the movement of the operator

to a location beyond Line-Of-Sight (LOS) communication — such as in the U.S. military’s current

use of “Remote-Split” operations with Predator UAVs — introduces a non-trivial amount of latency

into signal transmission. This delay has two significant repercussions on human control of teleoper-

ated vehicles. The first is simply the existence of the delay in communications: transmitting data

from the vehicle to the remote operating station requires a period of time (X) to travel between

locations. Transmitting commands back from the remote station to the vehicle requires a second

period of time (Y ), with X + Y being equal to the round-trip delay in communications from time

of data transmission by the vehicle to the vehicle’s receipt of a new command from the operator.

The more interesting ramification is in how operators respond to the presence of lag in the system

and change their strategies to compensate. A naive teleoperator inputs tasks assuming there is no

lag, continually overshooting their target and requiring multiple corrective actions to finally reach

the target (and much greater amounts of time). Sheridan and Ferrell were the first to observe that

more experienced teleoperators used an “open-loop” control pattern, inputting tasks anticipating

the lag, then waiting for the tasks to complete before issuing new commands (Sheridan & Ferrell,

1963). While this strategy is not as efficient as operations with zero latency, it avoids exacerbating

the problem by continually inputting (erroneous) corrective actions. In both cases, the time required

to complete tasks increases at a rate higher than the amount of lag adding to operations (it is a
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multiplicative function) — one second of latency translates into much more than one second of

additional time. Fifteen different papers, totaling 56 different experimental tests, show that the

percentage change in task completion time per second of lag ranges from 16% to 330%, with a

mean of 125% and a median of 97% (Kalmus, Fry, & Denes, 1960; Sheridan & Ferrell, 1963; Hill,

1976; Starr, 1979; Mar, 1985; Hashimoto, Sheridan, & Noyes, 1986; Bejczy & Kim, 1990; Conway,

Volz, & Walker, 1990; Arthur, Booth, & Ware, 1993; Carr, Hasegawa, Lemmon, & Plaisant, 1993;

MacKenzie & Ware, 1993; Hu, Thompson, Ren, & Sheridan, 2000; Lane et al., 2002; Sheik-Nainar,

Kaber, & Chow, 2005; Lum et al., 2009). Thus, at the median, one second of lag results in a near

doubling of the time to complete a task (a 100% increase); two seconds of lag equals a 200% increase.

These tests addressed both cases where operators where directly observing the system they were

controlling, or while receiving information via a video or computer display.

These studies imply that the nature of human teleoperation of unmanned vehicles involves two

distinct systems that must be modeled. In the first, termed Local Teleoperation (LT), the main

effects are that the operator’s view of the world is artificially constrained by the cameras onboard

the vehicle and the screens on the operator’s GCS, which the leads to increases in the time require

to complete tasks (essentially, a decrease in vehicle speed). In the second, termed Remote Teleop-

eration (RT), additional latency is introduced into the signal, further degrading performance while

also forcing operators to adopt new strategies of interactions. For these systems, the preservation

of the safety of the human pilot, now a remote operator, comes at a significant cost of vehicle per-

formance. These changes, however, do not guarantee any benefits to the vehicles themselves, or the

people that interact with them within the HMUEs. It is quite possible that the effects of latency on

operations lead these vehicles to be less safe than before, or greatly reduce the productivity of oper-

ations. Safety protocols applied to these vehicle must adequately address these changes in operator

capabilities but are ultimately limited by the properties of the vehicles. Otherwise, improving the

safety and efficiency of the unmanned vehicles in the system requires changing the form of operator

interaction that occurs. One potential upgrade from teleoperation involves the inclusion of limited

autonomy onboard the unmanned vehicle that negates the need for a ground control station, instead

allowing individuals within the environment to command actions directly. These advanced forms of

teleoperation are discussed in the next section.

2.2.3 Advanced Forms of Teleoperation

The more traditional teleoperation systems described in the previous section still rely heavily on a

single human operator to close the control loop on the unmanned vehicle under control; this forces

a variety of constraints into the design of the system, requiring a communications link to a GCS

and the transmission of video and vehicle state data to the operator for review. These architectural

constraints may lead to significant performance degradations because of the limitations inherent
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in the system. More advanced forms of these systems might require no pilot involvement at all,

instead possessing sufficient autonomous capabilities to recognize task instructions from local human

collaborators, no longer requiring a human remote pilot to be part of the information processing

loop. Two forms of such systems are gesture- and voice-based control, in which the human operator

communicates commands rather than control inputs (”move forward” instead of “throttle up”).

In these systems, the computers onboard the vehicle are responsible for decomposing the verbal or

gestural command inputs into lower-level control inputs from a pre-defined list of possibilities. In the

context of Figure 2-2, these changes occur in the second and third rows, moving from control inputs

to commands and the modality from physical interfaces to “natural” gesture and voice commands.

Voice-based command of robotic systems has been utilized in a variety of fields, including sur-

gical robotics (Mettler, Ibrahim, & Jonat, 1998), unmanned vehicles (Sugeno, Hirano, Nakamura,

& Kotsu, 1995; Doherty et al., 2000; Perzanowski et al., 2000; Kennedy et al., 2007; Bourakov &

Bordetsky, 2009; Teller et al., 2010), and motorized wheelchairs (Simpson & Levine, 2002). However,

these studies mostly focus on discussing the system as a proof of concept without reporting compar-

ison to other control architectures, or even reporting the accuracy of the voice recognition system

itself. What results are reported demonstrate error rates ranging from as small as 2 to 4% to up-

wards of 45% (Atrash et al., 2009; Wachter et al., 2007; Sha & Saul, 2007; Fiscus, Ajot, & Garofolo,

2008; Furui, 2010; Kurniawati, Celetto, Capovilla, & George, 2012). However, these studies also

deal with large sets of vocabulary words and are not directly focused on command language. A few

of these studies are intended for precisely this function, with several studies demonstrating speech

recognition rates above 95% (Ceballos, Gómez, Prieto, & Redarce, 2009; Gomez, Ceballos, Prieto, &

Redarce, 2009; Matsusaka, Fujii, Okano, & Hara, 2009; Park, Lee, Jung, & Lee, 2009; Atrash et al.,

2009). While perhaps promising in some applications, these system require low levels of background

noise and are unlikely to be useful for aircraft carrier flight deck operations, the system of interest

in this work.

Gestural control systems utilize stereo-vision cameras and sophisticated computing algorithms

to first detect human operators, then track them within the local environment. Their actions are

then converted into data points that are compared with databases of previously-recorded motions

to determine the command being issued. These systems rely heavily on machine learning techniques

and training on previous data sets in order to address both between- and within-person variability

in motions. As such, the systems should get better over time, but may struggle with motions that

are not exaggerated. However, these systems may be particularly useful in flight deck operations,

as gestural communication is already the primary method in which crew communicate instructions

to pilots. Effective gesture control technologies would mean that the integration of UAVs would

have a minimal effect on the deck crew in terms of training and adaptation. Currently, most

research involves the use of human motion data sets — large databases of videos of people performing
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various movements. The datasets most often observed in the literature search are the KTH (Schuldt,

Laptev, & Caputo, 2004), Weizmann (Blank, Gorelick, Shechtman, Irani, & Basri, 2005), and Keck

(“Gesture”) datasets (Lin, Jiang, & Davis, 2009). However, these data sets are typically based

around motions that are interesting to the researchers (for instance, running, boxing, and hand

waving) rather than any concepts of direct commands to a vehicle system. The data sets also typically

use a very small set of gestures (6, 9, and 14 for the sets), reflective of the current immaturity of the

technology.

Even so, research on these sets provide a good picture of the state-of-the-art. A set of papers,

all from the 2005-2010 time frame and each referencing many other studies as comparison points

were reviewed (Blank et al., 2005; Lin et al., 2009; Jhuang, Serre, Wolf, & Poggio, 2007; Scovanner,

Ali, & Shah, 2007; Laptev, Marszalek, Schimd, & Rozenfeld, 2008; Schindler & Gool, 2008; Yuan,

Liu, & Wu, 2009; Song, Demirdjian, & Davis, 2012) and their accuracy ratings were compiled into

the histogram in Fig. 2-5. Of these 146 studies reported, 91 report better than 90% accuracy,

37 report results better than 95%, and 11 report results of 100% accuracy in classifying human

gestures according to their definition. These results suggest that, at least in terms of accuracy, these

systems are quickly approaching the point at which they would be viable for field use. However,

as noted above, most of these are for random, common human gestures — not command type

gestures that would be used in flight deck operations. Song et al. are building a gesture-recognition

system specifically for this purpose, which requires tracking not only the human, but tracking the

arms and hands independently in order to understand different hand position (thumbs up/down,

hand open/closed) (Song et al., 2012). This is a significantly more difficult task, and many of

the motions are quite similar to one another, at least for the algorithms that track and describe

motion. Currently, their system reports accuracies near 90%, but at a three-second computational

time. Results for other systems using simpler data sets in the literature vary significantly, ranging

from sub-second to up to ten seconds. Given that these systems are also using relatively “clean”

data — stable background environments, little to no visual occlusion of the human being observed,

no sun glare — for these simple and small gesture sets, these fast computational times and high

accuracies are not likely to occur in flight deck operations.

While substantial work is still needed for these systems, they may provide a more suitable re-

placement for manual control vehicles than remotely teleoperated systems. Additionally, further

increases in vehicle autonomy might enable further increases in performance while also removing

some of the potential failure modes of gesture control systems. Centrally networking vehicles to-

gether, relying on shared sensor data rather than visual perception, enables new capabilities and

efficiencies in behavior unavailable for other types of vehicles. These are referred to as “human su-

pervisory control” systems and grant a single operator the ability to control many vehicles at once.

They are discussed in the next section.
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Figure 2-5: Histogram of accuracies of gesture control systems.

2.2.4 Human Supervisory Control of Unmanned Vehicles

While the term “supervisory control” may be applied to any of the systems described in this chapter,

for the remainder of this thesis, the term will refer solely to systems where a single human operator

controls one or more highly-autonomous vehicles through the use of a computerized display and

GUI. In such systems, operators issue abstract task commands, such as “go to this area and look

for a vehicle” to the unmanned platform; the platform is then capable of determining where it

currently is, how to navigate to the area of interest, and how to execute the monitoring task on

its own, possibly to the point of alerting the operator when something of interest has occurred.

Typically, this requires substantial intelligence onboard the vehicle, including a variety of high-

fidelity sensors to observe the world (GPS, LIDAR, and other range and sensing systems), cameras,

and high-accuracy inertial measurement devices, along with high-powered computer systems running

intelligent planning algorithms to handle vehicle motion and translate operator commands into low

level control inputs. Because of the capabilities of these vehicles, operators are no longer constrained

to operating one vehicle at a time and can issue commands to multiple vehicles for simultaneous

execution. For these systems, the human operator is more of a “supervisor” of the actions of the

largely-independent vehicles, rather than a “controller” or “operator.” The tasks performed by this

supervisor are dependent on exactly how capable the vehicles are: how many tasks can be assigned to

them at a given time, how reliability they execute those tasks, and how often they require additional

instructions.

Typically, the GUIs for these systems moves utilizes a system-centric, map-based representation

(see (Trouvain, Schlick, & Mevert, 2003; Roth, Hanson, Hopkins, Mancuso, & Zacharias, 2004;

Malasky, Forest, Khan, & Key, 2005; Parasuraman, Galster, Squire, Furukawa, & Miller, 2005;

Forest, Kahn, Thomer, & Shapiro, 2007; Rovira, McGarry, & Parasuraman, 2007) for examples),

rather than a vehicle-centric one, to provide supervisors with sufficient Situational Awareness (SA)
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of the vehicles and states of the world. In many cases, a representation of the system schedule

is also utilized, providing SA on the current state of vehicle task execution and when they may

require operator intervention (see (Howe, Whitley, Barbulescu, & Watson, 2000; Kramer & Smith,

2002; Cummings & Mitchell, 2008; Calhoun, Draper, & Ruff, 2009; Cummings, How, Whitten, &

Toupet, 2012) for examples). Beyond these features, there are two broad ways of classifying how

the operators provide tasks to the vehicles. The first form is referred to as Vehicle-Based Human

Supervisory Control (VBSC), in which supervisors supply commands to a single vehicle at a time,

working iteratively through the queue of vehicles waiting for instruction. These systems require

operators to define tasks (Malasky et al., 2005; Ruff, Narayanan, & Draper, 2002; Ruff, Calhoun,

Draper, Fontejon, & Guilfoos, 2004; Cummings & Mitchell, 2005; Ganapathy, 2006; Cummings &

Guerlain, 2007) or destinations (Trouvain et al., 2003; Calhoun et al., 2009; Dixon & Wickens,

2003, 2004; Dixon, Wickens, & Chang, 2005; Olsen & Wood, 2004; Crandall, Goodrich, Olsen, &

Nielsen, 2005; Cummings et al., 2012) for vehicles, possibly in terms of a preprogrammed travel

route. As the autonomy onboard the vehicles now handles low level control, operators might also

attend to additional tasks, such as error and conflict resolution (Cummings & Mitchell, 2005) or

target assignment and identification (Rovira et al., 2007; Calhoun et al., 2009; Ruff et al., 2002;

Cummings et al., 2012; Wright, 2002; Kaber, Endsley, & Endsley, 2004). The performance of the

system as a whole is dependent on the supervisor’s service rate and whether or not they can keep

up with the incoming rate of tasks from vehicles, which in turn is dependent on the aforementioned

vehicle capabilities. Past research has shown that operators can control up to eight ground vehicles

or twelve aircraft at a time (Cummings & Mitchell, 2008), suitable for a flight deck where no more

than 8-12 vehicles are taxiing at once.

Controlling more than eight to twelve vehicles can be more effectively achieved through the

inclusion of additional autonomy in the system, although not on the vehicles themselves. System-

Based Human Supervisory Control (SBSC) systems utilize intelligent planning algorithms to assist

the human supervisor in replanning tasks for many vehicles simultaneously (see (Roth et al., 2004;

Forest et al., 2007; Howe et al., 2000; Kramer & Smith, 2002; Cummings et al., 2012; Ryan,

Cummings, Roy, Banerjee, & Schulte, 2011; Anderson et al., 1999; Parasuraman, Galster, & Miller,

2003; Bruni & Cummings, 2005) for examples). In these systems, the supervisor is interacting with

a planning algorithm, providing guidance in terms of the desired performance of the schedule in

the form of both performance goals and constraints on activities. The algorithm then attempts to

optimize all tasks for all vehicles in accordance with these inputs. Replanning typically occurs in

three different instances – pre-mission planning (Howe et al., 2000; Kramer & Smith, 2002; Kaber,

Endsley, & Onal, 2000; Scott, Lesh, & Klau, 2002) that creates a schedule prior to any vehicle

activity, event-based replanning (Roth et al., 2004; Ruff et al., 2002; Cummings & Mitchell, 2005;

Ganapathy, 2006; Kaber et al., 2000) that requires new schedules after certain events (like failures)
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occur, and dynamic replanning (Cummings et al., 2012; Ryan et al., 2011; Cummings, Nehme,

& Crandall, 2007; Ryan, 2011; Maere, Clare, & Cummings, 2010), where supervisors create new

schedule periodically to increase the overall performance of the system. The latter case is needed

because the information and uncertainties in information used to create the original schedule evolve

over time; the expected performance of the schedule degrades over time as new uncertainties emerge

and the environment as a whole changes.

Very few instances of field testing of human supervisory control systems have occurred because, in

most cases, the level of autonomy required of such systems is not yet feasible for real world conditions.

In the few cases that have been observed, they have not included any empirical comparison to other

control architectures. The papers referenced within this section provide a rich set of examples of

how these systems can be architected, along with an understanding of the level of accuracy required

for these systems to be functional, but there is no empirical data with which to ground a definition

of vehicle task performance in the world. The data provided in this section can be used to create a

general model that describes how these various unmanned vehicle architectures are defined within the

world. This framework can then serve as a guide for simulation development and help to clarify what

the differences in performance among systems might be. Such a model is described and constructed

in the next section, followed by a discussion about how such a model might be translated into a

simulation environment.

2.2.5 A Model of Control Architectures

This section began with an overview of several different forms of “control architectures” defining

how human operators and supervisors control Unmanned Vehicles (UxVs), describing changes in the

architectures in terms of operator location, operator control inputs, and operator input modality

(Fig. 2-2). Those sections provided details on the different types of architectures, describing vari-

ations in performance and implementation that result from the changes listed in Fig. 2-2. Where

possible, the expected performance of the architecture was described quantitatively in terms of prior

research results. However, a significant missing piece in prior research is an empirical comparison of

the different control architectures to one another. These comparisons have typically been pairwise

in nature, with no research located that provides comparisons of the full spectrum of unmanned

vehicle control architectures. The near complete lack of empirical tests of HSC systems in field

trials also leaves a substantial gap in comparing system performance. However, we can still describe

relative comparisons between the different control architectures given a basic understanding of the

tasks required of HMUE domains.

In this dissertation, five specific unmanned vehicle control architectures are defined for the air-

craft carrier flight deck based on the overview provided in the previous sections. In addition to a

baseline of Manual Control (MC), models of Local Teleoperation (LT), Remote Teleoperation (RT),
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Gestural Control (GC), Vehicle-Based Human Supervisory Control (VBSC), and System-Based Hu-

man Supervisory Control (SBSC) are created and described in terms of their differences from MC.

LT systems describe systems that are teleoperated, but where communications latencies are very

small and not noticeable by the operator. These operations are largely the same as Manual Control,

but will have restrictions on the operator’s ability to observe the world through the vehicle’s cam-

eras. RT systems do include a noticeable latency in communications, which should result in higher

error rates in task execution as well as other changes in operator strategy in executing tasks. GC

is utilized as the advanced form of teleoperation as opposed to voice-recognition, as the significant

noise level of aircraft carrier operations makes any vocal communication extremely difficult. GC

replaces the human operator entirely, but should result in increased chances of failing to sense the

environment, of failing to select the correct response given certain inputs, and in executing tasks in

the world.

For each of these three unmanned vehicles control architectures (LT, RT, GC), control inputs

are provided by individual, decentralized operators as opposed to the single, centralized controller

that provides control inputs to all vehicles in Vehicle-Based Human Supervisory Control (VBSC)

and System-Based Human Supervisory Control (SBSC) systems. VBSC operators assigning tasks

to individual vehicles in series and SBSC operators utilizing a planning and scheduling system to

replace all tasks for all vehicles simultaneously. For VBSC systems, a model of operator interaction

times for defining tasks must be included, as well as a queuing policy for prioritizing aircraft.

Figure 2-6 provides an overview of the six key variables (rows) that define the differences between

the manual control and the five unmanned vehicle control architectures (columns in the figure).

Chapter 5 will re-examine these variables and provide additional detail on their definitions for

models of flight deck operations. The source of control inputs appears in the first row in the figure,

defining whether commands are provided by a central operator (the two supervisory control systems)

or from decentralized, individual operators. The ability of a vehicle to sense and perceive the world

appears in the second line, given as a probability of failing to recognize specific elements in the

world. For MC, LT, RT, and GC systems, this is a primarily visual process requiring a human

pilot and/or a set of cameras on the vehicle. The third row in the figure describes how, based on

that visual information, the operator or vehicle’s ability to select the appropriate response based on

those inputs. The two supervisory control systems would be networked to the central system and

acquire information on the world through other means, thus making the sense/perceive and response

selection elements not applicable. The fourth line describes the ability of the vehicle in the world to

execute a task once selected for execution, in terms of a probability of failing to properly complete

that task.

The final two rows are physical constraints based on the design of the system. The Field of

View variable relates to systems relying on human eyesight (MC) and/or using cameras onboard the
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Figure 2-6: Variations in effects of control architectures, categorized along axes of control input
source, sensing and perception failure rate, response selection failure rate, response execution failure
rate, field of view, and sources of latency.

vehicle (LT, RT, and GC), describing how much of the environment is visible at any given time. This

parameter is also not applicable for VBSC and SBSC systems, given their reliance on the central

network. The final variable corresponds to the types of latencies present in vehicles operations. RT

systems include the latency in signal communications, GC systems include computational delays as

well as the potential for repeated time penalties due to failures, and VBSC include delays due to

waiting in the operator queue.

The remaining knowledge required to model these various control architectures is a representation

of the Heterogeneous Manned-Unmanned Environment (HMUE) and its safety protocols, linking dif-

ferent agents and actors together through the passage of information between agents and elements of

the system. In this case, the transmitted “information” includes direct commands from the operator

to the interface then to the vehicles, interactions between humans and vehicles while collaborating

on tasks, and the effects of tasks on the world at large. Figure 2-7 contains this aggregated model

describing Heterogeneous Manned-Unmanned Environments (HMUEs), based on the descriptions

of the control architectures in the previous sections and an understanding of the environments in

which they work. The intent of this framework was not to abstract away from the details of these

environments; rather, the goal was to include all details together into a single cohesive framework

that can capture any of the control architectures described in this chapter.

The core of the diagram is the Human Supervisor block in the upper center of the figure. The

Human Supervisor communicates with the Supervisory System block and its potential components

in a process of Activity Selection, defining tasks and actions for vehicles to take. In this, the operator
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Figure 2-7: Aggregate architecture of manned-unmanned environments.

performs the same processes described in Fig. 2-3 and Fig. 2-4, acquiring information on the current

state of the world and using it to determine tasks that agents under the supervisor’s control should

accomplish. The contents of this supervisory control block may vary substantially, given the form of

control architecture involved. All, broadly, involve the definition of “Activities” for agent to execute,

an assignment of these activities to individual Task Queues, which the agents then independently

execute in the world. For Local and Remote Teleoperation, individual UAV operators determine

activities for their vehicles, hold the tasks within their own mental task queue, and are responsible

for executing the tasks in the queue. In Supervisory Control systems, this process might instead

involve the operator defining Activities for the system, which are stored in a Global task queue before

being assigned to individual vehicles by a planning algorithm. In a VBSC system, the operator may

perform a similar process without the aid of the planning algorithm.

Once activities and tasks are assigned, the task queues are executed by Human Crew, Manned

Vehicles, and Unmanned Vehicles in the world (this is a replica of Fig. 1-1 in Section 1.1). This

occurs collaboratively within one another within the Environment, under the auspices of the Safety

Protocols that govern their behavior. Additionally, though not discussed previously, are two addi-

tional groups of agents whose are not actively assigned tasks: “Bystanders” that are expected to
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be involved in operations and “Interlopers” that are not. It is up to the humans and vehicles in

the system to observe and account for these other classes of agents. As agents complete tasks in

the Environment, they generate System Events that have ramifications in the world — tasks are

completed, resulting in changes in the world and in the system itself — and are affected by Vehicle

Events, such as failures, that affect a vehicle’s ability to perform tasks. World Events, exogenous

to the system and outside the control of the Supervisor or the Agents in the Environment (such as

weather, changes in operational priorities, etc.) might also occur and lead to changes in the system.

Both System and World Events must also be displayed to the Supervisor so that they might employ

their best judgment in guiding the system.

This framework should be considered as a roadmap for modeling a number of HSC systems

within a simulation environment — to appropriately examine a control architecture’s performance,

the appropriate elements from the framework diagram in Fig. 2-7 should all be modeled within the

simulation environment. In general, this diagram is a recharacterization of Sheridan’s original HSC

loop shown in Fig. 2-4, with extensions made to include various possible pathways for assigning tasks

to vehicles and including the interaction of the vehicle with the world, both necessary for correctly

modeling the effectiveness of unmanned vehicle systems in the real world. Key to this diagram

is the idea that control of unmanned vehicles is a process of transferring information in terms of

commands, activities, states, and performance data. Given information on the state of the world,

supervisors assign tasks to vehicles, which require other environment on the state of the world in

order to execute their tasks appropriately. These vehicles work independently, each making its own

observations of the world and executing tasks individually based on these observations. Human

collaborators and manned vehicles work similarly, simultaneously, and in a decentralized fashion.

Because these actions occur in the same shared space, the actions of one vehicle affects the actions

of all others. Safety protocols are also put in to place, affecting the behavior of all vehicles in the

system and forming an additional constraint in the logic and actions of agents. A proper simulation

of these environments should include all of these features, adequately replicating how agents in the

world independently observe, decide, and act. In total, these suggest the use of an Agent-Based

Simulation (ABS) environment, whose properties and past work are discussed in the next section.

2.3 Modeling Heterogeneous Manned-unmanned

Environments

The previous sections have outlined how both safety protocols and control architectures act to affect

the performance of actors in a Heterogeneous Manned-Unmanned Environment (HMUE). Safety

protocols serve to constrain behavior in order to preserve a safe system state, while control archi-

tectures change the level of performance of the vehicles within the environment, with or without

the presence of the safety protocols. The combination of these two factors contributes to the per-

69



CHAPTER 2. LITERATURE REVIEW

formance of the entire system. Because each of these elements affects vehicle behavior, the type

of simulation environment used in modeling HMUEs must also address individual vehicle behavior.

This section discusses the applicability of Agent-Based Simulation (ABS) modeling to model human

and unmanned vehicle behavior in Heterogeneous Manned-Unmanned Environment (HMUE).

ABS modeling is a relatively new modeling technique that focuses the on the actions of the indi-

vidual, specifically on decision making, motion, and situational awareness in the world (Bonabeau,

2002). ABS models are based on the assumption that if the behavior of actors and their interactions

with the world and with one another are accurately modeled, the simulation should evolve in the

same fashion as in the real world. ABS methods are most appropriate when the actions of individuals

have significant repercussions within the system, either in terms of motion in the world or in terms

of strategic decision-making. In such systems, developing closed-form solutions that describe the

interarrival rates at processing servers (as required for discrete-event simulations) may be difficult,

if at all possible. Furthermore, in such systems, the interarrival rates may not be independent and

identically distributed, a primary assumption in the development of the model.

Similar issues are faced with systems dynamics models; mapping the complex interactions be-

tween agents physically in the world to the stocks and flows required to define the model may be

incredibly difficult. Even if these could be accomplished, it is difficult to know how changes to the

parameters that describe unmanned vehicle control architectures alter these characteristic, closed-

form equations for different systems. Agent-based models offer an alternative approach and have

seen wide use in the biology, economics, and sociology domains due to their ability to capture the

emergent behaviors that occur in these systems (Epstein, 1999).

The nature of the safety protocols (which affect individual decision-making, motion, and behav-

ior) and control architectures (which affect individual behavior and ability to follow safety protocols)

in HMUEs makes them candidates for modeling in an agent-based simulation. The remainder of this

section reviews a variety of studies that involved modeling aspects of HMUEs in order to demonstrate

the utility of ABS models for this dissertation. This is not intended to be a comprehensive review of

the content of agent-based models nor of techniques in their development; for the latter, the reader

is directed to Heath et al., who provide a review of 279 ABS over the decade ending in 2008 (Heath,

Hill, & Ciarallo, 2009). The intent, rather, is to provide a review of studies that demonstrate similar

characteristic to the HMUEs of concern in this work; the first section reviews agent-based models of

both human and unmanned vehicle behavior, followed by a review of agent-based models for testing

the effectiveness of safety protocols.

2.3.1 Models of Human and Unmanned Vehicle Behavior

ABS models have been used extensively in the biology, economics, and sociology domains because

of their ability to independently model human behavior and demonstrate the nonlinear and emer-
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gent properties expected from these domains (Bonabeau, 2002). Agent-based models have also ap-

peared within the health (Kanagarajah, Lindsay, Miller, & Parker, 2008; Laskowski & Mukhi, 2008;

Laskowski, McLeod, Friesen, Podaima, & Alfa, 2009), automotive (traffic) (Peeta, Zhang, & Zhou,

2005; Eichler, Ostermaier, Schroth, & Kosch, 2005; Kumar & Mitra, 2006; Lee, Pritchett, & Corker,

2007), and military fields (Gonzales, Moore, Pernin, Matonick, & Dreyer, 2001; Bonabeau, Hunt, &

Gaudiano, 2003; Lauren, 2002) for the testing of different tactics, behaviors, and system capabilities.

General models of human crowd motion have been developed (Hu & Sun, 2007; Carley et al., 2003;

Patvivatsiri, 2006; Helbing et al., 2000) in addition to models of human decision-making (Sycara &

Lewis, 2008; Edmonds, 1995; Macy & Willer, 2002; Tesfatsion, 2003; Edmonds, 2001).

Models examining human behavior have typically used two different frameworks: explicitly

changing the behavior of individual actors or changing the environment in which actors behave

(or both). The latter may include physical changes to the environment, or changes in the num-

ber of agents, resources, of activities that are available in the system. Studies in the health field

for emergency room performance (Kanagarajah et al., 2008; Laskowski & Mukhi, 2008; Laskowski

et al., 2009) have addressed how different staffing protocols affect the ability of the ER to process

patients. Studies in the automotive (traffic) and aerospace (air traffic control) domains (Peeta et al.,

2005; Eichler et al., 2005; Kumar & Mitra, 2006; Lee et al., 2007) have examined how changes in

both the behavior and the awareness of human operators affect accident rates. Models of airport

terminals (Schultz, Schulz, & Fricke, 2008) and emergencies in buildings and aircraft (Zarboutis &

Marmaras, 2004; Sharma, Singh, & Prakash, 2008; Pan, Han, Dauber, & Law, 2007; Batty, Desyllas,

& Duxbury, 2003; Chen, Meaker, & Zhan, 2006; Hu & Sun, 2007; Carley et al., 2003; Patvivatsiri,

2006) have examined how changing the physical environment affects the ability of individuals to

move through the environment quickly and efficiently.

Military research has addressed similar elements, examining decision-making and performance

in novel command and control methods (Gonzales et al., 2001; Bonabeau et al., 2003), military

operations (including operations-other-than-war, OOTW; see (Milton, 2004; Hakola, 2004; Efimba,

2003; Erlenbruch, 2002) for examples), and team performance (Sycara & Lewis, 2008). These studies

have all addressed understanding the behavior of actors in the world under circumstances not easily

observable in the world. A similar task is done in the work in this dissertation — modeling HMUE

environments for the purposes of investigating the effects of varying safety protocols and control

architectures.

These studies have not, however, addressed any combination of UAV control architecture or safety

protocols, although each of these has been modeled individually. Agent-based modeling of UAVs has

been used to validate implementations of novel control or collaborative sensing algorithms (Lundell,

Tang, Hogan, & Nygard, 2006; Rasmussen & Chandler, 2002; Liang, 2005; Chen & Chang, 2008;

Mancini et al., 2008; Cicirelli, Furfaro, & Nigro, 2009; Rucker, 2006). These studies have primarily
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addressed systems involving the collaboration of multiple vehicles in performing system tasks, such

as searching for and tracking targets. Another common, and related, area of interest is in the

modeling and control of UAV “swarms” (large, coordinated groups of robots coordinating on a

specific task) (Ho, 2006; Corner & Lamont, 2004; Munoz, 2011; Vaughn, 2008). Both swarms and

cooperative search require agents to sense the world and make individual decisions, making them

candidates for agent-based modeling. In cooperative search, agents make decisions on how best to

achieve the overall system goal via the partitioning of tasks among the vehicles in the system (for

example, tracking multiple targets individually). Swarms typically consider how best to collaborate

on a single task, such as tracking a single target over many hours. Agent-based models have also

been built to test unmanned vehicle survivability (McMindes, 2005; Weibel & Hansman Jr., 2004;

Clothier & Walker, 2006), single UAV search (Schumann, Scanlan, & Takeda, 2011; Steele, 2004),

and the performance of intelligent munitions (Altenburg, Schlecht, & Nygard, 2002), each of which

involves modeling the effectiveness of individual awareness and behavior.

Human interaction with unmanned vehicles is an additional domain whose characteristics make it

a candidate for ABS modeling. However, little work has been done on this topic overall. The studies

that have been observed to include human models of reasonable fidelity fall into two categories –

discrete event models for cognitive processing or mathematical estimates of how many vehicles a

human operator can manage (the “fan-out” problem). The first topic attempts to build models

of how human operators cognitively interact with unmanned vehicle control systems, using data

from experiments to build representative models of behavior that can be repeatedly tested (Nehme,

2009; Mkrtchyan, 2011; Mekdeci & Cummings, 2009). The latter topic attempts to build definitive

equations that describe the maximum number of vehicles a human operator can attend to in the

environments (Olsen & Wood, 2004; Cummings et al., 2007; Cummings & Mitchell, 2008). However,

none of the references listed here include any concern for safety protocols active in the environment,

nor do they address alternate vehicle control methods or human interaction outside of control.

Agent-based models addressing safety protocol performance are discussed in the next section.

2.3.2 Agent-Based Simulations of Safety Protocols

The action of safety protocols to modify actor behavior is especially appropriate for agent-based

models, but few simulations have been built for the exploration of the effectiveness of safety proto-

cols. These studies come primarily from two environments: traffic safety (Archer, 2004; Wahle &

Schreckenberg, 2001; Paruchuri, Pullalarevu, & Karlapalem, 2002; Yuhara & Tajima, 2006; Gettman

& Head, 2003) and airspace safety (Pritchett et al., 2000; Xie, Shortle, & Donahue, 2004; Blom,

Stroeve, & Jong, 2006; Stroeve, Bakker, & Blom, 2007). Traffic safety models have focused both

on driver interactions at intersections (Archer, 2004) and highway traffic (Wahle & Schreckenberg,

2001; Paruchuri et al., 2002). Airspace safety analyses have dealt both the national airspace sys-

72



CHAPTER 2. LITERATURE REVIEW

tem in general (Pritchett et al., 2000) as well as more localized models of runway interactions at

airports (Xie et al., 2004; Blom et al., 2006; Stroeve et al., 2007).

As with the references in the earlier section, these environments are all characterized by agents

acting independently in terms of certain objectives. In these studies, human drivers are left to act

independently, with researching examining how changes in the behavior of drivers affects accidents,

near-accidents, and efficiency on the roadway (Archer, 2004; Wahle & Schreckenberg, 2001; Paruchuri

et al., 2002; Yuhara & Tajima, 2006). Airspace safety simulations have also investigated how changes

in behavior affect the system. In these cases, however, the behavior in question is not only that of

the pilots in the aircraft (Blom et al., 2006; Stroeve et al., 2007), but also that of the air traffic

controllers that provide structure to the environment in terms of scheduling and routing (Xie et al.,

2004).

Interestingly, no studies have considered the testing of safety protocols for unmanned vehicles

in heterogeneous manned-unmanned environments, even though the prior work referenced in this

section provides successful examples of human, unmanned vehicle, and safety protocol modeling.

The likely reason for the absence of literature on the modeling of safety protocols in HMUEs is the

relative immaturity of these systems; few examples of these environments exist in the real world.

Additionally, substantial hurdles also exist in terms of implementing these environments in public

domains. In most cases, researching human control of unmanned vehicles or the performance of the

autonomous control systems takes precedence over modeling the implementation of the vehicle in

the system. However, modeling the behavior of the vehicle in the system operating under a variety

safety protocols may better inform the design of the human interaction with and control algorithms

embedded within the unmanned vehicles. If increased autonomy on the vehicle provides no tangible

benefits in terms of safety or productivity, it may not be worth the investment on behalf of the

institution funding the project.

2.4 Chapter Summary

This chapter first reviewed literature regarding the nature of safety protocols and how they are

applied to unmanned vehicles systems. In this section, a set of four primary classes of safety “princi-

ples” were described, providing general guidance in the implementation of safety protocols for future

systems. The second section reviewed different forms of human control of unmanned vehicles, moving

from teleoperated to more advanced systems and comparing them to the baseline of manual human

control. From these, a general model of performance was created, as well as a general framework

describing the relationships and flow of information between elements of Heterogeneous Manned-

Unmanned Environments (HMUEs). The last section reviewed how agent-based modeling can be

used in creating simulation models of these HMUEs and prior work in modeling human/unmanned

vehicle behavior and safety protocols usage and performance.
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Chapter 3

Model Development

This chapter describes the process by which aircraft carrier flight deck operations, a representative

Heterogeneous Manned-Unmanned Environment (HMUE), is modeled through Agent-Based Simu-

lation (ABS) techniques. The aircraft carrier flight deck is selected for two primary reasons. First, it

is a form of heterogeneous manned environment, where human collaborators work in close physical

proximity to manned aircraft and other manned vehicles. More specifically, aircraft on the flight

deck are fueled, equipped, and given taxi instructions by crew traversing the flight deck on foot.

These crew communicate with pilots, supervisors, and each other to coordinate activities on the

flight deck. Second, the Navy is actively researching the development of unmanned fighter aircraft

(and other unmanned vehicles) that would be integrated directly into deck operations. In fact, the

Navy recently conducted shipboard flight testing of one such vehicle (Hennigan, 2013).

As described by Eric Bonabeau, agent-based modeling is as much a perspective as it is a methodol-

ogy (Bonabeau, 2002). Whereas the use of discrete-event or systems dynamics models elicits specific

representations of structure and constituent components, agent-based models may vary widely in

content and in methods of application. Chapter 2 previously provided a list of examples of agent-

based simulation models, ranging from transportation systems involving both ground and aerial

vehicles to human decision-making to medical systems involving human motion and scheduling.

What matters is that, in each case, the agent-based modeling paradigm views the world “from the

perspective of its constituent units” (Bonabeau, 2002)— that the agents retain the same indepen-

dence and employ similar decision-making strategies as the real-world entities they are intended to

replicate. The agents are then placed into the simulated environment, given a set of goals (which

may be self-generated during the simulation), and allowed to make decisions independently from that

point forward. A canonical example is that of Epstein and Axtell’s work on artificial ant colonies,

the topic of their book “Growing Artificial Societies” (Epstein & Axtell, 1996). In Chapter 1 of

their book, they describe that their models include: (1) “agents,” the active entities in the system,
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comprised of a sets of internal states and behavioral rules; (2) the environment they act within; and

(3) an object-oriented implementation, which preserves the independence of the agents and their

behaviors. Rules defined for each individual artificial “ant” describe under what conditions they

move within the world, based on the amount of sugar they “see” in nearby locations in the grid

world they exist within. The world is initialized with both a population of virtual ants (which may

appear in random locations) and a topography of virtual sugar that the ants seek out. From this

initial configuration, the simulation is allowed evolve based solely on the rules defined for agents

(the “ants”) and the environment.

This general template — independent agents modeled in an object-oriented fashion, containing

sets of states, parameters, behavioral rules, initialized into a world and allowed to evolve over time —

is applicable to all ABS and forms the basis of the Multi-Agent Safety and Control Simulation

(MASCS) model described in this work. The remainder of this chapter describes how the different

elements of MASCS are modeled, addressing the environment, agents, states, parameters, and rules

that populate the system. This modeling focuses on aircraft carrier launch operations, in which

upwards of 20 aircraft are taxied from parking spaces to launch catapults with the assistance of

multiple crew, and whose assignments are planned by supervisors on the flight deck. The next

section provides a description of flight deck launch operations, characterizing the specific agents

required, the tasks they are responsible for planning and executing, and important relationships and

interactions amongst agents in the system.

3.1 Modern Aircraft Carrier Flight Deck Operations

The modern aircraft carrier flight deck is sometimes described as “organized chaos” (Roberts, 1990);

it is a complex environment that requires a variety of simultaneous interactions between crew and

vehicles within a shared and densely populated physical space, making it difficult to know how the

actions of one individual may impact future operations. Multiple vehicles are active simultaneously,

their actions governed by a network of human crew attempting to execute a flight plan developed by

their supervisor, the Deck Handler. The pilots manning the aircraft receive instructions from crew

on the flight deck via hand gestures; these crew dictate all tasks given to the pilot — move forward,

stop, turn, unfold wings, open fuel tank, and many others — and work together as a team to move

aircraft around the flight deck. The crew work in a form of “zone coverage,” with a single Aircraft

Director guiding an aircraft through his assigned area before passing it on to another Director in

an adjacent zone on the way to the aircraft’s assigned catapult. Four different launch catapults are

available for use (two forward and two aft), but do not work completely in parallel and may be

periodically inaccessible due to aircraft currently parked or transiting through the vicinity. Once an

aircraft arrives at a catapult, the pilot and crew complete preparatory tasks for launch after which

the aircraft is accelerated down the catapult to flight speed and into the air. Launch preparation
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requires that several manual tasks be performed in parallel by multiple crewmembers. The aircraft

must be physically connected to the catapult, the catapult properly set for the aircraft’s weight,

the catapult then advanced to place the attachment under tension (to prevent the assembly from

breaking when the aircraft is accelerating), and control surfaces on the vehicle tested.

Building an agent-based model of flight deck operations requires modeling each of these aspects —

the movement of crew and vehicles on the flight deck, the execution of tasks (time to complete, failure

rates, etc.), and decision-making on the part of both pilots and other crew. Table 3.1 provides a

list of the primary actors involved in flight deck launch operations and their roles in executing

operations, each of which must be properly modeled in order to replicate flight deck operations.

Table 3.2 provides a list of the primary resources used by those actors, which may require rules

describing when and how then can be used, or may be referenced by other decision-making rules.

The remainder of this section describes these roles more fully and provides additional information

regarding the important parameters and decision-making functions required by each.

A digitized map of the flight deck appears in Figure 3-1. Labels in the figure highlight the

features of the flight deck relevant to launch operations. Four launch catapults (orange lines) are

used to accelerate aircraft from a stationary position to flight speed and into the air. The catapults

are numbered one to four, from right to left (starboard to port) and forward to back (fore to aft). A

single landing strip (parallel green lines) is the lone runway for recovering aircraft. During landing

(“recovery”) operations, four steel cables, called arresting wires, are laid over the aft area of the

landing strip; aircraft must catch one of these wires with their tailhook in order to land. Note that

the landing strip occupies the same space as the aft catapults, Catapults 3 and 4. As such, only

one form of operations can occur in this area at any time — the deck is either landing aircraft or

launching them from this area, and switching between operations introduces a time cost due to the

Table 3.1: List of actors involved in flight deck operations and descriptions of their primary roles in
deck operations.

Agent type Role

Aircraft/Pilot Primary agent in launch operations; goal of flight deck system is to launch
all aircraft in minimum possible time

Aircraft Director Relays instructions on task execution (primarily taxi) to Aircraft/Pilot
Deck Handler Responsible for scheduling launch assignments and arranging aircraft on

flight deck

Table 3.2: List of resources involved in flight deck operations.

Resource type Role

Catapult Resource used by aircraft in launching from the deck
Parking Spaces Parking locations on the flight deck allocated to aircraft at the start of

operations.
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need to prepare the related equipment.

Each catapult is capable of launching a single aircraft at a time, but the four catapults are not

able to operate in parallel for two reasons. The first is that a single set of crew operates each pair of

catapults and can only manage one catapult at a time. The second, and more important, is that the

catapults are angled towards one another — simultaneous launches would result in a collision and

loss of both aircraft. This necessitates that the catapults alternate launches within each pair. The

separate pairs can process in parallel, although they still try to avoid simultaneous launches (but a

spacing of a few seconds is allowable).

Each catapult can queue two aircraft at a time in the immediate area — one on the catapult

preparing for launch and a second queued safely behind a jet blast deflector that raises from the deck

prior to launch. This process of queuing is an important feature in the planning and implementation

of the schedule of launches. Queuing aircraft at catapults minimizes the time between launches, as

the next aircraft is already at the catapult ready to begin its launch preparations. Queuing also

forms a major constraint in terms of planning — once a catapult has two aircraft assigned to it,

all available slots are filled. Aircraft needing to launch must be sent elsewhere, or must wait for an

opening at this, or another, catapult.

The process of launching an aircraft requires that several tasks be done in parallel. Physically,

the aircraft must taxi forward on to the catapult, aligning its front wheel (nose gear) with its

centerline. The nose wheel is then physically attached to the catapult mechanism (the “pendant”);

while this is occurring, other crew are confirming the aircraft’s current fuel level and total weight

so as to properly calibrate the catapult for launch. The pilot will also complete a set of control

surface checks to ensure that the ailerons, elevators, and rudder are all functioning. Once all of

Figure 3-1: Digital map of the aircraft carrier flight deck. Labels indicate important features for
launch operations. The terms “The Fantail” and “The Street” are used by the crew to denote two
different areas of the flight deck. The Fantail is the region aft of the tower. The Street is the area
forward of the tower, between catapults 1 and 2 and starboard of catapults 3 and 4.
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these actions are complete, the catapult is triggered and the pendant begins pushing the nose gear

and the aircraft forward up to flight speed. Once the launch is complete, the jet blast deflector is

lowered, the next aircraft is taxied forward onto the catapult, and another aircraft is taxied behind

the jet blast deflector. Within MASCS, catapults will be modeled as independent agents, just as

the crew and aircraft. The nature of catapult queuing, constraints on launches between adjacent

catapults, and the nature of the preparatory tasks and action of accelerating down the catapult are

all important features that must be modeled within the MASCS environment.

The goal of the crew in managing the allocation of aircraft to catapults, as well as the management

of the traffic patterns that result, is to make sure that the catapult queues are always fully populated.

At minimum, a second aircraft should always arrive prior to the launch of the aircraft currently at

the catapult. So long as this happens, the deck maintains a high level of efficiency, but ensuring

that this occurs requires both planning of the layout of the aircraft prior to operations and proper

management and assignment of aircraft once operations begin. Figure 3-2 shows one potential layout

of aircraft on the flight deck prior to the start of launch operations; Subject Matter Experts (SMEs)

report the general arrangement of aircraft in the picture to be fairly standard across the carrier

fleet. Importantly, the Deck Handler attempts to make taxi tasks as easy as possible by relocating

as many aircraft as possible from the interior of the flight deck, parking them on the edge of the deck,

and parking them such that they are pointed towards the interior of the deck. However, parking

spaces on the edge of the deck are limited, and some aircraft will be parked in places that obstruct

taxi paths for other aircraft; the five aircraft parked in the interior of the deck in Fig. 3-2 are one

example, as well as the aircraft at the top left of the image. This latter group is parked on top of

one of the launch catapults (Catapult 1), preventing it from being used in operations. While this is

not ideal, these aircraft will also be some of the first sent to launch, eventually freeing the catapult

for use and increasing the flexibility of operations. The aircraft parked in the interior of the deck

(in “The Street”) may also be launched early in the process.

Deck Handlers plan the parking of aircraft on the flight deck with the knowledge of the general

priority in which aircraft should launch. Aircraft highest in the priority list are parked so that they

are the first to depart their parking spaces with as clear a taxi path as possible. The locations

and priority of aircraft, then, form the initial conditions of launch operations. A set of operational

heuristics guides the manner in which areas of the flight deck are cleared during the launch mission.

These heuristics were developed as part of previous work (Ryan, 2011; Ryan et al., 2014), and

Figure 3-3 provides a general guide as to the order in which areas of the flight deck are cleared under

the heuristics. As noted above, aircraft parked in obstructing areas are moved first (labeled as “1’s”

in the figure). Clearing these areas early on clears more taxi paths on the flight deck and increases

the efficiency of operations. At next highest priority is the region near the front of catapult 1 and

an area in the aft of the flight deck called “The Fantail” (Fig. 3-1). This area sits directly on top
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Figure 3-2: Picture of the USS Eisenhower with aircraft parked prior to launch operations. Thirty-
four aircraft and one helicopter are parked on the flight deck (Photo by U.S. Navy photo by Mass
Communication Specialist Seaman Patrick W. Mullen III, obtained from Wikimedia Commons).

of the landing strip. While the current focus of the MASCS model is not on landing (“recovery”)

operations, clearing this area is a priority for the crew. Clearing this area as early as possible allows

any airborne aircraft that require an emergency landing to return to the carrier.

While the figure denotes the general order of clearance of these areas, it is not a strict ordering.

Areas of priority 1 will be cleared first, based on the available catapults and the current geometry

of the deck. Pending the current allocation of aircraft to catapults and where aircraft are currently

parked, some assignments of aircraft to catapults may not be feasible. For instance, if aircraft are

Figure 3-3: (top) Picture of the MASCS flight deck with 34 aircraft parked, ready for launch opera-
tions. (Bottom) General order in which areas of the deck are cleared by the Handler’s assignments.
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parked in The Street (Fig. 3-1), aircraft parked forward cannot be assigned to aft catapults. As such,

the Handler would continue to assign aft aircraft from lower priority areas to the aft catapults to keep

launches happening. If a catapult is open, the highest priority aircraft able to access that catapult

is assigned. The Handler and his staff execute those heuristics dynamically as the mission evolves,

reacting to conditions in real time so as to best compensate for the stochasticity and dynamics of

operations. As such, these heuristics are one of the most important features of the MASCS simulation

and its Deck Handler models. The locations of aircraft prior to launch operations, although a task

of the Deck Handler, are initial conditions and could be modeled as static templates to provide the

same initial conditions across multiple different scenarios.

While the Deck Handler is responsible for determining the parking locations of aircraft prior

to launch operations and in managing the assignment of aircraft to catapults during operations,

the Handler is not an active, moving entity on the flight deck. Rather, he remains within the

Tower at deck level, utilizing a tabletop map of the flight deck and aircraft-shaped metal cut-outs to

determine catapult assignments for aircraft. Given the Handler’s assignments, it is the responsibility

of members of the crew to facilitate the taxiing of aircraft from their parking locations and to their

assigned catapults. The most important members of the crew for these tasks are the yellow-jerseyed

Aircraft Directors, who provide all instructions (taxi commands and otherwise) to pilots during deck

operations. These instructions are provided entirely through hand gestures, using a codified set of

over one hundred individual gestures to describe all possible actions that can be taken (e.g. move

forward, stop, turn left, or unfold wings). To provide some flexibility into operations, Directors work

in a form of “zone coverage” in which the individual Directors each manage a specific area of the

flight deck. Directors taxi an aircraft through their zone before handing off to a nearby Director in

an adjacent zone. This minimizes the amount of travel that an individual Director must do, while

also ensuring that Aircraft always have crew available nearby to provide guidance (that is, they are

not waiting for a Director to return from the far end of the ship).

Pilots are not allowed to take any action independently, except for stopping to avoid an accident.

If a pilot cannot see a Director, they are instructed to stop immediately. To maintain appropriate

lines of sight, Directors align themselves to one of the outside wingtips of the aircraft some distance

away from the aircraft, so that they are visible past the nose of the vehicle. This means that

there is a defined area in the front of the vehicle within which a pilot is looking for his current

Director. If the Director has not gained the attention of the pilot and is not within this area, the

Director will move into this area as quickly as possible. While vehicles are turning, or while moving

forward, Directors may also move in the same direction to maintain their alignment and spacing.

Directors must also coordinate amongst the team to route aircraft through the deck, recognizing

where aircraft are heading, which Directors are adjacent and able to accept incoming aircraft, and

how to properly pass vehicles between one another. They must also monitor nearby aircraft and
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foot traffic to ensure that their aircraft is not taxiing toward a collision, or taxiing to a position in

which they block another aircraft’s taxi path. Along with the Deck Handler’s heuristics, modeling

this “zone coverage” routing is an extremely important feature of the MASCS model, requiring both

an adequate modeling of how aircraft are routed in zone coverage, as well as how crew and pilots

interact during the routing.

Each of the elements described in the previous section — aircraft, crew, and supervisory agents,

their decision-making and coordination rules, the tasks that each perform both individually and

while interacting with others — must be modeled in order to construct an appropriate agent-based

model of flight deck operations. The next section describes this process of generating Agents that

represent the human crew, aircraft (and pilots), the physical flight deck and its equipment, and the

supervisory Deck Handler, Tasks that these agents perform, and Decision-making behaviors that

each work through in the course of the mission. The section begins by describing the nature and

modeling of an “agent” within MASCS.

3.2 Model Construction

As discussed in Chapter 2, agent-based simulation was chosen as the modeling methodology based

on its focus in modeling decision-making and movement of individual actors and information flow

between them, each of which is important in characterizing Unmanned Vehicle (UxV) control archi-

tectures and safety protocol application. These elements also play key roles in modeling crew and

pilot interactions in the unstructured and stochastic environment that is the aircraft carrier flight

deck. As noted at the beginning of this chapter, this requires adequately capturing the decision-

making rules of the agents in the system, as well as the states and parameters required to execute

the decision rules. For modern aircraft carrier flight deck operations, this modeling approach focuses

on the launch phase of operations as described in the previous section, where sorties of 18-34 aircraft

are taxied from their parking spots to one of four launch catapults. While there are other aspects of

aircraft carrier operations that are potentially of interest, none require the same substantial degree

of human interaction with unmanned vehicles and manned vehicles. Only launch operations pro-

vide the largest number of simultaneously active agents and subsequently a high level of interaction

between agents, making it desirable for the forms of safety analyses that are a focus of this work.

Section 3.1 provided a description of the type of agents involved in launch operations, their roles

in planning and executing the mission, and some of the general behavioral rules that govern the tasks

they perform. Each of these aspects must also be captured within MASCS, with a key focus being on

replicating the heuristics of agent behavior and their movement on the flight deck. To capture these

aspects in an object-oriented architecture, MASCS was constructed using the Java programming

language and the Golden T Game Engine (GTGE) Java library1, which controls the updating of

1http://goldenstudios.or.id/products/GTGE/
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agent and animates their motions on-screen. The object-oriented nature of Java allows agents to be

defined independently, allowing rules and states to be defined individually different types of agents.

Agent states may either be defined as static variables (numeric or Boolean), or may be randomly

sampled from continuous distributions. These states are updated as the simulation executes, driven

by the GTGE package; state updates may be based on elapsed time and a rate of change, or by

logical rules that examine the states of the world or other nearby agents. For example, a catapult

cannot operate if aircraft are in a specified caution area around the catapult; the catapult’s update

function continually checks for the presence of any aircraft in this area, halting operations if one

appears. This is a key safety policy on the flight deck, but one that would not likely change so long

as crew are involved in flight deck operations.

The previous section also provided descriptions about the actions taken by crew and vehicles on

the flight deck. These exist alongside the states, parameters, and decision-making processes described

earlier and form the third primary component of the MASCS model. While these elements are unique

to each type of agent in the model, the tasks they perform are independent of any one agent. Actions

are defined as independent objects that can be assigned to any agent in MASCS; rules within each

Action determine, given the assigned agent, their current state, the current state of the world, and a

goal state, what series of tasks must be accomplished to reach the goal state. Actions exist to define

aircraft taxi tasks, refueling tasks, launch (both preparation at and acceleration down the catapult),

landing, and various other events. Agents maintain a list of Actions that they must accomplish; as

agents are updated by the main MASCS program, they in turn update their own Actions. When one

Action completes, the next one begins. The small increments of time applied during each update

and the rate at which updates occurs means that agent actions happen in parallel.

Many of the actions used to describe flight deck operations (taxi, launching, etc.) are categorized

as “Abstract” actions, describing complex tasks occurring on deck. These Abstract actions can in

turn be broken down into combinations of other elemental actions, termed “Basic” actions. These

include behaviors such as “Move Forward,” “Turn,” or “Accelerate:” the smallest decomposition of

physical tasks, barring the modeling internal cognitive processes of humans or individual parts and

components within an aircraft. The relationship between these Abstract and Basic actions can be

explained in the context of Figure 3-4, in which an aircraft parked on the starboard side of the deck

is asked to taxi to catapult 3 and launch. The aircraft would be assigned a Taxi action, a Launch

Preparation action, and a Takeoff action. The Taxi action would declare a goal state of reaching

catapult 3; rules within the action would determine that, given the location of the aircraft, nearby

crew, and the state of the deck, reaching catapult 3 requires four “Move Forward” tasks and three

“Rotate” tasks in the sequence shown. These would be added into the queue of subtasks tin the Taxi

action and executed in series. At the end of the last Basic action, the higher-level Taxi action checks

to see if the vehicle is at the desired goal state: if so, the Taxi action ends. Otherwise, additional
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rules add in new Basic actions in order to reach the goal. The rules within the Abstract actions are

adaptable, capable of automatically solving the motions required for any aircraft at any location on

the flight deck to reach any of the four catapults.

As Basic actions are completed, they are removed from the Abstract action’s queue and the next

Basic action is begun. When the queue is empty, the Abstract action should be complete and, if the

goal state has been achieved, the Abstract action is removed from the agent’s queue and the next

Abstract action (if any) is begun. In the example above, once the Taxi action completes, the Launch

Preparation task would begin, with its rules defining the set of Basic actions that must occur to

satisfy its goal. When an Agent’s action queue is empty, it may either wait for further instructions to

be assigned or its own internal rule base may generate a new action (such as returning to its original

location). This process of defining and executing Actions occurs independently for each Agent in

MASCS, and rules within each agent and task dictate when and how tasks are executed. These

include how vehicles avoid collisions with other vehicles, how Aircraft Directors align to aircraft

in order to be visible, and other aspects that prevent tasks from being executed as designed. A

description of these rules, along with pseudocode for these rules and for several other elements, can

be found in Appendix B.

The individual Basic actions are all based on time, and the execution of a Basic action completes

when the agent has reached the expected execution time. For example, a motion-based task like

driving forward in a straight line can be decomposed into a total time given the agent’s current

position, movement speed, and final destination. The launch acceleration task that models the

motion of an aircraft down a catapult to flight speed can be solved similarly. For these motions

tasks, updating the agent’s position in the world is simply a function of applying elapsed time to

the rate of travel and decomposing the movement in the x- and y-axes along the vehicle’s current

orientation angle. The vehicle’s position is updated incrementally at very small time steps until the

total elapsed time of the motion has elapsed. Other tasks are purely time-based and require no

physical movement form vehicles; these are modeled as randomized parametric distributions, with

Figure 3-4: Example: path, broken into individual actions, of an aircraft moving from a starboard
parking location to launch at catapult 3.
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execution times independently sampled at the start of each task. The most important of these are

the launch preparation task (tasks performed at catapult prior to launch) and the launch acceleration

task (physically accelerating the vehicle down the catapult) described previously. Table 3.3 notes

the parametric distributions for these two tasks, and Appendix C contains the observed times for

completing these actions used to build these distributions (Tables C.2 and C.3).

In summary, the MASCS model of deck operations is comprised of a combination of independent

agents and modularized action classes. Each relies on the definition of internal rules and states

that govern their behavior. These may also reference states within other agents during execution in

order to mimic information gathering and sensing of actions on the flight deck. Actions are assigned

to vehicles, which are updated by the primary MASCS update routine and which in turn update

action execution. A variety of rules dictate when and how actions can be executed, and higher-level

rule bases dictate which of several lower-level decision-making processes should be utilized. The

preceding section has given a broad overview of how MASCS functions but has not discussed the

agent models in any significant detail. The next section describes the relevant rules and states

required for each class of agent models individually, as well as more detailed descriptions of certain

Actions used within the simulation.

3.2.1 Aircraft/Pilot Models

Section 3.1 described the basics of launch operations on the aircraft carrier flight deck. In the

context of flight deck operations, much of the description centered on the interaction between pilots

(seated within their aircraft) and the Aircraft Director crew that provided instructions to them. In

order to model this interaction in the form of the Actions described in the previous section, this

must be broken down into three components: (1) pilots’ visual sensing and perception of Aircraft

Table 3.3: List of primary Actions used in the MASCS mode of launch operations.

Action Description Inputs

MoveForward
(Basic)

Moves aircraft forward in a
straight line between two points

Initial point, destination point,
speed of motion

Rotate (Basic) Rotates aircraft in place across a
given angle

Initial angle, final angle, speed of
rotation

Taxi (Abstract) Navigates aircraft across flight
deck. Iteratively defines motions

and Director assignments

Initial point, destination point,
assigned Director, speed of motion

Launch
Preparation

(Basic)

Replicates series of tasks required
to prepare aircraft for launch

(catapult settings, control surface
checks, physical attachment to

catapult)

Preparation Time
(N(109.648, 57.8032)); see

Appendix C

Acceleration
(Basic)

Replicates acceleration and motion
of aircraft down catapult to flight

speed

Acceleration Time (Lognormal,
µ = 1.005, σ = 0.0962); see

Appendix C
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Directors, (2) pilot comprehension of information and instructions and correct response selection,

and (3) pilots’ execution of the commanded task. Modeling these requires defining a series of states

that relate to these motions (location, heading) and how instructions are being relayed (current

Director assigned to aircraft), parameters related to the motion of the aircraft (such as the field of

view of the pilot and range of speeds), and probabilities regarding failures. Additionally, other task

parameters regarding the execution of the launch preparation and launch acceleration times must be

defined, as well as logic regarding the avoidance of collisions on the flight deck under the Dynamic

Separation safety protocol. A list of these features appears in Table 3.4, and details for each are

provided in this section.

The ability to observe a Director is determined by two things; first, whether the Director is in

an area visible to the pilot, and secondly, whether the pilot actually observes and recognizes the

Director once in that region. The visible area, referred to as the field-of-view of the pilot, is defined

as a state variable describing the angular area in front of the vehicle visible to the pilot. This is

stored within the aircraft class and depicted graphically in Figure 3-5. While a pilot can turn their

head to see a great deal of the deck area (close to 300◦ of radial area) or to signal agreement or

disagreement with instructions, operationally, Directors will attempt to move into and align to an

area in front of aircraft in order to be visible to the pilot within the aircraft. If they are not in this

area, the pilot may not be able to observe their instructions.

Initially, field of view values were at a value of 180◦, but animations of Aircraft Director align-

ments were clearly inappropriate for deck operations. The field-of-view variable for manual control

was judged to perform appropriately at a value of 85◦. As such, Aircraft Directors must be in front

of the aircraft within 42.5◦ of either side of its centerline. This requires specific behaviors on the part

of the Aircraft Directors (an alignment task)2. Once in this area, there is a chance as to whether

or not the pilot visually acquires and recognizes the correct Director. To model such an event, a

static variable relating to the chance of failure is defined for the aircraft agent and referenced when

Director alignment tasks occur. However, while the chance of a failure of Director acquisition may

exist, SMEs report that the likelihood of failing to observe a Director is very low and does not have

a noticeable effect on operations. At this time, it is left at a 0% failure probability.

The ability of pilots to execute tasks involves both defining the time required to complete a task

as well as the probability of failing to execute that task. Just as with the other failure rates, SMEs

judged the likelihood of a pilot failing to properly align to the catapult as a very rare occurrence:

less than once in every 200 launches. When asked, SMEs were comfortable with leaving this as a

0% failure rate. In addition to failure rates, models describing the time required to complete a task

are also required. Two different types of tasks exist, relating to the Basic actions described earlier.

Motion-based actions address vehicle movement on the flight deck — taxiing, turning, accelerating,

2Pseudocode describing both pilot behavior and Aircraft Director alignment appears in Appendix B
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Table 3.4: List of important parameters and logic functions for Aircraft/Pilot modeling.

Feature Description Value

Location (state) Current (x,y) position on deck -
Heading (state) Current orientation angle on deck -

Current speed (state) Current assigned speed sampled from
parametric
distribution

Director assignment status
(state)

Is a Director currently assigned to the
aircraft

True/false

Catapult assignment status
(input)

Is a catapult currently assigned to the
aircraft

True/false

Catapult assignment (input) To which catapult the aircraft should be
taxied

1-4

Aircraft Director assignment Which Director is currently responsible
for giving taxi instructions

-

Current taxi command
(input)

Current task prescribed by Director
(turn, move forward, etc.)

Speed (parameter) Vehicle movement speed on the flight
deck (miles per hour)

N(3.5, 1.02)

Turn rate (parameter) Rate at which vehicles rotate during
taxi operations

18o per second

Field of View (parameter) Area visible to vehicle and to which
Directors align

±42.5o from
centerline

Probability of missing
director command

(parameter)

Likelihood of pilot failing to understand
a task

0%

Probability of failing to
execute task (parameter)

Likelihood of pilot failing to properly
execute a task

0%

Director visibility (logic) Is assigned Director currently in field of
view; if not, stop immediately

-

Dynamic separation (logic) Replicates actions to stop aircraft from
making physical contact

One aircraft length
forward, one

aircraft width
laterally

Forward collision threshold
(parameter)

Minimum safe distance forward One aircraft length

Lateral collision threshold
(parameter)

Minimum safe distance laterally One aircraft width

and stopping. Time-based tasks require no motion, but still require a specific amount of time to

complete; this includes the launch preparation time and the launch acceleration time. Motion-

based tasks require a definition of vehicle speeds, sampled from random distributions to reflect the

variability in operator behavior on the flight deck.

Aircraft taxi speeds were reported by subject matter experts to be equivalent to brisk human

walking speed; this is captured in MASCS as a Normal distribution with mean 3.5 mph and a

standard deviation of 1.0 mph (N(3.5, 1.02)) within a specified range of [3.0, 4.0]. An aircraft’s

speed is sampled randomly from this distribution and assigned at the start of its motion task, then

referenced by the Basic actions to update and animate the motion of the aircraft through the deck.
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Figure 3-5: Diagram of the Director alignment process

The modeled speeds were compared to observations of flight deck operations to verify that they were

relatively accurate; a more formal examination of taxi motion occurs in Chapter 4. Aircraft turning

rates were defined as a static variable at 18 degrees per second (10 seconds to turn 180◦) and were

compared to empirical observations in a similar fashion; a table of the estimated turn rates for a set

of observations can be found in Appendix C.

A final important aspect of the aircraft models is the inclusion of a collision prevention routine

for the Dynamic Separation safety protocol, which models a pilot’s actions to stop his aircraft from

running into another vehicle. This action is dictated by a rule base contained within the vehicle

model and referenced during Taxi action execution. A flow chart of the decision rules relating to

this appears in Fig. 3-6. On execution, the rule base compares the position of the aircraft agent to

nearby aircraft forward or adjacent to it. The distance between the two aircraft is calculated and

decomposed into forward (through the aircraft’s nose) and lateral (through the wing) components.

If either distance is below a certain threshold (set to be one aircraft length forward or one aircraft

width laterally), the vehicle is paused until the other vehicle moves out of the way.

Limiting the system to aircraft nearby and forward of the aircraft replicates the role of both

the pilot in taking active control of the vehicle, as well as commands from the Directors to stop

and wait for other vehicles. MASCS does not, at this time, make any differentiation between the

two as both are reported by SMEs to be highly reliable — collisions during taxi are quite rare.

However, the behavior of these collision avoidance routines, even if working effectively, does have

repercussions on the flight deck. It is possible that chains of near-collisions occur: vehicle A might

stop because of the location of vehicle B, which is in turn stopped due to vehicle C, which is waiting

for another aircraft to launch from a catapult. While it effectively prevents collisions, it may have

other, downstream effects on operations that are difficult to predict. It should also be noted that

the collision prevention routine is supplemented by the dynamic routing of traffic on the flight deck

by the Aircraft Director agents; directors will attempt to route aircraft in ways that do not conflict

with one another. This decision-making process behind this is described in the following section,

along with other aspects of the Director models.
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Figure 3-6: Flow diagram of the collision avoidance process.

3.2.2 Aircraft Director Models

Aircraft Directors are the primary members of the crew implemented on the flight deck, as they are

the most active during launch operations. While there is a significant number of other crew involved

in pre-launch preparations, they do not participate in launch activities and typically move to safe

locations that do not affect taxi operations. States and inputs for Aircraft Directors relate to how

they route aircraft through the flight deck, describing their current assignments, if they are available

for aircraft to be handed off, and to what other Directors they can route aircraft. Directors also

contain variables describing their speed of motion, identical to that of the aircraft models described

in the previous section. A summary of these features appears within Table 3.5.

As aircraft receive their catapult assignments, they are assigned to Directors; this relationship

is stored by both the aircraft and the Director (”Current aircraft assignment”). Once a Director

takes assignment of an aircraft, they must move to a location in which they are visible to the pilot

(Fig. 3-5). For the manual control operations modeled here, this is done by staying ahead and to the

side of the vehicle’s center line — SMEs note that Directors attempt to stay even with one wingtip of

the aircraft, sufficiently ahead of the aircraft that they are not hidden from the pilot by the aircraft’s

nose. Observations of flight deck operations showed that Directors do follow this general rule for

the majority of operations. A codified version of this rule based on geometry and the destination of

the aircraft dictate where Directors should move is stored in the Director model. Additional rules

determine where Directors should move if they are initially not visible by the pilots and how to stay

in alignment while the aircraft turn and move forward. These additional rules were also based on
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Table 3.5: List of important parameters and logic functions for Aircraft Director modeling.

Feature Description Value

Location (state) Current (x,y) position on deck -
Current speed (state) Current assigned speed sampled from

parametric
distribution

Assignment status (state) Is Director currently assigned to an
aircraft

True/false

Current aircraft assignment
(input)

Which aircraft the Director is
responsible for.

-

Zone/catapult assignment
(input); current Aircraft
assigned; current Aircraft

destination (catapult)

-

Crew network topology
(input)

To which other Directors can an aircraft
be passed

-

Speed (parameter) Rate at which crew move on the flight
deck.

N(3.5, 1.02)

Aircraft routing (logic) Determines which Director an aircraft
should be passed to.

-

Alignment to aircraft (logic) Determine where Director should move
to become visible to pilot.

-

observations of operations and discussions with SMEs.

While instructing pilots, Directors also monitor nearby traffic on the flight deck and attempt

to appropriately manage multiple conflicting vehicle paths. Because pilots of manned aircraft have

little knowledge of the catapult assignments of other aircraft on the flight deck (and may not even

know their own), it is left to the Directors, monitoring nearby traffic and communicating with each

other through hand gestures, to deconflict taxi actions across the flight deck. As described by SMEs,

if an aircraft is already in motion, it has priority in moving on the flight deck and any new taxi

commands should not interfere with those actions. However, if the two aircraft are sufficiently far

apart that the second can be taxied clear of the area before the first arrives, Directors will do so in

order to maximize the efficiency of operations.

Traffic deconflictions are replicated with MASCS through the use of a priority list of aircraft

assigned to taxi through a specific area, with a set of rules governing when aircraft are added to the

list, when they are removed, and in what cases no true conflict exists. The traffic management rules

rely on a series of lists that maintain the order in which aircraft request to taxi through the area.

The first aircraft in this list is by default allowed to taxi through the area; all aircraft not first in

the list must wait for this aircraft to exit the area before continuing.

There are a variety of exceptions to this rule that can occur, however, and the decision rules

examine each of these to see if no true conflicts exist. For example, if the first aircraft in the list

is taxiing to a forward catapult, and it has already driven by the second aircraft in the list, that
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aircraft should be allowed to move. If it is heading forward, it will not catch up to the first aircraft,

and if heading aft, cannot cause any problems. Otherwise, the vehicle waits until it either becomes

the first aircraft in the priority list or satisfies one of the exceptions. A detailed discussion of these

rules appears in Appendix B.

Once the Director taxis the aircraft complete through his zone, the aircraft must be handed off

to a new Director in a nearby zone. Each Director maintains an understanding of how their zone

connects to other zones on the flight deck (the input of the crew network topology). Figure 3-7

shows the topology of possible connections within the Director network on the flight deck. Rules

dictate, given the available connections and the current destination of the aircraft, to which Director

the aircraft should be sent next. If no Directors are available, the aircraft waits until one of the

connected Directors finishes with the aircraft they are currently instructing and becomes available.

A more detailed description of the logic for this model appears in Appendix B.

Together, this combination of rules — Director handoffs, alignment, and traffic management —

govern the behavior of Directors in executing flight deck operations and facilitate the movement

of aircraft from parking spaces to launch catapults. However, implicit in each of these actions is

that the aircraft has already received an assignment to a launch catapult. These assignments are

provided by the Deck Handler agent and its decision-making rules, described in the next section.

3.2.3 Deck Handler Model

The most important supervisory-level agent in the simulation is the Deck Handler that determines

the assignments of aircraft to launch catapults on the flight deck. The codified rules that govern

these decisions were generated in earlier work, based on interviews with SMEs regarding the typical

strategies for allocating aircraft tasks (Ryan, 2011; Ryan et al., 2014). In this earlier work, SMEs with

many years of deck experience were interviewed to understand how Deck Handlers allocate aircraft

Figure 3-7: Map of the network of connections between Directors on the flight deck. Green dots
denote Directors responsible for launching aircraft at the catapults (“Shooters”). Blue dots denote
Directors that control the queuing position behind the jet blast deflectors (“Entry” crew). Yellow
denotes denote other Directors responsible for taxi operations through the rest of the flight deck.
Shooters and Entry Directors may also route aircraft through the rest of the deck if not currently
occupied with aircraft in queue at their assigned catapult.
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both at the start of a mission and in response to failures during a mission. In these interviews, SMEs

were presented with different arrangements of the deck and different potential failure conditions

(e.g., a catapult becomes unusable) and asked to describe how a new plan would be designed. From

iterative explanations of different scenarios, a set of general rules of planning were created, describing

the “rules of thumb” used by Handlers in planning operations under a variety of circumstances. These

rules appear in Table 3.6 and when applied to a given scenario on the flight describe specific tactics

for parking aircraft, assigning them to catapults, and routing them through the deck.

Rules 5 (make as many resources available as possible), 6 (maintain an orderly traffic flow),

and 8 (park for maximum availability) combine to govern where aircraft should be parked prior to

operations. As much as possible, aircraft are parked on the edges of the flight deck facing inwards

in order to make the taxi process easier. Aircraft are parked in the interior of the deck (the Street)

and on top of catapults 1 and 2 only when all other options have been utilized. Aircraft parked on

catapults and in the interior regions will also be the first to be assigned in order to open up taxi

paths on the deck and to make more catapults available. Because these areas are cleared first based

on Rule 5, higher-priority aircraft in the mission will be parked in these areas based on Rule 8.

Rules 1 (translated as “simplify operations”) and 6 result in Handlers assigning aircraft to the

nearest available catapults, ensuring the simplest and fastest taxi operations and minimizing any

risk of aircraft interfering with each other’s taxi routes. However, the goal of Rule 4 (distributing

workload) eventually means that aircraft must be assigned to taxi to catapults that are farther

away than desired; it is better to use all available catapults than to minimize taxi path distances.

Additionally, Rule 4 also means distributing priority aircraft around the deck to maximize their

likelihood of being assigned to catapults. If the highest priority aircraft is parked forward, second-

highest might then be parked aft, and so forth, to balance priorities across the areas. Rules 7 and 9

are not applicable to the current MASCS modeling as major failures and landing operations are not

included in the simulation scenarios; however, for future extensions of the model, these heuristics

should be included. Rule 3 is included, however, as it relates to the Dynamic Separation protocols

described in the previous chapter.

Table 3.6: Heuristics of Deck Handler planning and re-planning developed as part of previous work
(Ryan, 2011; Ryan et al., 2014)

General Deck Airborne

(1) Minimize Changes (4) Evenly distribute work-
load on deck

(7) Populate landing order by
fuel burn rate, fuel level, then
misc.

(2) Cycle quickly, but main-
tain safety

(5) Make as many resources
available as possible

(8) Park aircraft for maxi-
mum availability next cycle

(3) Halt operations if crew or
pilot safety is compromised

(6) Maintain orderly an or-
derly traffic flow

(9) ”True” vs ”Urgent” emer-
gencies in Marshal Stack
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These rules were translated into sets of initial conditions for where aircraft should be parked and

a set of logical rules that describe, given the current aircraft on the deck, their priorities, and their

locations, where they should be assigned. The MASCS Deck handler also requires an understanding

of what catapults are operational and whether a catapult has an open spot in its queue. The Handler

routine always attempts to assign an aircraft to the nearest available catapult, given the current

geometric constraints on the flight deck. The routine first attempts to assign aircraft to empty

catapults (those without a prior assignment), before proceeding to catapults with only one prior

assignment. A set of rules determines whether or not the vehicle has an accessible taxi path to the

catapult (whether or not aircraft are parked in the interior of the flight deck, blocking the path).

The priority listing of aircraft included in the initial conditions is organized in accordance with

Rules 5, 6, and 8, and when the Handler rules assign aircraft to the nearest catapults, it results

in areas of the deck being cleared in a specific order. This is shown in Figure 3-8. The “Street”

is typically among the first cleared. In a mission using 34 aircraft, its aircraft will largely be sent

forward. Aircraft parked on the forward, starboard side of the deck will also be sent forward so as

to remove them from the catapult they are blocking. Once these areas are cleared, aircraft parked

in the forward are of the deck are cleared in a front to back fashion. In the aft area of the deck, the

few aircraft parked near catapult four might be cleared first, followed by all of the aircraft parked

in the Fantail area. Aircraft parked on the starboard side of the deck would be allocated last from

this area. As operations progress, however, the Handler heuristics will assign aircraft whenever and

wherever possible, regardless of region. These heuristics prioritize assigning an aircraft to a nearby

catapult over taxiing an aircraft the length of the deck to reach an opening: it takes longer to taxi

the length of the deck than to complete a launch at a catapult. Additionally, taxiing the length of

the deck is disruptive to taxi operations along the entire deck and is avoided as much as possible.

A rigid definition of these rules breaks down when the highest-priority aircraft has no feasible

taxi path to the available catapults. If this exists, it is because aircraft in the Street are blocking

taxi routes and have divided the deck into forward and aft halves. Because this potential exists,

Figure 3-8: Map of the flight deck noting the general parking areas of aircraft (gray), the order in
which they are cleared, and to which catapults (forward or aft) they are allocated.
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the Handler rules are allowed to examine the first n aircraft in the list, beginning with the first

(highest-priority) aircraft. The value n defines the lowest-ranked aircraft allowed to be assigned,

and a value of five was used in the system. This accounts for full assignment of aircraft to a forward

or aft catapult pair (four) plus making an additional assignment in the system (plus one). The

arrangement of priority aircraft in the initial parking locations should ensure that there is a balance

between the forward and aft sections of the flight deck and that some assignments are always possible.

Table 3.7 contains a list of the key inputs to the Deck Handler model, which are explained below. A

more detailed discussion of the logical rules comprising the Handler Allocation model can be found

in Appendix B.

Once provided with a catapult assignment, the aircraft begins moving under the command of the

Aircraft Directors. As described previously, the aircraft completes its taxi action when it arrives at

its launch catapult queue, where it waits until being loaded onto the catapult. At that time, it begins

launch preparation before completing the launch acceleration action. Parts of each of these aspects

are handled by models for the deck and various deck equipment, described in the next section.

3.2.4 Deck and Equipment Models

The equipment agents of primary concern in launch operations are the four launch catapults and

the landing strip. Additional constructs were created for the parking locations on the flight deck

(gray areas in Fig. 3-8) to facilitate bookkeeping of data. For each of these elements, the most

important state variable concerns their availability (whether or not they are currently in use) and

Table 3.7: List of important parameters and logic functions for Deck Handler modeling.

Feature Description Value

States - - Current list of
unassigned aircraft

(input)
Aircraft awaiting catapult

assignments
-

Current priority of each
unassigned aircraft (input)

Position of aircraft in priority list -

Current functional status of
each catapult (input)

Is the catapult operational True/false

Current availability of each
catapult (input)

Number of aircraft in catapult queue; if
< 2 can accept a new aircraft

True/false

Status of parking spaces 8/9
(input)

Is parking space 8 or 9 occupied by a
parked aircraft

True/false

Lowest priority assignment
allowed (input)

Lowest ranked candidate for assignment
to catapult

5

Aircraft assignment (logic) Attempts to assign highest priority
aircraft to nearest available catapult

based on where aircraft can taxi (status
of parking spaces 8/9)

-
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their operational status (whether or not they can be used). For parking spaces, this translates to

tracking whether or not a vehicle currently occupies the parking space. Rules track and update

these statuses according to the location of nearby vehicles. For catapults, the area in the immediate

vicinity of each, referred to as the “foul area,” should not be entered by any unauthorized crew or

vehicles during launch processes; doing so requires an immediate halt of launch operations. These

are noted by markings on the flight deck in the real world, converted into the simulated environment.

Other rules for catapults dictate how aircraft queue within the system and how launches are

executed. Each catapult can queue up to two aircraft: one on the catapult and another parked

behind. Each pair of catapults (one forward, one aft) alternates launches within the pair, but the

two pairs operate in parallel. The first aircraft to arrive at a catapult within a given pair begins

preparing for launch; any aircraft that arrive on the adjacent catapult do not begin preparing for

launch until the first aircraft launches. States in the models define whether or not a catapult is

actively “launching” and how many aircraft are in queue, as well as whether or not an active aircraft

is stationed on (“occupying”) a given catapult. An aircraft only begins preparing for launch if it

currently occupies a catapult launch position and the adjacent catapult is not actively preparing to

launch its own aircraft. Rules for the queuing process describe where aircraft should stop taxiing

near the catapult; aircraft advance only if the catapult is not currently occupied. Table 3.8 provides

an overview of the important inputs, states, and parameters of the catapult agents.

These rules, as with other rules and behavior models within MASCS, are all executed inde-

pendently by agents in the system. The execution of a simulation run begins with a set of initial

conditions, with agent decisions and reactions dictating how the simulation evolves from that point.

The simulation execution process is described in the next section.

Table 3.8: List of important parameters and logic functions for Catapult modeling.

Feature Description Value

Operating (state) Catapult is functional and can be used True/false
Occupied (state) Aircraft is currently stationed on

catapult
True/false

Launching (state) Aircraft occupying catapult is actively
preparing for launch

True/false

Number of aircraft in queue
(state)

Current number of vehicles in queue [0,2]

Launching status of adjacent
catapult (input)

Catapult can only be launching if
adjacent catapult is not launching

Queueing rules (logic) Aircraft only allowed to taxi to catapult
if queue size is less than two; aircraft

not allowed to begin launch preparation
unless adjacent catapult is not

launching and not occupied

-
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3.3 Simulation Execution

The previous sections have described how the individual agents within the MASCS model of flight

deck operations make decisions within the world; all that is required is an initial configuration of

the world, the agents active within it, their starting locations, and their initial goal states (if any).

Also included are their order in the priority list, and crew assignments (to taxi zones or catapults).

Appendix D provides example text from the configuration files, while Figure 3-3 previously showed

the layout of the deck with 34 aircraft (that maximum number used). Figure 3-9, top shows another

possible configuration of the flight deck with only 22 aircraft.

From the initial configuration and priority listing submitted in the initial configuration files, the

Deck Handler’s rule base begins to assign aircraft based on their priority in the launch order based

on the current allocations in the system, the current locations of aircraft, and accessibility and

geometry constraints on the flight deck. Doing so both assigns the aircraft to a Director and a Taxi

action to the aircraft. The Director commands a motion action to the Aircraft, replicated within

the Taxi action being executed. When the aircraft completes the taxi action, the Director’s logic

for aircraft handoffs is called and the aircraft is assigned to a new Director, who creates a new Taxi,

and the process repeats. While the Taxi actions are executed, aircraft pilots employ their collision

prevention routine to avoid collisions while Directors attempt to deconflict traffic around the deck.

When aircraft reach their launch catapults, they complete the Taxi action and begin executing

Figure 3-9: Top: Picture of the MASCS flight deck with 22 aircraft parked, ready for launch
operations. Bottom: Picture of the MASCS flight deck with 22 aircraft parked, in the midst of
operations. Three aircraft have already launched, four are currently at their designated catapults,
four more are taxiing to or in queue at their catapult, and eleven are currently awaiting their
assignments.
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the Launch Preparation task, randomly sampling the execution time from the provided distribution.

Once the required time has elapsed, the aircraft begins the Takeoff task, accelerating down the cata-

pult in a time randomly sampled from its relevant distribution. All aircraft operate simultaneously,

executing their own actions and employing their own rule sets individually. Figure 3-9, bottom

shows one example of the 22 aircraft case in the middle of executing a run. Currently, aircraft at

catapults 2 and 3 are executing their launch preparation tasks, while aircraft are taxiing on to cat-

apults 1 and 4. Additional aircraft are queued at catapults 2 and 3, and two aircraft in the aft area

of deck are taxiing forward to queue at catapults 1 and 4. The remaining aircraft parked around

the edge of the deck will begin taxiing as soon as the Handler routine assigns them to catapults; the

priority designations are such that the remaining aircraft should be assigned from left to right. The

simulation completes when the last aircraft completes its Takeoff task at its assigned catapult.

3.4 Chapter Summary

This chapter has provided details on the nature of aircraft carrier flight deck operations and how these

operations are transformed into rules and states for the constituent agent models. The chapter began

with a discussion of the nature of agent-based modeling and its reliance on rules and states. This was

followed by a discussion of flight deck operations that attempted to highlight the aspects that relied

heavily on rule bases to define agent behavior. The architecture of MASCS, noting its uses of Action

classes to organize and define interactions between agents, was then discussed. The final sections

of the chapter described how the features of aircraft carrier flight deck operations were translated

into specific sets of rules and states for different agent types, including details as the specific rule

processes and how certain state variables were defined. The next chapter describes the process of

validating this baseline manual control model described in this chapter. The manual control model

described in this chapter then serves as the template for the development and integration of the

unmanned vehicle control architectures as defined earlier in Chapter 2. A discussion of these models

and their formal definition will occur in Chapter 5.
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Chapter 4

Model Validation

“Remember that all models are wrong; the

practical question is how wrong do they

have to be to not be useful.”

Empirical Model-Building and Response

Surfaces (1987)

George E. P. Box

The previous chapter provided an overview of modern U.S. aircraft carrier flight deck operations

before describing how these operations could be modeled in an agent-based simulation. Chapter 3

outlined the different agents required for the simulation, their corresponding states, parameters, and

behavioral rules, and the models of agent tasks that were required. These models were based on

empirical data where possible, supplemented by information from Subject Matter Experts (SMEs)

with experience in flight deck operations. This chapter describes how this simulation model, with its

constituent agents, is tested against empirical data on flight deck operations. Demonstrating that

the simulation produces output similar to that of the modeled system provides confidence that the

simulation is a valid representation of that system: that the use of agent-based models is reasonable

and that those agent models and their interactions have been appropriately defined. Demonstrating

that the current Multi-Agent Safety and Control Simulation (MASCS) model described in Chapter 3

suggests that the modeling strategies are suitable for this environment and that the models are

applicable to modeling unmanned vehicles in future tests. A valid simulation of current operations

also serves as a future comparison point for other extensions of the simulation model, as the same

output variables can be encoded into each.

The testing process for the MASCS simulation model was conducted in two different phases.

In the first phase, the performance of a single aircraft proceeding from an initial parking location

to a launch catapult was compared to empirical observations of the same task. The second phase
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of testing examined the performance of the simulation for missions using multiple aircraft, testing

launch events using 18 to 34 aircraft with each taxiing from an initial parking location to a launch

catapult. Tests within each of these phases addressed both the internal and the external validity of

the simulation: how well it replicates empirical data on operations (external validity) as well as its

response to changes in internal parameters (internal validity). These tests aim to provide confidence

that the MASCS simulation mode defined in Chapter 3 is able to accurately replicate the behavior

of flight deck operations. An additional review of the simulation with experienced Naval personnel

provided additional confidence that the simulation was a reasonable model of operations, judging

whether the animated evolution of the simulation environment was qualitatively similar to that of

the real system.

However, limitations in the availability of data for flight deck operations means that fully vali-

dating all aspects of the model remains unachievable at this time. Several elements of the model as

described in Chapter 3, such as the Deck Handler planning heuristics and other human behaviors,

have no data available for comparisons and thus cannot be guaranteed to be valid. As such, MASCS

can only be partially validated, with its outputs calibrated to the obtained performance data. The

tests that were performed suggest that the simulation is a reasonable model of flight deck operations.

This chapter discusses the validation tests that did occur, beginning first with a discussion of how

agent-based (and other) simulation models are validated and how this applies to the MASCS model.

4.1 Validating Agent-Based Models

Many authors describe the process of simulation construction in terms of several phases, beginning

with data gathering and proceeding through model construction, model verification, and model

validation (Sargent, 2009; Carley, 1996; Law, 2007). The tasks of data gathering and model con-

struction were discussed in the previous chapter, while this chapter focuses on the processes of

model verification and validation. These two aspects describe similar processes at two levels of a

simulation environment. Generally, a simulation can be viewed as an aggregation of submodels

and function that interact to produce a single coherent simulation of a system. Verification is the

process of ensuring that the submodels and subfunctions are properly defined and encoded; it is

often described as “making sure you’ve coded the X right.” This typically means ensuring that

the mathematical equations governing behavior are correct and that any logical decision structures

behave correctly. Model validation, then, is the process of validation is “making sure you’ve coded

the right X,” demonstrating that the output of the verified submodels matches that of the aggregate

system. Correctly defining and implementing all submodels might still produce an invalid simulation

if the inputs to and interactions between those models were incorrect.

All models are simplifications of reality; to properly model all elements of a real world system at

their true level of complexity would require substantial time and resources. They are all “wrong” in
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some sense, and the question is not how accurate can they be, but how inaccurate they are allowed

to be before they are considered inappropriate or not useful. This is often couched in terms of the

external validity of the simulation — the accuracy of its outputs as compared to the outputs of the

real system. Tests of validity can examine these outputs in a variety of ways, from point-to-point

comparisons to comparisons of distributions of data. Which is chosen depends on the available data,

the stochasticity of the real and simulated systems, and the precision with which data is collected.

Additionally, validation can also address the response of the system to changes in input and internal

parameters. This may either test the internal validity of the simulation — that small changes in

parameters should not generate extreme responses — as well as external validity, if the response of

the real system to the same changes in parameters is known.

Most texts that discuss simulation construction and validation focus on the use of systems dy-

namics and discrete event simulation, in which the movement from submodels and subfunctions to

the full system simulation occurs in one step: the submodels are created and verified, then directly

assembled into a model of the overall system. Agent-based models contain an additional interme-

diate level: submodels and subfunctions define agent behavior, with multiple agents interacting to

create system behavior (Figure 4-1 provides notional diagrams for the three model types). It is

useful in agent-based modeling to validate the individual agents’ behaviors before testing that of

the aggregate system. This demonstrates that the agents themselves are externally valid represen-

tations of real world actors and ensures that any future errors in the part of the simulation data

comes from agent interactions. While accurate simulation results might be achievable even with

faulty agent models, significant questions regarding the true external (or structural) validity of the

simulation would exist. Both aspects of model validation — individual agents and the aggregate

system model — for the MASCS simulation environment are described in this chapter, beginning in

the next section with single aircraft agent validation.

4.2 Single Aircraft Calibration

Chapter 3 defined the list of agents required in the MASCS model and characterized the states,

parameters, and decision-making rules required for each. These agent models must adequately

replicate not only the decision-making of agents on the flight deck, but their motion on the deck

and their interaction with other agents. Of primary concern is ensuring that models of pilot/aircraft

behavior are correct, as these are the primary focus of launch operations and will be the primary

comparison point in future Unmanned Aerial Vehicle (UAV) testing. This first section describes the

calibration of the behavior of an individual aircraft executing a launch mission on the flight deck,

using the minimum necessary number of crew. The ability of the MASCS simulation to replicate

this task provides confidence that the models of individual vehicle behaviors and the characteristic

distributions describing their speed of travel and the tasks they perform are all accurate. After
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Figure 4-1: Simple notional diagrams for Discrete Event, Systems Dynamics, and Agent-Based
Models.

these models are correctly calibrated, tests can then proceed to the tests at the mission level using

multiple aircraft.

The tasks described in this chapter were made difficult by the fact that the United States Navy

does not make flight deck performance data publicly available in large quantities. From discussions

with SMEs, it appears that what data is collected on flight operations is done at the behest of officers

and senior enlisted on each ship and is not forwarded on to the Navy or any of its research affiliates.

As such, the data used in the tests in this chapter have been amalgamated from a variety of both

government, military, and civilian sources.

For the single aircraft calibration testing, only a single data point for comparison was obtained,

from a video uploaded to Youtube.com (Lockergnome, 2009). Even though a large number of videos

of flight deck operations are available overall, only a small number provide full footage following

an aircraft for more than the final takeoff task, and of those, most involve multiple aircraft taxiing

simultaneously and interacting with one another. The video used in this testing is the only one

discovered that follows a single aircraft from its initial parking place through final takeoff with-

out interacting with other aircraft. No published performance data was located that provides any

information on individual aircraft performance for a characteristic launch task. While this is not
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ideal, these observations can still be used in calibrating the Aircraft agent to ensure that it is not

unreasonable.

In the recorded observation, the aircraft begins parked in the central aft area of the deck, then

taxis to Catapult 3 (the interior of the two aft catapults) and launches. This first requires a Taxi

task to move from parking to catapult (consisting of several individual Move Forward and Rotate

actions), a Launch Preparation task, and a Takeoff task. Figure 4-2 shows the starting location and

transit path of the vehicle. Times for each of these subtasks were calculated by reviewing the video

and manually coding event times; they are referred to as the Taxi Duration, Launch Preparation

Duration, and Takeoff Duration, respectively. Their values are annotated in the figure: 78 seconds

to Taxi, 157 seconds in Launch Preparation, 3 seconds Takeoff by accelerating down the catapult,

for a total of 238 seconds to complete the launch event. Note that the observed time to complete the

launch preparation task was not included in the original observations used to generate the launch

preparation time model (Appendix C, Table C.2). The observed value of launch preparation was

also not included, but several observations of 3.0 second accelerations did occur.

If the MASCS model of operations is accurate, then the Taxi Duration, Launch Preparation

Duration, and Takeoff Duration from the empirical observation should be reasonably similar to

the average times produced by the simulation. At the same time, too closely matching this data

suggests overfitting. Generally, being within 1 standard deviation of the mean value suggests that a

data point comes from that distribution, given that 68% of all data points lie within one standard

deviation of the mean. Higher quality data was available at the mission level (Section 4.3), and tests

of MASCS mission performance will provide a more substantial validation of the simulation as a

whole.

To test the accuracy of the individual aircraft models within MASCS, an initial configuration

file was created that placed the test aircraft at the approximate starting location of the aircraft

Figure 4-2: Diagram showing the path taken by the aircraft in the observed mission scenario. The
figure also details the breakdown of elements in the mission: Taxi, Launch Preparation, and Takeoff.
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from the video observation and directing the aircraft to launch from same catapult (#3, the interior

aft catapult). This scenario was then replicated 300 times in the MASCS environment to ensure

a full exploration of the stochastic variables in the simulation (Taxi speed, Launch Preparation

time, and Takeoff acceleration time are all random variables). Data on these metrics were logged

and compiled in order to compare their values to the empirical observations. The results of these

comparisons appear in Figure 4-3. Simulation results appear in blue, with whiskers denoting ±1

standard deviation in the simulation results. The empirical data from the video recording appears

in green.

The results in Figure 4-3 indicate that the empirical observations for Launch event Duration (LD),

Taxi Duration, Launch Preparation Duration, and Takeoff Duration are all within one standard

deviation of the simulation means. Specifically, they are 0.56, -0.99, 0.75, and 0.97 s.d. away from

their respective means. Statistical tests also demonstrate that the resulting data are all Normally

distributed (Appendix F). The mean Taxi Duration for the simulation results (blue) is 6 seconds

greater than the empirical observation (green), while the mean Takeoff Duration for the simulation

results is 0.25 seconds smaller than the empirical observation. However, these two differences are far

smaller than the standard deviation observed in the Launch event Duration values (49.63 seconds)

and the Launch Preparation Duration (48.84 seconds in the simulation results). These data also

suggest that, because of its large mean and standard deviation, the Launch Preparation process is

the largest driver of variation in the total Launch event Duration (LD) for these tasks.

The two additional data sets in Fig. 4-3 (yellow and gray) examine combat “Surge” operations

that occur only rarely and for which no empirical data could be located. These data are included only

as comparison points of what might be possible in terms of improving operations. SMEs describe the

Figure 4-3: Results of preliminary single aircraft calibration test. Simulation data appear in blue
with error bars depicting ±1 s.d. Empirical observations are in red.
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major change in Surge operations as being a streamlining of the launch preparation process, reducing

the time required to complete the process. Accordingly, simulation runs for “Surge” operations

(yellow) modified the launch preparation time model to be normal with a mean of 45 seconds, a

standard deviation of 10 seconds, and a range of 30-60 seconds (described by SMEs as being the

typical range of launch preparation times in Surge operations). Otherwise, all other parameters and

initial conditions were left unchanged. Modifying just this launch preparation process results in a

substantial improvement in LD values (55% decrease in mean). The fourth column in each chart

(gray) depicts the observed (for taxi and acceleration) or theoretical minimum values (for launch

preparation) for each measure, providing a view of the best possible results under the provided

distributions.

An additional test of the accuracy of the aircraft models can be done through the use of a

sensitivity analysis, which examine whether the model puts changes in unexpected ways given a

plausible range of uncertainties (Sterman, 2000). In such tests, if the changes in output are not

extremely different from what would be expected, they provide confidence that the model is robust

to any errors in its provided parameters (Sterman, 2000). For individual aircraft within MASCS,

the two most important stochastic parameters are the launch preparation time and aircraft speed.

Increasing the mean launch preparation time should increase the total launch event duration while

increasing vehicle speed (a rate measure) should decrease it, and vice versa for each. The goal of

the sensitivity testing is to demonstrate that changes to these stochastic parameters do not generate

extreme changes in outputs: for this data, this concerns the changes in LD values. Since the Launch

event Duration is a simple summation of two stochastic parameters (taxi time and launch preparation

time) that are independently sampled, changes in LD values should be at or less than the percentage

changes to those parameters. That is, a 25% increase in taxi speed should produce a ≤25% change

in LD.

A set of sensitivity analyses individually varied the mean values of the taxi speed and launch

preparation time models, running 300 replications for each case. Both the mean launch preparation

time and the mean taxi speed were individually varied at±25%; a 25% change corresponds to roughly

half the standard deviation of the launch preparation time model (the larger of the two means), with

25% changes applied to the taxi model for consistency. Results for these tests, indicating the resulting

percent change in launch event duration mean, appear in Figure 4-4.

For both launch preparation time and taxi speed, the relative change in LD values is less than

the relative change (25%) in each parameter, as desired. However, the results also show that the

relative increases and decreases in LD for a given parameter were not equivalent in magnitude, which

is unexpected. Reviewing the output data from the simulation (Figure 4-5), it can be seen that the

changes in the means of the parameters did not produce symmetrical changes in the sampled values

during simulation runs: increasing the launch preparation mean by 25% resulted in samples that
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Figure 4-4: Sensitivity analysis of single aircraft Manual Control Case.

averaged a 30% increase from the baseline, while decreasing the mean by 25% resulted in only an

8% decrease in values. This is a result of the boundaries placed on the parameter values (launch

preparation time has a minimum of 30 seconds, taxi speeds bounds of [3.0, 4.0] miles per hour). The

imbalance in sampling partially explains the low percent changes in LD in Fig. 4-4 and part of the

imbalance in the results.

The direction of changes in LD in Fig. 4-4 was consistent with expectations, however, and

the relative changes in LD remained lower than 25%. Taxi speed values increased by nearly 30%

but resulted in only an 11.15% decrease in LD; launch preparation mean values were decreased

by nearly 30% and resulted in LD decreases of only 8.63%. For changes that would decrease LD

values (decreasing launch preparation times or increasing taxi speed), changes were near or less

than the resulting parameter changes. Taxi speeds were decreased by roughly 17% and increased

LD values by only 5%. Launch preparation values were increased by roughly 8.5%, with LD values

increasing by 10.22%. This is a relatively minor inconsistency that can be attributed to the taxi

speeds sampled (which were roughly 1% below average) and the interactions of random sampling of

these two stochastic processes.

Figure 4-5: Changes in parameters during sensitivity analyses.
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Together, the sensitivity analyses and the comparison to empirical data both provide evidence

that the simulation is a reasonable model of individual aircraft behavior. The data points from the

single aircraft empirical observations all lie within one standard deviation of the simulation data,

suggesting that the empirical observation is a reasonably likely occurrence within the simulation.

Sensitivity analyses on the taxi and speed parameters (varying their means by ±25%) providing

changes in launch event duration of less than 25% and occurring in the correct directions. At worst

case, resulting changes in LD should have been equal to 25%; that they are lower demonstrates there

is some robustness in the simulation model to these errors. This, in turn, suggests that the models

of individual aircraft and their interactions with crew, developed in Chapter 3, are accurate for flight

deck operations and should be acceptable for use in mission simulations. This testing is described

in the next section, in which mission ranging from eighteen to thirty-four aircraft are executed in

order to examine the ability of MASCS to replicate real-world mission performance.

4.3 Mission Validation Testing

The previous section described the calibration of individual agent motion on the flight deck, providing

evidence that the individual aircraft models can adequately replicate empirical observations in the

world. However, the more important testing addresses the ability of the full MASCS simulation

to replicate mission scenarios using multiple different aircraft. In these simulations, eighteen or

more aircraft proceed from parking to launch catapults over a period of time, executing taxi tasks

simultaneously while interacting with multiple crew.

Validating these operations requires the acquisition of data that also describes flight deck launch

events. The primary source of information for this data is two reports from the Center for Naval

Analyses (CNA) (Jewell, 1998; Jewell et al., 1998). The most important data from these reports

concerns the number of aircraft used in a single mission sortie (mission Density) and a Cumulative

Density Function (CDF) of the interdeparture times of launches from the flight deck. The former

helps define the test conditions within the simulation (the number of aircraft that should be included

in test scenarios) while the latter provides a highly-detailed measure of system behavior. Figure 4-6

provides a histogram of the number of aircraft used in sorties during the CNA study. While it is

notable that the data can be fit by a Normal distribution (µ = 27.014, σ = 4.2614, Kolmogorov-

Smirnov statistic = 0.09866, p = 0.47351), knowledge of the distribution is not necessary for current

testing. Rather, that the bulk of operations utilized between 18 and 34 aircraft serves as an important

input parameter for MASCS testing.

Figure 4-7 shows the second important data point from these CNA reports: a CDF of the

interdeparture times of deck operations over the course of one week of missions. An interdeparture

time is defined as the time between two successive launches (departures) from the flight deck across

any two catapults; if launches happen from catapult 1 at t = 25 and from catapult 3 at t = 40, the
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Figure 4-6: Histogram of the number of aircraft observed in sorties during the CNA study (Jewell,
1998).

interdeparture time is 15 seconds. In queuing theory, interarrival and interdeparture times are key

inputs to system models and serve as a powerful metric of a system’s behavior. For this work, this

empirical distribution serves as an important comparison point for the MASCS model; if the results

of simulation testing for the mission profiles shown in Fig. 4-6 provides the same interdeparture

times as shown in Fig. 4-7, it provides evidence that MASCS is not an invalid model of operations.

The usefulness of the CNA distribution is further enhanced by the fact that it comes from a

variety of different mission profiles aggregated together, allowing it to be applied to a variety of

launch event profiles (primarily, the number of aircraft). Unfortunately, the authors of the CNA

reports do not clearly identify the types of operating conditions observed (day, night) nor the specific

distribution mission sizes utilized. However, the authors did regard the data as representative

of fleet performance. The data contained in Figure 4-7 can be converted first into Probability

Density Function (PDF) form, then fitted with a negative exponential fit (the standard form of an

interdeparture rate) in the form λe−λ∗t, with λ=0.01557; this provides an average interdeparture

rate of 64.22 seconds. Details on the process of converting the CDF data into PDF and the statistical

tests for goodness of model fit can be found in Appendix E. If the MASCS simulation is a valid

replication of activity on the flight deck, the interdeparture rates of the MASCS model should align

closely with the reported rate from the CNA data.

The mission profiles listed in Fig. 4-6 were used as the template for mission cases for MASCS

validation. Table 4.1 contains the list of missions tested in this phase. Each mission scenario was

replicated thirty times in the simulation, with data on Launch event Duration (LD) and launch

interdeparture times tracked for each. A total of eighteen different mission profiles were tested,
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Figure 4-7: Cumulative Density Function (CDF) of launch interdepartures from (Jewell, 1998).
This CDF can be converted into a Probability Density Function (PDF) in the form of a negative
exponential of the form λe−λ∗t with λ=0.01557

varying from 18 to 34 aircraft and using either three or four catapults. The numbers of aircraft

used in the test program reflect the significant changes in deck organization that occur from 20 to

24 aircraft; once the mission includes 22 or more aircraft, vehicles must be parked in the interior

of the deck. As this occurs, taxi lanes on the flight deck being to close off, and operations become

more complex in terms of allocating aircraft. While this is not expected to cause significant effects

in terms of mission duration (the planning heuristics of the handler and the structure of operations

should compensate for these effects), multiple runs were taken in this area to ensure that no adverse

interactions occurred.

Thirty replications were run for each of the missions listed in Table 4.1. Output variables included

the launch times for each aircraft (to generate interdeparture times) as well as total launch event

duration values. Launch interdeparture times were calculated for each mission independently and

fitted with negative exponential distributions in the EasyFit program. The corresponding λ values

and Kolmogorov-Smirnov (K-S) goodness of fit p-values were recorded. Distribution fitting was

also performed in the JMP PRO 10 software to obtain confidence intervals on the λ values, which

Table 4.1: List of scenarios tested in mission validation (Number of aircraft-number of catapults).

Mission Scenarios

18-3 21-3 23-3 26-3 34-3
18-4 21-4 23-4 26-4 34-4
20-3 22-3 24-3 30-3
20-4 22-4 24-4 30-4
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EasyFit does not provide, with values of λ verified to match between the two programs. Full results

for these tests appear in Appendix F. Figure 4-8 shows the final λ values and confidence intervals

of the negative exponential fits of the data. The orange line denotes the λ value of the original fit

from the CNA reports.

As the figure shows, λ values for all simulation results lie relatively close to the original CNA

value, which falls well within the confidence intervals on the simulation λ fits. Values at the four

catapult missions tend to provide higher λ values (slightly faster interdeparture rates), which would

be expected given the parallel nature of operations that occur between catapult pairs: adding an

additional active catapult provides additional opportunities for launches to occur nearly parallel

between the forward and aft catapults. For many aircraft Density levels (number of aircraft used

in the mission), the λ values at the 3 and 4 aircraft cases bracket the original CNA λ value. In

general, these results support that the interdeparture times generated by MASCS are accurate with

respect to the empirical data obtained from the CNA reports. More specifically, it suggests that

the selection of the Launch Preparation time distribution and the modeling of catapult launches

are accurate with respect to the real system. However, this is only one aspect of operations in

an environment in which the launch task has significant influence. The next section examines the

robustness of the simulation with respect to changes in internal parameters, as well as the ability of

Figure 4-8: Graphical depiction of launch interdeparture negative exponential fits for the final
round of mission validation testing. Triangles denote λ values. Vertical lines denote 95% confidence
intervals. Note that the mean value of launch interdepartures across all scenarios and replications
is 66.5 seconds.
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the simulation to adequately replicate launch event durations over a variety of input parameters.

4.4 Mission Sensitivity Analyses

Sensitivity analyses examine the response of the simulation’s output to changes in the parameters

of the system. The earlier sensitivity analysis of the single aircraft models examined changes to

parameters internal to the MASCS simulation model. Additionally, tests can also address changes

to the input parameters that define the initial conditions of the simulation. The earlier single aircraft

sensitivity analyses simply sought to determine whether or not the response of MASCS was robust

(non-extreme) to changes in these parameters. Tests can also examine how well the response of the

simulation agrees with the response of the real system, if this data is available (Carley, 1996). The

tests of robustness are a check of the internal validity of the simulation model, while tests against

empirical data are checks of the external validity of the model. Both forms of sensitivity analyses

were performed for mission-level testing in the MASCS environment and are discussed in this section.

The first section addresses the response of the simulation to changes in input parameters, comparing

its response to known expectations.

4.4.1 Sensitivity to Input Parameters

A sensitivity test utilizing the simulation’s input parameters examines the accuracy of the simulation

over various conditions. For MASCS, the primary input parameters of interest are the number of

aircraft included in the mission and the number of available catapults. Within these tests, parameters

regarding agent motion and agent decision-making (including the Deck Handler planning routines)

are left unchanged. Performing this test requires an understanding of the performance of the real

flight deck under these conditions.

Information on flight deck performance was obtained from two sources. First, the CNA reports

referenced earlier also include some general “rules of thumb” concerning how often aircraft launch

and land, providing general guidelines as to the expected time to complete a launch event, the

general range of times that are possible, and how flight deck performance responds to changes in

the number of aircraft used in the mission. These reports indicate that launches on four-catapult

carriers occur every 30 to 60 seconds (Jewell, 1998), although it is unclear as to whether this figure

includes both “Surge” and non-combat operations. This value compares favorably to the mean

launch interdeparture data reported in Fig. 4-7 (a mean of roughly 56 seconds). Given a specified

number of aircraft on the flight deck, and assuming that the catapults maintain uninterrupted queues

throughout the course of the mission, these values can be used to estimate the total time required of

a mission. This suggests that a 20-aircraft mission should range from 10 to 20 minutes in duration,

plus some additional time for taxi operations at the start of the event.

A third perspective views the flight deck as a queueing system in which launches are allocated
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evenly between the forward and aft catapults and each pair of catapults works as an independent

server with independent queues. Because each catapult pair alternates launches within themselves,

they have as a single serial server; the time to complete a mission is then just a linear function

of the average number of launches between the catapult pairs. The launch preparation time was

defined in Chapter 3, based on previous data, as N(109.6, 57.82). If aircraft are evenly allocated

across catapult pairs, then the estimated time to complete a mission for a given number of aircraft

Naircraft is Naircraft ∗ µ/2 (number of aircraft times average departure rate of 54.8 seconds). This

model assumes that the queues of aircraft at catapults exist through the mission and does not

account for taxi operations prior to the first launch. It is useful, however, for understanding how

the system should respond to changes in the number of aircraft within the mission: if the allocation

of aircraft remains balanced between catapult pairs, then the time to complete the mission should

respond linearly.

When using fewer than four catapults, the ability to balance assignments on the flight deck is

disrupted, as one catapult “server” can now hold only two aircraft in queue at a time (as opposed to

four). This disrupts the process of allocations in the system and should have an effect on operations.

The end result is that, for a mission utilizing only three catapults, aircraft are overallocated to the

catapult pair and underallocated to the lone catapult. Assuming that all launches require the same

amount of time, this results in requiring up to two extra launches from the pair while the lone

catapult sits idle. Appendix G provides a more detailed discussion of the general process of queuing

aircraft at catapults over the course of a mission, addressing how aircraft are assigned to and queue

at catapults; a summary diagram of the resulting allocation appears in Figure 4-9. Additionally,

barring any significant flaws in Deck Handler assignment logic, a three catapult case should not

occur in less time than a four catapult case; doing so would require a significant lack of balance in

assignments between catapult pairs.

Figure 4-10 plots the mean mission duration values, ±1 standard deviation, for the mission

scenarios listed in Table 4.1 by number of catapults used. As described above, all reported data

suggest that the response of the simulation to changes in the number of aircraft should be linear

with slops similar to the average interdeparture time and average launch preparation time, and that

a small but consistent difference should exist between the three- and four catapult missions. The

Figure 4-9: Notional diagram of allocations of aircraft to catapults in a 22 aircraft mission. Dots
represent assigned aircraft launches; in the image, catapults 3 and 4 are paired and launches alternate
between the two. Catapult 1 is inoperable, and catapult 2 process all assigns in that section in series.
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data reported in the figure comes from the same runs used to generate the launch interdeparture

data presented in Section 4.3.

Within the figure, linear fits of the data are overlaid and the corresponding R2 values reported.

Statistical tests on each linear model (F-test) showed statistically significant results (F (1, 7) =

1743.53, p = 0.0001 and F (1, 7) = 773.90, p = 0.0001, respectively). Model coefficients (66.6 and

68.4 seconds for the three- and four-catapult missions, respectively) are also significantly different

from zero (full results for these tests appear in Appendix H) and are close to the expected value of

mean interdeparture value from the simulation test data (average = 66.5 seconds) but slightly higher

than the values reported in the CNA data (heuristic of up to 60 seconds, reported interdeparture of

64.1 seconds) and that predicted by the simple queueing model (half the launch preparation time,

55 seconds). However, while there are some distances, they are relatively small.

A relatively consistent difference between launch event duration values for the three- and four-

catapult missions was also expected. The results show a mean different of 100.2 seconds, slightly

less than the mean launch preparation time of 109.8 seconds. Viewing results on a per-mission basis,

differences between three and four catapult ranged from 50 seconds (slightly less than half of one

launch) to 142 seconds (1.29 launches), well within the expected difference of zero to two launches.

Additionally, the average duration of three catapult missions at a given mission Density (e.g., 20

or 24 aircraft) is never smaller than that of the four-catapult mission. However, there does appear

to be some interesting variations in launch event duration between 20 and 24 aircraft, likely due

to how aircraft are placed on the flight deck. Using more than 20 aircraft requires that aircraft be

parked in the center of deck, eliminating some of the available taxi routes on the flight deck. These

routes continue to be eliminated as additional aircraft are added, requiring changes in how aircraft

are prioritized and missions are planned and executed. Past 26 aircraft, the changes in patterns

stabilize and return to a more linear trend.

The results presented in this section provide confidence that the simulation responds reasonably

with regards to changes in the input parameters of number of aircraft and number of available cata-

pults. The behavior of the simulation in regards to both is in line with prior data and expectations of

SMEs, suggesting that the simulation reacts in a similar fashion to the real world system. Although

the differences between three and four catapult missions did vary, at no time was a three catapult

case observed to require less time than a four catapult case, nor were any substantial and unexpected

changes in average launch event duration observed. More specifically, these results suggest that the

modeling of the launch preparation process, the interactions between aircraft and catapults, the taxi

routing process, and the catapult queueing processes that were all defined in Chapter 3 are accurate

and are reasonable with respect to the output variables tested within this section. However, as with

the single aircraft calibration, sensitivity analyses of internal parameters should also be performed in

order to determine the robustness of mission performance with regards to those modeled parameters.
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Figure 4-10: Plot of event durations versus number of aircraft, sorted by three- (blue) vs four-
catapult (red) scenarios.

This is described in the next section.

4.4.2 Sensitivity to Internal Parameters

Sensitivity analyses of internal parameters within the model examine the internal validity and ro-

bustness of the simulation to errors in the parameter models. The model should not be overly

sensitivity to errors in the definition of its parameters, given that the estimates of those parameters,

based on real data, are likely to be imperfect. For the MASCS model of flight deck operations,

the most important internal parameters include the launch preparation time (defined in Chapter 3,

Section 3.2.1), vehicle speeds, and the collision prevention parameters. The first two of these were

also tested for single aircraft in Section 4.2; collision prevention parameters could not be examined

because they require at least two vehicles to be present.

For launch preparation time, mean values are adjusted by ± 10%, while taxi speeds and collision

prevention thresholds are adjusted by ± 25%. As demonstrated in the previous section, the response

of mission event durations is linear with respect to the number of aircraft and the mean launch

preparation time. As such, a 10% change in the launch preparation time mean should lead to a 10%

change in mission behavior and be detectable through statistical tests. However, the structure of

queueing on the flight deck should limit the effects of taxi speed and collision prevention parameters.

Increasing the speed of transit only makes vehicles arrive at queues earlier and increases their wait

time at the catapult; it will have little meaningful effect on operations. Reducing speeds should

have some effect, but must be substantial enough to interrupt the queueing process at the catapults.

Similar effects should occur for the collision prevention parameters, with reductions in their values

removing constraints on vehicle motion and speeding their transit to catapults. Initial tests using
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only 10% changes produced almost no detectable differences, whereupon the value with increased to

±25%.

Table 4.2 provides a list of the mission scenarios tested in this sensitivity analysis. For this phase

of testing, only values of 22 and 34 aircraft were utilized; SMEs report that 22 aircraft is a typical

mission profile, while 34 aircraft is the largest value seen in prior CNA reports (Jewell, 1998; Jewell

et al., 1998). The table lists scenarios in the format (Number of Aircraft)-(Available Catapults)

while also denoting the parameter changes involved in each scenario; a notation of X% denotes

that the parameter was varied by both +X% and −X% in two separate scenarios. Each scenario

was replicated 30 times at both the +X and −X settings. Note that at no time was more than

one parameter varied during a run. Given the relative certainty in how launch preparation changes

would affect operations, these were only conducted for two mission profiles (22-3 and 34-4).

Fig. 4-11 provides the results of these tests in the form of a “tornado” chart. Each set of bars

reflect the plus and minus deviations of a specific parameter for a specific mission, with results ranked

in terms of greatest difference between plus and minus values. From this chart, it can be seen that the

changes in launch preparation distribution are near ±7%, smaller in magnitude than the changes

to the corresponding internal parameters, demonstrating a slight dampening effect. A review of

the output of launch preparation time values demonstrated that, due to the bounding of values in

random number generator, output values were roughly ±7% rather than ±10%. This means that

even though the stochastic launch preparation time generator did not provide the expected values,

the simulation responded appropriately to the values that were generated.

ANOVA tests reveal that significant differences exists for launch preparation time tests at the

22-3 (F (2, 87) = 29.1344, p = 0.0001) and 34-4 (F (2, 87) = 34.4374, p = 0.0001) cases, reflecting

the significant effects of the launch preparation time in driving flight deck performance. Tukey

post-hoc tests show that significant pairwise differences exist across all three cases for each mission

settings at p = 0.0025 or less (full results are available in Appendix H. From the figure, the effects of

launch preparation on operations are clearly larger than the effects of changing the taxi and collision

prevention parameters, even though the changes to launch preparation time were smaller (in terms

of percent differences) than the change to speed and collision prevention parameters (10% vs. 25%).

Table 4.2: Matrix of scenarios tested during internal parameter sensitivity testing.
3 catapults 4 catapults

22 aircraft
Taxi±25% Taxi±25%
CA±25% CA±25%

Launch±10%

34 aircraft
Taxi±25% Taxi±25%
CA±25% CA±25%

Launch±10%
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Figure 4-11: Results of final sensitivity analysis. Labels indicate number of aircraft-number of
catapults, the parameter varied, and the percentage variation of the parameters. Dagger symbols
(†) indicate an inverse response to changes in parameter values is expected. Asterisks (*) indicate
significant differences in ANOVA tests.

Significant results also appear for changes to aircraft taxi speed at the 34-3 (F (2, 87) = 4.9753, p =

0.009) and 34-4 settings (F (2, 87) = 3.8031, p = 0.0261). Tukey post-hoc tests reveal that, for both

of these cases, reductions in taxi speed provide significantly different results from increases in taxi

speed (p = 0.022, p = 0.007, respectively), but neither is significantly different from the mean in

either case; full results again appear in Appendix H). These results just how weak the effect of

taxi speed is on effecting on operations: even at changes of ±25% to the parameter, significant

differences only exist between the extremes. As described previously, this is likely an effect of the

launch preparation process regulating the flow of traffic on the flight deck. Interestingly, because

taxi speeds only had effects at the 34 aircraft case, it shows that the effects of speed may accrue

over increasing numbers of aircraft. Alternatively, it may be indicative of how the changes in how

missions evolve at the 34 aircraft level (more aircraft, fewer available taxi paths, and a difference in

the order of how areas are cleared) are more sensitive to vehicle transit speeds.

Tests for the effects of changing the collision prevention parameters show significant results only

at the 22-4 (F (2, 87) = 4.6278, p = 0.0123) and 34-4 (F (2, 87) = 5.4986, p = 0.0056). Tukey post-hoc

tests (full results in Appendix H) show that for both cases, decreasing the collision prevention param-

eters significantly decreases mission completion times. For the 22-4 results, the collision prevention

-25% case is significantly different from the +25% case (p = 0.0116) and marginally significant from

the baseline (p = 0.0855), while for the 34-4 mission, the -25% collision prevention case is different
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from both the +25% case (p = 0.0014) and the baseline (p = 0.0176). This suggests that when using

four catapults, in which more aircraft are moving on the flight deck, the current collision prevention

settings may slightly overconstrain operations. Reducing these constraints and providing aircraft

mode freedom of motion in operations provides slight benefits to operations. However, increasing

these constraints appears to provide no further penalty to operations and indicates some robustness

in the system. However, because the results of the earlier input sensitivity and launch interdeparture

tests were accurate, the baseline collision parameter settings were left unchanged.

The results described within this chapter thus far provide confidence that the MASCS model of

aircraft carrier flight deck operations is a reasonable representation of operations, partially validated

in terms of the output variables of launch interdepartures and launch event durations values and

its responses to changes in internal and input parameters. The system has been shown to respond

reasonably to changes in taxi speed, collision prevention parameters, and changes in the launch

preparation. The latter produces an almost linear response to changes in the launch preparation

time distribution, as expected. The effects of the other parameters are limited due to the structure of

operations: parameters that increase the rate of taxi operations have no effect, as they are bounded

by the final launch tasks at catapults. Tasks that decrease the efficiency of operations have limited

effects due to specific interactions with system conditions, but whose effects can be easily explained.

These results provide evidence that the agent and task models that comprise MASCS are accurate

and respond appropriately to system inputs, but as noted at the start of this chapter, models for the

Deck Handler and other human elements in the system cannot be fully validated at this time due to

a lack of data. Additional data collection at a much higher level of detail than currently performed

must occur to capture details about individual behaviors and decision-making on the flight deck

to ensure that agent behaviors are accurately captured. In light of these limitations, the accuracy

of these behaviors can also be reviewed by SMEs familiar with deck operations to critique their

representations at a high level. The next section describes the SME review that occurred during the

MASCS validation process.

4.5 Subject Matter Expert Review

After concluding the sensitivity analyses, the simulation environment and test results were presented

to a set of Subject Matter Experts (SMEs) for review. SMEs attending this meeting had a range

of experience on the flight deck, each over multiple years (two pilots each with over 800 flight hours

in fighter aircraft; another individual with over 3,000 hours as a Naval Flight Officer and 2 years

as a carrier-based launch and recovery officer) All were employed by Navy research organizations at

the time of the meeting. During the meeting, the simulation (which displays a live animation of the

evolution of the flight deck environment) was presented first to SMEs for their critiques. SMEs were

shown live executions of the MASCS environment using missions of 22 and 34 aircraft and using
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either three or four catapults, allowing the simulation to execute completely.

SMEs were specifically asked to review all aspects of the simulation as it played out — the

accuracy of movement of the crew, their alignment to aircraft, the motion of aircraft on the flight

deck and how their paths are deconflicted, and the assignment of aircraft to catapults. They were

also asked to provide comments on any other aspects of the simulation outside of those factors.

The simulations were often paused or restarted in order to the SMEs to provide comments on what

was currently happening or to get a closer look at what had just occurred. This continued until

participants had no remaining comments, upon which the discussion shifted to discussing the results

of validation testing described in Section 4.3. These results were presented in a series of slides to

the SMEs.

The SMEs agreed that, qualitatively, the animations of the simulation were accurate overall. The

SMEs expressed concern over what they considered to be large launch event duration values, but were

not overly worried given observations of the rest of the simulation. The SMEs also admitted that

they did not have a good understanding of how mission durations varied between combat “Surge”

operations, which occurs at a higher tempo due to faster launch preparations, and the majority

of slower tempo, more typical operations. They also commented that they were largely biased to

thinking in terms of Surge operations, but agreed that given the accuracy of the motion of crew,

aircraft, and the assignment of aircraft to catapults, the model should replicate Surge operations

with the correct (faster) launch preparation model.

In terms of sensitivities, SMEs explained that they had relatively poor mental models of these

effects. Aircraft only operate at one taxi speed, and they have no real understanding of how taxi

speeds might affect mission operations. In terms of the collision prevention parameters, aircraft

directors are all typically very risky when navigating aircraft. They described Directors as having

very little variation in how conservatively they navigated aircraft on the flight deck, but did agree

with the explanations of the sensitivity analyses when presented with that data. Additionally, they

also realized they had no real understanding of how the number of catapults affected the time to

complete the launch event: what is available is used, and extra catapults are thought to help clear

more space on deck.

That SMEs do not notice a difference is supported by the results of tests in Section 4.4. The

difference in performance between the three and four catapult missions averaged less than two

minutes in those tests, a difference not likely strong enough to be noticed by crew. Crew also noted

that they do not often consider the effects of including more aircraft in the mission, as this number

is not really an option for the deck crew. Even so, conceptually, the SMEs did not disagree with the

results and approved the simulation as an accurate replication of flight deck operations.
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4.6 Discussion

The testing described in this chapter has demonstrated that the MASCS model was able to ade-

quately replicate launch interdepartures on the flight deck while also demonstrating responses to

changes in parameters in line with expectations, providing confidence that the MASCS model is a

reasonable model of flight deck operations. As such, it suggests that the modeling techniques used

in creating MASCS are also reasonable and are suitable for use as templates for generating models

of the unmanned vehicle control architectures and their integration into flight deck operations. The

results of the testing discussed in this chapter also provide insight into the important parameters con-

cerning UAV implementation, as well as the use of SME in analyzing system performance. However,

as noted at the beginning of this chapter, insufficient data is available to suggest that the simulation

model is fully validated. The data used in this testing process has been used to successfully calibrate

the model, but a variety of aspects of the environment have not yet been addressed.

Further validation will not be possible until a much greater amount of detailed data is available

for operations. The most pressing need is data on the activity of individual crew on the flight deck,

including the Deck Handler and his planning strategies, as well as in individual interactions between

Aircraft Directors and aircraft in the routing topology they use on the deck. While the heuristics

that govern these processes were based on discussions with subject matter experts, training manuals,

and observations of operations, they can only be considered as representative models of operations.

Substantial variability may exist within these behaviors that have not been captured in the MASCS

model at this time. Even so, the results of calibrating this model suggest that it is useful in exploring

the sensitivity of the flight deck environment to vehicle behaviors as modeled in MASCS.

In particular, the sensitivity tests presented in Section 4.4 suggest that the main drivers of

performance, in terms of mean event duration, lay in the launch process and not in any parameters

relating to aircraft motion on the flight deck. However, changes to movement speed and collision

prevention (vehicle’s freedom of motion) may still have effect if they can disrupt the queuing process

at the catapults. This is one of several potential tradeoffs that exist within the system. Increasing

taxi speeds in fully autonomous environments may be possible, but will be of little utility if launch

preparations are not changed. Likewise, the benefits of greatly reducing launch preparation times

may be lost if vehicles cannot arrive at catapults at the proper times. Given the Navy’s goal to put

UAVs on carriers, it is unclear how UAVs will perform in this current environment, or what changes

will be needed to incorporate their inclusion. Given the sensitivity of the launch time preparation

parameter, these results suggest that launch preparation capabilities should be a primary concern

for UAV developers in terms of aircraft carrier integration.

Interviews with SMEs revealed important limitations on their knowledge of the system and their

mental heuristics. Their bias towards combat operations was already discussed and is not surprising,
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given human nature and the impactful nature of those memories. However, the limitations of their

knowledge of system sensitivity perhaps reveal some misunderstanding of flight deck dynamics. In

conversations, a variety of SMEs noted that extra catapults are always used in order to clear space

on the flight deck, will little understanding of how this actually affects flight deck performance. The

MASCS environment demonstrates that there is little practical benefit in terms of completing launch

operations at a cost of increasing the congestion on the flight deck, which should also be reflected in

significant changes in the safety metrics that will be examined later. The results of the testing at this

time suggest that it may be more beneficial, and perhaps safer, to commit resources to speeding the

launch process rather than to include an additional catapult. This is an interesting, and unexpected,

result of the simulation validation process that will be examined further in later chapters. This result

also demonstrates that the MASCS simulation may be useful in further examining the failures of

SME heuristics in understanding both current operations, and future ones involving UAVs

4.7 Chapter Summary

This chapter has described the validation testing process for the Multi-Agent Safety and Control

Simulation (MASCS) simulation environment. This chapter began with a discussion of the process

of validation and how it occurs for agent-based models. The chapter then described the phases

of simulation validation testing, beginning with the calibration of the aircraft agent model before

proceeding to validation testing of full missions utilizing 18 to 34 aircraft. In each section, the

results of both internal and external validation testing were discussed, describing the robustness of

the simulation to changes in different parameters and its ability to accurately replicate empirical

data from real-world testing. A final section described a review of the simulation by Subject Matter

Experts (SMEs) that deemed the behaviors of individual crew, aircraft, and the Deck Handler

planning to be accurate.

The results of this section all provide confidence that the MASCS simulation model is an accurate

representation of aircraft carrier flight deck operations. However, because data is not available for

all agents and for all aspects of flight deck operations in sufficient detail to validate all aspects of

the model, it cannot be claimed that MASCS is fully validated. At this time, it can only claim to

be a partially-validated model calibrated based on limited data on flight deck operations. However,

performance in the validation testing was sufficient to suggest that the MASCS model is ready for

the investigation of adding futuristic unmanned vehicles, new safety protocols, and changes to the

organization structure of operations. Chapter 5 describes the experimental test program defined

for the MASCS simulation environment, including the unmanned vehicle control architectures and

safety protocols of interest, how they are modeled, and their effects on the safety and productivity

of flight deck operations.
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MASCS Experimental Program

“The Three Laws of Robotics: 1: A robot

may not injure a human being or, through

inaction, allow a human being to come to

harm; 2: A robot must obey the orders

given it by human beings except where

such orders would conflict with the First

Law; 3: A robot must protect its own

existence as long as such protection does

not conflict with the First or Second Law.”

I, Robot (1950)

Isaac Asimov

The previous chapter described the calibration and validation testing processes of the Multi-

Agent Safety and Control Simulation (MASCS) model of aircraft carrier flight deck operations,

demonstrating that it is a reasonable replication of the real world system. The MASCS model

was assembled by modeling aircraft, crew, and supervisory staff as independent decision-making

entities, initialized and allowed to interact with the environment on their own through independently-

modeled tasks executed by these agents. The process of creating these agent models was described

in Chapter 3, which also provided background on flight deck operations. This chapter describes how,

within the partially-validated MASCS environment, future unmanned vehicle control architectures

and their integration into flight deck operations can be modeled and evaluated over a variety of

operational conditions. This chapter also describes different forms of safety protocols that are

applicable to flight deck operations, how they can be integrated into the simulation environment

independent of the unmanned vehicle models, and what their effects on operations might be.

A test matrix is presented, which details the experimental runs that will be used to explore the
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effects of different Control Architectures and Safety Protocols on flight deck performance and how

these are influenced by both the total number of aircraft included within a mission and the number of

Unmanned Aerial Vehicles (UAVs) within that total. This description of the experimental protocol

also includes the definition of dependent variables that describe both safety and productivity on

the flight deck. This chapter concludes with a review of the results of this experimental program.

The first section of this chapter begins with a description of the experimental matrix to provide an

overview of the test program; the elements of this matrix are described in subsequent sections.

5.1 Experimental Plan

The experimental plan is designed to understand the interactions between UAV Control Architec-

tures (CAs), operational Safety Protocols (SPs), the Density of mission operations (number of

aircraft utilized), and the Composition (percentage of mission that is unmanned or autonomous)

affect the safety and productivity of aircraft carrier flight deck operations. These four variables are

crossed in order to explore all possible interactions between these conditions. Control Architectures

and Safety Protocols are the most important independent variables of interest and are the main

focus of the test program. The Control Architecture factor includes six levels, modeling the control

architectures of Manual Control (MC) (partially validated in the previous chapter), Local Teleoper-

ation (LT), Remote Teleoperation (RT), Gestural Control (GC), Vehicle-Based Human Supervisory

Control (VBSC), and System-Based Human Supervisory Control (SBSC).

Each control architectures involves changes both to individual vehicle behavior (ability to execute

tasks and observe crew) as well as changes to how operations are conducted (how plans are gener-

ated and how taxi commands are issued), both of which may affect operational performance. Four

different Safety Protocols are tested, moving from unconstrained (Dynamic Separation) to moder-

ately constrained Temporal or Area Separation) to highly constrained (Temporal+Area Separation).

These Safety Protocols force adjustments to the planning and routing of aircraft on the flight deck,

altering when and how many unmanned vehicles are active at any given time.

The mission conditions will also affect how Safety Protocols are employed and cause further

changes to mission operations. However, as described in Chapter 3, taxi patterns become more

constricted and one or more catapults may not be accessible at increased mission Density. This may

have interesting interactions with the CAs and SPs defined in the previous section. Density is tested

at two levels: 22 (an average mission) or 34 (the largest typical mission). Lastly, the percentage of

UAVs within the mission has operational implementation on how the Safety Protocols are defined

for operations and also causes fundamental changes in how the mission evolves. Composition is

tested at three levels: 100% (all UAV, examining futuristic operations), 50% (even mix), and 25%

(an early, conservative integration of vehicles). Figure 5-1 presents the experimental matrix that

results from this cross of variables.
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Figure 5-1: Experimental Matrix for MASCS evaluation.

The matrix is not a full cross, as the Area, Temporal, and Temporal+Area protocols are not

applicable at the 100% Composition level (these protocols require heterogeneous vehicle types within

a mission; this is explained in the next section). In total, the matrix includes 90 runs, each of which

will be replicated thirty times in order to explore the stochastic distributions in the system. Two

additional runs examining Manual Control vehicles at the 22 and 34 aircraft levels are also part of

the data set but were already conducted in Chapter 4.

5.1.1 Safety Protocols

As discussed in Chapter 2, Safety Protocols (SPs) describe explicit changes to rules and procedures

within an environment in order to minimize the number of unsafe interactions between agents in

the system. For the Heterogeneous Manned-Unmanned Environments (HMUEs) that are the focus

of MASCS, this means changes that limit the physical interaction of unmanned aircraft, manned

aircraft, and crew on the flight deck. Chapter 2 also provided three main classes of safety protocols

that are applicable to unmanned aircraft on the flight deck environment. They are described in the

following sections.

Dynamic Separation Only

Dynamic Separation (DS) protocols attempt to maintain separation between vehicles during transit

operations; while vehicles are moving, these protocols act to ensure that they do not become too

close to one another by maintaining a minimum safe distance x between one another. Dynamic

Separation protocols are utilized within both manned and unmanned vehicles systems, and a version
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was instantiated for the original MASCS model (see Chapter 3, Section 3.2.1). This original collision

prevention routine worked as follows: for a vehicle Vi that is in motion, stop if any vehicle is within

a distance df forward or distance dl laterally, where df = one body length and dl = one body width.

This same logic is used for each of the UAV control architectures described later, including

utilizing the same thresholds defined earlier for manual control operations. Implicit in this choice is

that crew and pilots on deck have the same level of trust in the UAVs that they do in other vehicles;

otherwise, it would be expected that the minimum safe distance for UAVs should be increased by

some amount. This assumption of equal trust in the UAVs is the basis of many assumptions in

the Control Architecture models discussed later — it allows the testing to differentiate between

the actual structural features of the architectures and to minimize or eliminate the effects due to

environmental or crew social factors. The Dynamic Separation protocol is always active in the

system, regardless of whether any other safety protocols are applied, and is applicable to all vehicles

models. Additionally, because it only affects an individual vehicle performing a specific task (and

does not affect planning or traffic routing on deck), it provides the fewest constraints on operations.

Area Separation

Chapter 2 previously defined the Area Separation protocol as enforcing the constraint that agents

of a certain class must remain within their designated area on the flight deck. The intent of such

Area Separation (A) protocols is to isolate the believed “unsafe” unmanned vehicles from manned

vehicles. In a more mathematical form, the working environment is divided into N regions, where

members of a group Gk must remain in region j, where j = 1 : N . This corresponds to set of

constraints in planning: when allocating members of group Gk to resources in the environment, only

assignments to resources within the corresponding region j are allowable. Operations within each

region are independent and can occur in parallel. However, because the intent of the protocol is to

separate groups of vehicles, there must be at least one vehicle from two or more groups present in

order for the protocol to be meaningful. As such, once the population of vehicles in the environment

are all from the same group, the constraints on operations can be relaxed.

In the strictest form, this means that members of every vehicle group Gk should remain within

their defined region j at all times. In flight deck operations, this would require dividing the carrier

flight deck into regions, altering initial parking configurations to place aircraft in the correct regions,

and ensuring that each region has access to at least one launch catapult. The experimental plan will

only address missions using two classes of vehicles (manned and one type of unmanned), this requires

only two regions on the deck. Given that there are two sets of launch catapults (one forward, one

aft), segregating the deck into forward and aft halves in a sensible approach. Figure 5-2 demonstrates

how this might occur and how operations might evolve.

Manned aircraft (blue areas) will begin parked in the forward section of the flight deck, as crew

and the Handler would likely have higher trust in their ability to navigate the high-density Street
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area of the deck. Unmanned aircraft (yellow areas) would then be placed in the more open Fantail

area in the aft. Initial parking configurations are altered to ensure aircraft start in their correct

areas, with priority orderings properly balanced to ensure that both groups are assigned in parallel

and that taxi paths within regions do not conflict with one another. In making these changes, as few

alterations as possible were made from the original MC validation scenarios in order to maintain as

much consistency as possible across initial conditions. The Deck Handler planning routine is altered

to include the constraints on assignments described above: unmanned aircraft are only assigned to

aft catapults (numbers 3 and 4) and manned only forward (catapults 1 and 2) so long as at least

one of each vehicle exists on the flight deck.

Temporal Separation

Chapter 2 previously defined the Temporal Separation protocol as enforcing the constraint that only

one group of agents is allowed to be active at any given time during operations. The intent is to

isolate groups of vehicles from one another, just as in the Area Separation protocol, but to do so

while retaining access to the full environment. For this protocol, vehicle groups Gk are scheduled in

a pre-defined order, beginning with G1, then G2, and so forth to Gn where n = 1 : k. At any given

time, aircraft from only a single group Gk are allowed to taxi on the flight deck. Once all members

of the current group complete taxi operations, the next group is allowed to begin taxi operations.

Figure 5-3 diagrams how this might be applied to flight deck operations. A logical implementation

of this protocol would involve operating manned aircraft (blue) first in the mission, followed by

unmanned aircraft (yellow) for the same reasons as in the Area Separation protocol. Although crew

should trust the UAV systems, given the choice, they would likely prefer that manned aircraft are

active first due to the high density of aircraft on the flight deck. Crew would also likely again

prefer that manned aircraft begin the mission parked in the congested, high-traffic Street area in

the forward section of deck.

Figure 5-2: Example of the Area Separation protocol assuming identical numbers of UAVs and
aircraft. In this configuration, all manned aircraft parked forward are only assigned to the forward
aircraft pair, while all unmanned aircraft parked aft are only sent to the aft catapults. When one
group finishes all its launches, these restrictions are removed.
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Figure 5-3: Example of the Temporal Separation protocol assuming identical numbers of UAVs and
aircraft. In this configuration, all manned aircraft parked forward are assigned to catapults first but
are allowed to access the entire deck. After all manned aircraft reach their assigned catapults, the
unmanned vehicles are allowed to taxi and are also given access to the entire deck.

Integrating this into the MASCS simulation environment also requires modifications to the initial

conditions of test scenarios and the Handler planning routine. In the initial conditions, manned

aircraft must be parked such that they can easily taxi to catapults without requiring any of the

UAVs to be relocated. This moves the manned aircraft into the interior parking spaces on the

flight deck and places the UAVs on the edges and aft areas. Changes to the Deck Handler planning

heuristics enforce the constraint that manned aircraft should be assigned first; when the number

of manned aircraft without assignment reaches zero and all manned aircraft have arrived at their

assigned catapults, unmanned aircraft may then be assigned.

Combining Protocols

It is also possible to combine the Area and Temporal Separation protocols, although this is likely

to overconstrain activity on the flight deck. Employing these simultaneously means that one group

of vehicles will launch first from one catapult pair, after which the remaining group will have full

access to the flight deck. During the initial phase of these combined Temporal+Area missions, the

fully-functioning aft catapults do not receive aircraft assignments; manned aircraft are only routed

to the forward pair of catapults. This means that during manned operations, the flight deck is

operating below its full capacity, as half the available catapults are not used. This should then

increase the total launch event duration as compared to the other safety protocols.

A reasonable method of implementing this follows from the previous descriptions of Area and

Temporal Separation: manned aircraft are parked forward, with UAVs parked aft in the last areas to

be cleared (Figure 5-4). Manned aircraft are operated first, being sent only to the forward catapults;

once the last manned aircraft is close to his destination catapult, the UAVs would be allowed to

begin operations and have access to the entire flight deck. This should minimize interactions amongst

aircraft and increase overall safety, but it will likely cause significant increases in total launch event

duration as opposed to the other safety protocol options. Additionally, the combined T+A should

126



CHAPTER 5. MASCS EXPERIMENTAL PROGRAM

also be highly sensitive to the number of manned aircraft included in the mission: the larger this

complement, the longer the deck remains in an inefficient state (as no assignments are made to the

aft catapult pair).

Given this, there are four distinct Safety Protocol cases that exist: Dynamic Separation (DS),

Area Separation (A), Temporal Separation (T), and Temporal+Area Separation (T+A), each of

which are applicable to any type of UAVs system. However, it should be noted that the A, T, and

T+A protocols are only meaningful when the mission includes a heterogeneous set of vehicles. In the

MASCS testing program, the effectiveness of these protocols will be examined in terms of different

mission profiles and in terms of their interactions with the Control Architectures for the UAV

systems. As described in Chapter 2, five primary types of UAV Control Architecture exist, ranging

from simple teleoperation systems to more advanced supervisory control systems. The next section

characterizes how each of these five architectures are modeled within the MASCS environment as

modifications of the original Manual Control model presented in Chapter 3.

5.1.2 Control Architectures

Control Architecture (CA) is the second major factor in the experimental matrix in Figure 5-

1, nested within Safety Protocols on the vertical axis. As described in Chapter 2, the Control

Architecture (CA) of an unmanned vehicle system refers to the way(s) in which human operators

provide control inputs to those vehicles. This was previously characterized in terms of operator

location, operator control inputs, and the modality of operator input, as shown in Figure 5-5. The

figure is architected such that, from left to right, the types of control inputs provided by the operator

become more abstract. For manual control and teleoperated systems, operators provide inputs

physically to control linkages in the system, manipulating the control yoke and rudder pedals to

direct the vehicle or moving a throttle to control speed. For gestural systems, operators command

an action to be executed (to turn, or slow down, or stop) through physical gestures), which the

Figure 5-4: Example of the Temporal Separation protocol assuming identical numbers of UAVs and
aircraft. In this configuration, all manned aircraft parked forward are assigned to catapults first
but are only allowed to taxi to forward catapults. After all manned aircraft reach their assigned
catapults, the unmanned vehicles are allowed to taxi and are given access to the entire deck.
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vehicle’s onboard autonomy translates into control inputs. For supervisory control systems, operators

command more abstract goals (such as “taxi to this location”) through symbolic interactions in a

Graphical User Interface (GUI). These symbolic interaction are then decomposed into a set of more

discrete actions, which are then further decomposed into control inputs.

In the context of flight deck operations and models of agent behavior, the important activities

of a pilot that must be replicated by an unmanned vehicle control architecture can be summarized

in terms of three key aspects: visual detection of an Aircraft Director that is attempting to provide

instructions, correctly interpreting task instructions, and correctly executing the commanded tasks.

Each of these corresponds to a related variable: the probability of observing the Director if within

the vehicle’s field of view, the probability of correctly interpreting the command, and the probability

of correctly executing a task. For manual control, the likelihoods of these failures are so low that

subject matter experts would consider them nonexistent (0% likelihoods). A fourth difference in

behavior comes from the fact that the Director is providing instructions in this “zone coverage”

routing; this may not occur for some forms of UAV control, and thus how vehicles are routed forms

a fourth behavioral variable.

Two other variables also affect vehicle behavior, relating to the physical characteristics of the

vehicle: the field of view of the pilot/aircraft, which describes where the Director should be in

order to provide commands, and the latency in processing commands. The field of view for manual

operations is related to human sight range and the constraints of being in the cockpit; for unmanned

vehicles, field of view is related to the cameras used on the vehicle. The latency in processing

commands could come from a number of sources: delays in the communication of signals between

operator and vehicle, the time required for the vehicle’s computer system to process, or time required

for the human operator to interact with the system. Each of these can also be modeled as variables

Figure 5-5: Variations between control architectures, categorized along axes of operator location,
operator control inputs, and operator input modality.
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within the MASCS simulation environment, and a full list of these six design variables appears

below.

1. Vehicle Behavior variables

(a) Routing method: the topology of the flight deck and how aircraft are routed. Uses
either crew “zone coverage” methodology or central operator control.

(b) Visual sensing and perception: the probability of failing to detect an operator when
they are within the field of view. Applicable to MC, LT, RT, GC architectures. Bounded
[0, 1.0]; applied to any task commanded by an Aircraft Director (move forward, turn,
etc.).

(c) Response selection: the probability of failing to select the correct response given an
issued command. Applicable to MC, LT, RT, GC architectures. Bounded [0, 1.0]; applied
to any task commanded by an Aircraft Director (move forward, turn, etc.).

(d) Response execution (catapult alignment): the probability of failing to properly
align to a catapult. Applicable to all architectures. Bounded [0, 1.0]; applied to final
motion task to travel on to catapult.

2. System Design variables

(a) Field of View: visual field of the pilot and/or cameras onboard the vehicle. Applicable
to MC, LT, RT, GC architectures. Bounded [0, 360]o.

(b) Latencies and delays: delays that exist in operations. Applicable to RT (communi-
cations latency), GC (processing delays and time penalties due to failures), and VBSC
architectures (operator interaction times).

Comparing the unmanned vehicle control architectures to the baseline manual control model,

Local Teleoperation (LT), Remote Teleoperation (RT), and Gestural Control (GC) systems are the

most similar to current operations: each still receives assignments from the Handler, who passes

these instructions to crew that relay taxi instructions to the vehicles through physical gestures. LT

and RT both utilized a remote human pilot to recognize and interpret those commands, while GC

replaces the pilot with a gestural-recognition system capable of identifying directors and interpreting

their commands. Modeling these systems only requires creating new vehicle models to replace the

original manually controlled F-18 models from Chapter 3. The two remaining Human Supervisory

Control (HSC) systems, VBSC and SBSC, require new vehicle models as well, but they also require

architectural changes to flight deck operations. Both of these systems are centrally controlled and

neither requires interactions with the crew for taxi instructions. Commands are instead provided by

a single operator through the central system.

For the VBSC system, assignments and taxi commands would be issued by the Deck Handler

through a GUI that allows them to issue catapult assignments and provide taxi waypoints to vehicles

individually. In such a system, the Handler behaves as a server, processing requests for instructions

from vehicles serially. Past research suggests that operator performance degrades as the number of

vehicles controlled in a VBSC system increases; as such, it would be likely that the VBSC operator

would only be given control over the VBSC vehicles, and manned aircraft would operate with crew as
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they always have. For an SBSC system, a central planner would generate assignments for all aircraft

at once and issue them in parallel, no longer requiring the Handler to service vehicles individually.

However, optimization routines that work in this fashion work best when given control over all

elements of the system. For the SBSC model, manned aircraft would be included in the planning

system and would no longer be under the control of the Aircraft Directors on the flight deck. These

structural changes for the VBSC and SBSC systems have other repercussions as well, as will be

discussed later.

Each of these UAV control architectures can be modeled through changes to the variables listed

above, an overview of which appears in Figure 5-6 and will be elaborated on through the remainder

of this section. The first four lines of the figure describe the four major behavioral variables related to

human pilot operations; the last two lines describe the physical limitations of the control architectures

when work in the world. In generating parameter values and logic routines, as much as possible, the

definitions were based on prior research work in unmanned vehicle development; however, the novel

nature of the aircraft carrier domain means that a variety of assumptions must be made in order

to provide specific values to vehicle parameters. As described earlier, many of these assumptions

assume a “reasonable best-case scenario” for the unmanned systems, assuming that they are mature

technologies being used by expert users that are proficient in their operation and whose colleagues

trust their capabilities. These assumptions attempt to ensure a fair evaluation of the physical and

technological systems and attempt to avoid penalizing systems for perceived human social factors

such as distrust, dislike, or other issues.

Figure 5-6: Variations in effects of control architectures, categorized along axes of routing method,
sensing and perception failure rate, response selection failure rate, response execution failure rate,
field of view, and sources of latency.
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Visual Acquisition Parameters

One of the key requirements of pilots in flight deck operations it to quickly visually identify the

Aircraft Director who is currently providing instructions then sense and perceive nearby Directors,

comprehend the instructions they provide through physical gestures and select the appropriate

response, then execute that response. For the non-HSC UAV models (LT, RT, and GC), each

aspect of this process of Sensing and Perception, Response Selection, and Response Execution may

be affected by the properties of the control architecture as defined. Each action may have a higher

error rate than that observed for manual control. Each error may also have an associated time

penalty. Additionally, visual identification may not occur as quickly for computer systems or remote

pilots as for pilots seated within an aircraft.

Local Teleoperation (LT), RT, and GC systems all rely heavily on the use of cameras to observe

the outside world, with previous studies reporting that LT and RT operators experience a restricted

view of the environment that is detrimental to performance. This constraint on field-of-view should

also be included within the MASCS system. The research reported previously in Chapter 2 utilized

cameras and displays ranging from 40◦ to 257◦ in field of view, while the stereo camera used by

Song et al. has models ranging from 43◦ to 100◦ (Song et al., 2012). Given that the manual control

case was calibrated to 85◦ in earlier testing, a smaller value will be used for the UAV systems; the

median stereo camera field-of-view of 65◦ is chosen here. Operationally, this means that Aircraft

Directors will have to move slightly closer to the centerline of LT, RT, and GC aircraft to be visible

during operations. However, the same alignment logic used previously is still applicable; all that

is required is an adjustment of the aircraft model’s field-of-view parameter. Vehicle-Based Human

Supervisory Control (VBSC) and System-Based Human Supervisory Control (SBSC) systems do

not utilize cameras for processing tasks or relaying information to a remote operator, implying that

this limitation in camera field-of-view has no effect on their operations and is not necessary in the

modeling.

Once the Director is within the field of view, LT, RT, and GC systems must then visually identify

the Director and recognize that (1) this is their current Director that should be instructing them

and (2) the Director is commanding a specific task for them to perform. LT and RT systems both

continue to use a human pilot to perform this task, and prior research suggests that once an object

of interest is in the remote pilots camera view, they have a very high likelihood of detecting it.

As such, the probability of failing to notice a Director and failing to select the correct response a

task are both left at 0%. For VBSC and SBSC systems, these variables are again not applicable as

these systems do not rely on optical systems for task acquisition and these parameters are again not

necessary.

GC systems, however, require substantial changes to the model. Gesture recognition technologies

are still maturing, and the ability to recognize the complicated physical gestures performed by
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Directors in real-world settings is still an area of investigation. As noted earlier in Chapter 2, the

mean failure rate reported in the research, which includes laboratory settings and far less complicated

gestures, is currently 11.16%. While performance will certainly improve in laboratory settings, a

variety of environmental conditions (sun glare, obstructions, large numbers of moving vehicles)

ultimately limit performance in the real world. The median failure rate in the research is quite likely

to be close to the real-world failure rates, even with enhanced processing and vision capabilities.

As such, the median failure rate of 11.16% observed in the research is used as the failure rate of

the baseline GC system; the effects of this parameter on GC behavior will be explored later on in

Chapter 6.

There are also technical differences between identifying a Director and selecting a response given

their commands, with the latter being much more difficult. Failing to recognize either a Director or

a Task would involve some form of time penalty, either for a Director to issue an override to obtain

control over the vehicle (perhaps through a handheld wireless device) or to issue a “stop” command

to the vehicle and attempt to issue new instructions, respectively. A logical GC implementation in

this form would imply that a failure to recognize a Director might only happen once, after which

the Director would have the authority to force control of the vehicle. A failure to recognize tasks

does not have such a solution, due to the significant number of tasks that might be assigned. It

thus may take several attempts for the vehicle to register the correct command, with each failure

accruing a time penalty. For the baseline MASCS model of Gestural Control, the penalty for failing

to acquire a new Director is set at 5 seconds, representing the time required to realize the vehicle has

not recognized the Director and for the Director to issue an override. The time penalty for failing

to acquire task is modeled as a uniform distribution between 5 and 10 seconds, representing the

time for the operator to stop, issue a cancel command, and wait for the system to become ready to

accept new instructions (these times are also influenced by the expected latency in signal processing,

described later in Section 5.1.2). The number of failures in command comprehension and response

selection is determined at the start of each action commanded by a Director by a Bernoulli trial

generator, after which the total time penalty is solved by randomly sampling the uniform interval

[5, 10] once for each failure incurred.

Task Execution

The last of the original performance parameters involves task execution, in terms of alignment to the

catapult for launch. Chapter 3 noted that the probability of pilots failing to align to catapults was

very low, less than once per more than 200 launches. This was incorporated in the original Manual

Control model partially validated in Chapter 4. In transitioning from manual control to remotely

operated systems, previous research has reported that, even with large field-of-view cameras, the

remote pilots of LT and RT systems suffer degraded performance in their tasks. The common theme

in the literature reviewed in Chapter 2, although utilizing a variety of vehicles and tasks, was that
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tasks that required accurate alignment of a vehicle (or robotic arm) were most difficult to perform

and were even more so when in the presence of signal lag. This suggests that both LT and RT

systems should suffer a higher failure rate than manual control, but the information available from

prior research does not provide a true estimate of failure probability (most often reporting numbers

of errors). An appropriate model may be to raise the LT failure rate to once per mission (5%, once

per 20 launches) and RT to roughly twice per mission (10%, once per 10 launches).

For the more advanced GC, SBSC, and VBSC systems, the limitations of the remote pilot to

sense his or her location in the world and align to a target are removed, but these systems instead

require some sort of technological intervention to ensure accurate alignment. It would be reasonable

to assume, for a future system being allowed full operational status on a carrier, that the performance

of these systems would be equal to or better than LT performance. Also, because VBSC and SBSC

systems would rely on greater autonomy and likely include enhanced sensor capabilities as opposed

to the rest, they would likely have the best non-MC failure rates. However, given the difficulties of

navigating on the flight deck, it is difficult to argue that the failure rate would be zero. These ideas

then present a relationship of failure rates between systems: MC < VBSC&SBSC < LT&GC < RT

(MC has a lower failure rate than VBSC and SBSC systems, which is lower than LT and GC systems,

which are better than RT systems). Given that the chance of catapult alignment failure for manual

control is once per many missions (100+ launches), and that LT was once per mission, GC is also

set to once per mission (5%) while VBSC and SBSC are set to once per two missions (2.5%). This

failure, like the visual recognition failures, also includes a time penalty, which Directors report as

being in the range of 45-60 seconds.

Latencies

Outside of the original parameters, certain UAV systems may introduce latency into the process of

response selection and task execution. This is expected to occur for RT, GC, and VBSC systems,

albeit for different reason in each. VBSC systems incur a form of latency related to the Handler’s

ability to process tasks through the supplied GUI. This is described in the next section and will

be accompanied by a description of the VBSC system latencies. The source of latency in GC

systems comes from software processing as the system attempts to translate the hand gestures

of the Director into understandable action commands. Prior research shows this requires anywhere

<<1 to 3 seconds. This is modeled as a uniform distribution over the range [0, 3], randomly sampled

at the start of every action commanded by a Director. Remote Teleoperation (RT) system latencies

arise from the transmission of signals from the vehicle to the remote operator, who issues commands

that take additional time to travel back. This means that there is a defined lag from the time the

Director commands a task to the time that the operator begins execution, as well as a potential lag

at the end of the task when the Director commands the next task. Prior reports have placed the

round-trip latency at 1.6 seconds (Vries, 2005), meaning that that the start of each action is delayed
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by 1.6 seconds.

The effects at the end of the action are not as straightforward, however. Prior work demon-

strated that experienced operators adapt their strategies to the system, commanding tasks that

attempt to anticipate the lag, then wait for the tasks to complete execution before issuing new

commands (Sheridan & Ferrell, 1963; Sheridan & Verplank, 1978). Such a strategy would likely

be used by experienced remote pilots in flight deck operations in relation to when they expect the

Director to issue a command. This provides a continuum of possibilities ranging from ending the

task too early to ending the task too late; Figure 5-7 shows how this might occur for the “worst

case” late completion of a task. Two timelines are depicted, one for the actions of the Director and

Pilot (top), the second for the response of the vehicle (bottom). The vehicle beings its motion task

on the left at T = 0, and it should complete at T = 5. In the very worst case scenario, the pilot does

not anticipate the end of the task, waiting for the Director to issue the “STOP” command. If this

occurs at T = 5, when the moving aircraft has reached the desired end point, the round-trip latency

in the system would delay the end of the task by 1.6 seconds: the time required for the “STOP”

command to travel to the remote pilot and for this “STOP” signal to reach the vehicle. What was

supposed to be a 5-second task completes in 6.6 seconds.

In order to execute the task precisely as defined, preemptive action must be taken either by the

Director or the Pilot to compensate for the latency in the system; these actions appear in purple

towards the right side of Figure 5-8. The Director must provide a “STOP” command at least 1.6

seconds early to account for the round trip latency of 1.6 seconds. The remote Pilot must act 0.8

seconds early as they must only handle latency in one direction. Pilots might also overcompensate

for the lag in the system if they do not have an accurate mental model of the current latencies in

communications of if they are unsure of the final taxi destination. For experienced operators working

with a mature system, it is doubtful that they would initiate actions any earlier than double the

Figure 5-7: Diagram of worst-case scenario for RT latency effects for a five-second task. Upper time-
line shows Director and Pilot actions, bottom timeline shows vehicle response to Pilot commands. If
Director provides command late (at the 5 second mark) and the Pilot does not preemptively stop the
aircraft, the round-trip 1.6 second latency in communicating the “STOP” command to the vehicle,
the pilot issuing the command, and the command being executed causes the vehicle to stop late.
The task completes at 6.6 seconds.
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lag (3.2 seconds before the action should stop). Given that the latency in a one-way signal is 0.8

seconds, this places a minimum bound at tasks ending 2.4 seconds early. In Fig. 5-8, this shows that

the 5 second task desired would end at T =2.6 seconds. While this is a significant shift in terms of

a 5 second task, most taxi tasks on the flight deck take much greater than 5 seconds to complete

and the relative inaccuracy is not nearly as severe.

Given the assumptions in the previous two paragraphs, we have a continuum of possibilities

ranging from tasks being complete 2.4 seconds early to 1.6 seconds late. This can be modeled in

MASCS as an adjustment to the expected completion time of the task itself. To reflect the variability

in behavior, this takes the form of a uniform distribution over the range [−2.4, 1.6] sampled randomly

for each task and added to the expected end time.

UAV Routing Methods

The final major difference between UAV Control Architectures involves how they are issued taxi

commands and routed through the flight deck. As described earlier, LT, RT, and GC systems still

operate under zone coverage, although their performance is affected by various factors described in

the previous sections. VBSC systems would rely on commands issued from the Handler through a

Graphical User Interface, which requires modeling the behavior of the Handler in operating such

a system. Prior work has demonstrated that operators of these system behave as queuing servers,

processing vehicle tasks individually according to some form of queuing policy, with the time required

to issue tasks being modeled by a randomized distribution. For flight deck operations, experienced

Handlers would likely operate in a “highest priority first” fashion, prioritizing aircraft nearest to

catapults in order to keep traffic flowing on the deck.

The time required to process tasks is taken from prior research by Nehme, whose research involved

operators controlling a team of unmanned vehicles through a VBSC-style interface, requiring them

to define waypoints that defined vehicle transit paths, among other task assignments (Nehme, 2009).

Nehme characterized the “idle” task, in which operators assigned a new transit task to a waiting

Figure 5-8: Diagram of optimal and worst-case early scenarios for RT latency effects for a five-second
task. Upper timeline shows Director and Pilot actions, bottom timeline shows vehicle response to
Pilot commands. Perfect execution requires preemptive commands by either the Director or the
Pilot. If the Pilot further pre-empts the Director’s actions, the task may complete early.
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vehicle, as normally distributed with a mean of 3.19 seconds and standard deviation of 7.19 seconds.

The idle task described by Nehme is analogous to the action of assigning taxi tasks to idling aircraft

on the flight deck, so this same distribution will be used within MASCS for the baseline model of

VBSC systems. The interaction of the Handler’s interaction time with each vehicle and the current

number of vehicles in the queue generates latencies for VBSC systems: not only must a VBSC vehicle

wait N(3.19, 7.192) seconds at the start of each of its own tasks, it must wait for all other vehicles

ahead of it in the queue to be processed. If 4 vehicles are ahead in the queue, the fifth vehicle must

wait (one average) 3.19 ∗ 5 = 15.95 seconds before starting its next task. Thus, there is a significant

penalty for including additional vehicles in the VBSC queuing system, which has been characterized

in many previous studies (see (Cummings & Guerlain, 2007; Cummings & Mitchell, 2008)).

Additionally, since this style of routing does not rely on the network of crew on the flight deck,

the Handler can also assign longer taxi tasks on the flight deck — taxiing from aft to forward,

barring other constraints, could be done in a single motion rather than requiring multiple handoffs

between Directors. This is essentially a change in the topology of the flight deck; as described in

Chapter 3, the crew “zone coverage” routing system defines how aircraft can move throughout the

flight deck. The network of possible routes is altered for the SBSC and VBSC models, with longer

taxi movements now possible. However, the location of nodes in the network remains the same, with

the two supervisory control models allowed to make longer taxi motions. The general flow of traffic,

however, remains the same: Handlers have experience with flight deck operations and would likely

still employ the same general rules and routes of taxi actions as used today.

SBSC systems are also planned from a centralized systems but instead use a centralized planning

algorithm to define tasks for all vehicles simultaneously. All assignments are made in parallel, and

the Handler no longer functions as a queuing server in processing tasks. Once assignments are made,

just as with VBSC vehicles, tasks are carried out without the assistance of the Aircraft Directors

in taxi operations. What types of planning algorithms are useful in the aircraft carrier environment

is still an area of ongoing research, and prior work in this area demonstrated that even complex

planning algorithms have trouble decomposing the geometric constraints on the flight deck and

provide little benefit over human planning (Ryan et al., 2014). The appropriate development and

testing of planning algorithms for the flight deck lies outside the scope of this research; for SBSC

systems, the same Handler planning heuristics applied to the other CAs, which performed as well or

better than other planning algorithms in prior work, are applied here. As such, all five UAV control

architectures utilize the same Deck Handler assignment heuristics for assigning aircraft to launch

catapults.

A final change for the VBSC and SBSC systems involves the use of crew on the flight deck. It

was previously noted that the Aircraft Directors are not needed for issuing taxi tasks to VBSC and

SBSC vehicles on the flight deck. However, given the Navy’s emphasis on safety in deck operations,
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UAVs still would not likely be allowed to taxi entirely on their own. It is likely that white-shirted

Safety Officers, already used to observe operations on the current flight deck, might be transitioned

into roles as aircraft Escorts, accompanying VBSC and SBSC vehicles as they taxi along to ensure

that they maintain sufficient clearance to avoid hitting other aircraft. These Escort crew might

also be supplied with a “kill switch” to stop the vehicle temporarily if a collision is imminent and

the vehicle appears to not recognize the danger. These crew are modeled as new Agents within

the MASCS system, requiring a modeling of assignment to escort specific vehicles as needed and

using similar alignment logic as the Aircraft Directors. At the start of a vehicle’s taxi operations,

an Escort is assigned that follows them through the duration of taxi operations; once the vehicle

launches, the Escort returns to a “home” position to await a new task. A total of ten Escorts are

placed in the system, with clusters of five appearing forward and aft. This provides the capability to

taxi eight vehicles to catapults while two others are returning from just-completed taxi operations

and is a sufficiently large number to not constrain operations.

Other Effects

Additionally, for GC, VBSC, and SBSC systems, the shape of the vehicle is changed from an F-18

planform to a X-47B Pegasus unmanned vehicles. Qualitatively, F-18s are longer and have a smaller

wingspan than the X-47s. However, the thresholds of collision avoidance were adjusted to maintain

the same distances for each model to maintain a consistency of behavior. Additionally, the flight

crew is assumed to have enough experience with the UAVs to be comfortable with working with

them (they trust the vehicles to perform safely) and taxiing them at the same speeds as manual

control aircraft. The distribution of speeds for the UAV models is thus identical to that used for

Manual Control, which also removes any potential confounds due to speed differences.

Control Architectures Summary

Together, the changes in parameters described in the previous sections define the differences between

Manual Control aircraft and each of the five UAV Control Architectures defined for MASCS, as

detailed in Figure 5-6. If properly modeled, these changes to parameters and models should generate

significant differences in performance for individual vehicles taxiing on the flight deck. The movement

from Manual to Local Teleoperation introduces a minor constraint on field of view on the pilots and

would be expected to worsen performance slightly. The move from Local Teleoperation to Remote

Teleoperation introduces (in this model) a small lag into communications that delays the start of any

task and affects the end of task execution, both of which should potentially degrade performance.

The move from Remote Teleoperation to Gestural Control replaces the pilot with a less-accurate

computerized system with a larger processing time at the start of each task and the chance to fail

multiple times. This worsens performance further and should provide the worst performance across

all systems.
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Moving from Gestural Control to Vehicle-based Human Supervisory Control eliminates the in-

accurate gesture-processing system but replaces it with a single supervisor processing tasks for all

vehicles in series. For a single aircraft, the delay in supervisor interaction may be less than the

delays due to the gesture recognition system; if this occurs, the GC system should produce better

performance. At higher numbers of aircraft, however, more vehicles are placed into the VBSC super-

visor queue, greatly increasing the supervisor’s workload. Under these conditions, the wait times for

vehicles may increase significantly, leading VBSC systems to provide poorer performance than GC

systems at the mission level. Lastly, because System-based Human Supervisory Control provides

the ability to assign all tasks simultaneously, the limitations of the supervisory in servicing vehicles

in series is removed and should greatly improve the performance of SBSC systems. Together, these

differences in performance should appear as an inverted-U for individual aircraft models. This may

not be true at the mission level, where interactions with the crew routing methods, catapult queu-

ing strategies, and the Deck Handler planning heuristics may either mitigate or exacerbate these

qualities. Section 5.2 tests each of the control architectures using a single aircraft mission to explore

whether or not the six variables described here drive variations in performance.

5.1.3 Mission Settings: Composition and Density

The remaining two independent variables address how the context of the mission itself affects perfor-

mance; these appear on the horizontal axis in Figure 5-1. The first variable is mission Density, set to

either 22 or 34 aircraft, which examines how increases in the number of vehicles affects operations.

Subject Matter Experts describe a typical mission as including 22 aircraft, with 34 being a maximum

value for operations. At this 34 aircraft setting, the number of available taxi routes is reduced due to

the number of aircraft parked on the flight deck. Additionally, one of the forward catapults (catapult

1) is covered with parked aircraft and not usable. The Street area also contains more aircraft than

the 22 aircraft setting, leading to an increase of the number of vehicles performing close proximity

interactions. Due to these factors, the assignment of aircraft also evolves in a different fashion;

aircraft parked on catapult 1 must be taxied early in the mission, which means that the Street area

remains blocked for a significant amount of time, limiting the flexibility of aircraft assignments.

The Composition variable addresses the fact that the Area, Temporal, and Temporal+Area

Separation protocols described in Section 5.1.1 can only be applied while at least one manned and

one unmanned aircraft are present on the flight deck. The Composition variable describes the

relative numbers of unmanned aircraft involved in operations as a percentage of the Density value.

At the 22 aircraft Density level, a 25% Composition setting uses 5 unmanned aircraft and 17 Manual

Control aircraft. Differences in the values of the Composition variable affects the implementation

of the different safety protocols and how they affect the evolution of a mission. These effects are

summarized in Table 5.1. For example, under the Area Separation protocol, the two groups of
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manned and unmanned aircraft work in parallel in specific, segregated areas of the flight deck and

have equal access to catapults, regardless of the Composition level. Under the 50% Composition

protocol using Area Separation, these two groups are equal in number and should launch at similar

rates; the Area Separation protocol should remain in effect for the entire mission. At the 25%

Composition level under Area Separation, the small set of unmanned aircraft will launch more

quickly than the larger set of manned aircraft; once the unmanned aircraft have launched, the

Area Separation constraint can be relaxed as the only aircraft that remain are manned. The same

constraints are applied to both the 25% and 50% Composition cases, but differences in the number

of unmanned aircraft lead to differences in how the missions evolve.

Under the Temporal Separation protocol, the differences between Composition values are only

in terms of when unmanned aircraft become active during a mission. In both cases, manned aircraft

operate first, starting from their positions in the forward area of the flight deck. The larger number

of manned aircraft in the 25% Composition level means that unmanned aircraft will become active

later in the mission than would occur under the 50% Composition level. This is also true for the

Temporal+Area protocol, with the only difference being that T+A cases send all manned aircraft

forward. Missions can also be run at a 100% Composition level, utilizing only a single type of vehicle

during a mission (only manned or only unmanned), but the Area, Temporal, and Temporal+Area

protocols will not be feasible as only one type of vehicle is present. Dynamic Separation is the only

applicable protocol for the 100% Composition cases, with all other entries crossed out in Fig. 5-1.

Before proceeding to the execution of the matrix, however, additional testing should be performed

in order to verify that the UAV control architecture models and safety protocol logic routines function

as desired. The next section replicates the testing done in Chapter 4 in single aircraft calibration

with the new UAV models. While the results cannot be directly validated against empirical data,

the results should demonstrate the expected inverted-U shape of performance.

Table 5.1: Description of effects of Safety Protocol-Composition interactions on mission evolution.

Area Separation Temporal Separation

Deck Access (same
for all Composition

values)

Restricted to specified area Unrestricted

Operations (same
for all Composition

values)

Parallel (across areas) Series (manned first, then
unmanned)

Composition 50% Aircraft groups launch at similar
rates. Constraints likely to remain

in place throughout mission

Unmanned aircraft become active
halfway through mission

Composition 25% Smaller group of unmanned
aircraft launches quickly.

Constraints are relaxed afterwards

Unmanned aircraft become active
three-quarters through mission
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5.2 Unmanned Aerial Vehicle Model Verification

The changes defined in section were implemented into the MASCS model of flight deck operations,

defining new unmanned aircraft object classes and adjusting parameters for those agent models,

as well as making adjustments to existing logical structures within the system. Once these tasks

were completed, individual submodels within the code (e.g., the Bernoulli trial generator replicating

GC response selection failures) were verified for accuracy. After this was completed, a series of

verification tests of the single aircraft models were conducted using the same mission profile as

the single aircraft calibration testing described in Chapter 4, Section 4.2, again conducting 300

replications in each trial. Testing of the UAVs proceeded incrementally, introducing a single new

feature at a time in order to gauge its effects; these results are reported in Appendix J. The results

of the final model tests appear in Figure 5-9, which provides the mean Launch Duration value for

each vehicle class with whiskers indicating ±1 standard deviation.

As can be seen in the figure, the performance across unmanned vehicle control architectures

is that of the expected inverted-U shape. A Kruskal-Wallis non-parametric one-way analysis of

variance shows that significant differences exist among the data at the α = 0.05 level (χ2(5) =

197.1712, p < 0.0001). A Steel-Dwass simultaneous comparisons test1 reveals significant differences

between multiple pairs of CAs. A total of nine significant pairwise differences exist at the α = 0.05

level, comprising all possible combinations between two sets of three CAs: the three “delayed” cases

of RT (mean rank= 981.15), GC (mean rank= 1153.39), and VBSC (mean rank= 1046.74), where

vehicles experience some sort of latency or lag in operations, and the three “non-delayed” cases of

MC (mean rank= 786.26), LT (mean rank= 771.84), and SBSC (mean rank= 663.63).

1Steel-Dwass is a nonparametric version of the Tukey test; see (Conover, 1980).

Figure 5-9: Column chart comparing time to complete single aircraft mission across all five UAV
types. Original results from Manual Control modeling are also presented.
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These results for individual aircraft tasks suggest that latencies and lags experienced in task

execution by these vehicles have significant effects on performance, although this was expected.

However, as observed in the sensitivity tests of the manual control model in Chapter 4, Section 4.4,

changes that affect taxi operations “upstream” of operations may not actually have effect at the

mission level. The performance of the different UAV control architectures might also be influenced

by interactions with the Safety Protocols defined in this chapter in Section 5.1.1. Determining

the drivers of variation in safety and productivity on the flight deck is the focus of the MASCS

experimental testing program, described in the next section.

5.3 Dependent Variables and Measures

The focus of the MASCS experimental program is to examine the changes in safety and productivity

in aircraft carrier flight deck operations across different Control Architectures and Safety Protocols.

As noted in Chapter 4, very little information on flight deck operations is publicly available. As

such, there is little guidance in terms of what metrics are of importance for flight deck operations;

even if this guidance were available, it is not clear if these metrics would be appropriate for assessing

futuristic unmanned vehicle operations. Rather, inspiration for the performance metrics for use in

MASCS testing is taken from prior work on unmanned vehicles and driving research.

In prior work, Pina et al. defined five major classes of metrics for human supervisory control

systems that examine not only the performance of the entire human-unmanned vehicle system,

but that also examines humans and unmanned systems individually, as well as their efficiency in

collaboration and communication (Pina, Cummings, Crandall, & Penna, 2008; Pina, Donmez, &

Cummings, 2008). While all five classes are applicable to assessing the UAVs used in MASCS, four of

the five classes correspond to settings within MASCS and were defined as part of the various control

architectures; only the category of Mission Effectiveness (ME) metrics would exhibit significant

variation in MASCS testing.

This class of Mission Efficiency metrics describes measures of productivity within the aggregate

system. Pina et al. subdivided these measures into categories of Expediency (time to complete

tasks), Efficiency (resources consumed in completing tasks), and Safety (how much risk was incurred

during task execution). For MASCS, Expediency measures address how quickly the launch event

was completed, termed the Launch event Duration (LD). Efficiency measures address how well

operations were conducted, tracking parameters related to individual vehicle task execution and

helping to clarify differences in LD and the effects of the safety protocols on operations. Total

Taxi Distance (TTD) tracks the total travel distance of aircraft, providing an understanding of how

efficiently aircraft were routed on the flight deck, while Total Aircraft taXi Time (TAXT) and Total

Aircraft Active Time (TAAT) examine how long aircraft were actively executing taxi tasks or all

tasks (including launch preparation), respectively.
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Safety measures address both collision and non-collision hazards. Traffic researchers have ex-

plored the use of “surrogate” safety measures as proxies for true accident values. These surrogate

measures tracks events that occur more often than true accidents (making them easier to track)

but remain highly correlated with them (Archer & Kosonen, 2000; Archer, 2004; Gettman & Head,

2003; Gettman, Pu, Sayed, & Shelby, 2008). These measures often address the distances between

vehicles and the time-to-collision, both typically in regards to specified thresholds (e.g., one car

length or within one second of collision). The first set of MASCS safety measures tracks the number

of times another vehicle or human is within a specified distance of an aircraft; every time another

agent moves within this distance of a vehicle, that vehicle’s counter increases by one. Three dif-

ferent distance values are utilized within MASCS, corresponding to Primary (PHI, half-wingspan),

Secondary (SHI, full wingspan), and Tertiary (THI, two wingspans) Halo Incursions (Figure 5-10).

The term “incursion” is borrowed from commercial aviation, in which the entry of an unapproved

aircraft into a runway (or other restricted space) is known as an “incursion.” While these restricted

areas are specified as an enforceable constraints, “halos” in MASCS are purely descriptive measures

(but could be used as control features). The counts of incursions can also be subdivided by the

type of agent crossing the halo radius (aircraft or crewmember). While the inner-most Primary

Halo Incursion (PHI) measure is a small distance, it is common (although undesirable) for Aircraft

Directors to be this close to aircraft during operations.

Companion measures to the Halo Incursions track the total amount of time that each “halo” is

contains an incursion, as it is not clear which variable is more highly correlated with accidents on

the flight deck: the number of incursions or the total time that incursions exist. A variation of the

halo incursion measure takes guidance from traffic research and views collisions from a predictive

stance, tracking how many times a vehicle is within one second of colliding with another actor on the

Figure 5-10: Diagram of “halo” radii surrounding an aircraft. Primary incursions are within one
half wingspan of the vehicle. Secondary incursions are within one wingspan; tertiary are within two.
In the image shown, the aircraft has its wings folded for taxi operations. A transparent image of
the extended wings appears in the background.
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flight deck. This prediction measure also utilizes the radii from the figure above, tracking predicted

Primary (PC), Secondary (SC), and Tertiary (TC) collision warnings.

Non-collision safety measures address the factors that influence other hazards on the flight deck,

taking inspiration from the idea of latent failures. The primary metric in this class is the total time

that vehicles are active within the landing strip area, term the Landing Strip Foul Time (LSFT).

Blocking the landing strip may potentially delay airborne aircraft low on fuel from landing, directly

increasing their risk of accidents. Other metrics focus on congestion on the flight deck, tracking the

total number of aircraft that transit through the Street and Fantail area (NS, NF), the maximum

number of aircraft in those areas at one time (MS, MF), and the total amount of time that these

areas are occupied (DS, DF). A list summarizing these primary performance measures appears

in Table 5.2. The next section addresses the experimental hypotheses of performance for these

dependent measures in terms of the experimental matrix shown previously in Fig. 5-1. Hypotheses

are presented both in terms of safety protocol performance with a given control architecture and

across control architectures individually (independent of safety protocols).

5.4 Experimental Hypotheses

The hypotheses for the experimental matrix in Figure 5-1 are organized into two different matrices

in two figures below. Figure 5-11 shows the hypotheses across control architectures (independent

of safety protocols), while Figure 5-12 examines hypotheses for safety protocols within each control

architecture. For every dependent variable described in the previous section, lower scores are better

indicating either lower risk of operations or faster/more efficient mission execution. Entries in the

cells in the figure denote whether performance should provide smaller values (better) or larger values

(worse), with blank cells denoting performance somewhere in between.

Within Figure 5-11, the hypotheses are that, regardless of SP settings, the detrimental effects of

the delays and errors of the GC system will generate the worst performance in terms of Expediency

Table 5.2: List of primary performance metrics for MASCS testing.

Category Metric Abbreviation

Expediency Launch event Duration LD
Average interdeparture time ID

Efficiency Total Aircraft taXi Time TAXT
Total Taxi Distance TTD
Catapult wait time

Safety Primary, Secondary, and Tertiary Halo Incursions PHI, SHI, THI
Duration of Halo Incursions DPHI, DSHI, DTHI
Predicted Collisions (Primary, Secondary, Tertiary) PC, SC, TC
Landing Zone Foul Time LSFT
Number of vehicles in Street (total, max at any time) NS, MS
Number of vehicles in Fantail (total, max at any time) NF, MF
Duration of time of vehicles in Street, Fantail SD, FD
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and Efficiency measures, while the lack of constraints afforded by the VBSC and SBSC systems

should generate the best performance (smallest values) on these measures. GC should also generate

the worst performance for Safety measures that deal with time (Duration of “Halo” incursions,

etc.), as longer mission times should also correlate to larger values for those measures. For Safety

metrics dealing with counts of near collisions and predicted collisions, the SBSC control architecture

is expected to provide the highest values (worst performance) because it lacks the constrained taxi

patterns and artificial spacing introduced by the “zone coverage” system. However, because removing

these constraints is expected to increase the speed of operations, it is expected that safety measures

involving durations of time would perform better (lower values) for SBSC. For all metrics considering

the number of vehicles sent to the Street and the Fantail, the choice of CA should have no effect;

greater effects for these should come from the Safety Protocols and are reviewed in Figure 5-12.

In terms of Figure 5-12, within individual Control Architectures, the Dynamic Separation only

protocol should provide the best performance in terms of productivity measures as it provides the

fewest constraints on operations. The Temporal Protocol should also perform well on these measures

as it retains the flexibility to allocate aircraft across the entire deck. Conversely, the constraints put

in place by the Area and Temporal+Area cases should be detrimental to productivity measures,

most especially the Temporal+Area case.

Figure 5-11: Hypotheses for performance across Control Architectures. E.g.: System-Based Human
Supervisory Control (SBSC) is expected to perform best (smallest values) for all productivity mea-
sures and safety measures (smallest) related to durations. Gestural Control (GC) is expected to
perform worst (largest values) across all measures related to time.
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In terms of safety measures, however, these same constraints are expected to afford Tempo-

ral+Area the best performance, as it should minimize the interaction between vehicles of all types.

The Temporal protocol is also expected to fare better in safety measures than the Area Separation

protocol: because the Area Separation protocol confines aircraft into specific regions of the deck

(increasing the density of operations in each area), the collision-related measures are all expected

to perform worse in these cases. However, Area Separation is expected to provides the lowest use

of the Street area of the deck; conversely, the T+A protocol should utilize the Street most heavily

(worst performance) and the Fantail the least.

The only expected interaction between Safety Protocols and Control Architectures is that, be-

cause the VBSC and SBSC cases do not utilize the zone coverage routing methods, their productivity

performance is not expected to differ between safety protocols. An interaction is also expected be-

tween Composition and the Temporal+Area Separation protocol. Because this protocol isolates

manned aircraft in the forward section of the flight deck, neglecting the aft catapults, utilizing more

manned aircraft in the 25% Composition case should lead to longer Launch event Duration values.

The dependent variables described in the previous paragraphs were integrated into the MASCS

Figure 5-12: Hypotheses for performance of Safety Protocols within each Control Architecture.
Example: for Local Teleoperation (LT), the Temporal Separation safety protocol is expected to
perform best (smallest values) across all measures of productivity and safety. Area+Temporal is
expected to provide the worst productivity measures (largest values), while Area Separation is
expected to be the worst for safety.
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system and verified before beginning experimental runs, with the system set to output all measures

to file (as well as provide logs of system behavior) at the end of each simulation iteration. Each

entry in the experiment matrix was replicated thirty times, taking between one hour and 2.5 hours

to complete each set of replications (running at 10x normal speed). These results were then compiled

and examined, the results of which are presented and discussed in the next section.

5.5 Results

The experimental matrix shown in Figure 5-1 was executed using a team of Windows 7 machines

using the MASCS Java codebase and the Eclipse Java IDE. Simulations were executed at identical

screen resolutions (1536x864) across machines, with confirmation runs executed prior to the start of

the test matrix to ensure that the results of the simulation were not affected by differences between

computer systems. Thirty replications of each entry in the experimental matrix were performed (92

x 30 = 2760 runs in total). This section reviews the differences in performance in terms of these

dependent variables for the MASCS simulation environment, examining how changes in Control

Architecture (CA) and Safety Protocol (SP) interact both with one another and with the mission

configuration (number of total aircraft and percentage of UAVs within the mission).

This section utilizes Pareto frontier graphs to describe the general trends in the data, with

statistical tests formally determining whether any significant differences exist between cases. The

variances were typically not equal across data sets, and the statistics employed in the analysis are

primarily non-parametric Kruskal Wallis one-way analyses of variance and non-parametric Steel-

Dwass simultaneous comparison tests (Conover, 1980). As the testing generated a very large amount

of data, not all of it can be shown in this section. Appendices K through N include additional

analyses on the collected data as well as details on the statistical tests performed on the data as well

as additional data plots that not covered in this chapter. The section begins by reviewing differences

in the Launch event Duration (LD) productivity measure before moving on to the performance of

the remaining safety and productivity metrics.

5.5.1 Effects on Mission Expediency

The time required to complete a launch event served not only as an important validation metric for

the baseline manual control MASCS simulation, it is also the most critical evaluation metric for

Subject Matter Experts (SMEs) in carrier operations. In Section 5.4, it was stated that the Gestural

Control (GC) system, because of its delays and errors, should perform the worst overall while the

Vehicle-Based Human Supervisory Control (VBSC) and SBSC systems should perform the best and

possibly be equivalent to Manual Control (MC) performance. The Local Teleoperation (LT) and

Remote Teleoperation (RT) systems were expected to lie somewhere in between. In terms of Safety

Protocols, it was expected that for all productivity measures (Expediency and Efficiency), Tempo-
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ral Separation (T) Separation and Dynamic Separation (DS) would provide the best performance,

Temporal+Area Separation (T+A) the worst, and Area Separation (A) in between.

Figure 5-13 first provides column charts for LD performance for both Safety Protocols (left)

and Control Architectures (right) for the 22 aircraft Density level. This data does not differentiate

between the different Composition values 2. From the data on Safety Protocol performance (left), the

detrimental effects of the T+A Safety Protocol can be observed, confirming the earlier hypothesis

regarding its performance. LD values for the remaining settings are all fairly similar, however:

Temporal, Area, and Dynamic Separation are not substantially different from one another. The

data for control architectures (right) also indicates that there is little variation across the different

cases.

Statistical tests show that there are significant differences amongst control architectures as well

as between safety protocols. A Kruskal-Wallis nonparametric one-way analysis of variance for the

Area, Temporal, and Dynamic separation safety protocols (ignoring the T+A case) reveals significant

differences at both the 22 aircraft level (χ2(2) = 34.2927, p < 0.0001) and 34 aircraft levels (χ2(2) =

100.6313, p < 0.0001). Post-hoc Steel-Dwass multiple comparisons tests reveal that at the 22 aircraft

level, the Temporal Separation protocol (mean rank = 629.62) is different from both Area (497.488)

and Dynamic Separation (511.682) protocols, with the latter two not significantly different from one

another. At the 34 aircraft level, significant differences exist for all pairwise comparisons between

the three protocols, with Temporal Separation (mean rank = 689.25) providing the largest values

(different from both Area and Dynamic Separation a p < 0.0001). Area Separation (mean rank =

2A table of results for each individual SP-Composition pair can be found in Appendix K

Figure 5-13: Column charts of effects of Safety Protocols (left) and Control Architectures (right) for
22 aircraft missions.
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448.24) provides better performance than Dynamic Separation (mean rank = 505.195, p = 0.0435).

For control architectures, a Kruskal-Wallis test using CA as the grouping variable show that

significant differences exist at the 22 aircraft level (χ2(5) = 37.7272, p < 0.0001) but not at the 34

aircraft level (χ2(5) = 5.8157, p = 0.3246). A post-hoc Steel-Dwass non-parametric simultaneous

comparisons test for the 22 aircraft data reveals that significant pairwise differences exist between

the SBSC (mean rank = 438.6) case and each of the RT (605.7), GC (582.2), and VBSC (562.0)

cases. The LT (mean rank = 515.2) and RT cases are also shown to be significantly different

from one another. These results, at least for 22 aircraft, suggest that the presence of latencies and

delays in the control architectures — which occurs for the RT, GC, and VBSC systems — has some

effect on mission productivity. However, while these results are statistically significant, the practical

differences between control architectures are only on the order of a few minutes.

Figure 5-14 provides a column chart depicting the results for individual control architectures at

the 22 aircraft Density level, grouped by Safety Protocol but excluding the T+A cases. The data in

figure 5-14 demonstrates that not only is there relatively little variation across safety protocols, there

is very little variation across control architectures within a single protocol. The most notable aspect

of the data in the figure is that the SBSC architecture appears to provide better performance than

the other architectures under the Dynamic Separation only and Area Separation safety protocols.

Additionally, RT, GC, and VBSC appear to cluster together as worst performers under the Temporal

Separation protocol. Statistical tests that compared control architecture performance separately

within each Safety Protocol were performed to further examine these differences.

For the Dynamic Separation protocol, an ANOVA shows significant differences amongst con-

Figure 5-14: Column chart comparing Launch event Duration (LD) values across all Control Archi-
tectures (CAs) sorted by Safety Protocol (SP). Whiskers indicate ±1 standard error.
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trol architectures (F (5, 474) = 6.016, p < 0.0001). A Tukey HSD test across all pairwise com-

parisons shows that significant differences exist only between the SBSC architecture and the LT,

RT, GC, and VBSC architectures (all at p ≤ 0.0061). Under Dynamic Separation, SBSC and MC

are not significantly different from one another. For the Area Separation protocol, an ANOVA

shows no significant differences between architectures (F (5, 324) = 2.021, p < 0.0753). For the Tem-

poral Separation protocol, an ANOVA shows significant differences amongst control architectures

(F (5, 324) = 3.947, p = 0.0017), with a Tukey test showing that only two significant differences

exist: Local Teleoperation (LT) provides smaller LD values than both the RT (p = 0.0477) and GC

(p = 0.0250) architectures. These combined results suggest that variations in control architecture

performance are limited, but that some important interactions exists between safety protocols and

control architectures.

An extended analysis of the LD results can be found in Appendix K, which performed a statistical

comparison across all individual run cases, no longer grouping data according to Safety Protocol

or Control Architecture. What these results demonstrated was that the significant main effects

of CA and SP described previously are due to differences between only a few specific missions:

the Temporal Separation applied to the RT, GC, and VBSC results in larger LD values, while

the Dynamic and Area Separation protocols applied to the SBSC architecture results in smaller

(better) LD values overall. The benefits of the SBSC architecture are likely due to change in the

deck topology that occur with the removal of the Aircraft Director crew and their “zone coverage”

routing system. Removing this crew removes constraints on when and where SBSC vehicles are

allowed to taxi, as they are not forced into the routing network in Fig. 3-7 in Section 3.2.2. This

leaves the SBSC architecture as the least-constrained architectures in terms of motion on the flight

deck, which appears to provide slight benefits in terms of launch event duration values.

However, as noted, the results show relatively little practical variation in results. This could

be due to an error may exist within one or more components of the MASCS model that serves to

limit possible variations in system performance. One option is that the individual vehicle models are

flawed. However, the results of single aircraft testing in Section 5.2 did show significant differences

in performance between the architectures for individual aircraft. These differences are somehow

being obscured at the mission level. Errors may exist in how the crew “zone coverage” routing

architecture handles the simultaneous taxiing of aircraft, but the SMEs that reviewed the execution

of the MASCS simulation judged that the models of Aircraft Directors and their routing of vehicles

were accurate.

An alternative explanation involves the heuristics that govern the catapult queueing process and

the current launch preparation time model. As described in Chapter 3, Deck Handlers can assign

two aircraft to each catapult. Within a catapult pair, one aircraft prepares for launch while the other

three wait nearby (see Figure 5-15, part a). After the first aircraft launches (part b) the aircraft
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on the adjacent catapult begins launching, the next aircraft at the original catapult moves forward,

and the Handler assigns a new aircraft to this queue. As additional launches occur, the Handler

continues to assign new aircraft to the catapult, often taxiing multiple aircraft in parallel towards

the same catapult pair (Figure 5-15, part c).

It is an explicit goal of the Handler to keep these catapult queues filled: if queues are full, the

chances of any catapult sitting idle while waiting for a task is minimized. The crew “zone coverage”

routing architecture facilitates this by allowing decentralized and parallel routing of aircraft on the

flight deck, allowing the queues to be refilled quickly during operations. If the queues are kept filled

through the mission, then the time required to complete the mission is simply a matter of how

quickly the queues are emptied. This is an effect of the queuing policies at catapults and of the

launch preparation task, both of which were defined independently of the control architectures and

safety protocols of interest here. Differences in performance will only arise if an architecture fails to

provide aircraft to keep queues sufficiently filled.

Disrupting a queue requires that the new aircraft arrive at the catapults after the queue has

been emptied. That is, the three aircraft already at the catapults (Fig. 5-15, part b) must complete

their launches while the new aircraft is taxiing. Within MASCS, the time to complete the launch

preparation task averages roughly two minutes; this means that the queue is emptied in six minutes

on average. If the average taxi time for the new aircraft is less than six minutes, then aircraft will,

on average, arrive in time to keep queues filled. Figure 5-16 provides a selection of output data from

MASCS execution regarding the average taxi times and queue wait times for aircraft. Taxi times

range from 3 to 4 minutes, clearly less than the six required to clear the queues, which would suggest

that the queues remain in place throughout the mission. This is verified by the queue wait time data

on the right side of the chart, which shows that the average wait time in queue for aircraft ranges

Figure 5-15: Diagrams of queuing process at catapults. a) start of operations with full queues. b)
After first launch. c) after second launch.
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from 2 to 3.5 minutes. This occurs across all safety protocols and across all control architectures.

The differences exhibited by aircraft in the single aircraft tests in Section 5.2 all occur upstream of

the launch preparation process and are largely mitigated by the queueing process.

The queueing pattern that arises at the catapult pairs is the result of human-generated heuristics

that govern taxi routing and aircraft assignments, the launch preparation task (a task dominated by

manual human tasks, as described in Section 3.1), and the inability to launch adjacent catapults in

parallel (a physical constraint influenced by the heuristics governing the design of the deck). Until

this queueing process is altered, little can be learned about the true effectiveness of manned or

unmanned vehicles in flight deck operations. Chapter 6 will explore how the queueing and launch

preparation processes might be improved in order to eliminate the queueing phenomenon observed

here and how it affects variations in flight deck productivity. The next section continues the review

of results from the experimental matrix, describing the effects of the safety protocols and control

architectures on the safety of flight deck operations.

5.5.2 Effects on Mission Safety

Several different safety metrics were defined in Section 5.3, each addressing different ways of viewing

the interactions between vehicles and crew on the flight deck. Additionally, each of these measures

could be viewed either as an aggregate or be separated into independent measures for aircraft and

crew. The settings of the collision prevention routines for aircraft prevent the occurrence of PHI and

Secondary Halo Incursions (SHI) incursions by other aircraft; vehicle interactions only appear at the

Tertiary Halo Incursions (THI) level, which is reviewed in this first section. Figure 5-17 presents a

Pareto chart of THI plotted against LD for the 22 aircraft cases, with the points forming the Pareto

frontier connected via a black line (the bottom left corner). This chart includes data points for

Figure 5-16: Average taxi times, average launch preparation time, and average time to clear a queue
of three aircraft for selected 22 aircraft missions.
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each replication of every run setting (Control Architecture+SafetyProtocol+Composition). Marker

shapes are consistent for a specific CA (e.g., GC appears as boxes, VBSC as diamonds), while marker

colors denote the Safety Protocol (SP) utilized (blue for Dynamic Separation, red for Temporal, etc.).

Because results were largely consistent across different Composition values, no differentiation is made

for this variable in order to improve the readability of the charts. Pareto charts using individual

colors for each SP-Composition pairing can be found in Appendix N.

The general trend in the data in the figure is in terms of the different control architectures. VBSC

provides the worst performance (largest values), followed by GC, then a cluster of results for MC,

LT, and RT, then with SBSC providing the best results. This can be highlighted when looking at

results for only the Dynamic Separation case in Figure 5-18. These results are in direct opposition

to the hypotheses stated in Section 5.4, which expected that the SBSC case should produce the

Figure 5-17: Pareto frontier plot of Tertiary Halo Incursions (THI) versus LD for 22 aircraft missions.
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highest values in terms of Halo Incursion counts on the flight deck. Additionally, the wide disparity

between the VBSC and SBSC cases was not expected. The only major difference between the two

cases is the utilization of crew: under the SBSC protocol, only Escorts are utilized, while under

the VBSC protocol, a mix of Escorts and Directors are utilized. This suggests that, for these two

systems, the removal of the Aircraft Directors from the SBSC cases may have significant effects on

the THI metric. Since THI is an aggregate metric including both crew and aircraft contributions,

the contributions of one group may overshadow the other.

Figure 5-19 shows only the Tertiary Halo Incursions due to Aircraft (THIA) contribution to the

THI metric, and the trends in the THIA data are significantly different than the trends in THI in

Fig. 5-17. Most importantly, the only two main effects that appear to exist are that (1) the largest

counts of THIA values occur under the Dynamic Separation protocol and (2) that the T+A safety

protocols (bottom right corner, black markers) appear to generate the smallest values of THIA.

Additionally, the high THIA value Dynamic Separation values only comes from a subset of the

control architectures: GC (squares), VBSC (diamonds) and SBSC (triangles), each of which also

shows a much range of THIA values than the MC, LT, and RT architectures. In fact, SBSC provides

both some of the best (smallest) and some of the worst (largest) values in the results. Results for MC,

Figure 5-18: Pareto frontier plot of Tertiary Halo Incursions (THI) versus LD for 22 aircraft Dynamic
Separation missions.
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LT, and RT all appear to cluster in the lower half of the chart; Figure 5-20 provides a side-by-side

comparison of the LT and SBSC architectures to highlight these differences more clearly.

A Kruskal-Wallis test of the data utilizing SP as a factor returns significant results (χ2(3) =

422.86, p < 0.0001) with the Dynamic Separation cases (mean rank = 922) returning the highest

overall values (worst performance), T+A returning the lowest (321), and Area (718) and Temporal

(660) in between. A Steel-Dwass multiple comparisons tests shows that the T+A and Dynamic

Separation cases are significantly different from all other safety protocols (all at p < 0.0001), while the

Temporal and Area cases are not significantly different from one another (p = 0.1386). These results

partially support the hypotheses stated in Section 5.4: as expected, the T+A protocol provides the

smallest overall values and DS the largest. However, these results fail to confirm the hypotheses

Figure 5-19: Pareto frontier plot of Tertiary Halo Incursions due to Aircraft (THIA) versus LD for
22 aircraft missions.
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Figure 5-20: Pareto frontier plots of Tertiary Halo Incursions due to Aircraft (THIA) versus LD
for 22 aircraft missions for Local Teleoperation (LT, left) and System-Based Supervisory Control
(SBSC, right).

that Temporal would be equivalent to T+A and Area would be equivalent to Dynamic Separation.

In terms of mean THIA values, T+A (mean value = 54.54) provides a 24% improvement in

average THIA scores compared to the Dynamic Separation protocol (mean value = 71.33) and a

13% improvement as compared to Temporal (mean = 62.54) or Area Separation (mean = 63.26).

However, as pointed out in Section 5.5.1, this comes at a cost to LD: the average LD for the T+A

cases is 36.17 minutes, a 44.3% increase over the average 25.06 minute mission duration for the

combined Area, Dynamic Separation, and Temporal protocol results. Applying multiple high-level

constraints to operations with the combined Temporal+Area protocol does appear to provide a

benefit to vehicle safety (smaller THIA values), but this comes at a much larger relative cost to

mission productivity (increased LD values).

Significant differences also exist across the different control architectures (Kruskal-Wallis test,

χ2(5) = 362.0433, p < 0.0001), with Steel-Dwass multiple comparisons tests showing differences

between two sets of vehicles: the three “autonomous” UAV architectures of GC (mean rank =

1050.8), VBSC (972.8), and SBSC (811.74) all perform significantly worse than the “manned” cases

MC (mean rank = 260.27), LT (234.0), and RT (431.0), with GC also being significantly worse than

VBSC (VBSC v. MC, p = 0.0026; all others, p < 0.0001; full results appear in Appendix N). These
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results are likely influenced by the poor performance of GC, VBSC, and SBSC under the Dynamic

Separation protocol. These results also fail to confirm the hypotheses from Section 5.4: while the

SBSC architecture does provide the largest values and worst performance (as expected), significant

differences were not expected between the other architectures.

The original hypothesis was that the iterative interactions of the Deck Handler in VBSC and

the use of the “zone coverage” routing structure in MC, LT, RT, and GC and would each generate

sufficient spacing between vehicles to keep THIA values low. The statistical tests of the previous

paragraph suggest that this does occur for the MC, LT, and RT architectures, as tests demonstrated

that these three architectures were significantly different from, and provided smaller THIA values

than, the remaining architectures. For the MC, LT, and RT architectures, the combined Tempo-

ral+Area case also further reduced THIA values, but only slightly. This suggests that the “zone

coverage” mechanism used by these architectures may function as a different form of safety protocol

during operations that is incompatible with the Area and Temporal separation protocols.

Interestingly, the GC architecture provides significantly worse performance than LT and RT

although it also utilizes the crew’s zone coverage routing method. This poor performance is likely

due to the failures and processing latencies of the GC system; as shown previously in Section 5.2,

these failures and delays made GC the slowest of the UAV control architectures. This is partially

due to the topology of the zone coverage routing network, which requires multiple small taxi tasks

be performed as vehicles are passed between Aircraft Directors on the deck. When a GC vehicle is

handed off from one Director to another, the vehicle has a chance first to fail to recognize the new

Director, then multiple chances to fail to recognize his commands, as well as delays from processing

latencies. While this is occurring, the first Director is providing instructions to a new vehicle. If this

vehicle more readily finds the Director and accepts his commands, it will begin moving forward but

will be blocked by the first vehicle. The second aircraft will taxi forward until its collision prevention

routine commands that it stop, incurring a new THIA penalty. If this process continues repeatedly

for all vehicles on the flight deck, this would generate a higher rate of THIA values than LT and RT.

The poor performance of the VBSC and SBSC architectures is also likely explained by the

change in the topology of the deck due to their lack of use of the “zone coverage” crew routing

mechanism. This change in topology means that these two architectures do not experience the same

“natural spacing” as the other architectures. Instead, they are given greater freedom in taxiing on

the flight deck, coming as close to other vehicles as the Dynamic Separation collision prevention

routine will allow. Interestingly, the delays of the VBSC architecture do not exacerbate the effects

of the more open routing system and may be due to the influence of the Deck Handler’s queuing

policy. The VBSC Handler prioritizes aircraft closest to their catapults specifically to avoid the

conditions described for GC: aircraft at the “front” of operations are given instructions first in order

to prevent them from obstructing traffic. The flow of traffic is kept moving, and the same effects
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observed for GC should not occur for VBSC.

In general, these results for the THIA aircraft safety measure suggest that the topology of the

flight deck, as influenced by the use of the crew’s “zone coverage” routing methods, is the most

important driver of performance in this environment. Architectures using that routing method and

not experiencing significant numbers of failures in operations (MC, LT, RT) provided the smallest

values for the metric. The two architectures not using the crew routing (VBSC and SBSC), provided

some of the worst values. While GC also used the crew routing, its high failure rates interacted

with the crew routing to generate high THIA values. However, for these latter three architectures

exhibiting very poor performance, results suggest that the use of the safety protocols is beneficial in

lowering the rate of aircraft interactions on the flight deck. However, overconstraining operations in

the T+A protocol provides only a slight improvement over the Temporal or Area Seapration cases

at a significant penalty to LD values.

Similar trends appear in data taken at the 34 aircraft Density level (Figure 5-21). Kruskal-Wallis

tests for SP main effects (χ2(3) = 78.847, p < 0.0001) and CA main effects (χ2(5) = 885.2522, p <

0.0001) again reveal significant results (full results appear in Appendix N). For Safety Protocols,

a Steel-Dwass multiple comparisons test reveals that T+A (mean rank = 547.07) is significantly

different from Area (mean rank = 738.10, p < 0.0001), Temporal (mean rank = 630.15, p = 0.0266),

and Dynamic Separation (mean rank = 788.11, p < 0.0001). Temporal is also significantly different

than Dynamic Separation (p < 0.0001) and Area (p = 0.0028), while Area and Dynamic Separation

are not significantly different from one another (p = 0.209).

A Steel-Dwass test on the Control Architecture results shows significant pairwise differences

exists between all cases except between MC and LT (p = 0.5905; MC and RT, p = 0.0003;VBSC

and GC, p = 0.0034; all others, p < 0.0001). Recall that at the 22 aircraft setting, differences

occurred primarily between the two groups of “manned” (MC, LT, RT) and “unmanned” (GC,

VBSC, SBSC) architectures, where comparisons within groups were not significant. These data

suggest that increasing the number of aircraft on the flight deck, which introduces new constraints

in how aircraft can be routed on the flight deck and changes how the Deck Handler allocates aircraft

through the mission, encourages further variations in the GC, VBSC, and SBSC architectures.

A review of results for the Duration of Tertiary Halo Incursions due to Aircraft (DTHIA) metric

was also conducted, which appears in Appendix M. However, these results demonstrated the same

general trend of results at the THIA metric. The trend observed in these metrics indicates that the

safety of aircraft interactions is influenced largely by the selection of the topology of the flight deck

and the role of crew in that topology. These results only partly support the hypotheses discussed in

Section 5.4. While, overall, the trends in performance for control architectures and safety protocols

were as expected, a variety of unexpected interactions existed within the system, due largely to the

differences in the topology of the flight deck between the “zone coverage” and supervisory control
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Figure 5-21: Pareto frontier plot of Tertiary Halo Incursions due to Aircraft (THIA) versus LD for
34 aircraft missions.

routing methods. These were significant enough that the SBSC control architecture exhibited both

some of the best and some of the worst performance.

While these interactions highlight important considerations about the effects of crew interactions

on aircraft safety, aspects of crew safety are a second important consideration in operations. Recall

that the Pareto chart of the aggregated THI metrics showed trends quite different from the THIA

metric. As noted previously, these differences are likely due to the crew component. However, the

models of crew behavior implemented within MASCS were quite simple and do not reflect the true

complexity of crew behavior when working in close proximity to aircraft. The PHI and Duration of

Primary Halo Incursions (DPHI) metrics do provide some insight as to how vehicle routing affects

the rate at which vehicles encounter crew on the deck, but they cannot truly offer any information
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on crew-vehicle interactions. To better characterize those interactions, future work should address

the creation of more complex models of crew and vehicle motions at a much finer resolution than

currently done in MASCS. An analysis of the Primary Halo Incursion (PHI) and Duration of Primary

Halo Incursions (DPHI) measures for this current work can be found in Appendix M, which indicates

that once again, the primary effect on operations was the choice of crew routing topology.

Several other safety metrics were defined in Section 5.3 that have not been discussed here. While

these metrics were output from MASCS and were analyzed, the trends in performance are the same

as those presented within this section. In particular, the predictive Collision measures were virtually

identical to the Halo Incursion measures, which is likely an artifact of the slow speeds of transit

on the flight deck (it takes several seconds for an aircraft to travel its body length). Pareto charts

of these other metrics are provided in Appendix N. The next section reviews the final category of

dependent variables included in MASCS: measures of efficiency.

5.5.3 Effects on Mission Efficiency

The design of the safety protocols and their interactions with the Composition settings were expected

to drive significant variations in the efficiency measures, as well as for productivity and safety

reviewed in earlier sections. While these measures may not be correlated directly to Launch event

Duration, their performance is still of interest: longer taxi distances imply more wear on aircraft

tires and on the deck itself, as well as increased fuel consumption. While these measures of efficiency

may not be the primary concerns of stakeholders at this time, they may be sources of secondary

benefits to operations.

The first of these measures, Total Taxi Distance (TTD), sums the total travel distance of all

aircraft in the simulation, providing a measure of the efficiency with which aircraft were allocated

to catapults by the Deck Handler planning heuristics, as well as the efficiency of routing in the

zone coverage routing scheme. Figure 5-22 shows data for this metric at the 22 aircraft Density

level. Similar to previous measures of safety, it can be seen that the 50% Area cases provide very

low values of TTD, whilst the Temporal and Temporal+Area provides provide the worst overall.

The performance of the Temporal cases is perhaps not surprising, given the previous discussions

about the rate of transition from fore to aft and vice versa. The increased values at the T+A

setting, however, come primarily from the unmanned vehicles that operate at the end of the mission

schedule: some subset of these vehicles are assigned to the forward catapults, incurring much larger

taxi distances than would be seen in the Area and Dynamic Separation cases.

A Kruskal-Wallis test using SP settings as the grouping variable reveals significant differences

within the data (χ2(3) = 972.0598, p < 0.0001), and a Steel-Dwass test shows that the Temporal

and T+A safety protocols generate increased taxi distances on the flight deck (full results appear

in Appendix N). A slight trend does appear to exist for CAs within the larger pattern of SP, which
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demonstrates that the architectures utilizing the X-47 aircraft model have shorter total taxi distances

on the flight deck. This is likely an artifact of the differences in shape of the vehicles: the X-47

aircraft used for GC, SBSC, and VBSC is shorter overall, and the gains in performance are likely

the result of minor differences in starting locations and ending locations (at catapults), and also

possibly for routing actions, because of this change in size. The plot of results for the 34 aircraft

case appears in Appendix N but shows generally the performance as the results shown here for 22

aircraft.

Two additional productivity measures were also tracked: Total Aircraft taXi Time (TAXT)

values (Figure 5-23) summed the total time in which vehicles are actively moving or otherwise

available to move, whilst Total Aircraft Active Time (TAAT) measures time spent in motion as

well as time spent at catapult performance the launch tasks. An error in coding lead to slightly

Figure 5-22: Pareto frontier plot of Total Taxi Distance (TTD) versus LD for 22 aircraft missions.
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different calculations of these metrics for the HSC vehicles (SBSC and VBSC) and the remaining

cases, based on the use of Aircraft Directors in zone coverage. For cases using zone coverage routing,

TAXT included all time during which vehicles had an assigned Director and were not stopped due

to the collision prevention or traffic management routines; if the vehicle did not have a Director

assigned, or was otherwise stopped from moving, the time was not logged. For the remaining SBSC

and VBSC vehicles, because Directors were not utilized, time spent waiting on taxi paths to open

for motion was included in the time logging. This results in the significant variances amongst the

CAs in Figure 5-23, which shows the results of TAXT for the 22 aircraft case. The data also appear

highly correlated, which is expected given the nature of flight deck operations. Otherwise, aside from

the significant disruptive effects of the T+A case, no major trends are apparent. Values of TAAT

are almost identical to these measures and are not shown here (graphs appear in Appendix N).

5.6 Discussion

The Multi-Agent Safety and Control Simulation (MASCS) experimental matrix (Fig. 5-1) sought

to examine the interactions and effects of four different variables on the safety and productivity of

flight deck operations: Safety Protocols (SPs), Unmanned Aerial Vehicle (UAV) Control Architec-

tures (CAs), mission Density (number of aircraft), and mission Composition (number of unmanned

vehicles used in the mission). The results of the testing described in this chapter have shown that

while variations in safety do occur in terms of the defined safety metrics, variations in mission pro-

ductivity are minimal, especially for the key metric of Launch event Duration (LD). As a result,

tradeoffs between safety and productivity only truly occur when operations are heavily constrained

in the combined Temporal+Area Separation protocol. As compared to the baseline Manual Con-

trol (MC) case at 22 aircraft, the increased constraints of the T+A case increases the safety of

aircraft interactions by only 8% (MC average = 59.53, average of all T+A cases = 54.54) while

decreasing mission productivity by 44.3% (MC average = 24.97 minutes, T+A average = 36.17).

The causes of both the variations in safety measures and the lack of variation in productivity

measures can be attributed largely to the human-generated heuristics of flight deck operations that

dictate how aircraft are routed through the flight deck and queued at catapults. For trends in

safety measures, a key variable in aircraft interactions under the Tertiary Halo Incursions due to

Aircraft (THIA) metric was whether or not crew were being used in the current “zone coverage”

routing topology. For control architectures operating under this topology and that did not experience

high levels of failures or latencies in operations, the spacing afforded by the prior crew routing

topology improved safety. The choice of Safety Protocol had little effect in these cases, as the

routing topology already maintained sufficient spacing between vehicles. For control architectures

not using this prior crew routing strategy, or that did while experiencing significant delays and

latencies (the Gesture Control, GC, architecture), the safety of aircraft interactions was influenced
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Figure 5-23: Pareto frontier plot of Total Aircraft taXi Time (TAXT) versus LD for 22 aircraft
missions.

by the number of high-level constraints applied to operations. The Dynamic Separation only case,

with no high-level constraints, provided the worst performance for these architectures. Applying one

high-level constraint in either Area or Temporal Separation provided improved performance, with

the combined Temporal+Area case providing the best.

Variations in productivity were also contingent on the role of crew, albeit in a different manner:

their role in supporting the launch preparation tasks on the flight deck, in combination with the

catapult queueing and Deck Handler mission planning. Here, the long average time to complete the

launch preparation task enables queues of aircraft to be maintained at catapults. These catapult

queues become the bottleneck in operations, as taxi operations appear to be efficient enough to

supply aircraft to catapults before queues can be emptied regardless of the safety protocols or
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control architectures in use. However, further improvements to the queuing process and the launch

preparation task should allow variations in productivity to arise between control architectures.

When considering the goals of this dissertation — to understand the effects of integrating un-

manned vehicle control architectures on the safety and productivity of flight deck operations — the

results of this chapter indicate that very little can be said about unmanned vehicle systems on their

own. Rather, the results indicate that the primary influences in safety and productivity in flight

deck operations comes from the interactions of the architectures with the crew on both a low level

(interactions with crew as governed by heuristics for vehicle routing, the deck topology, the launch

preparation process, and the catapult queueing process) and at a high level (the locations of crew

on the deck and their role in routing vehicles). The selection of different control architectures or

safety protocols only have effects in the context of how it changes vehicle interactions with crew.

Accordingly, changes to the models of crew behavior may generate very different trends in results.

Any future work addressing the results discussed in this chapter could place greater emphasis on

investigating the role of the crew in all aspects of operations. This might include examining formal

optimizations of crew behavior on the flight deck and simply altering the heuristics that guide their

behavior during operations. Chapter 6 will address some of these issues, but will focus primarily on

the launch preparation process and its effects on flight deck performance.

The data utilized in arriving at these conclusions was substantial — 92 runs, at thirty replications

each, and a minimum of 20 minutes per run. Collecting this data in real-world trials would have

required considerable resources and time in the field, disregarding the fact that many of the control

architectures tested here do not yet exist. This demonstrates the utility of the use of simulations, and

in particular, agent-based simulations for testing these systems. Modeling crew, aircraft, planning,

and task execution as independent elements of the system has afforded an ability to examine and

attribute results to the individual elements. These results have raised several additional questions,

however, including what role the launch preparation time plays in regulating deck performance

and whether any variations in control architecture productivity can be generated. The power of

simulations such as MASCS is that these changes can be made easily within the system and enable

an exploration of a variety of conditions quickly and efficiently. Chapter 6 explores how MASCS

can be used in further exploring the key drivers of performance for UAV control architectures and

for flight deck operations as a whole.

5.7 Chapter Summary

This chapter has described the process by which models of UAV performance on the aircraft carrier

flight deck were generated for the MASCS simulation environment, the verification of these models,

and the test and analysis of these models in terms of both the relative safety and productivity of

operations. The results of these tests demonstrated a wide range of effects, as well as showing how
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varying definitions of safety metrics can provide wide-ranging results in terms of the performance

of different systems. Overall, these results failed to confirm many of the hypotheses described in

Section 5.4, most notably showing that the human heuristics that govern flight deck operations have

significant effects. While the choice of unmanned vehicle control architecture does result in variations

in safety metrics, these are primarily because of differences in when and how those heuristics are

applied. Variations in productivity (in terms of Launch event Duration) were largely not observed,

due to the bottleneck in catapult queueing that was created by the heuristics of the routing topology,

catapult queueing process, and the role of the crew in launch preparation. While these effects means

that very little can be said about how the choice of unmanned vehicle control architecture affects

operations, these results highlight key concerns about the role of crew in flight deck operations that

should be addressed in future work. Some of these concerns will be addressed in the next chapter,

examining how the MASCS simulation can be used to explore improvements to the launch prepara-

tion time model that would remove the bottleneck in operations and how this affects productivity

and safety on the flight deck.
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Chapter 6

Exploring Design Options

“Artificial intelligence is often described as

the art and science of ‘getting machines to

do things that would be considered

intelligent if done by people.’ ”

Alone Together: Why We Expect More

from Technology and Less from Each

Other (2012)

Sherry Turkle

Chapter 1 described the motivation for the development of the Multi-Agent Safety and Con-

trol Simulation (MASCS) environment: to develop a simulation methodology for simulating the

integration of futuristic unmanned vehicle systems into mixed human-vehicle environments. This

methodology was described in Chapter 3, calibrated and partially validated in Chapter 4, and used

to test a set of candidate unmanned vehicle control architectures and operational safety protocols in

Chapter 5. An added benefit of simulations like the MASCS environment is that it enables further

investigations into the specific vehicle parameters the driver variations in performance in flight deck

operations.

The results of Chapter 5 indicated that the interactions between agents in the system is affected

not only by the types and number of vehicles active in the environment but by the constraints

placed on their behavior due to safety protocols and to the structure and organization of operations.

Neither of these factors are related to the choice of unmanned vehicle control architecture, which

demonstrated significant and varied interactions with these factors. Understanding these interac-

tions is especially important for systems that employ large numbers of unmanned vehicles, manned

vehicles, and human collaborators, as testing such environments in the real world is both costly

and may endanger the individuals involved in the test program. However, the utility of systems
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like MASCS is that they can quickly and easily be altered to incorporate new vehicle models, crew

behaviors, environments, or other features of operations.

This chapter examines how a model like MASCS can be used to explore issues that affect the

performance of the flight deck system as a whole. Potential points of investigation include process-

level changes to operations, parameter-level changes to Unmanned Aerial Vehicle (UAV) models,

and architectural changes to the environment itself. For example, MASCS can be used to examine

how reductions in the number of crew used in “zone coverage” routing operations affect performance

on the flight deck (an architectural change). MASCS can also be used to examine alternate versions

of the unmanned vehicle control architectures (behavioral changes) defined in Chapter 5, altering the

individual failure rates of vehicles, changing the parameters the define the latencies for vehicles in

the system, or examining how the speed of aircraft travel affect mission performance. Additionally,

reconfigurations of the flight deck itself, in terms of both the placement of aircraft (an operational

change) as well as the location of the catapults (an architectural change) might also be tested.

Many other potential changes could be tested, but this chapter will address only a few. Chapter 5

suggested that the launch preparation task may have a significant role in regulating the pace of

flight deck operations. The effects of modifying this task are examined first, reviewing how changes

to this task might improve the productivity of flight deck operations for current Manual Control

operations before continuing on to examine its effects on unmanned vehicle operations. This then

extends to include launch preparation effects on the safety of operations, with the last section

exploring individual parameter settings for the Gestural Control (GC) architecture to explore how

its performance could be improved.

6.1 Exploration of Operational Changes

The results of Chapter 5 previously suggested that the combination of Deck Handler allocation

strategies and large launch preparation times lead to the creation and continued existence of queues

at catapults for all control architectures. With these queues in existence, the performance of the

flight deck is dependent only on the launch preparation time, eliminating much of the possible

variance in launch event duration. Improving the launch preparation process, whose characteristics

are independent of any specific vehicle control architecture, should both reduce launch event duration

values and eventually allow variations in the launch event duration values of the unmanned vehicle

architectures to arise. This section explores modifications to this task for the baseline Manual

Control (MC) architecture first, as it was partially validated against empirical data in Chapter 4 as

is considered representative of current operations.

As described in Chapter 3, Section 3.2, the launch preparation task requires several tasks be

performed manually by crew members on the flight deck. Appendix C described its definition as

a normal distribution with a mean µ = 109.65 seconds and standard deviation σ = 57.80 seconds
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(N(109.65, 57.802). Improvements to this task can be accomplished both by reducing the mean and

by reducing the standard deviation (square root of the variance) of the task. Reducing the mean

value of the launch preparation time should have a strong effect in reducing the average launch

event duration, as it should directly reduce the average time to launch an aircraft. Reducing the

variance of the launch preparation task decreases the occurrence of very large, unpredictable outlier

values and should also result in decreases in the average launch preparation time. Additionally,

removing these large outlier values might also make it more difficult to sustain queues of aircraft at

the catapults. Removing these outliers also has a side effect of increasing the predictability of the

task, a benefit for crew and supervisors on the flight deck.

If the launch preparation process continues to require that crew perform actions manually, de-

creasing the mean might be accomplished by providing the crew with improved checklists, electronic

checklists, or better training. These changes might also drive down the standard deviation, but a

more effective way of reducing both the mean and the standard deviation would be by automating

aspects of the launch preparation process. Checking the aircraft’s weight and using it to set the

catapult strength could be performed by wireless data transmission, while the physical connection

of the aircraft to the catapult’s “pendant” that propels the aircraft forward could perhaps be done

through passive interlocking mechanisms that require no human intervention.

However, it is not clear how much the launch preparation time needs to be reduced to eliminate

the queueing process and whether or not taxi operations can keep pace with these reductions. In this

first section, the effects of varying the mean and standard deviation of the launch preparation task

are explored in order to determine their effects on operations and whether or not taxi operations

becomes a limiting factor in operations. The first series of tests systematically reduces the standard

deviation σ of the launch preparation time model in increments of ten percent while holding the mean

µ constant at 109.65 seconds. A second series holds standard deviation constant at 57.80 seconds

while decreasing the mean. A third examines the combined effects, varying the mean while holding

the standard deviation constant at its smallest value from the first set of tests (28.90 seconds).

The list of cases tested appears in Table 6.1 and were applied to the baseline MC control ar-

chitecture that was previously tested in Chapter 4. Tests occurred only at the 22 aircraft Density

setting, with thirty replications occurring for each launch preparation time model. Results for these

tests appear in Figure 6-1 in line chart form. At each plotted point, whiskers indicate ±1 standard

error in the data for the specified launch preparation model. The figure also includes linear fits for

all three data series, with both the fit and the resulting R2 value reported for each case.

As expected, reducing either the mean or the standard deviation has beneficial effects on the

Launch event Duration (LD) values, with reductions in the mean providing stronger effects. De-

creasing the standard deviation by 50% provides only a 10.48% reduction in average LD from the

original launch preparation time model (Table 6.2). This same performance is provided by only a
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Table 6.1: Settings for launch preparation time testing.

Reducing Standard
Deviation

Reducing Mean Reducing Mean,
50% Standard

Deviation

Baseline N(109.65, 57.802) N(109.65, 57.802) N(109.65, 28.902)
-10% N(109.65, 52.022) N(98.6832, 57.802) N(98.6832, 28.902)
-20% N(109.65, 46.242) N(87.7184, 57.802) N(87.7184, 28.902)
-30% N(109.65, 40.462) N(76.7536, 57.802) N(76.7536, 28.902)
-40% N(109.65, 34.682) N(65.7888, 57.802) N(65.7888, 28.902)
-50% N(109.65, 28.902) N(54.824, 57.802) N(54.824, 28.902)

Figure 6-1: Effects of altering launch preparation mean and standard deviation on mean launch
event duration for 22-aircraft Manual Control case.

20% reduction in the mean. Reducing the mean by 50% (and holding standard deviation constant)

leads to a 25% reduction in average LD from the original LP model (µ = 24.97 to µ = 18.86).

Reducing both the mean and standard deviation amplifies the beneficial effects of the two: at the

50% mean, 50% standard deviation condition, average LD is reduced by 43%, from 24.97 to 14.17

minutes.

The four end conditions (the original Launch Preparation (LP) model, standard deviation-50%,

mean-50%, and mean-50% + standard deviation-50%) were repeated for the 34 aircraft case. The

results of these tests appear in (Table 6.2) and show similar effects as that of the 22 aircraft tests.

The standard deviation-50% case provides a 9.75% decreases in average LD from the original launch

preparation time model, while the mean-50% case provides a 25.17% decrease in mean LD. Combin-

ing the two provides a 41.54% decrease in launch event duration. At this latter setting, the average

time to launch a mission of 34 aircraft (22.78 minutes) requires less time than a team of 22 aircraft

under the original launch preparation time model (24.97 minutes).
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Table 6.2: Mean launch durations and percent reductions for the 34 aircraft Manual Control case
for variations in launch preparation (LP) model.

22 aircraft 34 aircraft

Mean Launch
event Duration

% Reduction in
Mean

Mean Launch
event Duration

% Reduction in
Mean

Baseline 24.97 - 38.97 -
SD -50% 22.35 -42.64% 35.17 -9.75%

Mean -50% 18.86 -51.61% 29.16 -25.17%
Mean -50%, SD

-50%
14.17 -63.65% 22.78 -41.54%

These effects are of immediate practical significance to current Navy research and its development

of a next generation of electromagnetic (as opposed to current steam-powered) launch catapults for

the new Ford class of aircraft carriers. To generate the most benefit to operations, reducing both the

mean and the standard deviation is suggested. However, it is not clear that these improvements in

the launch preparation process are part of the objectives of the new catapult system being developed.

The EMALS project seeks to replace the steam catapult system with an electromagnetic one, but of

the six benefits listed by developer General Atomics on their website1, only one relates to manpower

or launch rates (“reduced manning workload”). Even so, “reduced manning workload” is likely far

from complete automation of the process, which should further reduce the mean and the standard

deviation of task process times. The decreases to mean and standard deviation tested in this section

are modest compared to what might be possible with advanced automation of the launch preparation

task.

The results of this section have demonstrated that reducing both the mean and the standard

deviation of the launch preparation time improves LD values for flight deck operations. The most

substantial reductions in the launch preparation time model (reducing both the mean and standard

deviation by 50%) resulted in decreases in launch event duration of over 40% from the original LP

model. These reductions in launch preparation time may be strong enough to break the queuing

process for the different control architectures and allow variations in their LD values to arise. This

is the focus of the testing described in the next section.

6.1.1 Effects of Launch Preparation Times on UAV Performance

In the previous tests in Chapter 5, very little variation in average launch event duration values was

observed across the different unmanned vehicle control architectures. The only significant interac-

tions that were observed occurred between the subset of the very best and very worst test cases. The

cause of this was hypothesized to be continued existence of queues at the catapults, produced by the

long launch preparation times combined with Handler allocation strategies. Decreasing the launch

preparation time should at some point allow queues to clear rapidly enough that taxi operations

1http://www.ga.com/emals

169



CHAPTER 6. EXPLORING DESIGN OPTIONS

cannot keep pace, allowing variations in launch event durations for the different control architectures

to be observed. This is the focus of this section, beginning with an examination of the effects of

changing Launch Preparation (LP) parameters on control architecture performance.

Effects of Reducing Launch Preparation Standard Deviation

A first series of tests examined the effects of reducing the standard deviation in the launch prepa-

ration time model on the launch event duration performance of the different UAV Control Ar-

chitectures. These tests address whether the reduction in standard deviation, which reduces the

largest launch preparation times that occur, reduces the ability of the control architectures to gen-

erate queues at the catapults. The Gestural Control (GC) and System-Based Human Supervisory

Control (SBSC) control architectures were tested first based on their status as the best- and worst-

performing architectures, respectively. Each was tested utilizing the 22 aircraft Density level and

the 100% Composition level in order to maximize the effects of each control architecture. If reducing

the standard deviation of the launch preparation task has an effect on queuing, it should result in

significant differences between these two control architectures.

For each architecture, standard deviation values were decreased from the baseline value (σ =

57.80 seconds) in increments of 10%. Thirty replications were performed for each control architecture

at each standard deviation value. From the results of the previous section, the response of the GC

and SBSC architectures is expected to be linear with respect to decreases in launch preparation

standard deviation, although differences in performance may arise between the two. The results of

these tests are shown in Figure 6-2, which includes the results for Manual Control (MC) from the

previous section as a comparison point.

A fairly linear decrease is observed for each architecture, although there does appear to be

significant noise within the data. The SBSC and MC data also appear to converge at the smaller

standard deviation values (beginning at the -30% condition), suggesting that improving the launch

preparation process also removes the advantages from the more open routing methods of SBSC.

Conversely, it might also signify that the inefficiencies of the crew zone coverage routing are weaker

at the improved launch preparation tempo. The GC architecture, however, maintains its relatively

poor performance at each level.

At the smallest standard deviation value (28.90 seconds, original value -50%), the average time

to complete a mission across the three control architectures decreases from 24.67 minutes to 22.73

minutes (a 7.87% drop in mean LD). The GC results (mean = 23.09, standard error = 0.24 minutes)

appear to be significantly different from the SBSC results (mean = 22.41, s.e. = 0.22 minutes).

Additional tests were then conducted for the remaining control architectures (Local Teleoperation

(LT), Remote Teleoperation (RT), and Vehicle-Based Human Supervisory Control (VBSC)) using

the standard deviation -50% setting at the 22 aircraft Density levels, and tests for all architectures

were then conducted at the 34 aircraft level. These results appear in Figure 6-3 alongside results for
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Figure 6-2: Line chart of mean Launch event Duration (LD) for the Manual Control (MC), Gestural
Control (GC), and System-Based Human Supervisory Control (SBSC) control architectures for
decreases in launch preparation time standard deviation. Whiskers indicate ±1 standard error in
the data.

missions using the original launch preparation time model.

An ANOVA test of the results at the 22 aircraft level reveals significant differences across cases

(F (5, 174) = 5.1771, p = 0.0002). A Tukey HSD test reveals that significant pairwise differences exist

between VBSC (µ = 22.14 minutes) and RT (µ = 23.55, p = 0.0006), VBSC and LT (µ = 23.18,

p = 0.0067), MC (µ = 22.35) and RT (p = 0.0296), and SBSC (µ = 22.41) and RT. Additionally,

the GC (µ = 23.09) and VBSC cases are marginally different (p = 0.0738). At the 34 aircraft density

level, an ANOVA also reveals significant differences (F (5, 174) = 5.5665, p < 0.0001). A Tukey HSD

test shows significant pairwise differences only between the MC (µ = 35.17) and RT (µ = 36.79),

Figure 6-3: Column graphs depicting Launch event Duration (LD) values all control architectures
under the 50% standard deviation, original mean launch preparation time model for 22 (left) and
34 (right) aircraft.
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MC and GC (µ = 36.61), and LT (µ = 35.66) and RT cases.

In terms of practical differences, the range of average launch event duration values does not

greatly change under the new reduced standard deviation launch preparation time model. Under

the original LP model, the difference between best and worst was only 1.38 minutes for the 22

aircraft missions and 1.56 minutes for the 34 aircraft missions. Under the new LP model with

standard deviation reduced by 50%, these differences increase slightly to 1.42 minutes for 22 aircraft

and 1.61 minutes for 34 aircraft. However, the slight decrease in average launch event duration

under the new launch preparation time model makes these differences significant in statistical tests.

Even so, these differences are limited to comparisons of the very best (MC, LT, and SBSC) and the

worst (GC and RT). Interestingly, at these settings, the VBSC architecture provides some of the

best results, in opposition to some of the results presented in Chapter 5.

One explanation for this is that the periodic high-value launch preparation times that occur

under the original, high standard deviation LP model cause an uneven rate of traffic flow of the

deck. Extremely long launch times will be followed by comparatively shorter launch times, requiring

that the Handler start operations for two vehicles in short succession. It is also likely that at least

one launch has occurred at the other catapult during this time, further increasing the number of

vehicles the Handler must being taxiing. When this occurs, the iterative interactions required from

the Handler help to constrain operations. Under an LP model with a reduced standard deviation,

the variability of the launch preparation task is reduced and should provide a steadier pace of

operations. With launches occurring at a more consistent rate, the number of vehicles in the Handler

queue at any one time should be smaller and remain fairly constant, easing the Handler’s job of

coordinating vehicle tasks. This is one example in which decreasing the random variation in the

launch preparation process might benefit operations. However, given substantial reductions in the

mean launch preparation time, the Handler may not be able to keep pace with operations and his

performance may worsen as compared to the other architectures. These effects are examined in the

next section.

Effects of Reducing Launch Preparation Mean

A second series of tests was conducted in which the standard deviation was held constant at its

original value (σ = 57.80) and the mean was decreased in increments of 10%. These tests were

then repeated, varying the mean while holding the standard deviation constant at the -50% settings

(σ = 29.80). Tests again began with the GC and SBSC architectures using 22 aircraft and running

only homogeneous (100% Composition) sets of aircraft under the Dynamic Separation (DS) protocol.

The MC architecture results are again used as a baseline comparison case. The results using both

the original and -50% standard deviation cases are shown in Figure 6-4.

As with the MC results shown previously, a linear response was expected for all control architec-

tures at both standard deviation settings and is observed. The increasing benefits of reducing both
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Figure 6-4: Line chart of Launch event Duration (LD) values for Manual Control (MC), Gestural
Control (GC), and System-Based Human Supervisory Control (SBSC) missions using 22 aircraft
varying the launch preparation mean. Whiskers indicate ±1 standard error.

mean and standard deviation also appear for the GC and SBSC control architectures, and it again

appears that these effects are more beneficial for the SBSC architecture. At the 50% mean, 50%

standard deviation condition, the GC (mean = 15.55, s.e. = 0.20 minutes) case again appears to be

significantly different from the SBSC case (mean = 13.82, s.e. = 0.18 minutes), which also appears

to be consistently similar to the MC results.

All six control architectures were then tested at the 50% mean, 50% standard deviation settings

(N(54.82, 29.82)) using both 22 and 34 aircraft Density settings to examine what differences exist

between architectures. The results of these tests appear in Figure 6-5. For 22 aircraft cases, an

ANOVA again shows significant differences across cases (F (5, 174) = 14.6874, p < 0.0001) with a

Tukey HSD test now showing ten significant or marginally significant pairwise differences (p < 0.0328

for all; full results appear in Appendix O) between cases. Of these, nine include comparisons

between the “delayed” (RT, GC, VBSC) and non-delayed (MC, LT, SBSC) architectures. Two of

these comparisons (LT vs. RT and LT vs. VBSC) are only marginally significant (p = 0.0691 and

p = 0.0723, respectively). The tenth comparison that shows significant differences involves the LT

and SBSC architectures (p = 0.0328). At the 34 aircraft level, a Kruskal-Wallis test shows significant

results (χ2(5) = 88.54, p < 0.0001), with a Steel-Dwass non-parametric simultaneous comparisons

test showing nine significant pairwise differences, once again occurring between the sets of “delayed”

and “non-delayed” groups. All nine comparisons return highly significant differences (p = 0.0002 or

less).

Overall, the results reported in this and the previous section suggest that, as hypothesized in
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Figure 6-5: Column graphs depicting Launch event Duration (LD) values all control architectures
under the 50% mean, 50% standard deviation launch preparation time model for 22 (left) and 34
(right) aircraft.

Chapter 5, the definition of the launch preparation time forms a choke point on operations. Decreas-

ing the mean and standard deviation of the time required to complete this task provides significant

benefits to operations. These changes also allow significant differences in control architectures to

arise, providing similar trends in performance as observed for the single aircraft tests in Chapter 5:

the “delayed” UAV control architectures of RT, GC, and VBSC perform worse than the remaining

“non-delayed” architectures. However, for these data, the differences in best and worst performance

of the control architectures at the mean-50%, standard deviation-50% cases (less than 2 minutes at

22 aircraft, less than 3 minutes at 34) are far smaller in magnitude than the benefits of changing the

launch preparation model. For stakeholders working in this and other similar domains, if the imple-

mentation of autonomy is being done to increase the productivity of the system, those stakeholders

should also question what other aspects of operations could benefit from increased automation. For

the aircraft carrier flight deck, there are greater benefits to operational productivity in improving

the launch preparation process than in automating individual vehicle behavior.

However, the launch preparation models used in this section might be improved further with

even more substantial automation upgrades. As described previously in this chapter and earlier in

Chapter 3 (Section 3.2), the tasks that are part of the launch preparation process are independent

of the type of vehicle being used and rely heavily on the crew. Crew must check the weight of the

vehicle, the settings of the catapult, and ensure that the nosewheel or the aircraft is properly aligned

to the catapult’s “pendant,” the portion of the catapult mechanism that connect to the nosewheel

and pulls the aircraft down the catapult. It is not unreasonable to imagine that these tasks could all

be automated: wireless data processing could accomplish the first two tasks, while improved sensor

systems and passive locking mechanisms could provide a secure, near-instant connection of aircraft to

catapult. Such automation, similar to that done in the manufacturing domain, has the potential to

even more significantly increase the performance of operations on the flight deck. The introduction
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of automation into this process, rather than into aircraft via the different control architectures, is

explored in the next section.

6.1.2 Effects of Automating Launch Preparation Tasks

Extreme improvements to the launch preparation process could be achieved by completely automat-

ing all subtasks involved: automating the physical connection between the aircraft and the catapult

mechanism as well as wirelessly communicating all information between the aircraft and the catapult

control system. Doing so should enable large reductions in both the mean and the standard devi-

ation of the launch task; at such levels, differences in the performance between the various control

architectures would be due solely to inefficiencies in the taxi operations process. An extreme upper

bound of performance might have an average of 5 seconds with a standard deviation of 1 second over

the bounds [3,7] seconds, decreasing the time required to complete the launch preparation far below

that of the values tested in the previous sections. This model (N(5, 12) seconds) was input into the

MASCS model and a series of simulation trials were conducted using all control architectures at

both the 22 and 34 aircraft Density settings at the 100% Composition DS settings. Mean LD values

for these tests appear in Figure 6-6.

To begin, using an aggressive automated launch preparation time model results in substantial

decreases in time to complete the mission as compared to the original launch preparation time

model: an average of 8.57 minutes across all control architectures at the 22 aircraft level and 15.79

minutes at 34 aircraft. These are reductions of 65.7% and 59.5% from the average duration of

the MC architecture under the original launch preparation time model (mean values of 24.97 and

38.97, respectively). Under this highly automated task, the time to complete the mission is solely

dependent on the time required to taxi aircraft to catapults: aircraft launch so quickly that queues

are rarely able to form, and even then only exist for a few seconds. Table 6.3 provides the means and

Figure 6-6: Column graphs depicting Launch event Duration (LD) values all control architectures
under the “automated” launch preparation time model for 22 (left) and 34 (right) aircraft.
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standard deviations of total waits time in queue for all aircraft in the 22 and 34 aircraft missions

under both the original and automated launch preparation time models. While these values are

cumulatively over 60 and 90 minutes under the original launch preparation time models at the two

Density settings, respectively, average queue times are less than one minute under the automated

launch preparation model.

Note, also, in the lefthand side of Figure 6-6 that for the 22 aircraft results the MC, LT, and

SBSC architectures are again the best performers while RT, GC, and VBSC perform more poorly.

However, unlike other tests, the gap between the two groups is fairly small: the SBSC and RT

results are fairly close together. A Kruskal-Wallis test for data at the 22 aircraft Density level reveals

significant differences (χ2(5) = 144.48, p < 0.0001), with a Steel-Dwass non-parametric simultaneous

comparisons test showing significant pairwise differences for thirteen of fifteen possible comparisons.

The only pairings that are not significantly different are GC (mean rank = 143.67) compared to

VBSC (mean rank = 147.5), the two worst performers, and MC (mean rank = 28.43) paired with

LT (mean rank = 37.2), the two best. All other comparisons are strongly statistically significant

(p = 0.0077 or less). This also means that the two groups of “delayed” (RT, GC, and VBSC) and

“non-delayed” architectures no longer exist as they have in previous results: MC and LT are both

significantly different from SBSC (mean rank = 81.0, both at the p < 0.0001 level), while GC and

VBSC are both different from RT (mean rank = 105.2, both at the p < 0.0001 level).

The “delayed” versus “non-delayed” trend of differences also disappears at the 34 aircraft level,

albeit in a different fashion. From the results in the figure, it appears that the SBSC architecture

is the best overall performer, while VBSC improves significantly and RT degrades substantially.

A Kruskal-Wallis test again shows significance (χ2(5) = 147.01, p < 0.0001), with a Steel-Dwass

test also showing multiple significant pairwise differences. In these results, all but three pairwise

differences are strongly significant (p < 0.0001): MC (mean rank = 72.2), VBSC (mean rank =

74.7), and LT (mean rank = 78.17) are not significantly different from one another. However, SBSC

(mean rank = 17.83) has significantly smaller values than each of these cases and is the lone best

performer. Additionally, RT (mean rank = 159.93) and GC (mean rank = 140.17) are worse than

the remaining cases and significantly different from one another. At the 34 aircraft Density level,

one of the “delayed” architectures, VBSC, is now equivalent to two of the non-delayed architectures

Table 6.3: Means and standard deviations of wait times in catapult queues at both the 22 and 34
aircraft Density levels under the original and automated launch preparation models.

Mean Wait Time in Queue (minutes) Std Dev

22 aircraft
Original 69.9773 12.3197

Automated 0.6236 0.4519

34 aircraft
Original 92.7235 13.4196

Automated 0.8987 0.6173
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(MC and LT), having flipped from being one of the worst performers at the 22 aircraft level to one

of the best at the 34 aircraft level.

Looking across results at the two Density settings (22 and 34 aircraft), MC and LT had equivalent

performance in each, which is generally to be expected given the minimal differences between the two

architectures. The generally poor performance by both RT and GC is also to be expected; that GC is

relatively better than RT at 34 aircraft and worse at 22 is an interesting result, however. Additionally,

the large relative improvement in performance for the VBSC and SBSC cases at 34 aircraft is striking,

especially for VBSC. These latter differences in performance are perhaps explained by the lack of

the “zone coverage” routing structure, the common feature differentiating VBSC and SBSC from

the other architectures. One explanation is that the “open” routing used by these two architectures

is not optimized for the 22 aircraft setting, and the lack of constraints on taxi operations allows

more aircraft to interfere with each other and trigger their respective collision prevention routines.

For the other architectures, the use of the zone coverage routing leaves sufficient constraints in place

that aircraft remain well-spaced and do not often conflict with one another. At the 34 aircraft level,

the limitations on taxi paths due to the larger number of aircraft may be enough that the VBSC and

SBSC do not encounter such issues and retain their beneficial performance. A similar explanation

might explain why RT and GC differ in performance between the two density levels — the effects

of GC delays and latencies are more strongly felt at the unconstrained 22 aircraft Density, with the

constraints at the 34 aircraft level limiting the detrimental effects of that architecture.

In general, however, the role of the launch preparation time model has been clearly demonstrated

by tests in this section both in terms of its effects on launch event duration values for flight deck

operations as well as its effects in regulating UAV control architecture performance. Once the launch

preparation time model was sufficiently reduced to eliminate the presence of queues on the flight

deck, the differences in control architecture performance finally became visible. However, one caveat

to these results are that the heuristics used by the Aircraft Director and Deck Handler agents were

not designed for such fast operational tempos. The heuristics are quite likely not optimal for these

operating conditions, and even better performance might be achievable if these heuristics are altered.

Additionally, the tests performed in this section highlight the importance of exploring all facets of

the broader system, including processes defined independently of any of the unmanned vehicle control

architectures. For a stakeholder selecting a control architecture based on mission performance, a

failure to recognize the effects of tasks like the launch preparation process on operations could lead to

errors in decision-making. The results observed in Chapter 5 under the original launch preparation

time model might lead a decision-maker to conclude that all architectures are equivalent, or that

they provide no overall benefit compared to manual control operations. However, if the broader

system is slated to transition to a faster operating tempo, selecting GC or RT systems would clearly

be incorrect for future operations. In the opposite direction as well, using the results from tests
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utilizing the “automated” launch preparation time model may lead stakeholders to select the LT

or SBSC systems. If the system spends the majority of operations working within a slower tempo,

then the benefits expected from these systems will never be realized and the selection of a different

architecture might have been warranted.

To this point, this chapter has focused solely on launch event duration performance for the dif-

ferent UAV control architectures under the 100% Composition cases, to which the safety protocols

defined in Chapter 5 cannot be applied. However, just like for the control architectures, the re-

sults previously discussed in Chapter 5 showed little variation in performance amongst the Area,

Temporal, and Dynamic Separation safety protocols. It is likely that the lack of variation in safety

protocol performance was also due to the effects of the sustained queueing of aircraft at catapults,

and eliminating queuing through the use of the “automated” launch preparation time model should

make the effects of the different safety protocols on launch event duration more visible. This chapter

has also not yet explored the effects of the launch preparation time model on the results of the safety

metrics, which were heavily influenced by the selection of safety protocols. The next section explores

both of these topics, beginning with the effects of safety protocols on launch event durations under

the new, automated launch preparation time model.

6.1.3 Interactions with Safety Protocols

Just as the original launch preparation time, with its large mean and standard deviation, obscured

the effects of different control architectures, so too might it have obscured the effects of Safety

Protocols on operations. Chapter 5 demonstrated that for LD performance, other than the severely-

constrained Temporal+Area protocol, the only significant interactions between control architectures

and safety protocols occurred between the Temporal Separation protocol and the three “delayed”

UAV types. This was believed to have been caused by the increased use of forward-to-aft aircraft

routing on the flight deck, the effects of which should be magnified at higher operational tempos

and should further exacerbate errors and latencies in the three “delayed” control architectures. An

additional series of tests were executed for the GC and SBSC Control Architectures under all possible

settings of Safety Protocols (SPs), mission Density, and mission Composition settings using the new

“automated” launch preparation time model. This section reviews the results of these tests on the

Launch event Duration (LD) productivity measure and selected safety measures.

Effects on Productivity Measures

Figure 6-7 shows the average Launch event Duration (LD) values for the GC and SBSC architectures

across all safety protocols at both 22 (left) and 34 (right) Density levels using the new “automated”

launch preparation time. These figures also include the average LD of these architectures under

the original launch preparation time model. The trends in the performance of the safety protocols

under the automated launch preparation time model are generally the same for both mission Density
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levels: Dynamic and Area Separation provide the smallest LD values, while Temporal Separation

and Temporal+Area provide the largest. Interestingly, SBSC appears to provide smaller LD values

under Area and DS protocols, while GC performs slightly better at the Temporal and T+A settings.

Statistical tests verify that significant differences occur across Safety Protocols at all levels. For

GC results at 22 aircraft, a Kruskal-Wallis test returns significance (χ2(3) = 194.78, p < 0.0001),

with a Steel-Dwass nonparametric multiple comparisons test showing that all possible pairwise

comparisons are significant at p = 0.0048 or less, with Area (mean rank = 58.97) providing the best

performance, followed by DS (89.84), Temporal (195.85), then T+A (220.17). Similar results are

seen for the SBSC data at 22 aircraft, with a Kruskal-Wallis test returning significance (χ2(3) =

216.24, p < 0.0001), with a Steel-Dwass nonparametric multiple comparisons test showing that all

pairwise comparisons are significantly different with Area (mean rank = 59.817) providing the best

performance.

At the 34 aircraft level, a Kruskal-Wallis test for SP results for the GC control architecture

also shows significance (χ2(3) = 209.13), where a Steel-Dwass test demonstrates that all but one

pairwise comparison is significantly different: the Dynamic Separation only (mean rank = 85.96)

and Area Separation (mean rank = 59.82) protocols are not significantly different from one another

(p = 0.0527). A Kruskal-Wallis test for SP results for the SBSC control architecture also shows

significance (χ2(3) = 220.73, p < 0.0001) and a Steel-Dwass test also indicates all but one pairwise

comparison is strongly significantly different. In this case, however, the Temporal (mean rank =

202.27) and Temporal+Area (mean rank = 218.73) are shown to only be marginally significantly

different from one another (p = 0.0473).

Taken together, these results support the earlier results from Chapter 5 that indicated that the

Figure 6-7: Column graphs depicting Launch event Duration (LD) values for the Gestural Control
(GC) and SBSC Control Architectures run at the 22 (left) and 34 (right) aircraft Density levels
under the “automated” launch preparation time for all Safety Protocols (SPs).
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Temporal protocol had adverse effects on operations. These previous results from Chapter 5 showed

that these effects only occurred for the “delayed” UAV control architectures, however; the new re-

sults from this Chapter suggest that the Temporal is detrimental to operations in and of itself. That

this was not observed in Chapter 5 is likely due to the effects of the launch preparation time on

operations, which may have served to limit the effects of this safety protocol just as it limited the

differences in control architectures. Interestingly, the effects of the Temporal and T+A protocols are

felt more strongly by the SBSC architecture than by GC; while SBSC provides better performance

than GC under the Area Separation and Dynamic Separation protocols, it provides worse perfor-

mance under Temporal and Temporal+Area. This is likely indicative of interactions with the open

routing structure of the SBSC architecture and it not being designed for this operational tempo.

This suggests that, while the zone coverage routing system does provide additional constraints on

operations, the lack of constraints under the more open routing method may allow aircraft to more

greatly interfere with one another’s actions, limiting some aspects of operations. The zone cov-

erage system may be beneficial in structuring operations and preventing these interferences and

interactions from occurring.

The “automated” launch preparation time also has interesting interactions with mission Density.

Increasing mission Density directly increases the time to complete a launch event, but the relative

effects of mission Density differ between the original and automated launch preparation time models.

Figure 6-8 calculates the percent increase in mean LD values when moving from the 22 to 34 aircraft

Density level for the GC and SBSC control architectures under the two Launch Preparation (LP)

time models. Under the original LP model, increasing mission Density from 22 to 34 aircraft results in

a roughly 60% increase in LD for both the GC and SBSC architectures; this is basically equivalent

to the percent increase in number of aircraft (12/22 = 54.54%). Under the automated launch

preparation time model, the percent increase is closer to 90% for both architectures.

This difference in Density effects can be attributed to the effects of eliminating queues at the

catapults. Under the original LP model, launch event durations are solely a function of the number

of launches that are required due to the sustained existence of queues at the catapults. Increasing

the number of aircraft in the mission simply adds to the number of consecutive launches that

take place at the catapults. Under the automated LP model, these queues are eliminated and

the efficiency of taxi operations becomes the critical function in operations. The stronger effects

of increased Density under the automated launch preparation time model (increases of 90% from

the 22 aircraft Density level) likely indicate that the taxi operations currently modeled in MASCS

are inadequate for these higher-tempo operations. If taxi operations are appropriately redesigned

for each control architecture, further decreases in launch event duration might be obtainable at

both mission Density values. However, flight deck productivity is only one measure of performance

for flight deck operations, and the changes to the launch preparation time models may also affect
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Figure 6-8: Percent increase in Launch event Duration when moving from 22 to 34 aircraft.

the results for the safety metrics. The next section reviews the effects of automating the launch

preparation process on the safety measures for flight deck operations defined previously in Chapter 5.

Effects on Safety Measures

In Chapter 5, the analyses of safety measures addressing aircraft-aircraft interaction focused on

the Tertiary halo radius (two wingspans away). Measures for crew interactions with vehicles were

also developed; while these Primary Halo Incursion (PHI) and Duration of Primary Halo Incur-

sions (DPHI) metrics are imperfect given the crew behavior models included in MASCS, they were

analyzed in Appendix M. This section explores the effects of reducing the launch preparation mean

and standard deviation on the Tertiary Halo Incursions due to Aircraft (THIA), PHI, and DPHI

metrics. Figure 6-9 shows comparisons of THIA values between the original and automated launch

preparation time models for each of the four Safety Protocols for the SBSC architecture. The same

data is shown for GC in Figure 6-10.

Statistical tests verify that there are significant differences in performance between the original

and automated launch preparation time models. The results of Wilcoxon Rank Sum tests compar-

ing THIA values at the automated and original launch preparation time models at each Density

level appear in Table 6.4. As can be seen, all four comparisons are strongly statistically significant.

Practically, these results may be somewhat counterintuitive: that increasing the tempo of operations

actually increases the safety of operations; this is not something that would typically be expected

for most systems. It suggests, again, an interaction with the routing of aircraft on the deck. The

increased tempo of operations speeds the rate at which catapults launch; while the rate of assign-

ments by the Handler also increases, the speed at which aircraft taxi is left constant, leaving fewer

aircraft near the catapults and one deck in general. This may also explain why THIA values for the

automated launch preparation task at the 22 aircraft Density level appear to be invariant to Safety
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Figure 6-9: Column charts comparing Tertiary Halo Incursions due to Aircraft (THIA) values be-
tween the “automated” launch preparation time and the original launch preparation time for all
treatments in the SBSC control architecture. Left: 22 aircraft cases. Right: 34 aircraft cases.

Figure 6-10: Column charts comparing Tertiary Halo Incursions due to Aircraft (THIA) values
between the “automated” launch preparation time and the original launch preparation time for all
treatments in the GC control architecture. Left: 22 aircraft cases. Right: 34 aircraft cases.

Protocols for both the GC and SBSC architectures: aircraft are not on the deck long enough that

taxi operations are basically unconstrained and the safety protocols have little real effect.

A review of values for PHI (Fig. 6-11 and 6-12) indicate only slight differences in performance

between the two launch preparation time models for the SBSC or GC architectures at either Density

level. The PHI results in Appendix M showed that the major influence was in the selection of vehicle

routing topology. As the launch preparation time does not affect this topology, the number of PHI

incursions would not be expected to change.

However, the routing does occur at a faster pace, and DPHI values are shown to substantially

decrease between cases (column charts also appear in Appendix O). This leads to a particularly
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Table 6.4: Results of Wilcoxon Rank Sum Tests comparing THIA values between the original launch
preparation time and the automated launch preparation time for the GC and SBSC Control Archi-
tectures. A value of p < 0.013 indicates significant differences between cases.

CA Density χ2(1) DF p-value

GC 22 376.92 1 < 0.0001∗
GC 34 377.70 1 < 0.0001∗

SBSC 22 328.34 1 < 0.0001∗
SBSC 34 396.43 1 < 0.0001∗

interesting set of implications. Increasing the rate at which launches occur by decreasing the mean

and standard deviation of the launch preparation time reduces the total time of the mission, thereby

reducing the total possible time during which crew interactions can occur. It does not change how

aircraft are allocated, however, meaning that the total number of times crew interact with vehicles

should (and does) remain unchanged. This means that the overall rate of crew incursions per minute

of crew activity has increased, which in some environments might be considered the major driver

of crew risk. This exemplifies not only a tradeoff between safety and productivity, but a tradeoff

between different types of safety, one influenced by the speed of operations and one by the structure

in which those operations occur. Which of these measures should be considered most important

would require a detailed collection of data for current flight deck operations and accident rates that

is outside the scope of this thesis and a potential area of future work. However, these results do

provide evidence to support the idea that improving safety in one area may not improve safety in

all areas.

Thus far, MASCS has focused on the assessment of previously-defined unmanned vehicle control

architectures that were first described in Chapter 5 as models of mature futuristic systems. Tests

Figure 6-11: Column charts comparing Primary Halo Incursion (PHI) values between the “auto-
mated” launch preparation time and the original launch preparation time for all treatments in the
GC control architecture. Left: 22 aircraft cases. Right: 34 aircraft cases.
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Figure 6-12: Column charts comparing Primary Halo Incursion (PHI) values between the “auto-
mated” launch preparation time and the original launch preparation time for all treatments in the
SBSC control architecture. Left: 22 aircraft cases. Right: 34 aircraft cases.

Figure 6-13: Column charts comparing Duration of Primary Halo Incursions (DPHI) values between
the “automated” launch preparation time and the original launch preparation time for all treatments
in the GC control architecture. Left: 22 aircraft cases. Right: 34 aircraft cases.

have focused on how these mature versions of these futuristic systems interact with process-level

tasks in the environment, but the power of agent-based models like MASCS includes the ability

to examine the effects of individual vehicle parameters on performance. This may be of use to

stakeholders seeking to understand the relative cost-benefit ratio of investing in improvement to a

current UAV control architecture or that seeks to understand exactly what type of performance is

required for a current system to meet some performance threshold. The next section examines how

simulations like MASCS could be used in exploring the design of individual control architectures.
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Figure 6-14: Column charts comparing Duration of Primary Halo Incursions (DPHI) values between
the “automated” launch preparation time and the original launch preparation time for all treatments
in the SBSC control architecture. Left: 22 aircraft cases. Right: 34 aircraft cases.

6.2 Exploring Control Architecture Parameters

MASCS might also be useful in determining the performance requirements of unmanned systems

being developed for flight deck operations. In Chapter 5, a description and justification of the

parameters used for the baseline control architectures was provided. However, any or all of these

parameters may be modified and improved upon in future systems. It is not known which parameters,

and at what values, significant differences in performance will occur. However, models such as

MASCS can also be used in an exploratory fashion: given a description of the desired performance,

one or more parameter settings for a given UAV control architecture could be varied until either the

desired performance is achieved or the parameter value becomes unrealistic.

This can also serve as a way of providing direction for current autonomous systems research.

Consider the case of the Gesture Control system, which had the worst overall performance for an

individual aircraft and, at an increased operational tempo, the worst overall performance for a

control architecture in homogeneous missions (100% UAV Composition). The GC model differed in

several ways from the Manual Control baseline, and changes to one or more parameters may improve

performance sufficiently to make the performance of the two architectures equivalent. Testing can

also demonstrate at what point further improvement have no effect: a 95% success rate in gesture

recognition may be sufficient to provide acceptable performance, and further investment to reach

a 99% success rate would provide no additional benefits. Understanding each of these aspects of

performance — which parameters are most important, what parameter settings generate equivalent

performance, and at what point are further improvements no longer beneficial — could be used to

help better characterize vehicle performance requirements in future systems. This section explores

changes to these settings in the Gesture Control model, typically the worst-performing control
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architecture, to uncover at what parameter settings GC performance is becomes equivalent to the

baseline Manual Control architecture and how those settings might vary across mission conditions.

A first series of tests examines the effects of varying GC parameters under the original launch

preparation time model to determine whether or not significant effects are observed. Given the

previous results, it is expected that the original launch preparation time model will again prevent

any real differences in performance from appearing. For these tests, two different adjustments are

made to the original Gesture Control system model. First, a “Low Failure” case is created, in

which the failure rate is reduced from 11.18% to 1%. This assumes future systems that can reliably

recognizing gestures and cope with variability both between individual Aircraft Directors and within

a single Director (the precision of whose actions may degrade time). Failure rates are left as 1%

as GC systems are not likely to ever achieve perfect recognition rates for the complex flight deck

environment.

A “Low Latency” case can also be created, in which the processing of the system is reduced to

a maximum of 0.5 seconds, reflecting the behavior of the fastest-processing systems reported in the

literature. A third setting combines the two of these cases (Low Latency+Failure). Reducing the

failure rate of the system would be expected to have a stronger effect on operations than reductions

in processing latency, given the size of the time penalties for failures. However, it is doubtful

that changes to these parameters would generate significant differences under the original launch

preparation time, given its regulating influence as shown in previous tests.

The three modified Gesture Control models (Low Latency, Low Failure, and Low Latency+Low

Failure) were implemented in MASCS and tested at the 22 and 34 aircraft Density settings under

both the original and the “automated” launch preparation time models. Thirty replications were

performed for each combination of Gesture control model, mission Density, and launch preparation

time model. Average Launch event Duration (LD) values these tests appear in Figure 6-15, along

with results for the baseline GC and MC models defined previously in Chapter 5 as a comparison.

Improvements to the GC system latency and failure rate should improve its performance from that

of the baseline GC model and move it closer to that of the baseline MC model.

As with previous results under the original Launch Preparation (LP) model, changes to the GC

system parameters have no real effect on operations due to the constraints of the catapult queueing

process. Once this queuing is eliminated under the aggressive settings of the automated LP model,

LD values improve from left to right. The Low Failure and Low Latency cases are both slightly

better than the baseline GC model, with further improvements occurring at the Low Latency+Low

Failure case. At both the 22 and 34 aircraft Density levels, the performance of the Low Latency+Low

Failure case is close to that of the baseline MC architecture.

Statistical tests show significant differences for the results at both the 22 (Kruskal-Wallis Test,

χ2(4) = 75.52, p < 0.0001) and 34 aircraft (Kruskal-Wallis test, χ2(4) = 111.75, p < 0.0001) Density
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Figure 6-15: Column charts of mean launch event duration for variations of the Gestural Con-
trol (GC) model at both 22 (left) and 34 (right) aircraft Density level using the original launch
preparation time model.

levels. A Steel-Dwass non-parametric simultaneous comparisons test at the 22 aircraft level reveals

that all but one pairwise comparison are statistically significantly different: the Low Failure and

Low Latency conditions are not significant different from one another (p = 1.0; all others, p <

0.05). The Manual Control results are significant different from every GC model, including the

Low Latency+Low Failure case (p = 0.308). This means that, for 22 aircraft, even significant

improvements to the accuracy and processing speeds to GC vehicles are not sufficient to provide

performance equivalent to Manual Control operations. However, in practical terms, the average

mission times differ by only 0.47 minutes.

Interestingly, at the 34 aircraft level, increased accuracy and processing speeds are sufficient

to provide equivalent performance: a Steel-Dwass test shows only one pairwise comparison that is

not significant: Manual Control and the Low Latency+Low Failure (p = 0.9915). All others are

significant at the p = 0.05 level (Low Latency and Low Failure, p = 0.0056; Low Latency and GC

Baseline, p = 0.0407; all others, p < 0.0001). This again may indicate that the relative open 22

aircraft missions, as opposed to the somewhat constrained 34 aircraft missions, are more sensitive

to deficiencies in vehicle taxi behavior. Even though the failures and latencies have been reduced

for the GC models, the few failures that do occur, as well as their failures in catapult alignments,

may still have substantial effects on performance. The limitations on taxi paths that occur at the

34 aircraft case might serve to dampen some of these effects or to dampen the performance of the

MC model.

A final series of tests were taken in which the last major variable in GC, the time penalties due

to gesture recognition failures, was reduced from 5-10 seconds to 1-2 seconds. Adding this case into

the previous Kruskal-Wallis test, results are again significant (χ2(5) = 109.60, p < 0.0001) but a

Steel-Dwass test now shows the MC case (mean rank = 39.83) is not significantly different from
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this new “Low Penalty” case (mean rank = 52.17, p = 0.9930). This Low Penalty case is also not

significantly different from the Low Latency+Low Failure case (mean rank = 66.08, p = 0.7722),

but the Low Latency+Failure case remains marginally significantly different from Manual Control

(p = 0.0454).

It is interesting that the 22 aircraft case required additional improvements to GC time penalties

to provide equal performance to Manual Control operations, but this is consistent with the results

of previous sections that indicated different trends in results between the two Density settings. As

noted in the previous discussions, this is likely an indication that the heuristics used by crew and the

Deck Handler are not optimal for the aggressive automated launch preparation time model. However,

even though the improved GC model is still not equivalent to Manual Control, the benefits to LD

times at this automated launch preparation process far outweigh the less than 1 minute difference

that remains between GC and MC. Although additional improvement to operations might occur

if the crew routing methods were redesigned, investment in the automation of the launch process

should become a priority to the Navy.

A final interesting question raised by these results is, for 22 aircraft missions using the lower

time penalties and processing times, what accuracy rate is required for the GC architecture in order

to generate performance equivalent to Manual Control? To answer this, additional trials were run

for the GC model using the Low Latency and Low Penalty settings decreasing the failure rate from

the baseline 11.18% to 10%, then in increments of 1%. The results of a subset of these tests appear

in Figure 6-16, which also includes data for the baseline Gestural Control (GC) model used in

Chapter 5 (fail rate = 11.18%), the GC Low Latency case (fail rate = 11.18%, max process latency

= 0.5 seconds), and the baseline Manual Control (MC) model from Chapter 5.

Figure 6-16: Plot of Launch Event Duration Means against Gestural Control (GC) failure rates
under the original launch preparation time model. Whiskers indicate ±1 standard error in the data.
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First, it can be seen that decreasing the latency provides an immediate benefit to operations;

however, decreasing the failure rate has a relatively small effect once this decrease in process la-

tency is applied. Statistical tests do indicate that there are significant differences between cases,

however (Kruskal-Wallis test: χ2(6) = 91.6848, p < 0.0001). The results from a Steel-Dwass post-

hoc nonparametric simultaneous comparisons test appear in Table 6.5. These results show that the

Manual Control baseline is significantly different from all cases except the 1% and 7% cases. This

is interesting, given that it would be expected that the 4% case should perform better than the 7%

case. These variations are likely due to small inefficiencies in the Handler heuristics and taxi routing

methods that have been described in other results. Although the 4% case is statistically significantly

different form Manual Control, the difference is only 0.46 minutes.

This and the preceding sections have addressed how changes to parameters defining the process-

level task of launch preparation and parameters related to the unmanned vehicle control architectures

affect the performance of the flight deck system as a whole. Throughout these results, it has been

pointed out that many remaining causes of inconsistencies in results and variations within the data

are likely a function of the structure of operations. This includes both the behavior of the crew

and the planning of operations, as well as extending into how aircraft are arranged on the flight

deck prior to mission operations and the physical locations of the parking places and catapults.

Simulations like MASCS could also be used to examine changes to these elements, although the

redefinition of the decision-making rule bases required to do so would require more time and effort

than is allowed within the scope of this thesis. Possible options for exploring these architectural

changes are discussed in the next section.

6.3 Possible Future Architectural Changes

Much of Chapter 3 discussed current aircraft carrier flight deck operations, describing the organiza-

tion of the flight deck, the structure of crew tasks and interactions, and the way in which supervisors

(the Deck Handler) plan assignments for aircraft. Each of these is a significant feature of operations

that required substantial research to model and implement within MASCS. They are also features

of operations that are a core part of a crew’s on-the-job education; both have grown organically over

Table 6.5: Results of a Steel-Dwass nonparametric simultaneous comparisons test of Gestural Control
(GC) failure rate variations.

Level - Level Score Mean Difference Std Err Dif Z p-Value

MC GC 1% Failure Rate -2.5667 4.50925 -0.5692 0.9976
MC GC 7% Failure Rate -8.4333 4.50925 -1.87023 0.5003
MC GC 4% Failure Rate -15.7667 4.50925 -3.49652 0.0086*
MC GC 10% Failure Rate -18.2333 4.50925 -4.04354 0.001*
MC GC Low Latency -18.2333 4.50925 -4.04354 0.001*
MC GC -29.9667 4.509187 -6.64569 <.0001*

189



CHAPTER 6. EXPLORING DESIGN OPTIONS

time and are not a formal part of a crew’s education about the flight deck. To test fundamental

changes to these schema would require significant retraining on the part of crew and may introduce

additional risks to operations, as crew are being asked to work within an unfamiliar system in an

unfamiliar fashion. However, because models of the current system were effectively constructed in

MASCS, changes to these systems can also be modeled and investigated.

Given the budgetary constraints of 21st century operations, reducing the number of crew required

for operations is a concern of the Navy. The new generation of Ford -class aircraft carriers already

aims to reduce the required crew by about 700 people (USNFord, 2014). While the Aircraft Directors

on the flight deck form only a small part of this complement of crew, MASCS could be used to explore

the effects of reducing the number of Directors utilized in operations. Removing crew from the

current “zone coverage” scheme would require a reconfiguration of Directors’ areas of responsibility

and how they connect to one another. MASCS currently hard-codes these connections into the

system, but these could either be converted into a configuration file loaded on start or replaced by

an algorithm that could determine connections automatically given the number and location of crew

on the deck. These could then be used to examine the effects of the number and placement of crew

on the flight deck and its effects on total launch event Duration and crew workload (which has not

been a focus of this work). Similar investigations could also be made with the Escort crew, exploring

how changes to the number of Escorts utilized, the number of starting locations, and the location of

those starting locations affect the efficiency of operations. The configuration of parking locations is

also based on past deck crew experience and might also be examined further. However, the parking

locations currently utilized are closely tied to the planning heuristics of the Deck Handler, and

changing one likely requires changing the architecture of the other. Parking spaces can be easily

adjusted in system configuration files, but substantial changes to their organization might require

significant changes to the Handler planning process.

The physical layout of the flight deck itself might also be explored: the locations and configuration

of the launch catapults and the landing strip could be altered, two changes that would be also

impossible to achieve in a real world test setting. The placement of catapults is of particular

interest: the limitations in alternating launches within each catapult pair provides a significant

constraint on operations. Deconflicting the catapults should be able provide significant benefits to

operations. If catapult operations could be effectively parallelized in the current deck layout (aircraft

could launch simultaneously without risking collision), parallel operations at the 22 aircraft Density

settings return an average launch duration of 16.28 minutes (reduction of 34.81% from baseline) and

28.47 minutes at the 34 aircraft level (a 26.95% reduction from the baseline). These are in line with

the results of the launch preparation mean -50% tests (18.86 and 29.16 minutes, respectively) from

Section 6.1.1. Combining parallel operations with a reduced launch preparation time mean should

combine to generate further advantages and should finally push the system into a state where the
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Aircraft Directors and the Handler cannot keep up with the pace of launches.

Other changes involving the location of catapults, as well as the total number on the flight deck,

could also be done easily within MASCS. How repositioning the catapults interacts with the current

Safety Protocols might also be of interest, and new protocols could be designed to exploit the features

of this new deck layout. For instance, the primary issues in performance regarding the Temporal

and T+A protocols was in requiring an increased number of forward-aft transitions of aircraft on the

flight deck. A rearrangement of parking locations and/or catapults might result in an orientation

that does not require these disruptive actions. Extremely radical designs, such as a circular flight

deck with catapults arranged around the edges of the deck, could be easily implemented and tested

within MASCS. Although, such changes may also require changes to the rest of the ship’s physical

structure that may alter the shape of the hull and affect the ship’s performance in the water.

MASCS might also be employed in exploring the use of alternative sets of Deck Handler heuristics,

as it is not clear whether or not these assignment rules are optimal and whether or not they could be

improved. Intelligent planning algorithms such as integer linear programs, Markov-based processes,

auction-based algorithms, or other methods might provide alternative planning strategies that may

be beneficial to operations, or might be able to offload some of the cognitive load of the Handler to

the algorithm. The full development, testing, and verification of these algorithms would require a

lengthy iterative process, for which the fully automated nature of MASCS would be beneficial. These

planning algorithms might also be expected to have significant interactions with the layout of parking

spaces on the flight deck, which could be jointly tested using the same optimization architectures as

described above. The testing of novel route planning methods might also be conducted, replacing

the basic taxi rules of the “zone coverage” system with algorithms such as A* and examining their

effects on taxi time, taxi distances, and fuel consumption. Because of the modular nature of the

MASCS system, integrating these new path planning and scheduling algorithms would be relatively

simple: each could be written as their own independent piece of the codebase and adapted to take

in the correct inputs from the MASCS system regarding aircraft and crew locations and provide the

same outputs in terms of “tasks” as done in the current code. Within the other agent models of

MASCS, simply rerouting the decision-making scripts to employ these new algorithms is a trivial

adjustment.

Lastly, in line with the testing of novel planning algorithms, the concept of replanning schedules

to recover from failures is also an area at which MASCS could be employed. If, during operations, a

substantial mechanical failure or accident occurs on the flight deck, substantial modifications to the

original schedule may be required. Such crisis events are also notoriously difficult to test in the real

world in a way that replicates the same level of stress generated by real accidents. A model such as

MASCS provides an alternative method of investigation.
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6.4 Limitations of the MASCS Model

As with any simulation environment, a variety of limitations exist within MASCS. The core issue

with any computerized simulation is that it is a system entirely based on mathematics and rules —

any element of the real world that is required within the model must be formulated in these terms,

as dictated by the specific type of computational model being generated. For an agent-based model

specifically, this requires translating agent motion and decision-making into accurate movement

models and accurate logical rule systems, with all requisite behavioral (and other) states included.

With this comes a desire for simplicity and parsimony — reducing the complexity of the real world

as much as possible in order to make modeling feasible. During the development of MASCS, many

of the purely random behaviors that can occur in the world — weather, mechanical failures, human

behavior outside the expected norm — were ignored in order to focus the analysis on the differences

in performance of the different unmanned vehicle models. As such, in its current instantiation, the

effects of interactions of these elements with other aspects of MASCS is not known. Additionally,

even for the features that are modeled, the boundaries placed on the randomized mathematical

distributions encoded in the system and the limited options in decision making processes limit the

ability of MASCS to produce truly unique events.

Additionally, the parameterized distributions used within MASCS were defined based on a lim-

ited set of data that may not adequately represent the true environment. As best as possible, these

parameters were based on empirical data from operations — videos of operations, live observations,

and interviews with Subject Matter Experts (SMEs) — but these data were not collected as part of

any internal Navy initiatives to study flight deck operations. Validation data, as well, was difficult

to obtain and only covered a limited number of aspects of operations. To the author’s knowledge,

detailed databases containing this information do not exist in any formal capacity. While MASCS

has been calibrated with respect to mission-level outputs of launch event duration and launch in-

terdeparture rates, models of crew behavior and Handler planning heuristics have not been fully

validated as data is not available regarding these aspects. Until such time as fully detailed data

regarding individual crew behaviors and motion, Deck Handler planning, and possibly extending

to rare and critical events is obtained, any model of flight deck operations will be difficult to fully

validate.

The Control Architecture models integrated into MASCS also relied on a set of assumptions

to define models of mature, futuristic control architectures. Because these models address vehicle

systems that are not currently in existence, they cannot be formally validated against empirical data.

The models may also not be reflective of the actual control architectures built for future operations,

in terms of both low-level details of the architectures and in the settings of related parameters.

Similarly, the behavior of immature versions of these control architectures when initially fielded
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could be substantially different from the architectures modeled here. As such, the results are limited

to the definitions of the unmanned vehicle control architectures described in this work and the key

parameters that define their behavior.

Even more importantly, the role of the crew and their presence in operations had substantial

effects on safety and productivity performance, as previously discussed in Chapter 5, Section 5.6.

The results and insights gained from the testing that was performed in this dissertation are limited

by the definitions of crew behavior and their heuristics, including the topology of the crew zone

coverage network. Alternative versions of any of these aspects may produce markedly different

results for flight deck operations. Furthermore, the generalizability of these results to other domains

is contingent on how similar human collaborator behavior in those environments is to that on the

aircraft carrier flight deck.

This also includes the Deck Handler model and the assignment heuristics used to allocate aircraft

on the flight deck. These heuristics were described previously in Chapter 3, Section 3.2.3 and were

based on earlier work (Ryan, 2011; Ryan et al., 2014). The heuristics encoded into MASCS are

meant to be representative of the general behavior of Handlers in the world. While the same set of

heuristics was applied to all five UAV control architectures and the MC model in order to provide a

consistent comparison, different sets of heuristics may provide different results. In addition, future

operations may entail the use of different heuristics for each control architecture or safety protocol

that could be formally optimized for each. However, previous research demonstrated that designing

effective algorithms for this environment is difficult and may provide results no better than the

human heuristics (Ryan et al., 2014).

Other structural aspects of the flight deck, in terms of the geometry of the space, initial vehicle

locations, and vehicle destinations may also differ for other environments. On the flight deck, vehicles

move only in the two-dimensional plane of the flight deck in what is technically an open space in

which vehicles can transit in any unobstructed direction. Crew also generally attempt to move

aircraft in the same direction in order to maintain an orderly flow of traffic, but this is not a hard

constraint like it is for highways and other roadways. These aspects all influenced the definition

of the safety protocols, and for other domains that do involve vertical motion (such as military

aviation) or that have more or different restrictions on transit paths (highways, roadways in mines),

the safety protocols defined here may not be entirely applicable and the results observed in MASCS

testing may not apply. However, the models of unmanned vehicles used in the MASCS model should

be easily transferable to other domains, and the general insight as to the role of crew in operations

should also be true for other environments.

The MASCS model also includes only a limited number of tasks in the system model, all of which

concern the movement of aircraft from parking locations to the launch catapults. Other environ-

ments may contain a richer set of actions that would be required in modeling, providing additional
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opportunities for control architecture failures, latencies, or other interactions between elements.

However, it would be expected that the general features of the results described in Chapters 5 and

6, such as the effects of process level constraints and the ability of safety protocols to disrupt the

flow of traffic in operations, would likely hold in some form. At minimum, the development of the

current MASCS model of flight deck operations does provide a roadmap for the development and

testing of simulations for other environments.

An additional operational limitation in MASCS is the time to complete individual runs. Even at

ten times normal speed, a set of thirty replications takes between 60 and 180 minutes to complete,

conditional on the specific settings of the mission profile. Because of the time to complete runs

and the significant standard deviation in results, using MASCS within an optimization architecture

would likely require many more runs to complete its exploration of a design space. Accelerating the

speed of operations of MASCS would be a viable option, but the current architecture of the system

means that the resolution of vehicle motion would decrease and a significant amount of information

would be lost. Some other mechanism of updating the motions and actions of vehicles would be

required in order to provide the performance necessary to facilitate deeper investigations into system

parameters and optimality.

6.5 Chapter Summary

This chapter has explored some of the implications from the results displayed in Chapter 5, utilizing

the MASCS simulation environment to explore the effects of changing both vehicle-independent,

process-level tasks and UAV control architecture parameters on safety and productivity. Chapter 4

previously demonstrated that the MASCS model provides results in agreement with prior published

data on and SME estimates of operations. This chapter has demonstrated that modifying the

parameters of the launch preparation process eliminates the bottleneck it places on operations and

greatly improves flight deck performance. In making such changes, MASCS has demonstrated that

22 aircraft mission durations can be reduced from 20 minutes to less than 10 minutes with an

aggressive, automated launch preparation task. Furthermore, these results also indicate that at this

faster operating tempo, the safety of aircraft interactions becomes robust to the selection of safety

protocols and the total duration of crew interactions drops substantially.

Introducing this aggressive automated process also resulted in significant differences in Launch

event Durations for the different control architectures, although these again ended to cluster into

groups of “delayed” and non-delayed architectures. However, these results also suggest that at these

extreme settings, the density of operations and its interactions with the scheduling of tasks and

the taxi routing methods have significant effects on Launch event Duration values. The relative

effects of increasing mission Density from 22 to 34 aircraft was much larger under the automated

LP model than under the original, indicating that the heuristics used in these processes, which grew
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organically over time under much different operating conditions, are not well-constructed for an

accelerated launch rate.

A review of safety metrics also demonstrated that increasing the speed of operations may not

necessarily imply a reduction in safety. The automated launch preparation process does moderately

decrease the number of aircraft safety incursions and greatly decrease the total duration of crew

safety incursions but has no effect on the total number of crew incursions. Thus, in terms of two

metrics, accelerating the pace of operations is a net benefit to safety, although this also implies the

rate of crew safety incursions increases drastically. Additionally, variations in measures across safety

protocols also appears to be lessened, implying that the safety protocols provide little benefit at this

increase operational tempo.

The ramifications of the results in this and the previous chapter demonstrate the importance

of systems like MASCS. Although the SBSC and GC systems are still years away from practical

development, the results of this and the previous chapter have provided some understanding of the

important features of their performance, how they might be integrated into operations, and what

features of operations are especially interactive with these systems. MASCS has been able to explore

what might be possible with candidate versions of these systems. Most generally, the results of this

and the previous chapter show that the best performance in flight deck operations comes from either

fully manual or fully autonomous operations: under either the MC or the SBSC architectures. The

control architectures that lie between these models in the automation spectrum provide some form

of detrimental performance due both to the parameters defining their behavior and the architecture

of their interactions with the system.

To collect the data used to reach these conclusions in real-world field testing would consume an

incredible amount of time and resources, and the instrumentation of data collection for the metrics

defined here might also be problematic and difficult to achieve. By creating independent agent-

based models that replicate the expected behavior of the different unmanned vehicle models, the

MASCS model has afforded a better understanding of flight deck operations than might be achieved

in years’ worth of field trials. Overall, MASCS has generated not only a better understanding of

how the flight deck works, but provided guidance on potential future research as to the choice of

UAV systems to incorporate into operations and how they interact with candidate safety protocols

for the environment.
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Chapter 7

Conclusions

“Robots are emotionless, so they don’t get

upset if their buddy is killed, they don’t

commit crimes of rage and revenge. But

they see an 80-year-old grandmother in a

wheelchair the same way they see a T80

tank; they’re both just a series of zeros

and ones.”

“Military robots and the future of war,”

TED Talk, Feb. 2009

Peter Singer

As unmanned and autonomous vehicle systems move from environments in which they operate

primarily in isolation into Heterogeneous Manned-Unmanned Environments (HMUEs) that require

close interaction with human collaborators, properly understanding which characteristics of the

domain encourage safe and effective performance in these new domains is paramount. For a vehicle

operating in isolation, it important to know the location of the vehicle, its current destination, and

what transit path will move them to that point without overstressing the vehicle. For a vehicle

operating in an HMUE, the same issues are also at play; however, the transit path, speeds of

motions, and even the selection of the destination are influenced heavily by what types of actors are

nearby. The decision-making rules and behaviors that provide desirable performance for a manned or

unmanned vehicle operating on its own are not the same as the characteristics desirable for vehicles

operating in HMUEs.

Understanding which characteristics are desirable is further complicated by the large scale of

systems like the United States highway system. In most current practice, determining these char-

acteristics occurs through a trial-and-error, one-factor-at-a-time style of testing: small adjustments
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are made to a system in the field that is then tested over a period of time. This process, and its re-

liance on physical systems operating in the world, brings with it several deficiencies and limitations:

cost, safety concerns, limits on what can feasibly be tested with the current available hardware and

software systems, and limitations on what can accurately be measured in the field. To this end,

the Multi-Agent Safety and Control Simulation (MASCS) agent-based simulation environment was

developed in order to facilitate the exploration of manned and unmanned vehicle behavior in one

candidate HMUE, the aircraft carrier flight deck. This chapter reviews the motivation behind and

the development and testing of the MASCS simulation model, as well as the contributions of this

research and the questions that remain for future investigation.

7.1 Modeling HMUEs

7.1.1 The MASCS Model

The Multi-Agent Safety and Control Simulation (MASCS) model was constructed with the goal

of modeling manned and unmanned vehicles acting within a candidate Heterogeneous Manned-

Unmanned Environment (HMUE), such that the performance of these vehicles could be evaluated

under realistic circumstances. This includes the effects not only of different vehicle control methods,

but the effects of changes in how they are integrated into operations and the mission conditions

under which they operate. These first two aspects, referred to as Control Architectures (CAs)

and Safety Protocols (SPs), respectively, served as the primary focus of MASCS development and

testing. A review of the existing research showed a spectrum of five different unmanned vehicle

control architectures that were candidates for inclusion within MASCS, alongside a model of Manual

Control that serves as a baseline comparison point. Unmanned vehicle control architectures ranged

from Local Teleoperation (LT) and Remote Teleoperation (RT), which still require a remote human

pilot, to Gestural Control (GC) (and other forms of advanced teleoperation) that require no pilot

but do require instructions from the crew, to Vehicle-Based Human Supervisory Control (VBSC)

and System-Based Human Supervisory Control (SBSC) that receive their instructions through a

centralized control system staffed by a senior supervisor (the Deck Handler). Slight variations in the

location of the human operator, the method of commanding the unmanned vehicle, and the types

of commands provided differentiate these Unmanned Aerial Vehicle (UAV) CA from one another.

These seemingly slight differences in architectures, however, are sufficient to generate significant

differences in performance for individual vehicles.

An initial framework that mapped the general architecture of these systems in terms of the

communication of information between human supervisors, manned and unmanned vehicles, and

other human collaborators served as the foundation for the construction of the MASCS environment.

This framework was then applied to aircraft carrier flight deck operations, chosen as an example

HMUE based on its existence as a heterogeneous manned environment and the current research
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concerning the development and integration of unmanned vehicles into flight deck operations. A

model of current manual flight operations was developed and partially validated based on data

obtained from previous research, observations of operations (both in-person and recorded), and

interviews with Subject Matter Experts (SMEs). This model then served as the template for the

implementation of unmanned vehicles into flight deck operations.

However, the introduction of unmanned vehicles might also entail changes to the structure of

operations in order to limit interactions between vehicles and other human collaborators. Past

experience has demonstrated that robotic, unmanned, and autonomous systems are not often given

free rein to operate in a system and are often isolated based on geographic area or in terms of

temporal scheduling. These forms of Safety Protocols suggest a few simple ways in which the

interactions of manned and unmanned vehicles can be limited to increase the safety of flight deck

operations. However, the true effectiveness of these protocols and their interactions with system

productivity are not readily known. Despite the ongoing development of unmanned vehicle systems

for flight deck operations, significant questions remain as to how UAVs will be inserted into the

mission planning and mission execution processes.

To incorporate both the variations between CAs and the different types of SPs, MASCS was

constructed as an agent-based model. Such models rely on the definition of independent “agents”

that replicate the decision-making behavior, task execution, and movement of the individual actors

in the real-world system. Differences in CA can be mapped to differences in decision-making rules

and parameters describing individual vehicle and crew behaviors, while changes in the SP are char-

acterized by changes in the supervisory Deck Handler’s planning activities. The modular design of

the agents enabled these difference to easily be integrated into the simulation model. These features

also are the primary inputs to the MASCS model and are discussed in the next section, along with

the outputs of the simulation.

Model Inputs and Outputs

Chapter 3 detailed the creation of the original MASCS model of flight deck operations and the sources

of data used in its construction. Constructing an agent-based model of flight deck operations first

required the definition of (1) agents active within the environment, followed by the definition of

(2) states that described the current conditions of the agent, (3) decision-making rules that define

what actions should be taken to achieve its current goals, and (4) parameters that defined how those

actions are performed. Each of these could be tailored by future researchers to explore new control

architectures or new parameters for the currently defined architectures. Similar structures were also

provided for independent task models, as well as for the model of the physical environment (the

carrier flight deck).

• Agents: Creating MASCS requiring defining individual agents for all aspects of operations.
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This included pilot/aircraft agents, crew on the flight deck, supervisory planning agents, equip-

ment such as catapults, and the flight deck itself. Additional models were constructed for tasks

executed by these agents, constructed in a modular fashion to make them easily adaptable to

a variety of situations. For each of these agents and models, sets of states, parameters, and

decision rules were defined individually based on prior observations of operations, a review of

training manuals, and interviews with SMEs.

– Agent states describe the current characteristics of an agent in the world, including its

current position, heading, assignments, and health. States describe the important char-

acteristics of agents relevant both for their own activities and for the activities of other

agents in the system.

– Agent decision rules describe how, given information on the current state of the agent and

the observable states of other agents and the environment, how it should achieve its goals.

These rules determine what the goal should be, then determine what tasks are required

to reach that goal, then whether or not those tasks can be accomplished. Important

decision rule states included modeling how Aircraft Directors move to place themselves

within an aircraft’s field of view, how Directors pass aircraft between one another in the

“zone coverage” routing system, and how Handler’s plan catapult assignments for aircraft

in the system. Each of these decision rules were instrumental both in the design of the

MASCS system and shown to have significant effects on system behavior. These are each

system characteristics that might be altered under future investigations.

– Agent parameters define the characteristics of task performance and are often modeled

as parameterized random distributions. The definitions of these parameters, along with

changes to decision rules, define the differences between the various UAV control archi-

tectures modeled in MASCS. These include the speed at which aircraft can travel on

the flight deck, time distributions characterizing the time required to complete certain

tasks, and the failure rates of task execution. Failure rates and system processing la-

tencies (caused by a variety of different factors) are also included here. Parameters for

Manual Control operations were defined based on empirical evidence and SME advice,

while UAV parameters were based on a combination of prior research and assumptions

of how mature system technologies would behave. Less-mature systems, or other types

of control architecture not considered here, may provide very different results than what

was observed in this testing program and are a point of future investigation.

• Task models: Models of agent task execution were also required, consisting of decision-making

rules, states, and parameters that describe under what conditions a task can be performed

as well as how that task is executed when conditions permit. Of primary importance were
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models of agent motion in the world, which rely on interactions with agent states, the Handler

assignment decision-making rule, and the Aircraft Director “zone coverage” routing system.

Two other important tasks, the launch preparation time and acceleration time, are vehicle-

independent are based on stochastic time distributions based on real-world observations. This

models are modular in nature, defined independently of any agents in the system. As such, new

models task models, or variations to current models, could also be introduced. Current models

could also be adapted to new environments outside that of carrier flight deck operations.

• Mission and Deck Configurations: The characteristics of the mission to be executed and the

arrangement of the flight deck also serve as important factors in the system. The number of

aircraft included in the mission, mission Density, has fundamental effects on the taxi routes

and other actions available to agents in the system. The percentage of unmanned vehicles

used in the mission, mission Composition, affects how the Safety Protocols are executed.

Additionally, the locations of aircraft on the flight deck and the physical layout of the deck

itself form additional variables that were not explored in this work.

• Metrics: Analyzing operations required the definition of metrics in several categories address-

ing the productivity (expediency and efficiency) and safety of operations. The metrics provide

a breadth of perspectives that enabled a detailed analysis of differences in behavior of Safety

Protocols, Control Architectures, and their interactions with different mission configurations

(mission Density and Composition).

Each of the elements described above could be altered by future researchers exploring different

facets of operations. Additionally, the models themselves could be fundamentally altered: as the

current focus of MASCS is on futuristic vehicle technologies using experienced operators, interac-

tions between human and aircraft were treated as settings for a combined human-vehicle system.

These models could be further differentiated, creating separate models for humans pilots/operators

and vehicles in order to explore interactions between the two at a much finer level of detail. If these

models, which would more explicitly explore human cognition and decision-making, were imple-

mented, many of the task execution and failure rate models defined in this work would become the

outputs of these new, more detailed models. Implementing more detailed human cognitive models

might also require substantial changes to the decision-making rules in order to adapt to this new

architecture. This modularity and the ability to easily introduce new agent models is one of the

benefits of MASCS, which are discussed further in the next section.

Model Benefits

MASCS is, as far as it is known, the first simulation environment that models a variety of candidate

unmanned vehicle control architectures in a partially validated model of a real-world HMUE. This

has afforded an ability to examine features of unmanned vehicle performance and interaction with
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operational settings that has not been observed in other arenas. Due to the modular definition of

agents and tasks within MASCS, the characteristics of individual agents, how they execute tasks,

how they interact with one another, the physical organization of the flight deck, initial positions

of aircraft and equipment, and the planning methods of the Deck Handler and other staff can all

be investigated individually, without requiring modifications to other agents and decision-making

routines. This framework also allows for the easy insertion of models of the different UAV CAs

into the system, replacing manned aircraft with models of unmanned vehicle behavior and enabling

comparison of performance across cases with requiring the construction of an entirely new model of

the flight deck. Future models of unmanned aircraft could easily be generated and integrated with

the current MASCS model, along with new operational settings and conditions.

The ability to make these changes individually enabled the creation of a test program that

systematically varied the control architectures, safety protocols, and mission settings (both number

of aircraft and percentage of UAVs included in the mission) in order to characterize differences

in performance across cases as well as interactions between cases. This testing program and its

results were examined in detail in Chapter 5, providing significant insight into potential outcomes

of unmanned vehicle integration into flight deck operations. The most important lessons learned

concern the role of the crew in affecting operations. The use of human crew in routing aircraft

through the flight deck (the “zone coverage” system and its topology) was shown to have a significant

effect on the results of safety measures in those tests. Additionally, the role of crew in the vehicle-

independent launch preparation process was shown to serve a regulatory function on operations,

limiting variations in the productivity of control architectures in terms of launch event duration.

Once these limitations in the launch process were removed after modeling an automated launch

preparation process, some key aspects of productivity on the flight deck were observed. The uncon-

strained and highly autonomous SBSC architecture provided some advantages in operations over

UAV control architectures experiencing latencies in operations (RT, GC, and VBSC). The archi-

tectures experiencing latencies in operations also performed most poorly when combined with the

Temporal separation protocol, which itself provided poor results in general. The poor performance of

the Temporal protocol suggests that for Deck Handlers scheduling flight deck operations, maintain-

ing flexibility in aircraft assignments (Temporal Separation) is less important than in maintaining

a consistent flow of traffic from aft to forward (as occurs in Area Separation). Ultimately, for UAV

control architectures to have any benefits past that of the current Manual Control models, both the

flow of traffic must be preserved and the launch preparation time must be improved: otherwise, the

effects of these two elements greatly overshadow any differences in unmanned vehicle operations.

In terms of the safety of operations, significant interactions between control architectures, safety

protocols, and mission settings were also observed. Measures of safety that examined the distances

between aircraft (the Tertiary Halo Incursions due to Aircraft (THIA) measure) showed the best
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performance under the combined Temporal+Area protocol. However, improved performance on this

measure came at the cost of mission expediency, as the heavy constraints of this protocol limited the

ability to launch aircraft from the flight deck. While these results apply specifically to the design

of modern flight deck operations, it does suggest a need to carefully question the organization and

conduct of operations in other domains as they relate to and interact with their own unmanned

vehicle systems.

The selection of control architecture also had interesting interactions with these safety measures,

primarily due to the nature in which vehicles are routed on the flight deck. Under the THIA metric

measuring the safety of aircraft interactions with one another, the SBSC systems provided both

some of the very best and some of the very worst performance, depending on level of constraints

applied by the safety protocols. This also has repercussions for real-world operations: the MASCS

model did not assume that failures could occur in the collision prevention systems for any of the

UAV control architectures. These results suggests that, for SBSC system reliant solely on their own

autonomy to avoid accidents, imperfect compliance with collision prevention may make these some

of the least safe systems to operate.

In general, MASCS has provided both an increased understanding of the dynamics of flight deck

operations, the key features that govern mission productivity and efficiency, and pointed the way

towards a better understanding of which characteristics of unmanned vehicles and of safety protocols

generate desirable safety and productivity in this domain. The nature of vehicle interactions on

the flight deck are similar to those in highway driving and mining environments, and the results

described for SBSC here could extend to these domains in a limited fashion. Mining environments

are similar with the exception that vehicles travel cyclically between different sites within the mine.

Roadway driving is also similar, although the initial starting locations and destinations of aircraft

are all dissimilar; the models of unmanned vehicle control architectures, however, should be similar

to flight deck operations. The modularity of MASCS and its agent and task models means that it

could easily be extended into models of different physical environments in order to verify exactly

how well these results transfer into these new domains.

7.1.2 Model Confidence

Chapter 4 presented information regarding the calibration and partial validation of the MASCS

model against data on current manual control flight deck operations, examining the performance

at both the individual vehicle and mission levels, as well as sensitivity analyses of performance at

both levels. These sensitivity analyses address the most important aspects of flight deck operations,

namely vehicle speed, collision avoidance parameters, and launch preparation time. These tests

examined the accuracy of the model with respect to replicating current operations as well as the

stability and robustness of the model given changes in the task execution parameters.
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Model Accuracy

Validation testing for the MASCS model of current aircraft carrier operations relied on a combination

of reported performance data from Naval research institutions, video observations of operations,

and subjective evaluations by SMEs. The model of individual manual control aircraft behavior

was calibrated with recorded footage of an individual aircraft followed from initial parking location

through the completion of the launch process. This video was catalogued, breaking the entire launch

event into subtasks, each of which formed a comparison point for the simulation data. A replica

scenario was developed and executed within MASCS, demonstrating that the simulation was capable

of reproducing the video data within ±1 standard deviation on each metric.

More detailed data on mission performance was obtained from prior Navy studies. This data

reported the Cumulative Density Function (CDF) of launch interdeparture times on the flight deck

and expected values for the time to complete a mission of given size. A series of representative

missions were replicated within MASCS, demonstrating that the simulation was capable of providing

similar distributions of interdeparture times and total mission times in line with prior expectations

and reports. The results of individual vehicle testing suggested that the models of individual aircraft

motion and task execution were reasonable, while tests at the mission level demonstrated that the

architecture of flight deck operations, including the assignment of aircraft to catapults and the

routing of aircraft to those assignments, were also reasonable representations of the real system.

However, there are a variety of aspects of operations that have not been formally validated, with

individual crew behavior being the most prominent. While the model has been calibrated using data

on current mission operations, new data may reveal significant flaws in the model.

Models of UAV behavior were based on prior research evidence and supplemented with assump-

tions about realistic performance for mature systems utilizing experienced operators. While the

performance of these vehicles cannot be validated in any formal sense as they do not yet exist, tests

of individual vehicles (replicating the individual vehicle mission used in validation) provides results

in line with expectations: an inverted-U shape. Moving from LT to SBSC across the spectrum of

automation complexity, the GC architecture provides the worst performance due to its delays in

processing and failures in recognizing Directors and task instructions before improving. At the ends,

the LT and SBSC systems provide the best performance and were not shown to be significantly

different from Manual Control (MC). The remaining two cases of RT and VBSC were shown to be

significantly worse than MC but still better than GC.

Model Robustness

Additional tests in MASCS examined simulation behavior given changes in internal and input pa-

rameters within the model. These tests specifically addressed the reaction of the simulation to

changes in the number of aircraft and the number of catapults (input parameters) as well as changes
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in the taxi speed of aircraft and the related collision prevention parameters. Changes in the input

parameters lead to substantial changes in how aircraft are prioritized and routed on the flight deck,

while changes to internal parameter affect the execution of taxi operations upstream of the launch

process. The tests conducted in Chapter 4 verified that the response of the flight deck system was as

expected: linear with respect to the number of aircraft used in the mission, a slight difference (1-2

launches) between using 3 and 4 catapults, and that responses of the system to changes to taxi and

motion behaviors, such as taxi speed and collision avoidance parameters, did not generate extreme

variations in operations. Because these two parameters affect tasks upstream of the launch prepa-

ration task, their effects on mission performance are ultimately limited: differences in performance

only occur if the disruptions to taxi operations break the maintenance of queues at catapults. The

effects of varying the mean value of the launch preparation time model — a vehicle-independent

task that occurs on the flight deck — was shown to have much stronger effect than either of these

other parameters, as would be expected.

These results demonstrated that the MASCS model is capable of replicating the performance

of the real world system, including its responses to changes in both internal and input parameters.

This, in turn, signifies that models of Deck Handler planning heuristics and Aircraft Director traffic

routing on the flight deck are both reasonable representations of the real system, including possess-

ing the flexibility to handle different mission definitions. Establishing these decision-making rules

was a complicated aspect of generating the agent models, and the work described in this disserta-

tion provides a template for future researchers generating agent-based models of similar domains.

However, as noted in Chapter 6, Section 6.4, one of the key limitations in MASCS development was

the limited amount of data available on operations. If future data collection programs demonstrate

that the data used in validating MASCS and in defining MASCS agent parameters was incorrect,

MASCS should no longer be considered a valid model of operations. Input parameters for MASCS

would have to be updated and the entire simulation revalidated to ensure its accuracy.

7.1.3 Model Applications

In general, MASCS is a complicated simulation designed for “what-if” scenario testing for aircraft

carrier flight deck operations, designed to be flexible enough to test not only changes to the behavior

and performance of individual agents within the system but also to test changes to the execution

of tasks, in communication between agents, and in the methods of planning in the environment.

Chapter 5 presented one way in which the MASCS environment can be used, testing different

candidate UAV control architectures and safety protocols intended for use in these operations in

order to examine whether or not differences exist in the performance of these systems and, if so,

the magnitude of these differences and the sources of their variation. Chapter 6 explored another

way in which MASCS can be utilized: as a design space exploration tool used to examine the
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effects of changing parameters for process-level tasks (the launch preparation time) and the control

architectures on safety and productivity in the flight deck. A first series of tests explored altering

the mean and the standard deviation of the launch preparation time, while a second series explored

improvements to parameters for the GC architecture.

These results demonstrated that, for systems like the flight deck, where all vehicles head to one

of many identical destination states and perform the same final terminal process, the characteristics

of that process may ultimately affect judgments of the performance of the modeled systems. As

shown in Chapter 6, at high mean, high standard deviation launch preparation times, no difference

was observed between control architectures. If a stakeholder used these settings solely as their frame

of reference, they would conclude that the use of unmanned vehicles not only had no impact on

operations, but that it did not matter what control architecture they selected. Under a lower mean,

lower standard deviation preparation time model, significant differences did arise between models,

leading to very different conclusions about which UAV systems were most effective. However, in

absolute terms, the differences in performance between cases was quite small.

Additional tests explored what improvements to control architecture parameters would be re-

quired if differences in performance did exist. Chapter 6 examined in depth the two most important

parameters of the Gestural Control architecture, exploring how improvements in the processing la-

tency and accuracy of these systems do or do not affect operations. This exploration lead to several

interesting conclusions about the performance of these systems. Notably, under operations using the

original launch preparation time model with large mean and standard deviation, significant improve-

ments in these parameters had no further beneficial effect on operations: GC performance remained

equivalent to MC performance due to the regulating effects of the launch preparation time. Only

once this task was decreased were changes in GC parameter shown to have any effect. To reach

performance equivalent to MC operations required substantial improvements to the GC parameters,

but the practical differences between large and moderate improvements are fairly small.

Other tests examined the effects of changes to these processing on the performance of the different

Safety Protocols. Here, other key aspects to the determination of “safety” in these environments was

explored. Most intriguingly, results suggested that increasing the tempo of operations by reducing

the launch preparation mean and standard deviation might actually be beneficial to operations

overall, as it minimized the number of times aircraft come within a close distance of one another.

This increased tempo also decreases the total amount of time in which crew are placed in close range

to aircraft, but does not affect the total number of times this occurs. This implies an overall benefit

to the safety of other aircraft on the flight deck, but an increased rate of risk generation for crew; as

described above, balancing these considerations and understanding which are the most important

are a key concern for stakeholders making decisions for these systems in the future.

Each of these explorations would have taken a substantial amount of time and money to conduct
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under real-world conditions. The ability of MASCS to quickly modify the conditions of the system,

execute a series of tests (at typically ten time normal speed) then compile and review data provide

an investigative tool not available to most current stakeholders. Additionally, the nature of MASCS

provides the ability to test conditions that do not currently exist in the world: the effects of major

improvement to system technology can be done without issue in such a simulation environment. As

such, MASCS affords an ability to investigate system settings that do not currently exist and may

not in the near term be achievable. This is one potential area of future work discussed in the next

section.

7.2 Future Work

MASCS is, and was designed to be, a fairly simple agent-based model of the world. Each of every

one of the logical decision-making rules utilized within it is based on if/then statements and other

simple heuristic-based solutions. These models were based on a relatively limited amount of data

on operations as compared to other environments. A significant source of future work in MASCS

can address improving the complexity of the agent models, which in turn requires increased data

collection and complexity of data collection flight deck operations, crew behavior, and unmanned

vehicle performance.

As noted previously in Section 7.1.1, the pilot and aircraft models were treated as single entities

designed to be representative of mature technologies with experienced operators. By definition,

this negates any potential examination of the implementation of UAV models with novice operators

without properly calibrated trust in the systems. This also negates investigating any effects of

change in trust or improvement of skills over time, as well as eliminating the ability to examine

how different human operator behaviors affect the performance of the systems. In order to create

such models, the pilot/aircraft models must be further differentiated into two independent agents

that interact with one another, potentially in the style of systems such as SOAR (see (Laird, 2008))

and ACT-R (see (Anderson & Schunn, 2000)). This requires a much greater level of detail in both

human cognitive processes (memory, attention, decision-making and reaction times) as well as how

these processes interact with the vehicles themselves. A reasonable first step in this would be a

series of studies of naval aviators, understanding how they process information and execute tasks

on the flight deck, followed by similar exercises with individuals using prototype or simulated UAV

systems. Developing a model for any one of the control architectures alone may be considered a

thesis-level research topic, and any single model could be incorporated as an extension of MASCS.

Similar exercises could occur for the Aircraft Directors and Deck Handler, each of whom had a

single model of behavior developed for this work. While the models were shown to be flexible enough

to handle a variety of operating conditions on the flight deck, other alternative models may also be

possible. Errors on the part of these individuals were also largely eliminated from the model, and
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it may be of significant interest to characterize their effects. However, this again requires extensive

additional data collection looking at individual behavior and the creation of more detailed models

of cognitive processes, decision making, and errors. However, the generation of such a system would

be of extraordinary assistance in terms of diagnostic evaluations of flight deck operations: the effects

of an individual mistake could be demonstrated in simulation by simulating the mission both with

and without the error, examining the differences in mission evolution and performance that results.

This has significant potential as a training tool for new Directors and Deck Handlers, with the

possibility of integrating the system as a real-time assessment tool onboard carriers. In this sense,

the simulation could be converted into a decision-support system, allowing operators to gauge the

effects of their decisions in real time and make appropriate adjustments.

Additionally, as noted in Chapter 5, the models of close-proximity crew interactions with vehicles

were very simple. While the results of crew safety metrics were tracked and analyzed, the simplicity

of the crew models precludes any real judgments about the safety of crew interactions with aircraft.

To provide a true understanding of crew interactions with aircraft, more complex models that more

effectively capture how crew interact with aircraft on the order of inches and feet would be required;

the current iteration of MASCS does not address human or vehicle motion at that fidelity. However,

the construction of such models of crew would provide benefits to both current manual and future

unmanned operations, providing an understanding of the key behaviors of aircraft and pilots that

place crew in danger (and vice versa). Such information could then be used to either improve crew

and pilot training or improve the heuristics of vehicle routing on the flight deck.

Along a similar vein, a point of ongoing investigation is the development of planning algorithms

for use in flight deck operations, as well as research into data mining and characterizing the key

features of operations. It would be relatively easy to convert MASCS into a data generator for use

in this research, replacing the Deck Handler with an automated scheduling algorithm or replacing

the “zone coverage” crew routing with alternative path planning algorithms. Additional changes

could introduce new metrics and measurement methods into the system for use in the data mining

of operational performance. However, in order to transition the system into a true research tool

usable by individuals outside the program designer, an automated scenario generation tool would

aid in the creation of initial configuration files for the system and automated generation of output

statistics across trials would also be useful. Making such changes would also facilitate the merging

of the MASCS codebase with optimization toolkits such that would enable a broader exploration

of the design space. Wrapping the MASCS system into a genetic algorithm or particle swarm

optimization routine, which would have the authority to change the numbers and starting locations

of aircraft, parameters within those aircraft, and possibly select different types of planning algorithms

or heuristics would facilitate the search for a true “optimum” in the system. These searches could

also be conducted for aspects of flight deck operations outside of the launch process, which are
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described in the next sections.

7.2.1 Additional Phases of Operations

Additionally, with budget concerns driving a desire to reduce staffing levels, simulations like MASCS

could be used to examine how changes in the number of crew involved in flight deck operations drives

efficiency. While the current instantiation of MASCS only utilized Aircraft Directors, numerous other

personnel support operations prior to and after the launch phase. The development of MASCS

focused on taxi operations prior to launch because this is the period of time on deck in which the

behavior of UAVs would have the greatest effect. Prior to and after taxi operations, a variety of

other processes that rely heavily on crew take place: fueling, loading weapons, landing the previous

mission’s aircraft, and the process of “respotting” the deck prior to the next series of launches.

However, most of these tasks do not require much activity on the part of the aircraft and are instead

rely mostly on the actions of crew. Aspects of these operations do, however, influence the launch

mission and relate to an optimization of the placement of aircraft within it, which may be of interest

to other related domains.

Recovery Operations

A first significant step would be the inclusion of the landing process into operations. The Center

for Naval Analyses (CNA) report that provided guidance on the launch interdepature rates (Jewell,

1998) also provide guidance on the landing interarrival rates. Landings on the aircraft carrier flight

deck proceed to the single landing strip, with landings occurring at a median of 57.4 seconds. After

this, aircraft are immediately taxied out of the landing area and parked in areas forward of the

landing strip, typically beginning with the parking spaces on catapults 1 and 2. Doing so ensures

that the next aircraft coming in to land has no obstacles that would force it to abort its landing — a

key issue when aircraft are potentially running low on fuel. The poor performance of RT, GC, and

VBSC aircraft as demonstrated may pose a significant issue for these operations; extending MASCS

to include these operations might be of significant use in examining the combat readiness of the

different UAV types.

With the inclusion of recovery operations, an additional, more complicated type of operations

referred to as “flex deck” operations could be examined. In this rather rare condition (typically

occurring only during combat operations), the cyclic series of launch events is abandoned. Once

an aircraft lands, it is immediately taxied out of the landing strip, refueled, weapons reloaded, and

launched again as fast as possible. SMEs report that this puts tremendous stress on the crew to

maintain order and adequately manage the flight deck. At such extremely high tempo operations,

the “delayed” UAV systems may pose a serious problem in maintaining the required rate of launches

and be a detriment to conducting this form of combat operations. To the knowledge of the author,

very little research as to this type of operations has been conducted, perhaps due to the rarity of
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this type of operations and the stress placed on crew during its implementation. Extending MASCS

to incorporate these types of mission affords a completely new ability to review performance at

these unique operational conditions and may reveal important information about their utility in

comparison to more standard cyclic operations.

Respotting Operations

As noted above, after aircraft land they immediately taxi out of the landing strip to the forward area

of deck to clear space for the next aircraft arriving in the pattern. After all aircraft have landed, the

deck is reconfigured by the Deck Handler and his staff to set up for the next set of launch operations,

moving aircraft from their parking spots forward of the landing strip and reorienting them better

position them for taxiing to catapults (the initial conditions under which the current iteration of

MASCS operates). This layout is a form of spatial optimization — how to arrange a set of aircraft so

as to provide open access paths and robustness schedule execution — that, while done quite well by

Deck Handlers, is not well understood by other stakeholders. As MASCS already contains models

of vehicle size and shape and the ability to execute a given launch schedule, additional modifications

could be introduced to replicate both the process of vehicle relocation during respotting operations,

as well as provide tools to analyze to efficiency of the new parking arrangement. Consider a model

like MASCS existing within a tabletop configuration much like the “Ouija board” (Figure 7-1)

currently used by Deck Handlers, in which the agents within MASCS could be dragged and dropped

over the interface; a Handler could interact with the MASCS simulation much in the same fashion

as he currently does with the Ouija board, but now have the ability to analyze the effectiveness of

his current arrangement of aircraft, identify potential pitfalls in the schedule, and adjust for them

accordingly.

7.2.2 Deck Configuration

Current use of MASCS in testing purposefully used static templates of aircraft initial parking lo-

cations in an attempt to maintain consistency across conditions. In reality, there are a multitude

of possible parking arrangements that might be utilized by Deck Handlers, and testing the effects

of these arrangements falls easily within the capabilities of the MASCS environment. This could

be accomplished through the input of new configuration files, or through the use of the randomized

assignment generator described in the beginning of this Section 7.2. Additionally, radical reconfig-

urations of the flight deck, including redesigns for future aircraft carriers, could also be explored

within MASCS. However, such a major alteration to the system would require not only redesigning

the physical geometry of the flight deck but also rebuilding the logic behind the Handler’s decision-

making rules for assigning aircraft to catapults as well as the zone coverage method of routing

aircraft amongst crew. Neither of these latter actions may be trivial, although intermediate versions

of a redesigned MASCS could be used as an aid to work with current operators to understand how
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Figure 7-1: Picture of a Deck Handler, resting his elbows the “Ouija board,” a tabletop-sized map
of the flight deck used for planning operations. Scale, metal cutouts or aircraft are used to update
aircraft positions and layouts, while colored thumbtacks are used to indicate fuel and weapons
statuses.

they might adapt their heuristics to future operational environments.

7.2.3 Responding to Failures

Examining the responsiveness of the system to failures may be an additional extension of the MASCS

model. In general, the MASCS missions assumed a fairly cooperative environment — no inclement

weather, no mechanical failures on the part of aircraft or deck equipment, no random behaviors by

crew, and no major issues that require a new plan be developed. Interviews with SMEs suggest that

operations often require changes to plans in the midst of execution; consider a case where a launch

catapult experiences a major issue and must shut down for the rest of the launch event. All aircraft

currently assigned to the catapult must be reassigned and rerouted to the remaining catapults, which

might also requires the relocation and movement of other aircraft on the flight deck to clear paths for

the vehicles to travel. Given that issues with the “delayed” set of unmanned vehicles, such a drastic

change in operations, requiring simultaneous action on the part of several agents, might place the

system in a very poor position and limit its effectiveness.

Other aspects of interest include the current utilization of the crew. This might address levels
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of crew fatigue that occur during operations and the influences of both operational tempo as well

as external environmental factors (rain, sun glare, etc.), or it might address how many crew are

actually required to run the flight deck. Currently in MASCS, a team of sixteen Aircraft Directors

are utilized in the zone coverage routing system. However, observations of the system recognize that

the workload is not spread evenly amongst the crew, nor are many crew reaching peak utilization.

While there are other benefits to having more crew than necessary on the flight deck (robustness

of operations, safety concerns, etc.), systems such as MASCS could explore the effects of reducing

this to smaller numbers of crew. Of particular interest would be the effects of crew reduction on

the other aspects of flight deck operations, discussed earlier in Section 7.2.1, as well as the resulting

effects on crew fatigue. Incorporating models the effects of fatigue and physiological state on crew

errors may also prove useful in better estimating the rates of injuries, accidents, and other aspects

of human performance on the flight deck.

7.2.4 Extensions to Other Domains

Lastly, and perhaps most importantly, alternative versions of this MASCS model could be developed

for other domains, although requires a substantial rewriting of most likely every single agent and task

defined within the system. However, the description of MASCS in Chapter 3 provides a template

for the creation of alternative simulation environments. Of particular interest are models of the

U.S. highway system or manufacturing environments, both of which are actively investigating the

development of autonomous systems. Models of these environments may be created through similar

methods as used in developing MASCS.

7.3 Contributions

The objective of this thesis was the development of an agent-based model of flight deck operations, a

candidate Heterogeneous Manned-Unmanned Environment (HMUE), into which models of futuristic

unmanned vehicle systems could be added and the effects of their integration into operations could be

analyzed. In working towards this objective, several contributions have been made to the modeling

and analysis of unmanned vehicle systems in complex sociotechnical systems, which are discussed

below. This thesis also partially fills a gap in existing research, in which models of unmanned

vehicle systems and their performance and interaction within human collaborators and other manned

vehicles in the context of real-world, heterogeneous operations has gone largely unexamined.

Chapter 1 posed four research questions that guided the development of the MASCS model. The

first two questions addressed the modeling of unmanned vehicle control architectures in HMUEs:

“What are the specific agents and their related states, parameters, and decision-making rules re-

quired to construct an agent-based model of carrier flight deck operations” and “What are the key

parameters that describe variations in unmanned vehicle control architectures and their interactions
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with the world [in that model]?” Answering these questions explored the creation of agent-based

models of Heterogeneous Manned-Unmanned Environments and provided the following contribu-

tions:

• The establishment of a general framework of manned and unmanned vehicle operations in

Heterogeneous Manned-Unmanned Environments that traces how information flows between

human collaborators, manned vehicles, unmanned vehicles, and supervisors in the environment.

This provided guidance as to the types of agents that should be defined within the system and

served as a template for the construction of the MASCS model of operations.

• A description of the important states, parameters, and decision-making rules that define the

key agents involved in flight deck operations, including models of motion and task execution

in the environment. This provides guidance for future researchers seeking to build models of

flight deck operations or of similar HMUEs.

• The identification of six key variables that define unmanned vehicle behavior in the context of

flight deck operations. New models of unmanned vehicles were defined as a series of changes to

a baseline manual control model, which was also created as part of this work. Verification tests

for these models showed the same type of performance differences generally expected from the

literature and demonstrates the utility of using an agent-based simulation for this research.

The final two sets of research questions addressed the effects of implementing unmanned vehicles

in flight deck operations. The first examined changes in productivity: “In the context of the modeled

control architectures, how do these key parameters drive performance on the aircraft carrier flight

deck? How do these parameters interact with the structure of the environment, and how do the

effects scale when using larger numbers of aircraft in the system?” The second set examined changes

in safety: “If high-level safety protocols are applied to operations, what effects do they have on the

safety of operations? Do the protocols leads to tradeoffs between safety and productivity in the

environment?” This required the development and execution of a experimental program for the

MASCS model, followed by additional tests that further explored the effects of different parameters

within the system. This resulted in the following contributions:

• A series of performance metrics addressing the expediency, efficiency, and safety of flight

deck operations were defined and implemented into the MASCS environment. These metrics

described the overall functionality of the flight deck system while also reviewing individual

vehicle behavior, the allocations of tasks across regions of the flight deck, and the proximity

to which vehicles come to both one another and to crew.

• Variations in safety were driven largely by differences in the flight deck topology due to the

heuristics of the crew zone coverage routing and the location of the crew in that topology.
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For systems not using the crew zone coverage routing, improvements in aircraft safety were

contingent on increasing high-level constraints in operations (separating aircraft based on time

or schedule). Overconstraining operations provided some additional benefits to safety at a

high cost to productivity.

• Variations in productivity, outside of the effects of overconstraining operations, were minimal

due to the effects of the heuristics governing vehicle routing and catapult queueing and the

utilization of the crew in the launch preparation process. Tests in Chapter 5 were unable to

identify any real differences in productivity due to unmanned vehicle integration because of

these factors. Key areas of future research concern reexamining the role of crew throughout

these aspects of flight deck operations.

• When improvements to the catapult queueing process were made in Chapter 6, results showed

that the occurrence of delays and latencies in operations is the key limitation in unmanned

vehicle productivity. Further improvements to the planning heuristics and the topology of the

flight deck (how vehicles are routed) may have further benefits to performance.

• At a much faster tempo of operations, variations in safety metrics across safety protocols for

a given control architecture decreased, due to the reduction in time vehicles spent in queues

and on the flight deck overall. This suggests that faster tempo operations (with vehicle transit

speed left unchanged) may aid in minimizing the chances of accidents on the flight deck.

In all, this dissertation should serve as a guide to two potential populations. First, for researchers

interested in developing agent-based models of human, manned vehicle, and unmanned vehicle be-

havior and interaction in the world, the creation of MASCS serves as a template for future models

for similar environments. Second, for stakeholders interested in assessing the future effects of un-

manned vehicle implementation into candidate environments, the results of the testing of MASCS

provide guidance as to the key features of the environment that affect operations. In particular,

these results have demonstrated that neither Safety Protocols nor Control Architectures can be ex-

amined on their own: significant interactions occur between them that are influenced by the context

of conditions within the environment, the utilization of the crew, and the mission being conducted.

The performance of the SBSC architecture, the most advanced system utilizing a high level of auton-

omy, suggests that increased autonomy does not necessarily imply increased safety across all types

of measures.

As the transition of unmanned and autonomous vehicle systems from laboratory settings into the

world at large accelerates, understanding exactly what the principle features of unmanned vehicle

behavior are and how they interact with the environment is of significant importance. Given the

significant cost of performing tests in the real world, the development of simulation models that

adequately capture not only the motion of vehicles in the world, but their decision-making behavior
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and their interactions with other vehicles and people is of the utmost importance. MASCS provides

one method of doing so and has in turn provided some significant findings as to the true worth

of unmanned vehicles in one example domain and how they should be implemented. Extensions

of models like MASCS that include more complex models of not only human performance but of

vehicle hardware and sensors, even extended to hardware- or software-in-the-loop simulation, further

enhance these capabilities and provide an even better understanding of these environments. For

stakeholders such as the Federal Aviation Administration, the National Transportation Safety Board,

and the National Highway Traffic Safety Administration, the utility of such models for reviewing the

safe and effective of unmanned vehicles into their respective domains should be valuable not only in

promoting the development of effective unmanned vehicles, but safe ones as well.
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Appendix A

Safety Principles from Carrier and

Mining Domains

This section contains tables of potential accidents in the aircraft carrier and mining domains, hazards

that could cause those accidents, the safety principles that help to prevent those hazards, and the

classes of safety principles they correspond to. Tables begin on the next page.
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Appendix B

MASCS Agent Model Descriptions

B.1 Task Models and Rules

Multi-Agent Safety and Control Simulation (MASCS) task models operate through the use of two

main functions. The first, the execute function, exists within all tasks and updates all appro-

priate states and functions with the time of the elapsed update. An example of this appears as

pseudocode in MoveForward, which provides pseudocode for the “moveForward” actions that

replicates straight line motion on the flight deck. The task requires as input the current Agent

that action is assigned to, that agent’s initial position, desired final position, and current speed.

From this, a series of variables are initialized in lines 2-7; the most important of these are that the

total distance of travel totalDistance and total time of motion totalTime. The action will track the

total time of task execution currentTime and at each update compare the value to totalTime; task

execution stops when currentTime≥totaltime.

The script first tests whether or not the task should be updated (line 12): for motion tasks, if the

Director is not visible to the pilot or if a collision is imminent, the task should not proceed. If these

conditions are satisfied, the task proceeds: currentTime is updated with the value of elapsedTime

and the vehicle positions are updated according to the elapsed time, speed, and angle or travel. This

then repeats until the appropriate time has elapsed.
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MoveForward(Aircraft, init.x , init.y , final.x , final.y , speed, elapsedT ime)

1 // Calculate geometry and distance of motion
2 currentT ime = 0

3 angle = tan final.y−init.y
final.x−init.x

4 totalDistance =
√

((final.x − init.x )2 + (final.y − init.y)2)
5 // Time equals distance divided by speed
6 totalT ime = totalDistance

speed

7 // Total time of movement equals distance divided by speed
8 while currentT ime <= totalT ime
9 // Continue to operate until we reach totalTime/total distance of movement

10 // If Director is visible and aircraft not in danger of collision,
11 // update currentTime and aircraft locations
12 if (Aircraft.Director .visible == true) && (Aircraft.collision 6= true)
13 currentT ime+ = elapsedT ime
14 Aircraft.x = init.x + elapsedT ime ∗ speed ∗ cos angle
15 Aircraft.y = init.y + elapsedT ime ∗ speed ∗ sin angle

In the above example, checking the visibility of the Director and whether a collision is imminent

are both logical rule sets. Pseudocode for collision prevention appears in CollisionPrevention,

with pseudocode for Director visibility appearing DirectorVisibility. Aircraft models include a

check for Director visibility while taxiing. The routine requires knowledge of the current aircraft,

its current position and orientation, and its available field of view. It also requires a maximum

distance threshold, describing the general area in which the Director should be (see Figure 3-5 in

Chapter 3). The routine then checks both the current angle between the Aircraft and the Director

and their distance between them; if either is not at an acceptable value, another routine not shown

here calculates the shorter straight-line path to move the Aircraft Director within the Aircraft’s field

of view at the nearest aircraft wingtip.

DirectorVisibility(Aircraft, aircraft.angle, Director, distanceThreshold)

1 // Calculate geometric relationships

2 angle = tan currentPos.y−directorPos.y
currentPos.x−directorPos.x

3 diffAngle = currentAngle− angle
4 distance =

√
((finalPos.x− initPos.x)2 + (finalPos.y − initPos.y)2)

5 if (distance > distanceThreshold)||(diffAngle > Aircraft.fieldOfV iew)
6 Run Aircraft.findAlignmentPoint
7 // Determines closest point where distance distance ≤ distanceThreshold

// and diffAngle ≤ Aircraft.fieldOfV iew
8 else Continue

While in motion, Aircraft are also continually applying a set of rules that act to prevent them

from colliding with other aircraft. Pseudocode for this appears in CollisionPrevention. The

routine first requires knowledge of the current aircraft in motion, its position and heading, as well as

a list of all aircraft currently on the flight deck and a distance threshold d. The routine then checks

the distance between the current aircraft in motion (Aircraft) and all other vehicles active on the

deck. If another aircraft is both within the distance d and in front of Aircraft (angle between them
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is 90circ or less), the current aircraft in motion must stop. “Aircraft” will remain stopped until the

other aircraft moves out of the way. As mentioned above, this routine is always in operation while

the aircraft is in motion.

CollisionPrevention(Aircraft, AircraftList,Director)

1 for i = 0 to AircraftList.size()

2 angle = tan Aircraft.y−Director.y
Aircraft.x−Director.x

3 diffAngle = Aircraft.angle − angle
4 if |diffAngle| ≤ 90
5 if distance < d
6 // Aircraft is in front of us and in danger of collision
7 return true
8 else
9 // Aircraft is in front of us, but far enough away

10 return false
11 else
12 // Aircraft is not in front of us
13 return false

Time-based actions address non-motion tasks executed by aircraft and typically involve interac-

tions with other agents (vehicle, crew, or equipment agents). For example, the set of tasks performed

during launch preparations require no physical movement on the part of the aircraft or crew. The

Action that replicates these functions in MASCS simply counts up to a specific time value before

completing execution. The acceleration of the aircraft down the catapult is also time-based, using

the time required to complete the task to decompose the required acceleration of the vehicle to

flight speed. Data on these two parameters were compiled from video recordings of operations com-

piled primarily from the website Youtube.com. These data were then each fit into a mathematical

distribution, the results of which appear in Appendix C.

Executing these tasks is similar to executing motion based tasks as shown in MoveForward. For

these tasks, however, the time is provided by a specified parametric distribution. Pseudocode for the

launch preparation time appears in Launch Preparation-Initialize and Launch Preparation-

Execute; pseudocode for the acceleration task is a combination of MoveForward and Launch

Preparation-Initialize, first sampling the completion time from a candidate distribution then

iteratively updated vehicle speed and position over the provided time.

Launch Preparation-Initialize(mean, stddev,mininum)

1 // Initialize variables
2 distribution = newGaussian(mean, stddev)
3 totalT ime = distribution.sample()
4 // Randomly sample distribution to get task time
5 while (totalT ime ≤ (mean− 3.9 ∗ stddev) —— (totalT ime ≥ (mean+ 3.9 ∗ stddev))
6 totalT ime = distribution.sample()
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Launch Preparation-Execute(totalT ime, elapsedT ime)

1 // Initialize variables
2 currentT ime = 0
3 // Execution loop
4 while currentT ime <= totalT ime
5 currentT ime+ = elapsedT ime

B.2 Director models and rules

The collision prevention rule base was described above in CollisionPrevention. The logic behind

it is rather simple and is vehicle-centric in nature: it only describes what the behavior of an individual

aircraft should be and makes no judgments about the efficiency of the system. Employing only this

simple collision prevention rule base, aircraft can easily find themselves simultaneously blocking each

other and “locking” the deck. This requires action on the part of the Aircraft Directors to control

traffic on the flight deck, applying rules and priorities to aircraft prevent any motion conflicts from

occurring. Pseudocode for this appears in TrafficDeconfliction. These rules first rely on a

set of traffic management lists and assumes that an aircraft has already been provided a catapult

assignment (this logic is described later in Handler-Assign). One management list controls taxi

operations in the Fantail area for aircraft heading to aft catapults, or for aircraft parked aft heading

to forward catapults. Another list manages the “Street” area, managing traffic for aircraft heading

to forward catapults and aircraft parked forward that are assigned to aft catapults. A third list

manages the “Box” area near catapults 1 and 2, managing operations of aircraft parked far forward

on the flight deck.

Each list operates similarly: as aircraft receive assignments, they are added to the appropriate

list(s). Once they have moved through the area, they are removed from the list. The first aircraft in

the list has top priority in taxi operations, although the lists are checked to ensure that aircraft with

higher overall launch priorities are ranked higher than others. While an aircraft is taxiing, these rules

are continually checked to ensure that they have permission to move, much in the same way that the

collision prevention routines is checked. Given a current aircraft in motion (Aircraft), it positions

in the appropriate list is checked. If it is the first in the list, it is allowed to move. Otherwise,

a series of additional checks are performed to determine if there actually is a traffic conflict. For

instance, if the first aircraft in the list (firstAircraft) is assigned to a forward catapult, no conflict

exists if Aircraft is parked aft of firstAircraft and assigned to an aft catapult. The same is true

if firstAircraft is assigned aft and Aircraft is parked forward and assigned forward.

Operations may be allowed to occur if both are heading the same direction, however. If both

are assigned forward and Aircraft is aft of firstAircraft (following behind it), no conflict should

ever exist. If Aircraft is parked forward of firstAircraft (ahead of it), it must be several aircraft

lengths ahead of it in order to prevent a conflict from occurring. So long as this is true, Aircraft is

allowed to move.
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Other rules for Directors dictate how they transfer aircraft between one another on the flight

deck. This requires knowing the current assignment of the aircraft, its positions and heading,

and the network of Directors on the deck. This network is known to each Director and includes

an understanding of their positions on the flight deck. Pseudocode for this routine appears in

DirectorHandoff, which functions as a search loop over all available connections. It begins

by defining a set of variables for search, the most important of which are the current distance

between the aircraft and its assigned catapult (destDistance) and the current angle to that catapult

(destAngle). The Director checks their connection network to see which options are available. The

routine then iterates over this list, calculating the distance and angle between the connection and

and the assigned catapult. The difference between the aircraft’s angle to the catapult and the new

Director’s angle to the catapult are compared; this should be as small as possible. The distance

of the new Director to the catapult is also compared, and should be both as small as possible and

smaller than the aircraft’s distance from the catapult. Best values for each are stored during the

iteration, and the Director that is closest to the catapult and closest to the straight line path to the

catapult is selected.

DirectorHandoff(Aircraft,DirectorConnections,Destination)

1 // Initialize variables

2 destAngle = tan Aircraft.y−destination.y
Aircraft.x−destination.x

3 bestDist = 1000000
4 bestAngle = 180
5 bestIndex = −1
6 // Iterate through list of connections to find best option
7 for i = 0 to DirectorConnections.size()
8 currentDir = DirectorConnections.get(i)
9 deltaX = currentDir.x− destination.x

10 deltaY = currentDir.y − destination.y
11 currentAngle = | tan deltaY

deltaX − destAngle|
12 // currentAngle compares angle between Director and destination to angle between

// aircraft and destination; looking for Directors closest to that path.

13 currentDist =
√

((deltaX)2 + (deltaY )2)
14 if currentDist < bestDist & currentAngle < bestAngle
15 bestIndex = i
16 bestDist = currentDist
17 bestAngle = currentAngle
18 if bestIndex 6= −1
19 return DirectorConnections.get(bestIndex )

The Deck Handler allocation routine requires the definition of two different heuristic sets: the first

(Handler-Assign) assigns aircraft to catapults and used the second (Handler-RouteCheck) to

determine whether the route to the catapult is feasible. The assignment heuristic checks if any

aircraft are parked in the center parking spaces in the flight deck in between the “Street” and

“Fantail” areas (identification numbers 8 and 9 in the MASCS simulation). If any aircraft are
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parked in these area, aircraft cannot be taxied forward to aft, or vice versa.

TrafficDeconfliction(Aircraft, AircraftList, threshold)

1 for i = 0 to AircraftList.size()
2 if AircraftList. indexOf (this) 6= 0
3 firstAircraft == AircraftList.getFirst()
4 deltaX = firstAircraft.x−Aircraft.x
5 deltaY = firstAircraft.y −Aircraft.y
6 distance =

√
((deltaX)2 + (deltaY )2)

7 if firstAircraft.catapult < 3
8 // firstAircraft is assigned to head forward
9 if (Aircraft.x− firstAircraft.x) < 0

10 Continue
11 // Aircraft is aft of firstAircraft, which is heading forward;

// no conflict exists
12 elseif (Aircraft.catapult < 3) &&

(Aircraft.x− firstAircraft.x) > 0 && distance > threshold
13 Continue
14 // Aircraft is forward of firstAircraft, heading forward, and

// far enough ahead of firstAircraft that no conflict exists
15 else Pause
16 // A routing conflict exists
17 else
18 // firstAircraft is assigned to head aft
19 if (Aircraft.x− firstAircraft.x) > 0
20 Continue
21 // Aircraft is forward of firstAircraft, which is heading aft;

// no conflict exists
22 elseif (Aircraft.catapult > 2) && (Aircraft.x− firstAircraft.x) < 0

&& distance > threshold
23 Continue
24 // Aircraft is aft of firstAircraft, heading aft, and far enough ahead of

// firstAircraft that no conflict exists
25 else Pause
26 // A routing conflict exists

Handler-RouteCheck(Aircraft, Catapult, ParkingSpaces)

1 if Aircraft.parkingArea == aft && Catapult.number < 3
2 // aircraft parked aft and heading to forward catapult
3 if ParkingSpace.8 .occupied == true || ParkingSpace.9 .occupied == true
4 return false
5 else return true
6 elseif Aircraft.parkingArea == forward && Catapult.number > 2
7 // aircraft parked forward and heading to aft catapult
8 if ParkingSpace.8 .occupied == true || ParkingSpace.9 .occupied == true
9 return false

10 else return true
11 else return true
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Handler-Assign(UnassignedAircraft, CatapultList)

1 // Initialize variables
2 bestDist = 1000000
3 bestIndex = −1
4 // Iterate over list of aircraft without assignments; only look at five highest priority
5 for i = 1 to 5
6 currentAircraft = AircraftList.get(i)
7 // iterate over all catapults
8 for j = 1 to 4
9 if CatapultList(j).queue.size() == 0

10 if routeCheck == true
11 deltaX = currentAircraft.x− CatapultList(j).x
12 deltaY = currentAircraft.y − CatapultList(j).y
13 distance =

√
((deltaX)2 + (deltaY )2)

14 if distance < bestDist
15 bestDist = distance
16 distance = 0
17 bestIndex = i
18 if bestIndex 6= −1
19 currentAircraft.catapult == i
20 UnassignedAircraft.remove(currentAircraft)
21 else
22 bestDist = 1000000
23 if CatapultList(j).queue.size() == 1
24 if routeCheck == true
25 deltaX = currentAircraft.x− CatapultList(j).x
26 deltaY = currentAircraft.y − CatapultList(j).y
27 distance =

√
((deltaX)2 + (deltaY )2)

28 if distance < bestDist
29 bestDist = distance
30 distance = 0
31 bestIndex = i
32 if bestIndex 6= −1
33 currentAircraft.catapult == i
34 UnassignedAircraft.remove(currentAircraft)
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Appendix C

MASCS Input Data

Turn rate observations:

Table C.1: Observed turn rates for F-18 aircraft during manually-piloted flight deck operations.

time
(sec)

Estimated Angle
(degrees)

Estimated Rate
(degrees/second)

Source

7.50 180.00 24.00 http://youtu.be/RGQy5ImbnNI
12.00 180.00 15.00 http://youtu.be/RGQy5ImbnNI
3.50 90.00 25.71 http://youtu.be/7EaPe7zGZAw
1.00 15.00 15.00 http://youtu.be/ 2KYU97y2L8
10.00 90.00 9.00 http://youtu.be/7G3MujUry-I

Average 17.75

The Launch Preparation Time and Takeoff Time distributions discussed in Chapter 3 were based

on empirical observations from video recordings of operations. Table C.2 contains the observations

related to the launch preparation time, while Table C.3 contains observations related to the Takeoff

time.

Table C.2: Observations of launch preparation time.

61.00 74.00 141.00
73.00 75.00 153.00

Table C.3: Observations of takeoff (acceleration to flight speed) time.

2.30 2.50 2.80 3.00
2.30 2.50 2.80 3.00
2.40 2.60 2.80 3.10
2.50 2.60 2.90 3.10
2.50 2.70 2.90 3.20
2.50 2.70 2.90 3.20
2.50 2.80 3.00 3.20
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Because of the low number of observations for launch preparation time, any distribution fit to the

data is likely to be inaccurate. For this data, a normal distribution was fit that placed the maximum

(153 seconds) and minimum (61 seconds) observations at certain intervals from the mean, influenced

by an understanding of the maximum and minimum feasible launch times. The final selected distri-

bution appears in Fig. C-1, with the six observed points overlaid. This distribution utilizes a mean of

109.648 seconds and a standard deviation of 57.8 seconds, which places the maximum observations

(153 seconds) at the 75th percentile and the minimum (60 seconds) at the 20th. The minimum

feasible launch time is 30 seconds; within Multi-Agent Safety and Control Simulation (MASCS),

any random samples that occur below this threshold are ignored. The maximum allowed time to

sample would be equal to the mean times 3.9 standard deviations, equal to 335 seconds (about 6.5

minutes). Beyond a distance of 3.9 standard deviations, values are considered to be extreme (99.99%

of all values lie within ±3.9 standard deviations of the mean).

Figure C-1: Probability density function of the
modeled launch preparation time, with empiri-
cal observations overlaid.

Figure C-2: Probability density function of the
modeled launch acceleration time, with empiri-
cal observations overlaid.

Figure C-2 shows the resulting distribution of takeoff times, based on a Lognormal distribution

fit to the data in Table C.3. The distribution fit was performed in the Easyfit program, which

returned the following information from the Kolmogorov-Smirnov test (Table C.4):

Table C.4: Results of Easyfit fit of Lognormal distribution to takeoff acceleration time data.

Lognormal

K-S statistic 0.1513
p 0.49598

Shape parameter σ 0.09891
Location parameter µ 1.0106
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Example Scenario Configuration

Text

D.1 Example 1: Manually piloted Aircraft

This first line of text initializes an F-18 type aircraft (FMAC) named “F18 40” at parking space

9, spot 1, fuel level at 100% (1.0). Line two assigns a wait task of 5000 ms to the vehicle (spac-

ing its addition into the simulation). Line 3 initializes a Taxi task that will send the vehicle to a

catapult; the assignment of -1 implies that the Deck Handler algorithm will make this assignment

some time in the future. Line 4 assigns a takeoff task to the aircraft, which will be at the same

aircraft as the Taxi task. Line 5 assigns the aircraft to fly away from the aircraft off to Mission.

The Launch preparation tasks discussed in Chapter 3 are contained within the Takeoff task structure.

Aircraft FMAC F18-40 Parked 0 0 9 1 1.0 0

Task Wait 5000 0

Task Taxi -1 Catapult

Task Takeoff -1 0

Task GotoMission 2000 North

D.2 Example 2: Crew

The first line below creates a “Crew” agent, defined as “D16” and assigned as an Aircraft Directors.

It is initially placed as deck coordinates (1355, 1050) and assigned to the group Deck 3.

Crew D16 director 1355 1050
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D.3 Example 3: Deck equipment

The first line below creates a Catapult agent, replicating catapult 1, that it is operational (the second

numeral 1), with starting point (1656, 1124) and ending point (2362,1072) in the deck coordinates.

The trio of lines that follow define a pair of parking locations on the flight deck. The first line ini-

tializes a parking space structure (regions on the flight deck) named “Parking Space 1” and assigns

a parking angle of −140◦ to aircraft. The second line defines parking spot 0 within that region, that

it is availabled, and places it at coordinates (2340, 1100). The second line defines parking spot 1

within that space, at coordinates (2240, 1110).

Catapult 1 1 1656 1124 2362 1072

ParkingSpace 1 -140

ParkingSpot 0 1 2340 1100

ParkingSpot 1 1 2240 1110
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Appendix E

Center for Naval Analyses (CNA)

Interdeparture Data

Figure E-1 shows the data reported by Jewell (Jewell, 1998) for launch interdeparture rates on the

aircraft carrier flight deck including a 3rd order polynomial fit of the data. Jewell notes that the

data comes from one week of operations on a carrier used in a previous study. Jewell’s original

presentation of this data did not include the 3rd order polynomial shown in the figure. In order to

extract the numerical values from this chart, the figure was imported into the Engauge Digitizer

software package1. This software is capable of extracting numerical relationships from a chart given

the input image and specifications of the x- and y-axes and their ranges. The Engauge software

returned a set of 102 points comprising the information presented in Fig. E-1. These points were

then fit in the JMP PRO 10 statistical program with a 3rd-order polynomial fit, with both the F test

of model fit and coefficient tests returning significant results (Tables E.1 and E.2). The equation is

given as:

p = 0.3947704+0.004392∗time−3.99E−05∗(time−86.5334)2+1.67E−07∗(time−86.5334)3 (E.1)

Table E.1: Results of F test of model fit for JMP PRO 10 fit of CNA CDF data with 3rd order
polynomial.

Source DF Sum of Squares Mean Square F ratio Prob > F

Model 3 8.7080979 2.9027 9492.7616 <.0001
Error 98 0.0299665 0.00031
C. Total 101 8.7380644

1http://digitizer.sourceforge.net/
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Figure E-1: Cumulative Density Function (CDF) of launch interdepartures from (Jewell, 1998).

Table E.2: Results of t tests for coefficients of JMP PRO 10 fit of CNA CDF data with 3rd order
polynomial.

Term Estimate Std Error t Ratio Prob> |t|
Intercept 0.3947704 0.007481 52.77 <.0001
time 0.004392 0.000078 56.28 <.0001
(time-86.5334)2 -3.99E-05 7.00E-07 -56.96 <.0001
(time-86.5334)3 1.67E-07 1.32E-08 12.59 <.0001

This equation was then converted into a Probability Density Function (PDF) by taking the first

differential with respect to X. Since the data represents true interdeparture rates for a system,

it should be characterizable as a negative exponential function. The PDF developed from the

differentiation of the CDF equation is plotted in blue in Figure E-2. These data points were then

imported into JMP PRO 10 to formally fit a negative exponential to the data, done by transforming

the Y variable (in this case, the probability value) into log(Y). The results of this fit also returned

statistical significance (Table E.3 and E.4) for the model

Log(P ) = −4.128056− 0.0155665 ∗ time (E.2)

which is virtually identical to the more typical negative exponential form λ ∗ e−λx,

P = 0.0155665 ∗ e−0.0155665∗time (E.3)
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which is treated as the appropriate negative exponential model. For this model, the value of λ

corresponds to the average departure rate per second; the inverse of this corresponds to the average

time between arrivals (for this model, 64.25 seconds).

Figure E-2: PDF of launch interdepartures from (Jewell, 1998)

Table E.3: Results of F test of model fit for JMP PRO 10 fit of CNA PDF data with exponential
function.

Source DF Sum of Squares Mean Square F Ratio Prob > F

Model 1 78.076245 78.0762 8095.805 <.0001
Error 100 0.964404 0.0096
C. Total 101 79.040648

Table E.4: Results of t tests for coefficients of JMP PRO 10 fit of CNA PDF data with exponential
function.

Term Estimate Std Error t Ratio Prob> |t|
Intercept -4.128056 0.017851 -231.2 <.0001
time -0.015566 0.000173 -89.98 <.0001
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Appendix F

Multi-Agent Safety and Control

Simulation (MASCS) Single

Aircraft Test Results

Table F.1: Test results for distribution fits of the MASCS single aircraft calibration testing.

Launch Duration Taxi Duration Takeoff Duration Launch Preparation

K-S statistic 0.05773 0.06504 0.04409 0.05413
p 0.25992 0.15113 0.5886 0.33108

Mean µ 209.99 83.943 2.7513 120.16
Standard deviation σ 49.628 6.0198 0.25651 48.842
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Appendix G

Description of Mission Queuing

This section provides a more extended description of the process of queuing at catapults on the flight

deck and how this process influences the execution of the mission. Typically, operations allow one

aircraft on the catapult and one more parked behind the jet blast deflector; this implies a queue size

of two for an individual catapult and a size of four for a pair. Aircraft are allocated to a catapult

as soon as a position in the queue opens. With four catapult open, each pair services an equal

number of aircraft and the expectations are as listed above — allocations should be equally divided

between forward and aft catapults. However, if only three catapults are used, the larger queue size

of the pair of catapults interacts with the allocation pattern; as the pair is able to “store” more

aircraft in their vicinity, the allocations may be slightly inefficient. At the end of the mission, if

all three catapults have full queues, the pair will take four rounds of launches to clear its queue of

four aircraft, with the single catapult requiring only two to clear its two aircraft. Figure G-1shows

this allocation as time evolves. The leftmost image shows the initial allocation of launches to a

team of four catapults. The queue at each catapult, over time, is noted in the numbered columns

(catapult 1 on the left, to catapult 4 on the right). Colored blocks within each column denote (a)

the presence of an aircraft in that catapult’s queue and (b) the order in which they were allocated.

Thus, block 1 was the first aircraft allocated, assigned to catapult 1. Block 6 was the sixth aircraft

allocated to launch, assigned to catapult 2. The staggered, “checkered” pattern is the table is due

to the alternating launches between pairs of catapults; while aircraft 2 was assigned second, it was

assigned to catapult 2 and must wait for catapult 1 to launch aircraft 1. Similar patterning is shown

for aircraft at catapults 3 and 4. In this case, aircraft 1 is shown as a red block; this is used to

indicate the aircraft is in preparation to launch. In the middle image, aircraft 1 is now crossed out

with a black line, indicating it has launched. Now that there is a spot free at the catapult, aircraft 9

is assigned to take its place (recall from Chapter 3, the Handler routine assigns aircraft as catapults

become available). This pattern continues moving forward; in the rightmost image, after aircraft 3
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and 4 have launched, aircraft 10 and 11 have been assigned, respectively, and aircraft 4 and 5 being

preparing for launch. Continuing this build-out as shown, each pair of catapults launches one half

of the allotted aircraft, and the time to complete the mission is approximate as N/2 ∗ µlaunch

Figure G-1: Pattern of allocation to catapults. Blue/green coloring corresponds to pairing of cat-
apults 1/2 and 3/4, respectively. Red indicates the launch is in process. A black diagonal line
indicates that the launch has occurred and the aircraft is no longer in the system.

With only three catapults operating, the allocation pattern changes slightly (Figure G-2). One

catapult (in this case, catapult 2) is no longer paired and free to operate on its own. The leftmost

image in the figure shows the initial allocation of aircraft; four go to catapults 3 and 4, staggered in

an alternating pattern. Only two can go to catapult 2, but launch consecutively. The remaining two

images in the figure show how the allocation builds out from there; after aircraft 1 and 2 launch,

aircraft 3 and 4 begin processing, and aircraft 7 and 8 are allocated. This continues for the rest of

the allocation, with catapult 2 launching about as many aircraft as the paired catapults 3 and 4.

Figure G-2: Pattern of allocation to a set of three catapults. Blue/green coloring corresponds to
pairing of catapults 1/2 and 3/4, respectively. Red indicates the launch is in process. A black
diagonal line indicates that the launch has occurred and the aircraft is no longer in the system.

Figure G-3 shows how this allocation plays out through a 22 aircraft launch event. As described

above, the four catapult case maintains an even allocation across the pairs and both complete at

the same time (11 rounds of launches). For the three catapult case, because of the imbalance in

allocation the results from the queuing arrangement, catapult 2 finishes after only 10 launches and
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the catapult 3/4 pair finishes after 12 rounds, one more than the four catapult case. This implies that

the three catapult case should require one additional round of launches than the four catapult case

under this idealized queue model of the flight deck. Given that there will be significant stochasticity

in the execution of the model, and that assignments are dependent on the geometric arrangement of

the flight deck at the time of assignment, it is not unreasonable to assume that this difference will

not be precisely equal to one, but should be close.

Figure G-3: Build-out of 22 aircraft launch events with four (left) and three (right) available cata-
pults.
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Appendix H

Multi-Agent Safety and Control

Simulation (MASCS) Mission Test

Results

Table H.1: Results of distribution fits of interdeparture times for CNA and MASCS test data.
Results include λ and p-values for fits from Easyfit along with λ values and 95% confidence intervals
from JMP PRO 10.

Data source Easyfit λ value EasyFit K-S test p-value JMP λ Lower range Upper range

CNA 0.0156 0.0717 0.0156 - -
18-3 0.0144 0.2813 0.0144 0.0108 0.0187
18-4 0.0164 0.1554 0.0164 0.0123 0.0213
20-3 0.0153 0.1251 0.0153 0.0114 0.0198
20-4 0.0160 0.1358 0.0159 0.0120 0.0207
21-3 0.0141 0.2755 0.0141 0.0105 0.0184
21-4 0.0152 0.1596 0.0152 0.0113 0.0197
22-3 0.0145 0.4500 0.0145 0.0108 0.0190
22-4 0.0154 0.2446 0.0154 0.0115 0.0201
23-3 0.0144 0.1782 0.0144 0.0108 0.0188
23-4 0.0153 0.2254 0.0153 0.0115 0.0199
24-3 0.0146 0.0999 0.0146 0.0109 0.0191
24-4 0.0159 0.2565 0.0159 0.0119 0.0208
26-3 0.0150 0.1958 0.0150 0.0110 0.0198
26-4 0.0159 0.2126 0.0159 0.0117 0.0210
30-3 0.0147 0.1089 0.0147 0.0110 0.0191
30-4 0.0154 0.1900 0.0154 0.0115 0.0200
34-3 0.0149 0.1981 0.0149 0.0111 0.0195
34-4 0.0153 0.3791 0.0153 0.0114 0.0200
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Table H.2: JMP PRO 10 output for F-test of model fit for LD values using three catapults.

Source DF Sum of Squares Mean Square F Ratio Prob > F

Model 1 254.67542 254.675 1735.526 <.0001
Error 7 1.0272 0.147

C. Total 8 255.70262

Table H.3: JMP PRO 10 output for t-test of coefficients for linear fit of LD values using three
catapults.

Term Estimate Std Error t Ratio Prob > |t|
Intercept 2.4130162 0.65966 3.66 0.0081
Num air 1.1130865 0.026719 41.66 <.0001

Table H.4: JMP PRO 10 output for F-test of model fit for LD values using four catapults.

Source DF Sum of Squares Mean Square F Ratio Prob > F

Model 1 267.30216 267.302 776.9774 <.0001
Error 7 2.4082 0.344

C. Total 8 269.71036

Table H.5: JMP PRO 10 output for t-test of coefficients for linear fit of LD values using four
catapults.

Term Estimate Std Error t Ratio Prob> |t|
Intercept 0.0860649 1.010041 0.09 0.9345
Num air 1.1403459 0.04091 27.87 <.0001

Table H.6: JMP Pro 10 output of Levene test of equal variances for launch preparation sensitivity
tests using 22 aircraft and 3 catapults.

Test F Ratio DFNum DFDen Prob > F

O’Brien[.5] 0.7676 2 87 0.4672
Brown-Forsythe 0.2117 2 87 0.8097

Levene 0.2099 2 87 0.8111
Bartlett 0.7683 2 . 0.4638

Table H.7: JMP Pro 10 output of an ANOVA test for launch preparation sensitivity tests using 22
aircraft and 3 catapults.

Source DF Sum of Squares Mean Square F Ratio Prob > F

22-3 2 259.75601 129.878 29.1344 <.0001
Error 87 387.83637 4.458

C. Total 89 647.59238

Table H.8: JMP Pro 10 output of Tukey test for launch preparation sensitivity tests using 22 aircraft
and 3 catapults.

Level - Level Difference Std Err Dif Lower CL Upper CL p-Value

22-3 +10% 22-3 -10% 4.155106 0.5451538 2.855189 5.455023 <.0001
22-3 +10% 22-3 base 2.27535 0.5451538 0.975433 3.575267 0.0002
22-3 base 22-3 -10% 1.879756 0.5451538 0.579839 3.179673 0.0025
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Table H.9: JMP Pro 10 output of Levene test of equal variances for taxi speed sensitivity tests using
22 aircraft and 3 catapults.

Test F Ratio DFNum DFDen Prob > F

O’Brien[.5] 0.3054 2 87 0.7376
Brown-Forsythe 0.1777 2 87 0.8375

Levene 0.2357 2 87 0.7906
Bartlett 0.2962 2 . 0.7436

Table H.10: JMP Pro 10 output of an ANOVA test for taxi speed sensitivity tests using 22 aircraft
and 3 catapults.

Source DF Sum of Squares Mean Square F Ratio Prob > F

22-3 2 12.48402 6.24201 1.0913 0.3403
Error 87 497.60072 5.71955

C. Total 89 510.08474

Table H.11: JMP Pro 10 output of Levene test of equal variances for collision prevention parameter
sensitivity tests using 22 aircraft and 3 catapults.

Test F Ratio DFNum DFDen Prob > F

O’Brien[.5] 1.1804 2 87 0.312
Brown-Forsythe 1.4554 2 87 0.2389

Levene 1.4402 2 87 0.2425
Bartlett 1.1048 2 . 0.3313

Table H.12: JMP Pro 10 output of an ANOVA test for collision prevention parameter sensitivity
tests using 22 aircraft and 3 catapults.

Source DF Sum of Squares Mean Square F Ratio Prob > F

22-3 2 17.85385 8.92693 1.5253 0.2233
Error 87 509.18622 5.85272

C. Total 89 527.04007

Table H.13: JMP Pro 10 output of Levene test of equal variances for taxi speed sensitivity tests
using 22 aircraft and 4 catapults.

Test F Ratio DFNum DFDen Prob > F

O’Brien[.5] 0.184 2 87 0.8323
Brown-Forsythe 0.5919 2 87 0.5555

Levene 0.5318 2 87 0.5895
Bartlett 0.142 2 . 0.8676

Table H.14: JMP Pro 10 output of an ANOVA test for taxi speed sensitivity tests using 22 aircraft
and 4 catapults.

Source DF Sum of Squares Mean Square F Ratio Prob > F

22-4 2 10.33376 5.16688 1.1123 0.3334
Error 87 404.14883 4.64539

C. Total 89 414.48259
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Table H.15: JMP Pro 10 output of a Levene test of equal variances for collision prevention parameter
sensitivity tests using 22 aircraft and 4 catapults.

Test F Ratio DFNum DFDen Prob > F

O’Brien[.5] 2.2512 2 87 0.1114
Brown-Forsythe 1.4837 2 87 0.2325

Levene 1.5309 2 87 0.2221
Bartlett 2.6178 2 . 0.073

Table H.16: JMP Pro 10 output of an ANOVA test for collision prevention parameter sensitivity
tests using 22 aircraft and 4 catapults.

Source DF Sum of Squares Mean Square F Ratio Prob > F

22-4 2 43.43476 21.7174 4.6278 0.0123
Error 87 408.27087 4.6928

C. Total 89 451.70563

Table H.17: JMP Pro 10 output of a Tukey test for collision prevention parameter sensitivity tests
using 22 aircraft and 4 catapults.

Level - Level Difference Std Err Dif Lower CL Upper CL p-Value

22-4 CA+25% 22-4 CA-25% 1.643544 0.5593311 0.309822 2.977267 0.0116
22-4 base 22-4 CA-25% 1.203622 0.5593311 -0.130101 2.537345 0.0855

22-4 CA+25% 22-4 base 0.439922 0.5593311 -0.893801 1.773645 0.7123

Table H.18: JMP Pro 10 output of a Levene test of equal variance for taxi speed sensitivity tests
using 34 aircraft and 3 catapults.

Test F Ratio DFNum DFDen Prob > F

O’Brien[.5] 0.6872 2 87 0.5057
Brown-Forsythe 0.7932 2 87 0.4556

Levene 0.8184 2 87 0.4445
Bartlett 0.8447 2 . 0.4297

Table H.19: JMP Pro 10 output of an ANOVA test for taxi speed sensitivity tests using 34 aircraft
and 3 catapults.

Source DF Sum of Squares Mean Square F Ratio Prob > F

34-3 2 83.3424 41.6712 4.9753 0.009
Error 87 728.6756 8.3756

C. Total 89 812.018
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Table H.20: JMP Pro 10 output of a Tukey test for taxi speed sensitivity tests using 34 aircraft and
3 catapults.

Level - Level Difference Std Err Dif Lower CL Upper CL p-Value

34-3 taxi-25 34-3 taxi+25 2.328156 0.747243 0.546357 4.109954 0.007
34-3base 34-3 taxi+25 1.483278 0.747243 -0.29852 3.265076 0.122

34-3 taxi-25 34-3base 0.844878 0.747243 -0.93692 2.626676 0.4979

Table H.21: JMP Pro 10 output of a Levene test of equal variance for collision prevention parameter
sensitivity tests using 34 aircraft and 3 catapults.

Test F Ratio DFNum DFDen Prob > F

O’Brien[.5] 1.3729 2 87 0.2588
Brown-Forsythe 1.6028 2 87 0.2072

Levene 1.7374 2 87 0.182
Bartlett 1.4627 2 . 0.2316

Table H.22: JMP Pro 10 output of an ANOVA test for collision prevention parameter sensitivity
tests using 34 aircraft and 3 catapults.

Source DF Sum of Squares Mean Square F Ratio Prob > F

34-3 C 2 3.90398 1.95199 0.2293 0.7956
Error 87 740.75 8.51437

C. Total 89 744.65397

Table H.23: JMP Pro 10 output of a Levene test of equal variance for collision prevention parameter
sensitivity tests using 34 aircraft and 4 catapults.

Test F Ratio DFNum DFDen Prob > F

O’Brien[.5] 0.6346 2 87 0.5326
Brown-Forsythe 0.4903 2 87 0.6141

Levene 0.4355 2 87 0.6484
Bartlett 0.5318 2 . 0.5876

Table H.24: JMP Pro 10 output of a an ANOVA for launch preparation time sensitivity tests using
34 aircraft and 4 catapults.

Source DF Sum of Squares Mean Square F Ratio Prob > F

34-4 2 517.4101 258.705 34.4374 <.0001
Error 87 653.5734 7.512

C. Total 89 1170.9835

Table H.25: JMP Pro 10 output of a Tukey test for launch preparation time sensitivity tests using
34 aircraft and 4 catapults.

Level - Level Difference Std Err Dif Lower CL Upper CL p-Value

34-4 +10% 34-4 -10% 5.873072 0.7076882 4.185593 7.560552 <.0001
34-4 +10% 34-4 base 2.964311 0.7076882 1.276831 4.651791 0.0002
34-4 base 34-4 -10% 2.908761 0.7076882 1.221281 4.596241 0.0003
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Table H.26: JMP Pro 10 output of Levene test of equal variance for taxi speed sensitivity tests using
34 aircraft and 4 catapults.

Test F Ratio DFNum DFDen Prob > F

O’Brien[.5] 2.7878 2 87 0.0671
Brown-Forsythe 2.3031 2 87 0.106

Levene 2.6456 2 87 0.0767
Bartlett 2.9422 2 . 0.0528

Table H.27: JMP Pro 10 output for an ANOVA test for taxi speed sensitivity tests using 34 aircraft
and 4 catapults.

Source DF Sum of Squares Mean Square F Ratio Prob > F

34-4 2 55.10413 27.5521 3.8031 0.0261
Error 87 630.28446 7.2446

C. Total 89 685.38859

Table H.28: JMP Pro 10 output of a Tukey test for taxi speed sensitivity tests using 34 aircraft and
4 catapults.

Source DF Sum of Squares Mean Square F Ratio Prob > F

34-4 2 55.10413 27.5521 3.8031 0.0261
Error 87 630.28446 7.2446

C. Total 89 685.38859

Table H.29: JMP Pro 10 output of Levene test of equal variance for collision prevention parameter
sensitivity tests using 34 aircraft and 4 catapults.

Test F Ratio DFNum DFDen Prob > F

O’Brien[.5] 1.2733 2 87 0.2851
Brown-Forsythe 1.0896 2 87 0.3409

Levene 1.078 2 87 0.3448
Bartlett 1.1711 2 . 0.31

Table H.30: JMP Pro 10 output for an ANOVA test for collision prevention parameter sensitivity
tests using 34 aircraft and 4 catapults.

Source DF Sum of Squares Mean Square F Ratio Prob > F

34-4 2 76.49218 38.2461 5.4986 0.0056
Error 87 605.13776 6.9556

C. Total 89 681.62995

Table H.31: JMP Pro 10 output for a Tukey test for collision prevention parameter sensitivity tests
using 34 aircraft and 4 catapults.

Level - Level Difference Std Err Dif Lower CL Upper CL p-Value

34-4 +25% 34-4 CA-25% 2.00675 0.6809604 0.383 3.630498 0.0114
34-4 base 34-4 CA-25% 1.900217 0.6809604 0.27647 3.523964 0.0176

34-4 +25% 34-4 base 0.106533 0.6809604 -1.51721 1.730281 0.9866
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Appendix I

Unmanned Aerial Vehicle (UAV)

Models

Chapter 5 discusses the Multi-Agent Safety and Control Simulation (MASCS) experimental test

program and provided an overview of the Unmanned Aerial Vehicle (UAV) models encoded into

MASCS. This appendix provides additional information regarding those models.

I.1 Local Teleoperation

Local Teleoperation (LT) relocates the pilot from the cockpit of the aircraft to a Ground Control

Station (GCS) nearby that enables them to control their vehicles using the same control inputs

they would normally supply if they were within the vehicle (”stick and rudder inputs”). “Local”

teleoperation assumes that this control is done via Line-Of-Sight (LOS) communications and that

there is no significant latency in operations. Additionally, the use of a GCS implies that the operator

is now receiving visual information about the world through cameras on board the vehicle. These

may have a limited field of view and thus impair the operator’s ability to observe the location of

Directors and other vehicles in the world.

Research by several groups has addressed teleoperated driving ((McLean & Prescott, 1991;

McLean et al., 1994; Spain & Hughes, 1991; Scribner & Gombash, 1998; Oving & Erp, 2001;

Smyth et al., 2001)), a task similar to what will occur with teleoperated aircraft on the flight deck.

The research has shown that the move from direct viewing within the vehicle to the use of a tele-

operated display with computer/video screen has some detrimental effect. The increase in task

completion time for teleoperated systems ranged from 0% to 126.18%, with a mean of 30.27% and

a median of 22.12%. The tasks used in these experiments typically required drivers to navigate a

marked course that required several turning maneuvers. In these tasks, drivers showed a significantly

higher error rate (defined as the number of markers or cones struck during the test) as compared to
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non-teleoperated driving. Percent increases in errors ranged from 0% to 3650.0% with a median of

137.86% and a mean of 60%. However, these values are difficult to translate into direct error rates

on the flight deck. Conceptually, they signify a difficulty in high-precision alignment tasks, a skill

required while aligning and driving on to a catapult. A failure to align correctly to a catapult then

requires other crew to physically push the vehicle off of the catapult to realign it. Interviews and

observational data suggests this takes at least 15 to 45 seconds.

On the aircraft carrier flight deck, teleoperated vehicles would still be directed around the deck

through the zone coverage routing structure. The research described above suggests that operators

would drive more slowly while under guidance from Directors and would have more difficulty in

finding Directors on the deck due to their constrained field of view. The research does not suggest,

however, that operators would fail to notice their designated Directors once they lie within their

field of view, nor that that they would fail to properly comprehend instructions. Additionally,

though not explored in the research, the operator’s understanding of context should prevent her

from executing an incorrect action. However, because of the limitations of view field and lack

of tactile and proprioceptive sensory inputs, it is likely that local teleoperation systems will have

difficult in properly aligning to catapults.

I.1.1 Local Teleoperation Safety Implications

Just as with manual control, safety in local teleoperation is provided by a combination of the zone

coverage routing structure, the planning of aircraft assignments, and reactive collision avoidance

(Dynamic Separation) on the part of the UAV operator. However, this latter property will be

affected by the limited view field of the cameras and the screen on the GCS and thus should be less

effective than manual control operations.

Among the available safety protocols, it would be expected that Area+Temporal would be the

worst selection for productivity, while Area Separation would be the worst for safety metrics. The

problems lie in confining vehicles to small areas: in Area+Temporal, manned aircraft are confined

to a small area and cannot exploit the efficiency of using all four catapults simultaneously. In Area

Separation, UAVs are confined to operating in a single highly-congested area where the limited

field of view should decrease their ability to avoid imminent collisions. Accordingly, it would be

expected that Temporal Separation would be best for both safety and productivity — it allows the

manned aircraft (able to safely taxi high-congestion areas) to depart first, freeing up the remaining

space on the deck for the unmanned vehicles and increasing their efficiency. This both decreases

any detrimental effects of safety on the part of the UAVs while also increasing their productivity

by providing an open deck. Under this same logic, Area+Temporal should also do well in safety

measures as it operates in largely the same manner as Temporal Separation. Its performance in

productivity will be worse as it overly constrains manned aircraft access to catapults during their
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phase of operations.

I.2 Remote Teleoperation

Remote Teleoperation (RT) systems are almost identical to Local Teleoperation systems (ground

control station with view constrained by cameras), with the lone change being that the operator is

now much farther away (hundreds to thousands of miles) and cannot communicate with the vehicle

using LOS methods. This typically requires the use of satellite communications, at the cost of

significant latency in transmissions. The first effect is that there is a delay in beginning to execute

actions. Once the Director issues a command to the UAV operator, the video feed must first travel

to the operator, whose response must then travel back to the vehicle for execution. Secondly, lag

effects how operators input tasks to the system. Research has shown that a naive teleoperator

inputs tasks assuming there is no lag, requiring multiple corrective actions to finally reach the target

and much greater amounts of time. Sheridan and Ferrell (Sheridan & Ferrell, 1963) observed that

more experienced teleoperators used an “open-loop” control pattern, inputting tasks anticipating

the lag, then waiting for the tasks to complete before issuing new commands. Using this strategy

prevents the error in one task from overly affecting the next task, thus reducing the overall number

of errors and time required to complete the tasks at hand. However, it still requires much more time

than non-latency tasks. This has important repercussions in modeling how operators execute taxi

commands on deck and is discussed in the next section.

A review of literature regarding these experiments, including the use of remotely teleoperated

ground vehicles, shows that lag is multiplicative in its effects even in the best case: one second of la-

tency translates into much more than one second of additional time. Fifteen different papers (Kalmus

et al., 1960; Sheridan & Ferrell, 1963; Hill, 1976; Starr, 1979; Mar, 1985; Hashimoto et al., 1986;

Bejczy & Kim, 1990; Conway et al., 1990; Arthur et al., 1993; Carr et al., 1993; MacKenzie & Ware,

1993; Hu et al., 2000; Lane et al., 2002; Sheik-Nainar et al., 2005; Lum et al., 2009), totaling 56

different experimental tests, show that the percentage change in task completion time per second of

lag ranges from 16% to 330%, with a mean of 125% and a median of 97%. Thus, at the median,

one second of lag results in a near doubling of the time to complete a task (a 100% increase); two

seconds of lag equals a 200% increase. These tests addressed both cases where operators where

directly observing the system they were controlling, or while receiving information via a video or

computer display.

Remotely teleoperated vehicles are still expected to operate in a zone coverage routing scheme,

with Aircraft Directors using hand gestures to provide instructions that captured by vehicle cameras

and relayed to the remote teleoperators. The ability of UAV operators to detect Directors is affected

by the limited field of view of the onboard cameras, just as in local teleoperation, and they are still

expected to properly comprehend instructions when provided. Their ability to execute those actions
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is affected by the signal latency; taxi speeds are likely to be greatly reduced, and high-accuracy

alignment tasks (aligning to catapult) are likely to suffer much higher error rates and take more

time. Furthermore, the “open-loop” nature of control means that they will likely not be perfect in

adhering to Director instructions as to when to stop taxiing or turning.

I.2.1 Remote Teleoperation Safety Implications

Just as with manual control and local teleoperation, safety in remote teleoperation is provided by

a combination of the zone coverage routing structure, the planning of aircraft assignments, and

reactive collision avoidance (Dynamic Separation) on the part of the UAV operator. However, this

latter property will be affected by the limited view field of the cameras, the screen on the GCS, and

also signal latency, making it even less effective than local teleoperation systems. The existence of

signal latency also means that vehicles will have trouble stopping in Dynamic Separation events,

and the likelihood of collisions in congested traffic areas will be greatly increased.

The performance of Remote Teleoperation safety protocols will be quite similar to that of Local

Teleoperation — the same concerns about operations apply to all phases. However, because of

the existence of latency in the signal, the performance of Remote Teleoperation along all measures

(productivity and safety) is expected to be worse than Local Teleoperation and worst out of all

available control architectures.

I.3 Gestural Control (advanced teleoperation)

The third control architecture, Gestural Control (GC), places the operator in the physical environ-

ment nearby the unmanned vehicle they are controlling. Here, control inputs are communicated via

hand and arm movements, providing basic action commands such as “drive forward” to unmanned

vehicles. On the aircraft carrier flight deck, this means the elimination of the pilot/operator all

together: the Aircraft Directors on deck now assume direct control over the unmanned vehicles.

Gestural control UAVs would be designed to accept the same hand signals as human pilots, how-

ever, meaning that this would be a relatively simple transition in operations. These vehicles would

again be routed in zone coverages, and the evolution of operations on the flight deck will look very

much like that of manual control operations. However, the ability of vehicles to detect Directors,

comprehend their commands, and execute tasks will not be as reliable and human pilots.

Gestural-control systems rely on stereo-cameras to detect visual and depth information about

the world. Onboard processing uses this information to develop a model of the world, denoting

what objects should be monitored before tracking and interpreting their gestures. A review of

recent research shows many systems with very high accuracy rates for data sets involving only

a small number (less than 20) of simple actions in relatively simple, “clean” (very little clutter)

environments. For larger action sets, involving more complex hand and arm gestures, accuracy is
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still fairly high, but often well below 100%. Over all of the literature reviewed, systems display a

mean failure rate of 11.16% and median rate of 8.93% for mostly simple, clean data sets. However,

Song et al. (Song et al., 2012) provide an example of a system built specifically for the aircraft carrier

flight deck environment. Their most recent results achieve almost 90% accuracy for a limited set

of gestures and requires 3 seconds of processing time to register commands. This system utilizes a

Bumblebee stereo camera, which has optional fields of view of 43◦, 65◦, or 100◦.

Due to the nature of the data sets used most broadly in the research, it is difficult to define

exactly how well these systems would perform on the flight deck. A variety of issues — sun glare

off of the ocean, multiple similarly-dressed individuals, a continually changing background, and the

variability of the humans providing gestures – can substantially affect the systems’ ability to detect

operators and comprehend the instructions they provide. Song et al.’s current 10% failure rate in

task comprehension would increase substantially when expanded to the full vocabulary of tasks (over

100 distinct commands) and placed in the world. Given this alternative, maintaining a failure rate

equivalent to the mean error rate of 11.16% may be permissable, given certain safety features on

the vehicles. Typically, these systems include a default “stop” command, such that if the tracked

individual providing commands is lost, or a match for the gesture is not found, the vehicle comes

to a complete halt. Modeling in MASCS will make the assumption that this is a permissable error

rate for Director and vehicle detection (within the vehicle’s field of view) and task comprehension.

For each case, failure to detect/comprehend results in a penalty of 10 seconds, modeling the time

required for a Director to recognize the failure and re-issue the command/be recognized by the

system.

I.3.1 Gesture Control Safety Implications

Safety in Gestural Control, just as in local and remote teleoperation, is again predicated upon the

orderly assignment of aircraft tasks, the structure of zone coverage routing and traffic management,

and in this case the ability of vehicles themselves to monitor nearby activity and avoid collisions

(Dynamic Separation). Just as in the teleoperation conditions, the ability of vehicles to do this is

mitigated by the failure rate of recognition and the required processing time. An incoming vehicle

may be fully within the field of view, but if the vehicle fails to recognize it as a vehicle or takes too

long to process, it will fail to stop and a collision might still occur.

In terms of safety, it is unclear as to which safety protocols perform best for these systems.

Gesture-controlled vehicles, because of the default stop command, should be better able to taxi in

high traffic areas but with some cost to productivity (they will likely stop more often due to the sheer

number of things in their fields of view). However, as with the teleoperation systems, reducing the

density of vehicles on the deck by moving manned aircraft early in the mission (through Temporal

Separation or Area+Temporal) should increase both productivity and safety in the system. Temporal
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Separation should also provide the best performance in productivity, moving manned aircraft first

and allowing UAVs more open space to operate on the flight deck. However, it is unclear which of

the remaining protocols will provide the worst overall performance.

I.4 Human Supervisory Control Systems

The last two forms of control architectures are variations on more modern “human supervisory

control” systems. In both cases, vehicles contain advanced autonomous capabilities and only require

abstract task descriptions such as “go to this area and monitor for any activity” from the operator.

The vehicles include sufficient guidance, navigation, and control systems onboard the vehicle to

understand where they are in the world, where their final destination is, how to travel to that

destination, and be capable of executing tasks upon arrival. This typically requires a suite of sensors

(GPS, inertial measurement units, and various cameras and range detection systems) to acquire data

for the logic systems onboard.

For these systems, a human “Supervisor” manages all vehicles through a centrally networked

computer system, meaning that Directors on deck are no longer responsible for communicating

instructions to vehicles. Information on the status of all vehicles is fed to the central system, where

the operator decides what tasks vehicles should perform at what times. In some cases, the operator

is assigning tasks individually to each vehicle; in others, the operator may replan all tasks at once

(likely with the help of an intelligent planning algorithm). The latter may also include a path

planning algorithm that will attempt to pre-plan all vehicle paths to minimize the likelihood of

collisions or traffic congestion. The autonomy embedded in the vehicle is responsible for resolving

the abstract tasks provided by the Supervisor into low-level control inputs for the throttle, steering,

and other mechanisms. These vehicles would also contain reactive collision avoidance mechanisms

(Dynamic Separation systems) in the case that a crew member or other vehicle crosses their path

without warning. While cameras might be used for a variety of sensing, it is probably that all

crew and vehicles would also be equipped with GPS beacons and other sensors that broadcast

their location to the autonomous vehicle network, ensuring that they are seen and accounted for

before a collision. Despite the advanced capabilities, due to the environmental conditions on deck

(pitching, rolling, etc.) it is still likely that vehicles will have difficulty in high-precision tasks like

aligning to the catapult and navigating through close traffic. While the advanced autonomy does

not require crew on deck to provide tasks, this crew may be required as safety escorts to monitor the

movement of the vehicle and help correct any errors in catapult alignment. This would require fewer

crew than standard manual control operators, and in combination with the advanced networked

planning, would allow unmanned vehicles to travel faster than in other control architectures. Speeds

equivalent to manual control cases are not unreasonable.

As noted above, these systems take one of two different forms. In the first (Vehicle-based Human
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Supervisory Control, VH), the operator provides tasks to vehicles individually, addressing them in

series. Once a vehicle finishes its tasks, it must wait for the operator to provide new instructions.

Servicing each vehicle takes some variable amount of time dependent on the operator’s current

workload, how well they are aware of the state of the system, and what tasks are being issued. Past

research has shown that operators can control up to 8 ground vehicles of 12 aircraft (Cummings

& Mitchell, 2008), suitable for a flight deck where no more than 8-12 vehicles are taxiing at any

given time. Previous work by Nehme (Nehme, 2009) modeled human operators performing a variety

of tasks, with values ranging from averages of 1-2 seconds to 25 seconds for various types of tasks

ranging from defining waypoints to verifying sensor data. In MASCS, waypoint definition is a

major responsibility of the Supervisor in Vehicle-Based Human Supervisory Control (VBSC), and

the Supervisor is responsible not only for assigning waypoints but also for defining vehicle paths on

the flight deck.

In system-based operations (SH), the operator uses a planning algorithm to replan tasks for

all vehicles simultaneously. SH systems also require the existence of a path planning agent to

handle the deconfliction of vehicle paths on the flight deck. The planning of tasks must happen

once at the beginning of the mission, and because schedules degrade over time due to uncertainty

in the world, may happen periodically throughout. Each time replanning occurs, it takes some

time to accomplish, during which vehicles may be waiting for instructions. This replanning may

also significantly change prior instructions, rerouting aircraft to new destinations. Such systems

typically assign a queue of tasks to a single vehicle for execution over a period of time, allowing the

operator to focus on monitoring the performance of the system as a whole, rather than individual

vehicles. In past work with the Deck operations Course of Action Planner (DCAP) system built for

carrier deck planning (Ryan et al., 2011; Ryan, 2011), the time required to replan ranged from 5 to

20 seconds, with replans only occurring in the event of failures (once per 20 minute mission). In a

similar system termed OPS-USERS (Fisher, 2008; Cummings, Clare, & Hart, 2010; Clare, 2013),

replanning times ranged from 2 to 15 seconds. Replans should not occur after the last vehicle is

allocated, however, as the cost of making changes outweighs the benefits.

In both cases, vehicles are not engaging in visual detection as in the previous control architectures;

they receive their tasks from the central network through direct communication and translation. This

also means that task comprehension does not occur in similar fashions to other architectures and

should be more reliable. For both of these elements, failure rates are not applicable for the system.

However, vehicles may still have issue in executing tasks. The difficulties affecting Gestural Control

automation are the same for V- and SH systems, and failure rates should be the same.
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I.4.1 Human Supervisory Control (HSC) Safety Implications

For both of these systems, Dynamic Separation is accomplished through collision avoidance systems

onboard the vehicles that utilize both local sensor information and data from the network to monitor

the location of nearby vehicles. For avoiding other networked vehicles, these systems should be

flawless in their execution, performing as well as human operators in navigating the deck.

In terms of safety protocol performance, both VBSC and System-Based Human Supervisory

Control (SBSC) systems should perform better than all previous control architectures, given their

higher expected reliability and improved autonomy. Because of this performance, it is unclear that

any one safety protocol will generate better performance than another in terms of either productivity

or safety. These systems are the closest, in terms of performance, to manually controlled vehicles and

do not have the same limitations and errors of other systems. While some variation in performance

would not be surprising, it is unclear as to what these variations will be.
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UAV Verification

Chapter 5 described the development of the five Control Architecture models and included results

showing the differences in performance of the full models of each. This appendix provides additional

data showing the effects of introducing individual elements to each of the models. As noted previously

in Figure 5-5, creating the UAV control architecture models required modifying parameters in or

introducing new parameters to the baseline Manual Control model. For some control architectures,

this required few changes, while others required more substantial changes either to the models or to

the structure of operations. For each model, parameters were introducing individually then tested

using the single aircraft calibration scenario with 300 replications being performed. This Appendix

presents the data for each of these individual vehicle models to highlight how changes in parameters

affected the performance of individual vehicle models.

For Local Teleoperation (LT), the two major changes were to slightly restrict the field of view

from 85◦ to 65◦ and to increase the rate of catapult alignment failures from 0% to 5%. The results of

this appear in Figure J-1, which plots three lines: the first to show the results of the baseline Manual

Control model (gray), one to show the empirical observation used in calibration testing (orange), and

a third for the UAV model (blue), which includes whiskers for standard deviation. The LT model

has two data points: the first point, labeled “LT +FOV” denotes that the first variable changed

was the field-of-view of the aircraft. The next point, “LT +CatFail” adds the 5% chance to fail at

catapult alignment. As can be seen from the chart, neither of these changes makes much difference

to results, which are quite similar to the original Manual Control (MC) baseline.

Figure J-2 shows similar data for the Remote Teleoperation (RT) model. The first change here

introduced both FOV and catapult alignment failure changes, given the lack of effect of field of view

on its own for the LT model. The second change introduced the 1.6 second latency at the start of

each commanded task, with the third introducing modifications to the end of tasks due to operator

behavior. For this model, the introduction of the initial latency has the greatest effect on results,
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Figure J-1: Mean launch event duration time for Local Teleoperation (LT) control architecture with
incremental introduction of features. Whiskers indicate ±1 standard deviation.

increasing mission duration by 13 seconds on average (216.21 to 228.96 seconds). However, data for

each case is still within one standard deviation of the original MC baseline.

Data for the Gestural Control (GC) is shown in Figure J-3, with the first model again beginning

with changes to the field of view and catapult alignment failure rate. The second data point include

the effects of failing to recognize and Director and the associated time penalties. This appears to

have no effect on results. The third model introduces the effects of failing to recognize commands,

which could occur multiple times in series with time penalties accruing for each. This clear shows a

significant change in operations, increasing the average launch event duration from 200.65 seconds

to 221.66 seconds. The final model adds further latency into the system, modeling the processing

time of the GC vehicles (uniform, 0-3 seconds). This has even further effects, increasing the average

launch event duration to 248.62 seconds and moving nearly a full standard deviation away from the

MC baseline.

Introducing the VH model required not only changes to vehicle parameters but also changes to

their interactions with the crew. The first model in Figure J-4 removes the Director crew from

operations; vehicles are no longer constrained to the zone coverage routing system. These results

suggest that the removal of the crew may provide a slight benefit to operations, as the mean time to

complete the launch event is smaller than the MC Baseline (196.38 seconds vs. 209.99 seconds). The

second model catapult alignment failures to 2.5%, again with only minor effects. The third model

introduces the Handler Queueing system, in which vehicles must repeatedly request instructions

from the Handler. This results in a substantial increase in launch event duration, increasing the

average time from 198.39 seconds to 229.31 seconds, and has an effect similar to that of the GC
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Figure J-2: Mean launch event duration time for Remote Teleoperation (RT) control architecture
with incremental introduction of features. Whiskers indicate ±1 standard deviation.

Figure J-3: Mean launch event duration time for Gestural Control (GC) control architecture with
incremental introduction of features. Whiskers indicate ±1 standard deviation.
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processing latency and the RT communications latency.

Figure J-4: Mean launch event duration time for Vehicle-Based Human Supervisory Control (VBSC)
control architecture with incremental introduction of features. Whiskers indicate ±1 standard devi-
ation.

The System-Based Human Supervisory Control (SBSC) model was the final to be introduced,

which requires only two real changes. The first model (Figure J-5) removes the Director crew from

operations and eliminates the use of the zone coverage routing scheme. This, like for the VH model,

seems to provide a slight benefit to the speed of operations, lowering the mean launch event duration

to 193.87 seconds. The second model increases the rate of catapult alignment failures to 2.5%, again

with very little differences in operations. However, because not latencies are introduced, for this

model, it retains slightly better performance than the MC case in its full implementation.

Figure J-6 plots the data from the previous figures on the same axis, providing a comparison

of performance across all of the models. In general, a few conclusions can be drawn across these

cases. First, that the modeled changes in field of view and catapult failures appear to no real effect

on operations. Field of view results in only a minor change in how Aircraft Director crew align to

unmanned aircraft during operations; catapult alignment failures occur at a fairly low rate, and the

time penalties associated with these failures are on the order of the standard deviation of the launch

preparation time process. Additionally, these results suggest that latency in operations, be it from

communications, software processing, human interaction, or in the form of repeated failures with

time penalties, is quite detrimental to operations. The reason for this can be seen in Figure J-7,

which plots the taxi duration component of the launch event. Within this figure it can be seen

that significant differences occur between taxi times within the various models. Because the launch

preparation and launch acceleration time models do not vary for the unmanned vehicle control
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Figure J-5: Mean launch event duration time for System-Based Human Supervisory Control (SBSC)
control architecture with incremental introduction of features. Whiskers indicate ±1 standard devi-
ation.

architectures, changes in taxi time are the primary source of variation here. This has important

ramifications for mission testing, where delays in taxi operations may cause significant disruptions

to the flow of traffic on deck and, in the aggregate, severely hamper mission operations.
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Figure J-6: Mean launch event duration time for all control architectures with incremental intro-
duction of features. Whiskers indicate ±1 standard deviation.

Figure J-7: Mean taxi duration time for Local Teleoperation (LT) control architecture with incre-
mental introduction of features. Whiskers indicate ±1 standard deviation.
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Launch Event Duration (LD)

Results

The time required to complete a launch event served not only as an important validation metric for

the baseline manual control Multi-Agent Safety and Control Simulation (MASCS) simulation but

is also the most critical evaluation metric for Subject Matter Experts (SMEs) in carrier operations.

Chapter 5 provided a summary of the results of testing, indicating the few meaningful differences

in performance were found between Control Architectures, Safety Protocols, mission settings, and

interactions of each. This section provides additional detail on the tests that were performed.

K.1 Effects due to Safety Protocols

Figure K-1 provides boxplots of Launch Duration values according to Safety Protocol (SP). Pre-

sented in this fashion, the expected detrimental effect of the Temporal+Area Separation (T+A)

safety protocol is clearly seen. If these results are separated based on mission UAV Composition

(25% or 50%), the percent increase in Launch event Duration (LD) for the T+A cases as com-

pared to the DS only baseline averaged 38.89% for the 50% Composition level and 57.45% for the

25% level. It also appears that the Temporal safety protocol produces slightly higher LD values

than the Area and DS only cases. Applying a Kruskal-Wallis nonparametric one-way analysis of

variance to the Area, Temporal, and DS only safety protocols (ignoring the T+A case) reveals sig-

nificant differences at both the 22 aircraft level (χ2(2) = 34.2927, p < 0.0001) and 34 aircraft levels

(χ2(2) = 100.6313, p < 0.0001). Post-hoc Steel-Dwass multiple comparisons tests reveal that at the

22 aircraft level, the Temporal Separation protocol (mean rank = 629.62) is different from both Area

(497.488) and Dynamic Separation (511.682) protocols, with the latter two not significantly different

from one another. At the 34 aircraft level, significant differences exist for all pairwise comparisons

between the three protocols. This fails to confirm the hypothesis regarding Temporal protocol per-
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formance: the Temporal protocol was expected to have equivalent performance to the DS only safety

protocol, given that it preserved the same flexibility in planning operations. Area was expected to

perform more poorly given the constraints it places on the assignment of vehicles. These results sug-

gest quite the opposite, that the preservation of the flow of vehicles on the deck (which is unchanged

under the Area protocol) is more beneficial than preserving flexibility in catapult assignments.

K.2 Effects due to Control Architectures

Figure K-2 contains a second set of boxplots, now comparing LD values across Control Architectures,

excluding the T+A cases and their substantial effects. From this figure it can be seen that while

some fluctuations in mean LD do occur across architectures, there do not seem to be any large

deviations within the set. However, Kruskal-Wallis non-parametric one-way analysis of variance

tests using Control Architecture (CA) as the grouping variable show that significant differences

exist at the 22 aircraft level (χ2(5) = 37.7272, p < 0.0001) but not at the 34 aircraft level (χ2(5) =

5.8157, p = 0.3246). A post-hoc Steel-Dwass non-parametric simultaneous comparisons test for the

22 aircraft data reveals that significant pairwise differences exist between the System-Based Human

Supervisory Control (SBSC) (mean rank = 438.6) case and each of the Remote Teleoperation (RT)

(605.7), Gestural Control (GC) (582.2), and Vehicle-Based Human Supervisory Control (VBSC)

(562.0) cases. The Local Teleoperation (LT) (mean rank = 515.2) and RT cases are also shown to

be significantly different from one another, but no other comparisons result in significance. However,

in practical terms, the differences are quite small: the three largest differences in mean LD occur

between SBSC (µ = 24.27 minutes) and RT (µ = 25.50), GC (µ = 25.33 minutes), and VBSC

(µ = 25.30), providing differences of 1.23, 1.06, and 1.03 minutes, respectively.

These results only partly support the hypotheses regarding CA performance: the SBSC case

does trend towards better and the GC towards worse performance at the 22 aircraft level, but no

differences appear at the 34 aircraft level. However, the hypotheses did not expect significantly

poor performance for the RT and VBSC cases, as the delays generated in their operations were not

Figure K-1: Boxplots of Launch event Duration (LD) for each Safety Protocol at the 22 (left) and
34 (right) aircraft Density levels.
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Figure K-2: Boxplots of Launch event Duration (LD) for each Control Architecture at the 22 (left)
and 34 (right) aircraft Density levels, with Temporal+Area safety protocols excluded.

expected to be as severe. Additionally, the lack of variation at the 34 aircraft level suggests that

the changes in deck traffic flow that occur at higher numbers of aircraft (the obstruction of taxi

routes and the temporary loss of the fourth catapult) may have a substantial dampening effect on

operations.

Interestingly, these conclusions are not supported when examining only the homogeneous cases

(where Composition = 100% and all vehicles within the mission are identical). Boxplots of these

results appear in Figure K-3, with little visible variation in results. This is supported by a sta-

tistical tests across each of these two sets of data. Statistical tests at the 22 aircraft (ANOVA,

F (5, 174) = 1.906, p = 0.096) and 34 aircraft levels (Kruskal-Wallis, χ2(5) = 4.399, p = 0.493) reveal

no significant differences amongst the data at the α = 0.05 level. This is an interesting result given

the differences in the omnibus test on CA in the preceding paragraph and implies that the significant

differences in the earlier test on CA must be due to interactions of the Control Architectures with

the other settings.

K.3 Effects due to Interactions

In order to better identify the root causes of these variations, another series of statistical tests were

applied for each Density values (22 or 34 aircraft) using the full treatment specification (CA +

Composition + SP) as the grouping variable. Figure K-4 provides a column chart of these results,

with Table K.1 providing the means and standard deviations of each case. These data and the

statistical tests exclude the T+A cases, however, as their effects are already shown to be significant.

This results in one-way analyses of variance for 36 cases within each Density setting. Kruskal-Wallis

tests showed significant differences in the data at both the 22 aircraft (χ2(35) = 108.999, p < 0.0001)

and 34 aircraft levels (χ2(35) = 176.264, p < 0.0001). A post-hoc Steel-Dwass non-parametric

multiple comparisons test at the 22 aircraft level reveals seventeen significant pairwise comparisons
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Figure K-3: Boxplots of Launch event Duration (LD) for each Control Architecture at the 100%
Composition settings for 22 (left) and 34 (right) aircraft Density levels.

that all show tests using the SBSC aircraft to be significantly better than cases using the RT, GC,

or VBSC aircraft. Most often, these comparisons involve the SBSC 25% DS only, 25% Area, and

100% DS only cases compared to the RT, GC, or VBSC 25% Temporal or 50% Temporal cases. A

Steel-Dwass multiple comparisons test at the 34 aircraft Density levels returns fifty-six significantly

different pairwise comparisons, all but ten of which involve the 50% Temporal protocol applied to a

Control Architecture (a full list of the significant pairwise differences can be found in Appendix L).

Thirty-five of the 46 50% Temporal protocol cases involve the use of the RT and VBSC systems, with

the remainder spread across the other UAV control architectures. Of the ten that do not include

the 50% Temporal protocol, seven involve the 25% Temporal protocol.

These results suggests that these the use of the 25% and 50% Temporal protocol cases are

creating a significant detrimental effect in operations, with especially adverse interactions with the

three “delayed” UAV cases of RT, GC, and VBSC. These performance variations may likely be the

result of changes in the manner in which aircraft are routed on the flight deck. The Deck Handler

heuristics, in the abstract, attempt to keep aircraft routed in an aft-to-forward direction, which in

turn means limiting the assignment of forward-parked aircraft to aft catapults. The design of the

Temporal Separation force the Handler to make just these assignments, as all manned aircraft are

parked forward and must launch before UAVs begin operations. Under the Area Separation protocol,

even though the flexibility of aircraft assignments is limited by the division of the deck, aircraft

parked forward are still most often assigned to forward catapults, preserving this flow of traffic.

Furthermore, in light of the significant main effects of control architectures observed earlier across

all cases and the distinct lack of differences in the homogeneous cases, it is likely that Temporal

Protocol performance is main driver behind the differences observed across control architectures.

More specifically, that the interactions of the Temporal protocol with the “delayed” UAV types are

substantial enough to create a main effect with that data.
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Table K.1: Descriptive statistics for SP*Composition settings across all Control Architectures (CAs)
at the 22 aircraft Density level.

Level Mean Std Dev Std Err Mean Lower 95% Upper 95%

100% Dynamic Separation Only 24.90 2.11 0.16 24.59 25.21
25% Dynamic Separation only 24.82 2.12 0.17 24.47 25.16
50% Dynamic Separation 24.75 1.94 0.16 24.44 25.06
25% Area Separation 24.42 2.24 0.18 24.06 24.78
50% Area Separation 25.09 2.55 0.21 24.68 25.50
25% Temporal Separation 25.38 2.24 0.18 25.02 25.74
50% Temporal Separation 26.07 2.24 0.18 25.71 26.43
25% Temporal+Area 38.63 3.33 0.27 38.09 39.17
50% Temporal+Area 33.70 3.85 0.31 33.08 34.32

Figure K-4: Column chart comparing Launch event Duration (LD) values across all Control Archi-
tectures (CAs) sorted by Safety Protocol (SP)-Composition pairs. Whiskers indicate ±1 standard
error.

Table K.2: Results of ANOVAs for LD results across control architectures for each SP*Composition
setting.

SP*COMP DF1 DF2 F p value Tukey results

100% DS 5 174 1.906 0.0956 n/a
25% DS 4 145 2.4906 0.0458* RT v. SH, p=0.0503
50% DS 4 145 3.9162 0.0048* RT v. SH, p=0.0027

25% Area 4 145 3.3537 0.0117* GC v. SH, p=0.0106;VBSC v SH, p=0.0285
50% Area 4 145 0.9684 0.4268 n/a

25% Temporal 4 145 2.6199 0.0374* None
50% Temporal 4 145 2.0286 0.0934 n/a
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K.4 LD Effects Summary

This section has reviewed the effects of Control Architectures (CAs), Safety Protocols (SPs), mission

Density, and mission Composition on Launch event Duration, the primary productivity metric in

which Subject Matter Experts are concerned. This data has demonstrated that significant effects

do exist between Control Architectures (CAs) and between Safety Protocols (SPs), but that these

differences are largely due to interactions of CA with the other independent variables. It was earlier

hypothesized that the choice of CA would provide a main effect in results, with the GC case being the

worst and SBSC being the best. While data did demonstrate a significant difference between these

two cases, further tests at finer resolutions indicated that these effects are more likely due to adverse

interactions of the GC setting with the Temporal Separation protocol using 50% Unmanned Aerial

Vehicle (UAV) Composition. Adverse interactions were also observed between the 50% Temporal

Separation setting for the RT and VBSC control architectures, which was not expected. In fact, at

the 34 aircraft Density setting, significant effects were observed for the 50% Temporal case across

all control architectures and was the primary driver of variations at that level. No real main effects

were observed for control architectures at the 34 aircraft level.

These results also fail to confirm the earlier hypothesis regarding the performance of the Safety

Protocols in relation to the Launch event Duration measure, which presumed that the Temporal

protocol, preserving flexibility in assignments, would outperform the T+A and Area protocol cases.

In fact, the reverse was proven to be true in the case of the Area protocol: the preserving the flow

of traffic on deck is of greater importance than flexibility in assignments. Additionally, results also

suggest that the structure of operations forms a significant constraint on the performance of the UAV

control architectures, as the effects at the 22 aircraft level often differed from the effects at the 34

aircraft level. Together with the effects of the Safety Protocol, these results suggest that preserving

a general aft-to-forward flow of traffic on the flight deck is the most important feature in operations.

Disruptions to this process, either due to delays on the part of UAV Control Architectures or to

Safety Protocols, drives performance on these measures. Perhaps not unsurprisingly, the three CAs

that continued to show poor performance — RT, GC, and VBSC — are the three cases that involve

some sort of latency in operations. Even though the latencies were thought to have only a minimal

effect on operations, they appear to be substantial enough to fully disrupt the flow of traffic on

the flight deck. These disruptions also appear to be exacerbated by interactions with the Temporal

Separation safety protocol. This may be due to the fact that the Temporal protocol forces all UAVs

to be active at the same time; under the Area protocol, deck activity remains roughly split between

manned and unmanned.

Even so, when missions used only one type of aircraft (the 100% Composition setting), no

significant differences in performance were observed. Even though the use of more of the “delayed”
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UAVs cases might be thought to further compound the delays on the flight deck, allowing the

planning system to retain its original flexibility and flow seems to mitigate the detrimental effects

of the “delayed” UAV systems. However, observations of simulation execution do note significant

disruptions in taxi operations for these control architectures; in many cases, vehicles are arriving

at catapults just as the previous aircraft is launching. Although there is an effect, it is not felt

because the vehicle arrives in time (just barely) to prepare for its own launch. Reducing the launch

preparation time mean may break this ability to queue at catapults and lead to significant effects

at the 100% Composition levels (the effects of which will be explored in Chapter 6). In general,

however, these results suggest that the different control architectures and safety protocols do have

significant interactions with the structure of flight deck operations, at least in terms of the time

to complete launch events. The next section examines the performance of the MASCS simulation

in terms of the Safety metrics defined previously in Section 5.3, building Pareto frontiers of safety

metrics vs. LD and examining how the effects of CA and SP discussed in this section affect the level

of risk in flight deck operations.
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Appendix L

Statistical Tests on Launch Event

Duration (LD)

Figure L-1: SPSS output of Levene Test of Equal Variances for the 22 aircraft cases versus SP, with
T+A safety protocols excluded.

Figure L-2: SPSS output of non-parametric Kruskal-Wallis one-way test of variances for the 22
aircraft cases versus SP, with T+A safety protocols excluded.
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Table L.1: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for 22 aircraft cases
versus SP, with T+A safety protocols excluded.

Level - Level Score Mean Difference Std Err Dif Z p-Value

T DS 87.37083 16.58243 5.268879 <0.0001
T A 70.7 14.15391 4.995085 <0.0001
DS A 12.44479 16.58243 0.75048 0.7333

Figure L-3: SPSS output of Levene Test of Equal Variances for the 34 aircraft cases versus SP, with
T+A safety protocols excluded.

Figure L-4: SPSS output of non-parametric Kruskal-Wallis one-way test of variances for the 34
aircraft cases versus SP, with T+A safety protocols excluded.

Table L.2: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for 34 aircraft cases
versus SP, with T+A safety protocols excluded.

Level - Level Score Mean Difference Std Err Dif Z p-Value

T A 135.5767 14.15392 9.578739 <0.0001
T DS 131.5627 16.58243 7.933861 <0.0001
DS A 39.7692 16.58243 2.398271 0.0435

Table L.3: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for 22 aircraft cases
versus CA, with T+A safety protocols excluded.

Level - Level Score Mean Difference Std Err Dif Z p-Value

SBSC GC -57.1429 11.84624 -4.82371 <0.0001
SBSC RT -64.6952 11.84624 -5.46125 <0.0001
VBSC SBSC 46.7238 11.84624 3.94419 0.0011
RT LT 35.5286 11.84624 2.99914 0.0324

292



APPENDIX L. STATISTICAL TESTS ON LAUNCH EVENT DURATION (LD)

Figure L-5: SPSS output of Levene Test of Equal Variances for the 22 aircraft cases versus CA, with
T+A safety protocols excluded.

Figure L-6: SPSS output of non-parametric Kruskal-Wallis one-way test of variances for the 22
aircraft cases versus CA, with T+A safety protocols excluded.

Figure L-7: SPSS output of Levene Test of Equal Variances for the 34 aircraft cases versus CA, with
T+A safety protocols excluded.
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Figure L-8: SPSS output of non-parametric Kruskal-Wallis one-way test of variances for the 34
aircraft cases versus CA, with T+A safety protocols excluded.

Figure L-9: SPSS output of Levene Test of Equal Variances for the 22 aircraft cases versus CA for
Dynamic Separation.

Figure L-10: SPSS output of an ANOVA test for the 22 aircraft cases versus CA for Dynamic
Separation.

Figure L-11: SPSS output of Levene Test of Equal Variances for the 22 aircraft cases versus CA for
Area Separation.
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Table L.4: JMP PRO 10 output for Tukey HSD Multiple Comparisons tests for the 22 aircraft cases
versus CA for Dynamic Separation.

Level - Level Difference Std Err Dif Lower CL Upper CL p-Value

RT SBSC 93.04478 17.94067 41.7089 144.3807 ¡.0001
LT SBSC 70.27722 17.94067 18.9413 121.6131 0.0014
MC SBSC 67.49522 25.37194 -5.1047 140.0951 0.0854
GC SBSC 64.62133 17.94067 13.2855 115.9572 0.0047
VBSC SBSC 63.28444 17.94067 11.9486 114.6203 0.0061
RT VBSC 29.76033 17.94067 -21.5755 81.0962 0.5598
RT GC 28.42344 17.94067 -22.9124 79.7593 0.6094
RT MC 25.54956 25.37194 -47.0503 98.1495 0.9155
RT LT 22.76756 17.94067 -28.5683 74.1034 0.8018
LT VBSC 6.99278 17.94067 -44.3431 58.3287 0.9988
LT GC 5.65589 17.94067 -45.68 56.9918 0.9996
MC VBSC 4.21078 25.37194 -68.3891 76.8107 1
MC GC 2.87389 25.37194 -69.726 75.4738 1
LT MC 2.782 25.37194 -69.8179 75.3819 1
GC VBSC 1.33689 17.94067 -49.999 52.6728 1

Figure L-12: SPSS output of an ANOVA test for the 22 aircraft cases versus CA for Area Separation.

Figure L-13: SPSS output of Levene Test of Equal Variances for the 22 aircraft cases versus CA for
Temporal Separation.

Figure L-14: SPSS output of an ANOVA test for the 22 aircraft cases versus CA for Temporal
Separation.
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Table L.5: JMP PRO 10 output for Tukey HSD Multiple Comparisons tests for the 22 aircraft cases
versus CA for Temporal Separation, with T+A safety protocols excluded.

Level - Level Difference Std Err Dif Lower CL Upper CL p-Value

GC T LT T 75.73367 24.38559 5.8235 145.6438 0.025
GC T MC DS 74.867 29.86613 -10.7551 160.4891 0.1251
RT T LT T 70.32617 24.38559 0.416 140.2363 0.0477
RT T MC DS 69.4595 29.86613 -16.1626 155.0816 0.1868
VH T LT T 67.619 24.38559 -2.2911 137.5291 0.0645
VH T MC DS 66.75233 29.86613 -18.8697 152.3744 0.2246
GC T SH T 59.43167 24.38559 -10.4785 129.3418 0.1467
RT T SH T 54.02417 24.38559 -15.886 123.9343 0.2335
VH T SH T 51.317 24.38559 -18.5931 121.2271 0.2876
SH T LT T 16.302 24.38559 -53.6081 86.2121 0.9852
SH T MC DS 15.43533 29.86613 -70.1867 101.0574 0.9955
GC T VH T 8.11467 24.38559 -61.7955 78.0248 0.9995
GC T RT T 5.4075 24.38559 -64.5026 75.3176 0.9999
RT T VH T 2.70717 24.38559 -67.203 72.6173 1
MC DS LT T 0.86667 29.86613 -84.7554 86.4887 1

Figure L-15: SPSS output of Levene Test of Equal Variances for the 22 aircraft cases versus the full
treatment definition, with T+A safety protocols excluded.

Figure L-16: SPSS output of non-parametric Kruskal-Wallis one-way test of variances for the 22
aircraft cases versus the full treatment definition, with T+A safety protocols excluded.
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Table L.6: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests (significant results
only) for 22 aircraft cases versus full treatment definitions, with T+A safety protocols excluded.

Level - Level Score Mean Difference Std Err Dif Z p-Value

22 SBSC 25 A 22 GC 50 T -23.5667 4.50925 -5.22629 <0.0001
22 SBSC 25 A 22 RT 50 T -22.0333 4.50925 -4.88625 0.0006
22 SBSC 25 A 22 GC 25 T -21.9 4.50925 -4.85668 0.0007
22 SBSC 50 T 22 SBSC 25 A 21.0333 4.50925 4.66449 0.0017
22 SBSC 25 A 22 RT 25 T -20.3667 4.50925 -4.51664 0.0033
22 SBSC 25 A 22 RT 50 DS -20.2333 4.50925 -4.48707 0.0038
22 SBSC 25 DS 22 GC 50 T -19.7 4.50925 -4.3688 0.0064
22 VBSC 50 T 22 SBSC 25 A 19.4333 4.50925 4.30966 0.0082
22 SBSC 50 DS 22 GC 50 T -19.1 4.509187 -4.2358 0.0111
22 VBSC 25 T 22 SBSC 25 A 18.9667 4.50925 4.20617 0.0125
22 SBSC 100 DS 22 GC 50 T -18.9 4.50925 -4.19138 0.0133
22 SBSC 25 DS 22 RT 50 T -18.8333 4.50925 -4.1766 0.0141
22 SBSC 100 DS 22 RT 50 T -18.3 4.50925 -4.05832 0.0223
22 SBSC 100 DS 22 GC 25 T -17.7667 4.50925 -3.94005 0.0347
22 SBSC 25 DS 22 GC 25 T -17.7667 4.50925 -3.94005 0.0347
22 SBSC 50 DS 22 RT 50 T -17.7 4.509187 -3.92532 0.0366
22 SBSC 25 A 22 RT 100 DS -17.5667 4.50925 -3.8957 0.0407

Figure L-17: SPSS output of Levene Test of Equal Variances for the 34 aircraft cases versus the full
treatment definition, with T+A safety protocols excluded.

Figure L-18: SPSS output of non-parametric Kruskal-Wallis one-way test of variances for the 34
aircraft cases versus the full treatment definition, with T+A safety protocols excluded.
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Table L.7: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests (significant results only)
for 34 aircraft cases versus full treatment definitions, with T+A safety protocols excluded (part 1).

Level -Level Score Mean Difference Std Err Dif Z p-Value

34 VBSC 50 T 34 VBSC 50 DS 27.6333 4.50925 6.12814 <0.0001
34 RT 50 T 34 RT 50 A 25.2333 4.50925 5.59591 <0.0001
34 VBSC 50 T 34 RT 50 A 25.2333 4.50925 5.59591 <0.0001
34 RT 50 T 34 LT 25 A 24.1 4.50925 5.34457 <0.0001
34 VBSC 50 T 34 VBSC 25 A 24.0333 4.50925 5.32979 <0.0001
34 VBSC 50 T 34 LT 25 A 23.6333 4.50925 5.24108 <0.0001
34 VBSC 50 T 34 RT 25 DS 23.1667 4.50925 5.13759 0.0002
34 RT 50 T 34 RT 25 DS 22.7667 4.50925 5.04888 0.0003
34 RT 50 T 34 MC 100 DS 22.3667 4.50925 4.96017 0.0004
34 VBSC 50 T 34 MC 100 DS 22.1 4.50925 4.90104 0.0005
34 VBSC 50 T 34 SBSC 25 A 21.8333 4.50925 4.8419 0.0007
34 RT 50 T 34 GC 50 DS 21.1667 4.50925 4.69406 0.0015
34 VBSC 50 T 34 GC 50 DS 21.1667 4.50925 4.69406 0.0015
34 RT 50 T 34 GC 25 DS 20.9 4.50925 4.63492 0.002
34 VBSC 50 T 34 GC 25 DS 20.9 4.50925 4.63492 0.002
34 VBSC 50 T 34 VBSC 50 A 20.9 4.50925 4.63492 0.002
34 VBSC 50 T 34 GC 50 A 20.7 4.50925 4.59056 0.0024
34 SBSC 25 T 34 RT 50 A 20.5 4.50925 4.54621 0.0029
34 RT 50 T 34 GC 50 A 20.3667 4.50925 4.51664 0.0033
34 RT 50 T 34 RT 50 DS 19.8333 4.50925 4.39837 0.0056
34 VBSC 50 T 34 RT 50 DS 19.6333 4.50925 4.35401 0.0068
34 VBSC 50 T 34 VBSC 25 DS 19.5 4.50925 4.32444 0.0077
34 VBSC 50 T 34 SBSC 50 A 19.1667 4.50925 4.25052 0.0104
34 SBSC 25 T 34 LT 25 A 18.8333 4.50925 4.1766 0.0141
34 VBSC 50 T 34 LT 50 A 18.7667 4.50925 4.16182 0.0149
34 LT 50 T 34 LT 25 A 18.4333 4.50925 4.08789 0.0199
34 RT 50 T 34 LT 50 A 18.4333 4.50925 4.08789 0.0199
34 VBSC 50 T 34 RT 25 A 18.3667 4.50925 4.07311 0.0211
34 RT 50 T 34 RT 25 A 18.3 4.50925 4.05832 0.0223
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Table L.8: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests (significant results only)
for 34 aircraft cases versus full treatment definitions, with T+A safety protocols excluded (part 2).

Level -Level Score Mean Difference Std Err Dif Z p-Value

34 RT 50 T 34 LT 25 T 18.2333 4.50925 4.04354 0.0236
34 SBSC 25 T 34 SBSC 25 A 18.2333 4.50925 4.04354 0.0236
34 SBSC 50 T 34 RT 50 A 18.0333 4.50925 3.99919 0.0279
34 VBSC 50 T 34 LT 25 T 17.9 4.50925 3.96962 0.0312
34 RT 50 T 34 LT 50 DS 17.7 4.50925 3.92526 0.0366
34 RT 25 DS 34 GC 50 T -17.5 4.50925 -3.88091 0.0429
34 SBSC 25 A 34 LT 50 T -17.5667 4.50925 -3.8957 0.0407
34 VBSC 50 DS 34 GC 100 DS -17.6333 4.50925 -3.91048 0.0386
34 VBSC 50 DS 34 SBSC 50 DS -17.7667 4.50925 -3.94005 0.0347
34 VBSC 25 A 34 LT 50 T -17.9 4.50925 -3.96962 0.0312
34 VBSC 50 DS 34 RT 25 T -18.2333 4.50925 -4.04354 0.0236
34 VBSC 25 A 34 GC 50 T -18.3667 4.50925 -4.07311 0.0211
34 RT 50 A 34 LT 50 T -18.6333 4.50925 -4.13225 0.0168
34 VBSC 25 DS 34 RT 50 T -18.9 4.50925 -4.19138 0.0133
34 SBSC 50 A 34 RT 50 T -19.3667 4.50925 -4.29488 0.0087
34 VBSC 25 A 34 SBSC 25 T -19.3667 4.50925 -4.29488 0.0087
34 VBSC 50 DS 34 RT 100 DS -19.5 4.50925 -4.32444 0.0077
34 VBSC 50 DS 34 GC 25 T -19.9 4.50925 -4.41315 0.0053
34 RT 50 A 34 GC 50 T -19.9667 4.50925 -4.42794 0.0049
34 VBSC 50 A 34 RT 50 T -20.5667 4.50925 -4.561 0.0027
34 VBSC 50 DS 34 SBSC 50 T -20.8333 4.50925 -4.62013 0.0021
34 SBSC 25 A 34 RT 50 T -21.5 4.50925 -4.76798 0.001
34 VBSC 50 DS 34 LT 50 T -22.9 4.50925 -5.07845 0.0002
34 VBSC 50 DS 34 GC 50 T -23.1 4.50925 -5.1228 0.0002
34 VBSC 50 DS 34 SBSC 25 T -23.7667 4.50925 -5.27065 <0.0001
34 VBSC 25 A 34 RT 50 T -24.5 4.50925 -5.43328 <0.0001
34 VBSC 50 DS 34 RT 50 T -28.2333 4.50925 -6.2612 <0.0001
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Appendix M

Analysis of Additional Safety

Metrics

This appendix presents additional results and analyses for safety metrics not covered in Chapter 5.

M.1 Results for Duration of Tertiary Halo Incursions due

to Aircraft (DTHIA)

Another view of safety looks at the total time during which halo incursions occur. It was previously

hypothesized that while System-Based Human Supervisory Control (SBSC) would have some of

the highest counts of Tertiary Halo Incursions due to Aircraft (THIA), it was expected to have

some of the lowest values for DTHIA because of the smaller expected Launch event Duration (LD).

Figure M-1 provides a Pareto plot of DTHIA versus LD for the 22 aircraft Density setting. The

trend in the data is similar to the THIA data earlier, with Dynamic Separation providing some of the

largest values (worst performance), while Temporal+Area provides the best overall. Kruskal-Wallis

tests confirm this trend (χ2(3) = 108.3789, p < 0.0001) and CA (χ2(5) = 736.3356, p < 0.0001).

For Safety Protocol (SP) settings, Steel-Dwass tests reveal similar performance to the THIA metric,

with Temporal (mean rank = 596.74) and Temporal+Area (mean rank = 574.38) providing the

best performance, followed by Area (mean rank = 665.52) and Dynamic Separation (mean rank =

837.29) measures, in line with prior expectations.

The trends in Control Architecture (CA) performance are also similar to that of the THIA mea-

sures, which can be better observed in Figure M-2. This figure shows only results for all control

architectures for the Dynamic Separation protocol only. Manual Control (MC), Local Teleopera-

tion (LT), and Remote Teleoperation (RT) provide the best performance in the DTHIA measures,

followed by Gestural Control (GC), Vehicle-Based Human Supervisory Control (VBSC), and SBSC.
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Figure M-1: Pareto frontier plot of Duration of Tertiary Halo Incursions due to Aircraft (DTHIA)
versus LD for 22 aircraft missions.
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A Steel-Dwass test shows that only three pairwise comparisons are not significant: MC (mean rank

=311.7) vs. RT (424.8, p = 0.0631), MC vs. LT (287.9, p = 0.9571), and VBSC (893.6) vs. SBSC

(859.1, p = 0.8122). All other comparisons are shown to be significant at p < 0.0015, with the

“unmanned” CA performing worse than their manned counterparts and with the GC architecture

(mean rank = 1029.3) again showing the worst performance overall.

This is in line with the earlier THIA results but against the earlier hypotheses on performance:

it was expected that the SBSC cases would complete missions more quickly than other cases, thus

reducing the total possible time that halo incursions could exist. However, as shown in Section 5.5.1,

the benefits of the SBSC architecture on Launch event Duration (LD) were slight, so it is not

surprising that no effects were seen. It is true, however, that the SBSC case shows both the best

performance on this metric as well as some of the worst (although the GC architecture performs

worst overall). These trends are largely the same at the 34 aircraft Density setting, whose Pareto

chart may be found in Appendix N.

Figure M-2: Pareto frontier plot of Duration of Tertiary Halo Incursions due to Aircraft (DTHIA)
versus LD for 22 aircraft Dynamic Separation missions.
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M.2 Results for Primary Halo Incursion (PHI)

This section reviews results for the Primary Halo Incursion (PHI) metric of crew incursions near air-

craft during operations. Because the Tertiary Halo Incursions (THI) metric reviewed in Section 5.5.2

considered the largest halos around vehicles, crew incursions at that level would likely involve no

real danger to crew during operations. Reducing the size of the incursion radius to the Primary halo

level should provide a better understanding of how often crew are placed in potentially dangerous

situations. Whether or not these situations are truly dangerous and may lead to accidents is contin-

gent on the exactly how crew are moving in and near to other aircraft on the flight deck at a level

of complexity not currently contained in Multi-Agent Safety and Control Simulation (MASCS). As

such, MASCS is not able to offer a truly detailed understanding of crew safety at this time. Future

work could involve more complex models of crew motion in order to address these limitations.

Even so, this section reviews PHI results in the context of when crew are likely to work very near

to aircraft on the flight deck. In Chapter 5, the performance of the THIA measures were shown to

be in partial agreement with hypotheses regarding safety measures on the flight deck, but given that

the safety protocols are not directly aimed at separating crew from unmanned vehicles and that the

crew are integral parts of a functioning flight deck, those results may not be consistent here. This

is apparent from the first set of data shown in this section; Figure M-3 shows the Pareto plot of

PHI versus LD at the 22 aircraft case. For this data, the results for cases using the Temporal+Area

Separation (T+A) safety protocols are excluded for the time being.

The first major trend in Figure M-3 is that there is a clear separation between the VBSC and

SBSC cases and the other control architectures. Neither the VBSC nor the SBSC architecture are

routed via the crew zone coverage topology. Instead, they receive waypoint commands from the

Deck Handler via the centrally-networked system, providing these two architectures greater freedom

in taxiing on the flight deck. This routed also included the use of crew “Escorts,” which appears to

have generated significantly higher PHI values. However, improving the performance of these two

architectures along the PHI metric would simply require adjusting the encoded Escort heuristics to

be more aware of the aircraft “halos” when moving in and near aircraft. Alternatively, the Escorts

are also optional and are not required for use on the flight deck; they could be entirely removed from

the simulation model.

Within the remaining control architectures (MC, LT, RT, and GC) in the bottom of Fig. M-3,

the choice of control architecture appears to have no effect on results. The stronger trends appears

to be in terms of SPs: the Area Separation cases seem to provide the smallest PHI values, followed

by Dynamic Separation, then with Temporal Separation providing the worst. A Kruskal-Wallis

nonparametric one-way analysis of variance test applied to just this group of control architectures

(MC, LT, RT, and GC) verifies that these differences along SPs settings are significant (χ2(2) =
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Figure M-3: Pareto frontier plot of Primary Halo Incursion (PHI) versus LD for 22 aircraft missions,
excluding Temporal+Area cases.

121.737, p < 0.0001). Area Separation provides the best performance (mean rank = 125.51), then

Dynamic Separation only (362.37) and Temporal (482.39). A Steel-Dwass multiple comparisons test

shows that significant differences exists between each pairwise comparison at the p < 0.0001 level

(full results of these tests are included in Appendix N).

The differences between the Area and Temporal cases, as noted previously, are in terms of the

routing of traffic on the flight deck. Aircraft operating under the Area protocols typically move in

an aft-to-forward direction. Additionally, the layout of the areas limits how many aircraft parked aft

in the Fantail are taxied to the forward catapults. The Temporal cases result in a different pattern,

taxiing Manned aircraft from the forward area of deck to both the forward and aft catapults in order

to clear space in the Street area of the deck. Dynamic Separation results in patterns somewhere in
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between the two: some forward to aft transitions do occur, but the general flow of traffic is aft to

forward.

Given these trends, this change in aircraft routing that results from the changes in Deck Handler

heuristics appear to be the primary influence in this lower cluster of results. If the source of these

variations are the transitions between areas, then the performance of the T+A cases should show

performance roughly average of the Temporal and Area cases; under this protocol, no manned

aircraft transition from forward to aft, but the remaining Unmanned Aerial Vehicles (UAVs) must

do so in order to launch. Figure M-4 shows the same data as Figure M-3 but now includes the

Temporal+Area Separation protocols (black markers on the right side of the figure). Figure M-5

shows this data again broken down for only the Remote Teleoperation control architecture.

Running statistical tests for this data for the non-supervisory control cases, a Steel-Dwass mul-

tiple comparisons test (Appendix N provides the full list of significant comparisons) demonstrates

that the T+A cases are significantly different from the all other cases and containing the largest

mean rank values (mean rank = 649.03; Temporal mean rank = 547.47). This data suggests that

the key issue with PHI values is not transitions between the forward and aft areas of deck, this data,

but simply the emphasis on using the forward area of the flight deck in general — the T+A case

includes no transitions between the forward and aft areas of the flight deck whatsoever.

The same general results appear at the 34 aircraft case, as shown in Figure M-6. A clear

separation once again exists between the VBSC and SBSC cases and the other and non-Human

Supervisory Control (HSC) architectures. Within the non-HSC architectures (MC, LT, RT, GC), the

trends are generally the same, although the differences between the Area and Dynamic Separation

results are not as significant as in the 22 aircraft results. This is likely explained by the way in

which 34 aircraft mission evolve: because of the increased number of aircraft on the deck and

the blocking of one of the forward catapults, the forward area of the flight deck is cleared more

slowly than the aft under the both the Dynamic and Area Separation cases. This means that

even the Area Separation case results in aircraft parked forward being assigned to the aft catapults.

However, as would be expected, the Temporal and Temporal+Area cases both still provide the worst

performance for PHI values at the 34 aircraft Density level. A Kruskal-Wallis one-way comparison

test for the lower cluster of data (MC, LT, RT, GC) reveals significant differences across SP settings

(χ2(3) = 611.815, p < 0.0001), with a Steel-Dwass multiple comparisons test demonstrating that

significant differences exist in all possible pairwise comparisons. Area (mean rank = 191.17) provides

the lowest average values, followed by Dynamic Separation (mean rank = 282.855), Temporal+Area

(577.175), and Temporal Separation (722.564).
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Figure M-4: Pareto frontier plot of Primary Halo Incursion (PHI) versus LD for 22 aircraft missions.

M.3 Results for Duration of Primary Halo

Incursions (DPHI)

Viewing these measures in terms of the total Duration of Primary Halo Incursions (DPHI) demon-

strates different trends in performance. Despite the variations seen in the count values, there is very

little variation in terms of durations, as seen for the 34 aircraft data in Figure M-7. For the data

in the figure, it appears that the choice of Safety Protocol has no difference on performance, while

the choice of Control Architecture only matters if it is the VBSC or GC cases. Similar performance

is observed at the 22 aircraft level (the Pareto chart can be found in Appendix N), although there

only the VBSC case exhibits poorer performance. These effects show that the trends hypothesized
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Figure M-5: Pareto frontier plot of Primary Halo Incursion (PHI) versus LD for 22 aircraft Remote
Teleoperation missions, including Temporal+Area cases.

to appear in the Duration measures do not appear, although it is notable that the VBSC and GC

cases (which suffer the greatest delays in operations) provide the worst performance. In general,

however, the differences in results for DPHI and PHI are significant for future research: while it is

not known currently which is the larger driver of risk in operations, the two do not appear to be

entirely correlated with one another in the MASCS model and do not produce the same patterns of

performance. This, in turn, suggests that reducing the number of halo incursions that occur during

a given operation may not necessarily translate into a reduction of the duration of those incursions.

Understanding which is the more important feature in terms of actual accidents on the flight deck

is an important aspect of future research.

A key factor in the results for PHI and THIA has been differences in how the crew are utilized.

In both cases, differences in the routing topology (either using or not using the zone coverage

Aircraft Director crew) had significant effects on results, with some additional effects based on the

number of high-level constraints applied to operations. In other cases, the choice of Safety Protocol

and it interactions with the zone coverage routing topology produced the most significant effects.

What results is a series of tradeoffs between safety metrics. Utilizing the combined Temporal+Area

protocol reduces the number of THIA occurrences while increasing the number of PHI occurrences,
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Figure M-6: Pareto frontier plot of Primary Halo Incursion (PHI) versus LD for 34 aircraft missions.
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Figure M-7: Pareto frontier plot of Duration of Primary Halo Incursions (DPHI) versus LD for 34
aircraft missions.

due to the manner in which missions are planned and executed on the flight deck. Using Area

Separation provides better results for PHI but slightly worse for THIA; using Temporal or Dynamic

Separation provides worse performance in PHI values with performance on THIA ranging from

moderately good to very poor. Just as with the earlier results on mission productivity, however, the

key features driving behavior concern the role of crew on the flight deck, where they are located, and

what tasks they perform. Differences in how the unmanned vehicle control architectures interact

with the crew have helped identify the crew’s role in influencing these safety measures, but further

improvements may require rethinking the role of the crew in flight deck operations.

As example of this involves the crew “Escorts” defined for use with the VBSC and SBSC models

in this work. Within the PHI measures, the VBSC and SBSC architectures both exhibited much
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higher values for crew incursions than the other cases. The model that described Escort behavior

resulted in the crew continually moving and readjusting to aircraft, running in and out of the

different halos over the course of operations. Altering Escort behavior so that they were more aware

of halo distances and less active in moving in and around aircraft should reduce the number of

these incursions. However, these crew were also optional: removing them entirely from operations

should drop these incursion counts to zero for the SBSC architecture and significantly reduce them

for VBSC (which still requires some Aircraft Director crew in operations). Similarly, when using

the zone coverage Aircraft Director routing, reducing the number of crew or adjusting their spacing,

could also be effective in promoting safe operations. These are questions that remain for future

work, however.
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Appendix N

Statistical Tests for Pareto Frontier

Results

N.1 Supplemental statistical tests for Tertiary Halo

Incursions (THI)

This section presents more detailed statistics on Tertiary Halo Incursions (THI) and Tertiary Halo

Incursions due to Aircraft (THIA) measures as previously discussed in Chapter 5.

Figure N-1: SPSS output for Levene test of equal variances for the 22 aircraft THI values against
SPs.

Figure N-2: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for the
22 aircraft THIA values against SPs.
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Table N.1: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Tertiary Halo
Incursions due to Aircraft (THIA) 22 aircraft cases versus Safety Protocols.

Level -Level Score Mean Difference Std Err Dif Z p-Value

T+A DS -304.509 16.57664 -18.3698 <0.0001
T+A A -198.283 14.14334 -14.0196 <0.0001
T+A T -164.507 14.1445 -11.6304 <0.0001
T DS -157.95 16.57347 -9.5303 <0.0001
T A -30.347 14.13862 -2.1464 0.1386
DS A 140.043 16.57096 8.4511 <0.0001

Figure N-3: SPSS output for Levene test of equal variances for the 34 aircraft THIA values against
SPs.

Figure N-4: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for the
34 aircraft THIA values against SPs.

Table N.2: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Tertiary Halo
Incursions due to Aircraft (THIA) 34 aircraft cases versus Safety Protocols.

Level -Level Score Mean Difference Std Err Dif Z p-Value

T+A A -85.68 14.1494 -6.05538 <0.0001
T DS -90.231 16.57937 -5.44235 <0.0001
T+A DS -131.297 16.57916 -7.91942 <0.0001
T A -49.207 14.14992 -3.47752 0.0028
T+A T -39.567 14.15114 -2.79601 0.0266
DS A 32.256 16.57825 1.9457 0.209

Figure N-5: SPSS output for Levene test of equal variances for the 22 aircraft THIA values against
CAs.
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Figure N-6: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for the
22 aircraft THIA values against CAs.

Table N.3: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Tertiary Halo
Incursions due to Aircraft (THIA) 22 aircraft cases versus Control Architectures.

Level -Level Score Mean Difference Std Err Dif Z p-Value

SBSC LT 157.2 13.42179 11.7123 <0.0001
VBSC LT 150.2 13.41918 11.1929 <0.0001
SBSC RT 139.004 13.42073 10.3574 <0.0001
VBSC RT 124.993 13.41869 9.3148 <0.0001
SBSC MC 79.315 16.68611 4.7533 <0.0001
VBSC MC 62.296 16.68312 3.7341 0.0026
MC LT 42.981 16.66496 2.5792 0.1024
RT LT 42.767 13.40995 3.1892 0.0179
SBSC GC -4.5 13.42322 -0.3352 0.9994
RT MC -13.278 16.66759 -0.7966 0.9682
VBSC SBSC -35.463 13.42316 -2.6419 0.0874
VBSC GC -52.385 13.42134 -3.9031 0.0013
MC GC -97.444 16.68439 -5.8405 <0.0001
RT GC -179.056 13.41981 -13.3426 <0.0001
LT GC -199.641 13.42073 -14.8755 <0.0001

Figure N-7: SPSS output for Levene test of equal variances for the 34 aircraft THIA values against
CAs.

Figure N-8: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for the
34 aircraft THIA values against CAs.
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Table N.4: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Tertiary Halo
Incursions due to Aircraft (THIA) 34 aircraft cases versus Control Architectures.

Level -Level Score Mean Difference Std Err Dif Z p-Value

VBSC LT 263.081 13.42601 19.5949 <0.0001
SBSC LT 240.696 13.42488 17.9291 <0.0001
VBSC RT 240.415 13.42439 17.9088 <0.0001
SBSC RT 172.874 13.42254 12.8794 <0.0001
VBSC MC 147.852 16.6856 8.861 <0.0001
SBSC MC 137.611 16.68821 8.246 <0.0001
RT LT 136.948 13.42157 10.2036 <0.0001
VBSC SBSC 80.67 13.42345 6.0097 <0.0001
RT MC 70.556 16.68154 4.2296 0.0003
MC LT 26.889 16.67997 1.612 0.5905
VBSC GC -49.107 13.42016 -3.6592 0.0034
SBSC GC -117.944 13.42366 -8.7863 <0.0001
MC GC -148.852 16.68544 -8.9211 <0.0001
RT GC -256.748 13.42533 -19.1242 <0.0001
LT GC -266.919 13.42617 -19.8805 <0.0001

Figure N-9: SPSS output for Levene test of equal variances for the 22 aircraft THIA values against
SP-Composition pairs.

Figure N-10: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for
the 22 aircraft THIA values against SP-Composition pairs.

Figure N-11: SPSS output for Levene test of equal variances for the 22 aircraft DTHIA values
against CAs.
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Table N.5: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Tertiary Halo
Incursions due to Aircraft (THIA) 22 aircraft cases versus Safety Protocols-Composition pairs.

Level -Level Score Mean Difference Std Err Dif Z p-Value

50 A 100 DS -160.411 10.54764 -15.2082 <0.0001
50 A 25 T -149.993 10.01665 -14.9744 <0.0001
50 A 25 T+A -149.993 10.01665 -14.9744 <0.0001
50 A 25 DS -149.913 10.01665 -14.9664 <0.0001
50 DS 25 T+A -148.673 10.01665 -14.8426 <0.0001
50 A 25 A -147.433 10.01665 -14.7188 <0.0001
50 T+A 25 T+A -143.9 10.01665 -14.3661 <0.0001
50 DS 25 T -143.82 10.01665 -14.3581 <0.0001
50 T 25 T+A -97.78 10.01665 -9.7617 <0.0001
50 T 25 T -76.54 10.01665 -7.6413 <0.0001
50 T+A 25 T -72.993 10.01665 -7.2872 <0.0001
25 A 100 DS -35.976 10.54764 -3.4108 0.0187
50 DS 25 DS -27.82 10.01665 -2.7774 0.122
25 T+A 25 T 14.473 10.01665 1.4449 0.8804
50 DS 100 DS 23.729 10.54764 2.2497 0.3733
50 T+A 50 T 35.007 10.01665 3.4948 0.014
25 DS 100 DS 51.217 10.54764 4.8558 <0.0001
50 DS 25 A 53.647 10.01665 5.3557 <0.0001
25 DS 25 A 74.367 10.01665 7.4243 <0.0001
50 T 25 DS 96.193 10.01665 9.6033 <0.0001
50 T 50 DS 107.06 10.01665 10.6882 <0.0001
50 T 100 DS 124.221 10.54764 11.7771 <0.0001
50 T 25 A 125.527 10.01665 12.5318 <0.0001
50 T+A 25 DS 136.167 10.01665 13.594 <0.0001
50 T+A 50 DS 139.06 10.01665 13.8829 <0.0001
25 T 25 DS 141.66 10.01665 14.1424 <0.0001
50 T+A 25 A 146.9 10.01665 14.6656 <0.0001
50 T+A 100 DS 154.691 10.54764 14.6659 <0.0001
25 T 25 A 148.02 10.01665 14.7774 <0.0001
50 DS 50 A 149.473 10.01665 14.9225 <0.0001
25 T+A 25 DS 149.713 10.01665 14.9464 <0.0001
25 T+A 25 A 149.993 10.01665 14.9744 <0.0001
50 T 50 A 149.993 10.01665 14.9744 <0.0001
50 T+A 50 A 149.993 10.01665 14.9744 <0.0001
25 T 100 DS 159.433 10.54764 15.1155 <0.0001
25 T+A 100 DS 164.798 10.54764 15.6242 <0.0001
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Figure N-12: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for
the 22 aircraft DTHIA values against CAs.

Table N.6: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Duration of Tertiary
Halo Incursions due to Aircraft (DTHIA) 22 aircraft cases versus Control Architectures.

Level -Level Score Mean Difference Std Err Dif Z p-Value

VBSC LT 253.485 13.42881 18.8762 <0.0001
VBSC RT 222.481 13.42881 16.5675 <0.0001
SBSC LT 188.511 13.42881 14.0378 <0.0001
SBSC RT 163.915 13.42881 12.2062 <0.0001
VBSC MC 142.093 16.69439 8.5114 <0.0001
SBSC MC 99.407 16.6944 5.9545 <0.0001
RT LT 95.667 13.42878 7.124 <0.0001
RT MC 46.167 16.69434 2.7654 0.0631
MC LT 14.259 16.69433 0.8541 0.9571
VBSC SBSC -16.781 13.42881 -1.2497 0.8122
SBSC GC -51.907 13.42881 -3.8654 0.0015
VBSC GC -81.43 13.42881 -6.0638 <0.0001
MC GC -147.389 16.6944 -8.8286 <0.0001
RT GC -249.985 13.42881 -18.6156 <0.0001
LT GC -264.737 13.42881 -19.7141 <0.0001

Figure N-13: SPSS output for Levene test of equal variances for the 22 aircraft DTHIA values
against SPs.
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Figure N-14: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for
the 22 aircraft DTHIA values against SPs.

Table N.7: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Duration of Tertiary
Halo Incursions due to Aircraft (DTHIA) 22 aircraft cases versus Safety Protocols.

Level -Level Score Mean Difference Std Err Dif Z p-Value

DS A 105.88 16.58242 6.38505 <0.0001
T+A T -13.043 14.1539 -0.92154 0.7933
T A -36.967 14.1539 -2.61177 0.0446
T+A A -43.39 14.1539 -3.06559 0.0117
T DS -132.92 16.58242 -8.01569 <0.0001
T+A DS -142.84 16.58242 -8.61395 <0.0001

Figure N-15: SPSS output for Levene test of equal variances for the 22 aircraft PHI values against
SP-Composition pairs, excluding T+A safety protocols.

Figure N-16: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for
the 22 aircraft PHI values against SP-Composition pairs, excluding T+A safety protocols.
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Table N.8: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Primary Halo
Incursion (PHI) 22 aircraft cases versus Safety Protocols-Composition pairs, excluding T+A cases.

Level -Level Score Mean Difference Std Err Dif Z p-Value
50 A 25 T -72.14 10.01379 -7.20407 <0.0001
50 A 100 DS -71.115 10.54384 -6.7447 <0.0001
50 A 25 DS -50.7267 10.01315 -5.066 <0.0001
50 A 25 A -48.48 10.0107 -4.84282 <0.0001
50 DS 25 T -44.8533 10.01264 -4.47967 0.0002
25 A 100 DS -40.4617 10.5391 -3.83919 0.0024
50 T 25 T -21.3533 10.01306 -2.13255 0.3333
25 DS 100 DS 9.1178 10.5399 0.86507 0.9776
50 DS 25 DS 13.5133 10.00922 1.35009 0.8281
50 DS 100 DS 20.0078 10.53917 1.89842 0.4813
50 T 50 DS 19.0733 10.01156 1.90513 0.4768
50 T 25 DS 28.9067 10.01181 2.88726 0.0595
50 T 100 DS 30.5861 10.54213 2.90132 0.0572
25 DS 25 A 36.98 10.01086 3.69399 0.0041
50 DS 25 A 52.34 10.01088 5.22831 <0.0001
25 T 100 DS 57.7683 10.54343 5.47908 <0.0001
25 T 25 DS 55.1667 10.01291 5.50956 <0.0001
50 T 25 A 58.1067 10.01187 5.80377 <0.0001
50 DS 50 A 65.62 10.01342 6.55321 <0.0001
25 T 25 A 68.3467 10.01373 6.8253 <0.0001
50 T 50 A 73.84 10.0138 7.37383 <0.0001

Figure N-17: SPSS output for Levene test of equal variances for the 22 aircraft SHI values against
SPs-Composition interactions.

Figure N-18: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for
the 22 aircraft PHI values against SPs-Composition pairs.
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Table N.9: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Tertiary Halo
Incursions due to Aircraft (THIA) 22 aircraft cases versus Safety Protocols-Composition pairs.

Level -Level Score Mean Difference Std Err Dif Z p-Value

50 A 25 T+A -76.3133 10.01159 -7.6225 <0.0001
50 A 25 T -72.14 10.01379 -7.20407 <0.0001
50 A 100 DS -71.115 10.54384 -6.7447 <0.0001
50 DS 25 T+A -56.5667 10.01164 -5.65009 <0.0001
50 A 25 DS -50.7267 10.01315 -5.066 <0.0001
50 A 25 A -48.48 10.0107 -4.84282 <0.0001
50 DS 25 T -44.8533 10.01264 -4.47967 0.0003
50 T+A 25 T+A -44.76 10.00948 -4.47176 0.0003
25 A 100 DS -40.4617 10.5391 -3.83919 0.0039
50 T 25 T+A -32.8867 10.01064 -3.28517 0.0283
50 T+A 25 T -22.6667 10.01045 -2.2643 0.3641
50 T 25 T -21.3533 10.01306 -2.13255 0.4508
50 T+A 50 T 5.9333 10.01156 0.59265 0.9996
25 DS 100 DS 9.1178 10.5399 0.86507 0.9947
50 DS 25 DS 13.5133 10.00922 1.35009 0.916
50 DS 100 DS 20.0078 10.53917 1.89842 0.6149
50 T 50 DS 19.0733 10.01156 1.90513 0.6102
25 T+A 25 T 21.5733 10.00572 2.1561 0.4348
50 T 25 DS 28.9067 10.01181 2.88726 0.0917
50 T 100 DS 30.5861 10.54213 2.90132 0.0883
50 T+A 50 DS 34.68 10.00976 3.46462 0.0156
25 DS 25 A 36.98 10.01086 3.69399 0.0068
50 T+A 100 DS 50.7283 10.54188 4.81208 <0.0001
50 T+A 25 DS 48.3133 10.01022 4.8264 <0.0001
50 DS 25 A 52.34 10.01088 5.22831 <0.0001
25 T 100 DS 57.7683 10.54343 5.47908 <0.0001
25 T 25 DS 55.1667 10.01291 5.50956 <0.0001
50 T 25 A 58.1067 10.01187 5.80377 <0.0001
50 DS 50 A 65.62 10.01342 6.55321 <0.0001
25 T+A 100 DS 69.245 10.54296 6.56789 <0.0001
25 T 25 A 68.3467 10.01373 6.8253 <0.0001
50 T+A 25 A 69.56 10.01299 6.94697 <0.0001
25 T+A 25 A 71.76 10.01184 7.16751 <0.0001
25 T+A 25 DS 72.7267 10.01199 7.26396 <0.0001
50 T 50 A 73.84 10.0138 7.37383 <0.0001
50 T+A 50 A 76.2 10.01328 7.60989 <0.0001

Figure N-19: SPSS output for Levene test of equal variances for the 34 aircraft PHI values against
SP-Composition pairs.
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Figure N-20: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for
the 34 aircraft PHI values against SP-Composition pairs, excluding T+A safety protocols.

Table N.10: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Primary Halo
Incursion (PHI) 34 aircraft cases versus Safety Protocols-Composition pairs.

Level -Level Score Mean Difference Std Err Dif Z p-Value

50 A 25 T -76.8333 10.01511 -7.67174 <0.0001
50 T+A 50 T -74.5267 10.0147 -7.44173 <0.0001
50 A 25 T+A -73.4933 10.01486 -7.33843 <0.0001
50 DS 25 T -68.74 10.01548 -6.86338 <0.0001
50 T+A 25 T -50.0933 10.01375 -5.00245 <0.0001
50 DS 25 T+A -44.8067 10.01508 -4.47392 0.0003
50 A 100 DS -38.7689 10.54312 -3.67718 0.0073
25 T+A 25 T -35.92 10.01365 -3.5871 0.0101
50 A 25 DS -23.4 10.01318 -2.33692 0.3197
50 A 25 A -21.46 10.01231 -2.14336 0.4434
50 T+A 25 T+A -17.6 10.01332 -1.75766 0.7103
25 A 100 DS -9.3256 10.54328 -0.8845 0.9938
25 DS 100 DS 2.585 10.54457 0.24515 1
50 DS 100 DS 9.5211 10.54374 0.90301 0.9929
25 DS 25 A 10.8933 10.01347 1.08787 0.9761
50 DS 25 DS 18.0067 10.01369 1.79821 0.6835
50 DS 25 A 26.1933 10.01299 2.61593 0.1797
50 T 25 T 39.12 10.01371 3.90665 0.003
50 DS 50 A 53.58 10.01276 5.35117 <0.0001
50 T+A 50 DS 54.28 10.01412 5.42035 <0.0001
50 T+A 100 DS 62.5167 10.54502 5.92855 <0.0001
25 T+A 100 DS 64.3317 10.54612 6.10003 <0.0001
50 T+A 25 DS 63.9133 10.01394 6.38244 <0.0001
50 T 25 T+A 65.1867 10.01377 6.5097 <0.0001
25 T+A 25 A 69.22 10.01525 6.91146 <0.0001
25 T 100 DS 73.7428 10.54638 6.99224 <0.0001
50 T+A 25 A 70.5533 10.01449 7.04513 <0.0001
25 T+A 25 DS 70.7 10.01523 7.05925 <0.0001
50 T 100 DS 77.5439 10.54628 7.35272 <0.0001
25 T 25 DS 75.6867 10.01553 7.55693 <0.0001
25 T 25 A 75.92 10.01552 7.58023 <0.0001
50 T+A 50 A 76 10.01455 7.58896 <0.0001
50 T 50 DS 77.1733 10.01542 7.70545 <0.0001
50 T 25 DS 77.8 10.01546 7.76799 <0.0001
50 T 25 A 77.9867 10.01533 7.78673 <0.0001
50 T 50 A 77.9933 10.01492 7.78772 <0.0001
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Figure N-21: SPSS output for Levene test of equal variances for the 22 aircraft PHI values against
SP.

Figure N-22: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for
the 22 aircraft PHI values against SP.

Table N.11: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Primary Halo
Incursion (PHI) 22 aircraft cases versus Safety Protocols.

Level - Level Score Mean Difference Std Err Dif Z p-Value

DS A 197.1511 13.05863 15.09738 <.0001
T+A DS 183.4178 13.05781 14.0466 <.0001
T+A A 177.9444 10.96205 16.23278 <.0001
T A 163.5389 10.96168 14.91914 <.0001
T DS 112.1778 13.05428 8.59318 <.0001
T+A T 49.8222 10.94888 4.55044 <.0001

Figure N-23: SPSS output for Levene test of equal variances for the 34 aircraft PHI values against
SP.
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Figure N-24: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for
the 34 aircraft PHI values against SP.

Table N.12: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Primary Halo
Incursion (PHI) 22 aircraft cases versus Safety Protocols.

Level - Level Score Mean Difference Std Err Dif Z p-Value

T DS 237.973 13.0727 18.2038 <.0001
T+A DS 211.622 13.07027 16.1911 <.0001
T A 179.894 10.96536 16.4057 <.0001
T+A A 175.567 10.96457 16.0122 <.0001
DS A 82.547 13.06124 6.32 <.0001
T+A T -126.75 10.9616 -11.5631 <.0001

Figure N-25: SPSS output for Levene test of equal variances for the 22 aircraft TTD values against
SP-Composition pairs.

Figure N-26: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for
the 22 aircraft TTD values against SP-Composition pairs.

Figure N-27: SPSS output for Levene test of equal variances for the 22 aircraft TTD values against
SP.
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Table N.13: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Total Taxi Distance
(TTD) 22 aircraft cases versus SP-Composition pairs.

Level -Level Score Mean Difference Std Err Dif Z p-Value

50 A 100 DS -160.411 10.54764 -15.2082 <0.0001
50 A 25 T -149.993 10.01665 -14.9744 <0.0001
50 A 25 T+A -149.993 10.01665 -14.9744 <0.0001
50 A 25 DS -149.913 10.01665 -14.9664 <0.0001
50 DS 25 T+A -148.673 10.01665 -14.8426 <0.0001
50 A 25 A -147.433 10.01665 -14.7188 <0.0001
50 T+A 25 T+A -143.9 10.01665 -14.3661 <0.0001
50 DS 25 T -143.82 10.01665 -14.3581 <0.0001
50 T 25 T+A -97.78 10.01665 -9.7617 <0.0001
50 T 25 T -76.54 10.01665 -7.6413 <0.0001
50 T+A 25 T -72.993 10.01665 -7.2872 <0.0001
25 A 100 DS -35.976 10.54764 -3.4108 0.0187
50 DS 25 DS -27.82 10.01665 -2.7774 0.122
25 T+A 25 T 14.473 10.01665 1.4449 0.8804
50 DS 100 DS 23.729 10.54764 2.2497 0.3733
50 T+A 50 T 35.007 10.01665 3.4948 0.014
25 DS 100 DS 51.217 10.54764 4.8558 <0.0001
50 DS 25 A 53.647 10.01665 5.3557 <0.0001
25 DS 25 A 74.367 10.01665 7.4243 <0.0001
50 T 25 DS 96.193 10.01665 9.6033 <0.0001
50 T 50 DS 107.06 10.01665 10.6882 <0.0001
50 T 100 DS 124.221 10.54764 11.7771 <0.0001
50 T 25 A 125.527 10.01665 12.5318 <0.0001
50 T+A 25 DS 136.167 10.01665 13.594 <0.0001
50 T+A 50 DS 139.06 10.01665 13.8829 <0.0001
25 T 25 DS 141.66 10.01665 14.1424 <0.0001
50 T+A 25 A 146.9 10.01665 14.6656 <0.0001
50 T+A 100 DS 154.691 10.54764 14.6659 <0.0001
25 T 25 A 148.02 10.01665 14.7774 <0.0001
50 DS 50 A 149.473 10.01665 14.9225 <0.0001
25 T+A 25 DS 149.713 10.01665 14.9464 <0.0001
25 T+A 25 A 149.993 10.01665 14.9744 <0.0001
50 T 50 A 149.993 10.01665 14.9744 <0.0001
50 T+A 50 A 149.993 10.01665 14.9744 <0.0001
25 T 100 DS 159.433 10.54764 15.1155 <0.0001
25 T+A 100 DS 164.798 10.54764 15.6242 <0.0001

Figure N-28: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for
the 22 aircraft TTD values against SP.
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Table N.14: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Total Taxi Distance
(TTD) 22 aircraft cases versus SP.

Level - Level Score Mean Difference Std Err Dif Z p-Value

T+A DS 374.6356 16.58243 22.59232 <.0001
T DS 324.2715 16.58243 19.55512 <.0001
T+A A 298.45 14.15392 21.08604 <.0001
T A 286.7767 14.15392 20.2613 <.0001
DS A 260.6798 16.58243 15.72024 <.0001
T+A T 37.1367 14.15392 2.62377 0.0432

Figure N-29: SPSS output for Levene test of equal variances for the 34 aircraft TTD values against
SP.

Figure N-30: SPSS output for the non-parametric Kruskal-Wallis one-way analysis of variance for
the 34 aircraft TTD values against SP.

Table N.15: JMP PRO 10 output for Steel-Dwass Multiple Comparisons tests for Total Taxi Distance
(TTD) 34 aircraft cases versus SP.

Level - Level Score Mean Difference Std Err Dif Z p-Value

T DS 389.932 16.58243 23.5148 <.0001
T+A DS 372.978 16.58243 22.4924 <.0001
T A 299.997 14.15392 21.1953 <.0001
T+A A 297.55 14.15392 21.0225 <.0001
DS A 218.018 16.58243 13.1475 <.0001
T+A T -244.097 14.15392 -17.2459 <.0001
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N.2 Full Color Pareto Charts

Figure N-31: Pareto frontier plot of Tertiary Halo Incursions (THI) versus LD for 22 aircraft missions.
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Figure N-32: Pareto frontier plot of Tertiary Halo Incursions (THI) versus LD for 34 aircraft missions.
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Figure N-33: Pareto frontier plot of Tertiary Halo Incursions due to Aircraft (THIA) versus LD for
22 aircraft missions.
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Figure N-34: Pareto frontier plot of Tertiary Halo Incursions due to Aircraft (THIA) versus LD for
34 aircraft missions.
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Figure N-35: Pareto frontier plot of Duration of Tertiary Halo Incursions due to Aircraft (DTHIA)
versus LD for 22 aircraft missions.
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Figure N-36: Pareto frontier plot of Duration of Tertiary Halo Incursions due to Aircraft (DTHIA)
versus LD for 34 aircraft missions.
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Figure N-37: Pareto frontier plot of Primary Halo Incursion (PHI) versus LD for 22 aircraft missions,
excluding Temporal+Area cases.
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Figure N-38: Pareto frontier plot of Primary Halo Incursion (PHI) versus LD for 22 aircraft missions.
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Figure N-39: Pareto frontier plot of Primary Halo Incursion (PHI) versus LD for 34 aircraft missions.
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Figure N-40: Pareto frontier plot of Duration of Primary Halo Incursions (DPHI) versus LD for 22
aircraft missions.
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Figure N-41: Pareto frontier plot of Duration of Primary Halo Incursions (DPHI) versus LD for 34
aircraft missions.
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Figure N-42: Pareto frontier plot of Total Taxi Distance (TTD) versus LD for 22 aircraft missions.
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Figure N-43: Pareto frontier plot of Total Taxi Distance (TTD) versus LD for 34 aircraft missions.
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Figure N-44: Pareto frontier plot of Total Aircraft taXi Time (TAXT) versus LD for 22 aircraft
missions.
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Figure N-45: Pareto frontier plot of Total Aircraft taXi Time (TAXT) versus LD for 34 aircraft
missions.
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Figure N-46: Pareto frontier plot of Total Aircraft Active Time (TAAT) versus LD for 22 aircraft
missions.
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Figure N-47: Pareto frontier plot of Total Aircraft Active Time (TAAT) versus LD for 34 aircraft
missions.
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Figure N-48: Pareto frontier plot of Primary Collision warnings (PC) versus LD for 22 aircraft
missions.
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Figure N-49: Pareto frontier plot of Primary Collision warnings (PC) versus LD for 34 aircraft
missions.
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Figure N-50: Pareto frontier plot of Secondary Collision warnings (SC) versus LD for 22 aircraft
missions.
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Figure N-51: Pareto frontier plot of Secondary Collision warnings (SC) versus LD for 34 aircraft
missions.
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Figure N-52: Pareto frontier plot of Tertiary Collision warnings (TC) versus LD for 22 aircraft
missions.
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Figure N-53: Pareto frontier plot of Tertiary Collision warnings (TC) versus LD for 34 aircraft
missions.
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Figure N-54: Pareto frontier plot of Landing Strip Foul Time (LSFT) versus LD for 22 aircraft
missions.
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Figure N-55: Pareto frontier plot of Landing Strip Foul Time (LSFT) versus LD for 34 aircraft
missions.
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Figure N-56: Pareto frontier plot of Number assigned to Street (NS) versus LD for 22 aircraft
missions.
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Figure N-57: Pareto frontier plot of Number assigned to Street (NS) versus LD for 34 aircraft
missions.
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Figure N-58: Pareto frontier plot of Number assigned to Fantail (NF) versus LD for 22 aircraft
missions.
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Figure N-59: Pareto frontier plot of Number assigned to Fantail (NF) versus LD for 34 aircraft
missions.
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Figure N-60: Pareto frontier plot of Duration of Vehicles in Street (SD) versus LD for 22 aircraft
missions.
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Figure N-61: Pareto frontier plot of Duration of Vehicles in Street (SD) versus LD for 34 aircraft
missions.
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Figure N-62: Pareto frontier plot of Duration of Vehicles in Fantail (FD) versus LD for 22 aircraft
missions.
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Figure N-63: Pareto frontier plot of Duration of Vehicles in Fantail (FD) versus LD for 34 aircraft
missions.
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Appendix O

Statistical Tests for Design

Exploration

Figure O-1: SPSS output for Levene test of equal variances for LD values for all control architectures
at 22 aircraft under the 50% standard deviation launch preparation time.

Figure O-2: SPSS output for an ANOVA of LD values for all control architectures at 22 aircraft
under the 50% standard deviation launch preparation time.
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Figure O-3: SPSS output for Tukey HSC test of LD values for all control architectures at 22 aircraft
under the 50% standard deviation launch preparation time.

Figure O-4: SPSS output for Levene test of equal variances for LD values for all control architectures
at 34 aircraft under the 50% standard deviation launch preparation time.
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Figure O-5: SPSS output for an ANOVA of LD values for all control architectures at 34 aircraft
under the 50% standard deviation launch preparation time.

Figure O-6: SPSS output for Levene test of equal variances for LD values for all control architectures
at 22 aircraft under the launch preparation time model with 50% reduction in mean and 50%
reduction in standard deviation.

Table O.1: JMP PRO 10 output for a Steel-Dwass non-parametric simultaneous comparisons test
of LD values for all control architectures for 34 aircraft under the launch preparation time model
with 50% reduction in mean and standard deviation.

RT -50 LT -50 26.2333 4.50925 5.81767 <.0001

RT -50 MC -50 24.4333 4.50925 5.41849 <.0001
VH -50 SH -50 22.5667 4.50925 5.00453 <.0001
VH -50 LT -50 20.7667 4.50925 4.60535 <.0001
VH -50 MC -50 19.4333 4.50925 4.30966 0.0002
MC -50 LT -50 -0.9 4.50925 -0.19959 1
RT -50 GC -50 -0.9667 4.50925 -0.21437 0.9999
SH -50 MC -50 -4.4333 4.50925 -0.98316 0.9235
SH -50 LT -50 -6.5 4.50925 -1.44148 0.7015
VH -50 GC -50 -8.7333 4.509187 -1.93679 0.3795
VH -50 RT -50 -9.9 4.50925 -2.19549 0.2397
MC -50 GC -50 -23.6333 4.50925 -5.24108 <.0001
LT -50 GC -50 -24.9 4.50925 -5.52198 <.0001
SH -50 GC -50 -25.7 4.50925 -5.6994 <.0001
SH -50 RT -50 -26.3667 4.50925 -5.84724 <.0001
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Figure O-7: SPSS output for a Tukey HSD test of LD values for all control architectures at 34
aircraft under the 50% standard deviation launch preparation time.
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Figure O-8: SPSS output for an ANOVA test for LD values for all control architectures at 22 aircraft
under the launch preparation time model with 50% reduction in mean and 50% reduction in standard
deviation.

Figure O-9: SPSS output for Tukey HSD test for LD values for all control architectures at 22
aircraft under the launch preparation time model with 50% reduction in mean and 50% reduction
in standard deviation.
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Figure O-10: SPSS output for Levene test of equal variances for LD values for all control architectures
for 34 aircraft under the launch preparation time model with 50% reduction in mean and standard
deviation.

Figure O-11: SPSS output for a Kruskal-Wallis test of LD values for all control architectures for
34 aircraft under the launch preparation time model with 50% reduction in mean and standard
deviation.

Figure O-12: SPSS output for Levene test of equal variances for LD values for all control architectures
at 22 aircraft under the “automated” launch preparation time.

Figure O-13: SPSS output for Kruskal-Wallis nonparametric analysis of variance for LD values for
all control architectures at 22 aircraft under the “automated” launch preparation time.

Figure O-14: SPSS output for Levene test of equal variances for LD values for all control architectures
at 34 aircraft under the “automated” launch preparation time.
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Table O.2: JMP Pro 10 output for Steel-Dwass nonparametric simultaneous comparisons test of LD
values for all control architectures at 22 aircraft under the “automated” launch preparation time.

Level - Level Score Mean Difference Std Err Dif Z p-Value

RT MC 29.9667 4.50925 6.6456 < .0001
VH MC 29.9667 4.50925 6.6456 < .0001
VH LT 29.7667 4.50925 6.60125 < .0001
RT LT 29.5667 4.50925 6.55689 < .0001
VH SH 27.3 4.50925 6.05422 < .0001
SH MC 27.1667 4.50925 6.02465 < .0001
SH LT 24.1667 4.50925 5.35935 < .0001
VH RT 22.7667 4.50925 5.04888 < .0001
VH GC 4.0333 4.509187 0.89447 0.948
MC LT -6.9 4.50925 -1.53019 0.6447
SH RT -15.5 4.50925 -3.43738 0.0077
RT GC -22.9 4.509187 -5.07852 < .0001
SH GC -27.5 4.509187 -6.09866 < .0001
LT GC -29.9 4.509187 -6.63091 < .0001
MC GC -29.9667 4.509187 -6.64569 < .0001

Figure O-15: SPSS output for Kruskal-Wallis nonparametric analysis of variance for LD values for
all control architectures at 34 aircraft under the “automated” launch preparation time.

Table O.3: JMP Pro 10 output for Stell-Dwass nonparametric simultaneous comparisons test of LD
values for all control architectures at 34 aircraft under the “automated” launch preparation time.

Level - Level Score Mean Difference Std Err Dif Z p-Value

RT LT 29.9667 4.50925 6.6456 < .0001
RT MC 29.9667 4.50925 6.6456 < .0001
VH SH 29.3 4.50925 6.49775 < .0001
RT GC 18.8333 4.50925 4.1766 0.0004
VH MC 0.9 4.50925 0.19959 1
VH LT -2.4333 4.50925 -0.53963 0.9945
MC LT -3.3 4.50925 -0.73183 0.9781
SH MC -27.0333 4.50925 -5.99508 < .0001
SH LT -28.9 4.50925 -6.40905 < .0001
LT GC -29.3667 4.50925 -6.51254 < .0001
MC GC -29.3667 4.50925 -6.51254 < .0001
VH GC -29.3667 4.50925 -6.51254 < .0001
SH GC -29.9667 4.50925 -6.6456 < .0001
SH RT -29.9667 4.50925 -6.6456 < .0001
VH RT -29.9667 4.50925 -6.6456 < .0001
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Figure O-16: SPSS output for Levene test of equal variances for LD values for the GC architecture
across all safety protocols at 22 aircraft under the “automated” launch preparation time.

Figure O-17: SPSS output for Kruskal-Wallis non-parametric analysis of variance for LD values
for the GC architecture across all safety protocols at 22 aircraft under the “automated” launch
preparation time.

Table O.4: SPSS output for Steel-Dwass non-parametric simultaneous comparisons tests for LD
values for the GC architecture across all safety protocols at 22 aircraft under the “automated”
launch preparation time.

Level - Level Score Mean Difference Std Err Dif Z p-Value

T+A DS 73.45833 7.240888 10.14493 < .0001
T DS 68.43056 7.240888 9.45057 < .0001
T+A A 59.98333 6.350853 9.44493 < .0001
T A 59.71667 6.350853 9.40294 < .0001
DS A 27.76389 7.240888 3.83432 0.0007
T+A T 21.15 6.350853 3.33026 0.0048

Figure O-18: SPSS output for Levene test of equal variances for LD values for the GC architecture
across all safety protocols at 34 aircraft under the “automated” launch preparation time.
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Figure O-19: SPSS output for Kruskal-Wallis non-parametric analysis of variance for LD values
for the GC architecture across all safety protocols at 34 aircraft under the “automated” launch
preparation time.

Table O.5: SPSS output for Steel-Dwass non-parametric simultaneous comparisons tests for LD
values for the GC architecture across all safety protocols at 34 aircraft under the “automated”
launch preparation time.

Level - Level Score Mean Difference Std Err Dif Z p-Value

T+A DS 74.98611 7.240895 10.35592 < .0001
T DS 74.70833 7.240895 10.31756 < .0001
T+A A 59.98333 6.350853 9.44493 < .0001
T A 59.91667 6.350853 9.43443 < .0001
T+A T 41.01667 6.350853 6.45845 < .0001
DS A 18.45833 7.240895 2.54918 0.0527

Figure O-20: SPSS output for Levene test of equal variances for LD values for the SBSC architecture
across all safety protocols at 22 aircraft under the “automated” launch preparation time.

Figure O-21: SPSS output for Kruskal-Wallis non-parametric analysis of variance for LD values
for the SBSC architecture across all safety protocols at 22 aircraft under the “automated” launch
preparation time.

Figure O-22: SPSS output for Levene test of equal variances for LD values for the SBSC architecture
across all safety protocols at 34 aircraft under the “automated” launch preparation time.
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Table O.6: SPSS output for Steel-Dwass non-parametric simultaneous comparisons tests for LD
values for the SBSC architecture across all safety protocols at 22 aircraft under the “automated”
launch preparation time.

Level - Level Score Mean Difference Std Err Dif Z p-Value

T DS 74.98611 7.240895 10.35592 < .0001
T+A DS 74.98611 7.240895 10.35592 < .0001
T A 59.98333 6.350853 9.44493 < .0001
T+A A 59.98333 6.350853 9.44493 < .0001
T+A T 49.25 6.350853 7.75486 < .0001
DS A 26.125 7.240895 3.60798 0.0018

Figure O-23: SPSS output for Kruskal-Wallis non-parametric analysis of variance for LD values
for the SBSC architecture across all safety protocols at 34 aircraft under the “automated” launch
preparation time.

Table O.7: SPSS output for Steel-Dwass non-parametric simultaneous comparisons tests for LD
values for the SBSC architecture across all safety protocols at 34 aircraft under the “automated”
launch preparation time.

Level - Level Score Mean Difference Std Err Dif Z p-Value

T DS 74.9861 7.240895 10.3559 < .0001
T+A DS 74.9861 7.240895 10.3559 < .0001
T A 59.9833 6.350853 9.4449 < .0001
T+A A 59.9833 6.350853 9.4449 < .0001
T+A T 16.45 6.350853 2.5902 0.0473
DS A -58.375 7.240895 -8.0618 < .0001

Figure O-24: SPSS output for Levene test of equal variances for LD values for the GC architecture
across different parameter settings at 22 aircraft under the “automated” launch preparation time.

Figure O-25: SPSS output for Kruskal-Wallis non-parametric analysis of variance for LD values for
the GC architecture across different parameter settings at 22 aircraft under the “automated” launch
preparation time.
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Table O.8: JMP PRO 10 output for Steel-Dwass non-parametric simultaneous comparisons test
of LD values for the GC architecture across different parameter settings at 22 aircraft under the
“automated” launch preparation time.

Level - Level Score Mean Difference Std Err Dif Z p-Value

LowLatency LowFailure -0.3 4.50925 -0.06653 1
Manual Control LowLat+Fail -13.0667 4.509187 -2.89779 0.0308
LowLat+Fail LowLatency -18.6333 4.50925 -4.13225 0.0003
LowLatency GC Base -19.1667 4.509187 -4.25058 0.0002
LowFailure GC Base -19.6333 4.509187 -4.35407 0.0001
LowLat+Fail LowFailure -20.4333 4.50925 -4.53143 < .0001
Manual Control LowLatency -27.3 4.50925 -6.05422 < .0001
Manual Control LowFailure -28.2333 4.50925 -6.2612 < .0001
LowLat+Fail GC Base -28.6333 4.509187 -6.35 < .0001
Manual Control GC Base -29.9667 4.509187 -6.64569 < .0001

Figure O-26: SPSS output for Levene test of equal variances for LD values for the GC architecture
across different parameter settings at 34 aircraft under the “automated” launch preparation time.

Figure O-27: SPSS output for Kruskal-Wallis non-parametric analysis of variance for LD values for
the GC architecture across different parameter settings at 34 aircraft under the “automated” launch
preparation time.

Table O.9: JMP PRO 10 output for Steel-Dwass non-parametric simultaneous comparisons test
of LD values for the GC architecture across different parameter settings at 34 aircraft under the
“automated” launch preparation time.

Level - Level Score Mean Difference Std Err Dif Z p-Value

LowLatency LowFailure 15.4333 4.50925 3.42259 0.0056
Manual Control LowLat+Fail 2.0333 4.50925 0.45092 0.9915
LowLatency GC Base -12.6333 4.50925 -2.80165 0.0407
LowFailure GC Base -25.1667 4.50925 -5.58112 < .0001
Manual Control LowFailure -25.7 4.50925 -5.6994 < .0001
LowLat+Fail LowFailure -28.4333 4.50925 -6.30556 < .0001
Manual Control LowLatency -28.5667 4.50925 -6.33513 < .0001
Manual Control GC Base -29.3667 4.50925 -6.51254 < .0001
LowLat+Fail LowLatency -29.7 4.50925 -6.58646 < .0001
LowLat+Fail GC Base -29.7667 4.50925 -6.60125 < .0001
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Figure O-28: SPSS output for Levene test of equal variances for LD values for the GC architecture
across different parameter settings at 22 aircraft under the “automated” launch preparation time,
including the Low Penalty case.

Figure O-29: SPSS output for Kruskal-Wallis non-parametric analysis of variance for LD values for
the GC architecture across different parameter settings at 22 aircraft under the “automated” launch
preparation time, including the Low Penalty case.

Table O.10: JMP PRO 10 output for Steel-Dwass non-parametric simultaneous comparisons test
of LD values for the GC architecture across different parameter settings at 22 aircraft under the
“automated” launch preparation time, including the Low Penalty case.

Level - Level Score Mean Difference Std Err Dif Z p-Value

LowLatency LowFailure -0.3 4.50925 -0.06653 1
Manual Control LowPen -2.5667 4.508247 -0.56933 0.993
LowPen LowLat+Fail -5.9667 4.508811 -1.32333 0.7722
Manual Control LowLat+Fail -13 4.507746 -2.88392 0.0454
LowLat+Fail LowLatency -18.6667 4.508999 -4.13987 0.0005
LowLatency GC Base -19.2333 4.508999 -4.26554 0.0003
LowFailure GC Base -19.6667 4.509062 -4.36159 0.0002
LowLat+Fail LowFailure -20.4667 4.509124 -4.53894 < .0001
LowPen LowLatency -21.5667 4.509124 -4.78289 < .0001
LowPen LowFailure -22.1 4.509124 -4.90117 < .0001
Manual Control LowLatency -27.3667 4.50831 -6.07027 < .0001
Manual Control LowFailure -28.2667 4.508435 -6.26973 < .0001
LowLat+Fail GC Base -28.6333 4.509062 -6.35018 < .0001
LowPen GC Base -29.5 4.508999 -6.54247 < .0001
Manual Control GC Base -29.9667 4.508373 -6.64689 < .0001
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Figure O-30: SPSS output for Levene test of equal variances for LD values for the GC architecture
across different failure rates at 22 aircraft under the “automated” launch preparation time, using
Low Latency and Low Penalty.

Figure O-31: SPSS output for Kruskal-Wallis non-parametric analysis of variance for LD values
for the GC architecture across different failure rates at 22 aircraft under the “automated” launch
preparation time, using Low Latency and Low Penalty.

Table O.11: JMP PRO 10 output for Steel-Dwass non-parametric simultaneous comparisons test for
LD values for the GC architecture across different failure rates at 22 aircraft under the “automated”
launch preparation time, using Low Latency and Low Penalty.

Level - Level Score Mean Difference Std Err Dif Z p-Value

LowLat+Pen 3% LowLat+Pen 2% 15.8333 4.50925 3.5113 0.0059
LowLat+Pen 3% LowLat+Pen 1% 15.4333 4.50925 3.42259 0.0082
LowLat+Pen 5% LowLat+Pen 2% 8.6333 4.50925 1.91458 0.393
LowLat+Pen 4% LowLat+Pen 2% 8.5667 4.50925 1.8998 0.4022
LowLat+Pen 5% LowLat+Pen 1% 8.3 4.50925 1.84066 0.4394
LowLat+Pen 4% LowLat+Pen 1% 7.2333 4.50925 1.60411 0.5958
LowLat+Pen 5% LowLat+Pen 4% 3.2333 4.50925 0.71704 0.98
LowLat+Pen 2% LowLat+Pen 1% 0.5 4.50925 0.11088 1
MC LowLat+Pen 1% -2.5667 4.508498 -0.5693 0.993
MC LowLat+Pen 2% -6.4333 4.508498 -1.42693 0.7106
LowLat+Pen 5% LowLat+Pen 3% -6.8333 4.50925 -1.5154 0.6543
LowLat+Pen 4% LowLat+Pen 3% -9.2333 4.509124 -2.0477 0.3153
MC LowLat+Pen 5% -14.0333 4.508498 -3.11264 0.0228
MC LowLat+Pen 4% -15.9 4.508498 -3.52667 0.0056
MC LowLat+Pen 3% -23.7 4.508498 -5.25674 < .0001
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