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Abstract

Social networks, voting, and polarization all fall into the realm of the instrument,
process, and consequence of information aggregation in social settings. These are
both classical topics that have motivated studies from various disciplines, and active
areas in need of new models as novel phenomenon, demand, and proposals continue
to emerge in recent years. In this thesis, we study three models for social information
aggregation inspired by these three topics respectively.

In the first chapter, we consider how to detect corruption when each network
nodes’ true identities are only locally known. In this model, each vertex reports about
the types - truthful or corrupt - of its neighbors, where truthful nodes report the true
types and corrupt nodes report adversarially. We show that detecting corruption
in this model yields linear-time algorithm while the minimal number of nodes the
corrupt party needs to control in order to hide all corruption is hard to approximate
to any multiplicative factor, assuming the Small Set Expansion Hypothesis.

In the second chapter, we propose a geometric opinion dynamic model where a
strong form of polarization in high-dimension emerges: public opinions not only rad-
icalize on each issue, but also correlate across issues. We demonstrate that this type
of polarization could arise as an unintended byproduct of influencers’ natural effort
to promote a product or an idea. We analyze this mechanism with one or more in-
fluencers, sending messages strategically, heuristically, or randomly, and examine the
computational aspects of optimal influencing strategy and its effect on polarization.

The third chapter considers whether distributed election procedure can aggregate
to good social choice outcomes when voters delegate strategically. We model liquid
democracy as a game where voters with continuous-valued preference peaks choose
between delegation and learning about policies at a cost and voting directly. We
derive the pure-strategy coalition-proof Nash equilibrium and show that equilibrium
delegation network varies with learning cost. When cost is low, all voters delegate to
the median is a cpNE. As learning cost increases, new forms of cpNE emerge, where
extreme voters delegate inward and moderate voters delegate outward to the nearest
incentized voters.
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Chapter 1

Introduction

Social networks, voting, and polarization all fall into the realm of the instrument,

process, and consequence of information aggregation in social settings. These are

both classical topics that have motivated studies from various disciplines, and also

active areas in need of new models as novel phenomenon, demand and proposals

continue to emerge in recent years.

Survey on public opinions and data analysis from online social media have shown

nontrivial correlation on the public’s opinions on a priori unrelated topics. Remote

elections during the COVID-19 pandemic, including the election for US president in

2020, reignite interest in the trustworthiness and effectiveness of online voting, novel

alternatives, and voting methods in general. Large online social networks including

long-standing ones such as Facebook and Twitter, and new virtual communities have

become not only more prevalent, but also more influential and relied on, catalyzed

and demanded by the pandemic and largely remain so in the post-pandemic world

where social distancing measures prolong. As one of the main information exchange

channel in an increasingly online social world, online social media’s reliability becomes

crucial more than ever.

In this thesis, we study three models for social information aggregation inspired

by these three topics respectively. These include a strong form of polarization where

public opinions not only radicalize on each issue, but also correlate on different dimen-

sions, a novel election scheme proposal called liquid democracy that allows transitive
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delegation to other voters, and large social networks containing malicious agents with

an additional local audit capability. In particular, we will consider how to detect

corruption when each network nodes’ true identities are only locally known, study

whether distributed election procedure can aggregate to good social choice outcomes

when agents delegate strategically, and propose a new model where issue alignment,

the strong form of polarization can naturally emerge as a consequence of agents re-

sponding to persuading information outlet. In all of these models, information is

local, but the impact of the procedure is global.

In the next sections, we give a general summary for the main results of each

chapter, before proceeding to elaborate on each in independent chapters.

1.1 Overview of Chapters

Chapter 2: Corruption detection on networks: a computational complexity

lens.

In Chapter 2, we consider a variation of the problem of corruption detection

on networks posed by Alon, Mossel, and Pemantle ’15. In this model, each vertex

of a graph can be either truthful or corrupt. Each vertex reports about the types

(truthful or corrupt) of all its neighbors to a central agency, where truthful nodes

report the true types they see and corrupt nodes report adversarially. The central

agency aggregates these reports and attempts to find a single truthful node. Inspired

by real auditing networks, we pose our problem for arbitrary graphs and consider

corruption through a computational lens. We identify a key combinatorial parameter

of the graph 𝑚(𝐺), which is the minimal number of corrupted agents needed to

prevent the central agency from identifying a single corrupt node. We give an efficient

(in fact, linear time) algorithm for the central agency to identify a truthful node that

is successful whenever the number of corrupt nodes is less than 𝑚(𝐺)/2. On the other

hand, we prove that for any constant 𝛼 > 1, it is NP-hard to find a subset of nodes

S in G such that corrupting 𝑆 prevents the central agency from finding one truthful

node and |𝑆|≤ 𝛼𝑚(𝐺), assuming the Small Set Expansion Hypothesis (Raghavendra
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and Steurer, STOC ’10). We conclude that being corrupt requires being clever, while

detecting corruption does not.

Our main technical insight is a relation between the minimum number of corrupt

nodes required to hide all truthful nodes and a certain notion of vertex separability for

the underlying graph. Additionally, this insight lets us design an efficient algorithm

for a corrupt party to decide which graphs require the fewest corrupted nodes, up to

a multiplicative factor of 𝑂(log 𝑛).

This chapter is based on the paper “Being Corrupt Requires Being Clever, But

Detecting Corruption Doesn’t”, which is joint work with Elchanan Mossel and Govind

Ramnarayan. This appeared in ITCS 2019 [52].

Chapter 3: The curse of dimensionality in opinion dynamics

The second line of work, contained in Chapter 3, proposes a model that attempts

to capture the multi-dimensionality of public opinion in real life. At its core are two

key "axioms": (i) population’s opinion structure consists of "logically" or "philosophi-

cally" relatively independent dimensions , and (ii) these dimensions can influence each

other in interactions of with others’ opinions, and are used in such ways in interven-

tions such as campaigns.

To capture these features, we introduce a simple, geometric model of opinion po-

larization. It is a model of political persuasion, as well as marketing and advertising,

utilizing social values. It focuses on the interplay between different topics and per-

suasion efforts. We demonstrate that societal opinion polarization often arises as

an unintended byproduct of influencers attempting to promote a product or idea.

We discuss and define a strong form of polarization where the end opinion structure

demonstrates large correlation across independent topics. We discuss a number of

mechanisms for the emergence of this polarization involving one or more influencers,

sending messages strategically, heuristically, or randomly. We also examine some

computational aspects of choosing the most effective means of influencing agents,

and the effects of those strategic considerations on polarization.

This chapter is based on the paper “A Geometric Model of Opinion Polarizatiohn”,
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which is joint work with Jan Hązła, and Elchanan Mossel, and Govind Ramnarayan.

A preprint is available at [48] and will appear in Mathematics of Operations Research

in 2023.

Chapter 4: Voting and strategy in a delegative democracy

In Chapter 4, we propose a game-theoretic model of liquid democracy where a

population has heterogeneous and continuous ideological preferences (e.g., a continu-

ous left to right opinion position). In this model, a finite set of voters face unknown

policy candidates generated from a common prior. Each voter either invests effort to

learn the policies and votes directly or delegates to another voter, leveraging ready

information about other voters’ preferences. We derive pure-strategy coalition-proof

Nash equilibria in this game and show a relation between learning cost and the form

of equilibrium delegation networks.

In particular, with low learning cost, echoing the classical median voter theory,

all voters delegating to median is a coalition-proof NE. However, as learning cost

increases, a region of disincentivised voters forms in the middle of the political spec-

trum. New structure of coalition-proof NE emerges where extreme voters delegate

inward and moderate voters delegate outward to the most moderate voter who is still

incentivised to learn. Non-trivial delegation to opposite political spectrum occurs in

order to rule out more unfavored coalitions. This exploratory analysis sheds light

on how rational agents may decide to delegate in a population with varying political

stances under a delegative democratic scheme.

This chapter is based on the paper “A Median Voter Theory for Liquid Democ-

racy”, which is joint work with Chin-Chia Hsu and Elchanan Mossel.
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Chapter 2

Being Corrupt Requires Being Clever,

But Detecting Corruption Doesn’t

2.1 Introduction

2.1.1 Corruption Detection and Problem Set-up

We study the problem of identifying truthful nodes in networks, in the model of

corruption detection on networks posed by Alon, Mossel, and Pemantle [1]. In this

model, we have a network represented by a (possibly directed) graph. Nodes can

be truthful or corrupt. Each node audits its outgoing neighbors to see whether they

are truthful or corrupt, and sends reports of their identities to a central agency.

The central agent, who is not part of the graph, aggregates the reports and uses

them to identify truthful and corrupt nodes. Truthful nodes report truthfully (and

correctly) on their neighbors, while corrupt nodes have no such restriction: they can

assign arbitrary reports to their neighbors, regardless of whether their neighbors are

truthful or corrupt, and coordinate their efforts with each other to prevent the central

agency from gathering useful information.

In [1], the authors consider the problem of recovering the identities of almost all

nodes in a network in the presence of many corrupt nodes; specifically, when the

fraction of corrupt nodes can be very close to 1/2. They call this the corruption
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detection problem. They show that the central agency can recover the identity of

most nodes correctly even in certain bounded-degree graphs, as long as the underlying

graph is a sufficiently good expander. The required expansion properties are known

to hold for a random graph or Ramanujan graph of sufficiently large (but constant)

degree, which yields undirected graphs that are amenable to corruption detection.

Furthermore, they show that some level of expansion is necessary for identifying

truthful nodes, by demonstrating that the corrupt nodes can stop the central agency

from identifying any truthful node when the graph is a very bad expander (e.g. a

cycle), even if the corrupt nodes only make up 0.01 fraction of the network.

This establishes that very good expanders are very good for corruption detection,

and very bad expanders can be very bad for corruption detection. We note that this

begs the question of how effective graphs that do not fall in either of these categories

are for corruption detection. In the setting of [1], we could ask the following: given

an arbitrary undirected graph, what is the smallest number of corrupt nodes that

can prevent the identification of almost all nodes? When there are fewer than this

number, can the central agency efficiently identify almost all nodes correctly? Alon,

Mossel, and Pemantle study these questions for the special cases of highly expanding

graphs and poorly expanding graphs, but do not address general graphs.

Additionally, [1] considers corruption detection when the corrupt agencies can

choose their locations and collude arbitrarily, with no bound on their computational

complexity. This is perhaps overly pessimistic: after all, it is highly unlikely that

corrupt agencies can solve NP-hard problems efficiently and if they can, thwarting

their covert operations is unlikely to stop their world domination. We suggest a model

that takes into account computational considerations, by factoring in the computation

time required to select the nodes in a graph that a corrupt party chooses to control.

This yields the following question from the viewpoint of a corrupt party: given a

graph, can a corrupt party compute the smallest set of nodes it needs to corrupt in

polynomial time?

In addition to being natural from a mathematical standpoint, these questions

are also well-motivated socially. It would be naïve to assert that we can weed out
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corruption in the real world by simply designing auditing networks that are expanders.

Rather, these networks may already be formed, and infeasible to change in a drastic

way. Given this, we are less concerned with finding certain graphs that are good for

corruption detection, but rather discerning how good existing graphs are; specifically,

how many corrupt nodes they can tolerate. In particular, since the network structure

could be out of the control of the central agency, algorithms for the central agency to

detect corruption on arbitrary graphs seem particularly important.

It is also useful for the corrupt agency to have an algorithm with guarantees for

any graph. Consider the following example of a corruption detection problem from

the viewpoint of a corrupt organization. Country A wants to influence policy in

country B, and wants to figure out the most efficient way to place corrupted nodes

within country B to make this happen. However, if the central government of B

can confidently identify truthful nodes, they can weight those nodes’ opinions more

highly, and thwart country A’s plans. Hence, the question country A wants to solve

is the following: given the graph of country B, can country A compute the optimal

placement of corrupt nodes to prevent country B from finding truthful nodes? We

note that in this question, too, the graph of country B is fixed, and hence, country

A would like to have an algorithm that takes as input any graph and computes the

optimal way to place corrupt nodes in order to hide all the truthful nodes.

We study the questions above for a variant of the corruption detection problem

in [1], in which the goal of the central agency is to find a single truthful node. While

this goal is less ambitious than the goal of identifying almost all the nodes, we think

it is a very natural question in the context of corruption. For one, if the central

agency can find a single truthful node, they can use the trusted reports from that

node to identify more truthful and corrupt nodes that it might be connected to. The

central agency may additionally weight the opinions of the truthful nodes more when

making policy decisions (as alluded to in the example above), and can also incentivize

truthfulness by rewarding truthful nodes that it finds and giving them more influence

in future networks if possible (by increasing their out-degrees). Moreover, our proofs

and results extend to finding larger number of truthful nodes as we discuss below.
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Our results stem from a tie between the problem of finding a single truthful node

in a graph and a measure of vertex separability of the graph. This tie not only yields

an efficient and relatively effective algorithm for the central agency to find a truthful

node, but also allows us to relate corrupt party’s strategy to the problem of finding a

good vertex separator for the graph. Hence, by analyzing the purely graph-theoretic

problem of finding a good vertex separator, we can characterize the difficulty of finding

a good set of nodes to corrupt. Similar notions of vertex separability have been studied

previously (e.g. [63, 74, 14]), and we prove NP-hardness for the notion relevant to

us assuming the Small Set Expansion Hypothesis (SSEH). The Small Set Expansion

Hypothesis is a hypothesis posed by Raghavendra and Steurer [83] that is closely

related to the famous Unique Games Conjecture of Khot [57]. In fact, [83] shows that

the SSEH implies the Unique Games Conjecture. The SSEH yields hardness results

that are not known to follow directly from the UGC, especially for graph problems

like sparsest cut and treewidth ([84] and [4] respectively), among others.

2.1.2 Our Results

We now outline our results more formally. We analyze the variant of corruption

detection where the central agency’s goal is to find a single truthful node. First, we

study how effectively the central agency can identify a truthful node on an arbitrary

graph, given a set of reports. Given an undirected graph1 𝐺, we let 𝑚(𝐺) denote the

minimal number of corrupted nodes required to stop the central agency from finding

a truthful node, where the minimum is taken over all strategies of the corrupt party

(not just computationally bounded ones). We informally call 𝑚(𝐺) the “critical”

number of corrupt nodes for a graph 𝐺. Then, we show the following:

Theorem 1. Fix a graph 𝐺 and suppose that the corrupt party has a budget 𝑏 ≤

𝑚(𝐺)/2. Then the central agency can identify a truthful node, regardless of the strat-

egy of the corrupt party, and without knowledge of either 𝑚(𝐺) or 𝑏. Furthermore,

the central agency’s algorithm runs in linear time (in the number of edges in the graph

1Unless explicitly specified, all graphs are undirected by default.
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𝐺).

Next, we consider the question from the viewpoint of the corrupt party: can

the corrupt party efficiently compute the most economical way to allocate nodes to

prevent the central agency from finding a truthful node? Concretely, we focus on

a natural decision version of the question: given a graph 𝐺 and a upper bound on

the number of possible corrupted nodes 𝑘, can the corrupt party prevent the central

agency from finding a truthful node?

We actually focus on an easier question: can the corrupt party accurately compute

𝑚(𝐺), the minimum number of nodes that they need to control to prevent the central

agency from finding a truthful node? Not only do we give evidence that computing

𝑚(𝐺) exactly is computationally hard, but we also provide evidence that 𝑚(𝐺) is hard

to approximate. Specifically, we show that approximating 𝑚(𝐺) to any constant factor

is NP-hard under the Small Set Expansion Hypothesis (SSEH); or in other words,

that it is SSE-hard.

Theorem 2. For every 𝛽 > 1, there is a constant 𝜖 > 0 such that the following

is true. Given a graph 𝐺 = (𝑉,𝐸), it is SSE-hard to distinguish between the case

where 𝑚(𝐺) ≤ 𝜖 · |𝑉 | and 𝑚(𝐺) ≥ 𝛽 · 𝜖 · |𝑉 |. Or in other words, the problem of

approximating the critical number of corrupt nodes for a graph to within any constant

factor is SSE-hard.

This Theorem immediately implies the following Corollary 1.

Corollary 1. Assume the SSE Hypothesis and that P ̸= NP. Fix any 𝛽 > 1. There

does not exist a polynomial-time algorithm that takes as input an arbitrary graph

𝐺 = (𝑉,𝐸) and outputs a set of nodes 𝑆 with size |𝑆|≤ 𝑂(𝛽 · 𝑚(𝐺)), such that

corrupting 𝑆 prevents the central agency from finding a truthful node.

We note that in Corollary 1, the bad party’s input is only the graph 𝐺: specifically,

they do not have knowledge about the value of 𝑚(𝐺).

Our proof for Theorem 2 is similar to the proof of Austrin, Pitassi, and Wu [4]

for the SSE-hardness of approximating treewidth. This is not a coincidence: in fact,
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the “soundness” in their reduction involves proving that their graph does not have a

good 1/2 vertex separator, where the notion of vertex separability (from [23]) is very

related to the version we use to categorize the problem of hiding a truthful vertex.

We give the proof of Theorem 2 in Section 2.3.2.

However, if one allows for an approximation factor of 𝑂(log|𝑉 |), then 𝑚(𝐺) can be

approximated efficiently. Furthermore, this yields an approximation algorithm that

the corrupt party can use to find a placement that hinders detection of a truthful

node.

Theorem 3. There is a polynomial-time algorithm that takes as input a graph 𝐺 =

(𝑉,𝐸) and outputs a set of nodes 𝑆 with size |𝑆|≤ 𝑂(log|𝑉 |·𝑚(𝐺)), such that cor-

rupting 𝑆 prevents the central agency from finding a truthful node.

The proof of Theorem 3, given in Section 2.3.2, uses a bi-criterion approxima-

tion algorithm for the 𝑘-vertex separator problem given by [63]. As alluded to in

Section 2.1.1, Theorems 2 and 3 both rely on an approximate characterization of

𝑚(𝐺) in terms of a measure of vertex separability of the graph 𝐺, which we give in

Section 2.3.

Additionally, we note that we can adapt Theorems 1 and 2 (as well as Corollary 1)

to a more general setting, where the central agency wants to recover some arbitrary

number of truthful nodes, where the number of nodes can be proportional to the

size of the graph. We describe how to modify our proofs to match this more general

setting in Section 2.5.

Together, Theorems 1 and 2 uncover a surprisingly positive result for corruption

detection: it is computationally easy for the central agency to find a truthful node

when the number of corrupted nodes is only somewhat smaller than the “critical”

number for the underlying graph, but it is in general computationally hard for the

corrupt party to hide the truthful nodes even when they have a budget that far

exceeds the “critical” number for the graph.

Results for Directed Graphs As noted in [1], it is unlikely that real-world audit-

ing networks are undirected. For example, it is likely that the FBI has the authority
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to audit the Cambridge police department, but it is also likely that the reverse is

untrue. Therefore, we would like the central agency to be able to find truthful nodes

in directed graphs in addition to undirected graphs. We notice that the algorithm we

give in Theorem 1 extends naturally to directed graphs.

Theorem 4. Fix a directed graph 𝐷 and suppose that the corrupt party has a budget

𝑏 ≤ 𝑚(𝐷)/2. Then the central agency can identify a truthful node, regardless of

the strategy of the corrupt party, and without the knowledge of either 𝑚(𝐷) or 𝑏.

Furthermore, the central agency’s algorithm runs in linear time.

The proof of Theorem 4 is similar to the proof of Theorem 1, and effectively relates

the problem of finding a truthful node on directed graphs to a similar notion of vertex

separability, suitably generalized to directed graphs.

Results for Finding An Arbitrary Number of Good Nodes In fact, the

problem of finding one good node is just a special case of finding an arbitrary number

of good nodes, 𝑔, on the graph 𝐺. We define 𝑚(𝐺, 𝑔) as the minimal number of

bad nodes required to prevent the identification of 𝑔 good nodes on the graph 𝐺.

We relate it to an analogous vertex separation notion, and prove the following two

theorems, which are extensions of Theorems 1 and 2 to this setting.

Theorem 5. Fix a graph 𝐺 and the number of good nodes to recover, 𝑔. Suppose

that the corrupt party has a budget 𝑏 ≤ 𝑚(𝐺, 𝑔)/2. If 𝑔 < |𝑉 |−2𝑏, then the central

agency can identify 𝑔 truthful nodes, regardless of the strategy of the corrupt party,

and without knowledge either of 𝑚(𝐺, 𝑔) or 𝑏. Furthermore, the central agency’s

algorithm runs in linear time.

Theorem 6. For every 𝛽 > 1 and every 0 < 𝛿 < 1 , there is a constant 𝜖 > 0 such

that the following is true. Given a graph 𝐺 = (𝑉,𝐸), it is SSE-hard to distinguish

between the case where 𝑚(𝐺, 𝛿|𝑉 |) ≤ 𝜖 · |𝑉 | and 𝑚(𝐺, 𝛿|𝑉 |) ≥ 𝛽 · 𝜖 · |𝑉 |. Or in other

words, the problem of approximating the critical number of corrupt nodes such that it

is impossible to find 𝛿|𝑉 | good nodes within any constant factor is SSE-hard.

25



The proof of Theorem 6 is similar to the proof of Theorem 1, and the hardness

of approximation proof also relies on the same graph reduction and SSE conjecture.

Proofs are presented in Section 2.5.

2.1.3 Related Work

The model of corruptions posed by [1] is identical to a model first suggested by

Perparata, Metze, and Chien [81], who introduced the model in the context of de-

tecting failed components in digital systems. This work (as well as many follow-ups,

e.g. [55, 60]) looked at the problem of characterizing which networks can detect a

certain number of corrupted nodes. Xu and Huang [96] give necessary and sufficient

conditions for identifying a single corrupted node in a graph, although their charac-

terization is not algorithmically efficient. There are many other works on variants

of this problem (e.g. [92, 26]), including recovering node identities with one-sided or

two-sided error probabilities in the local reports [66] and adaptively finding truthful

nodes [45].

We note that our model of a computationally bounded corrupt party and our

stipulation that the graph is fixed ahead of time rather than designed by the central

agency, which are our main contributions to the model, seem more naturally moti-

vated in the setting of corruptions than in the setting of designing digital systems.

Even the question of identifying a single truthful node could be viewed as more natu-

rally motivated in the setting of corruptions than in the setting of diagnosing systems.

We believe there are likely more interesting theoretical questions to be discovered by

approaching the PMC model through a corruptions lens.

The identifiability of a single node in the corruptions setting was studied in a recent

paper of Mukwembi and Mukwembi [69]. They give a linear time greedy algorithm

to recover the identify of a single node in many graphs, provided that corrupt nodes

always report other corrupt nodes as truthful. Furthermore, this assumption allows

them to reduce identifying all nodes to identifying a single node. They argue that

such an assumption is natural in the context of corruptions, where corrupt nodes are

selfishly incentivized not to out each other. However, in our setting, corrupt nodes
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can not only betray each other, but are in fact incentivized to do so for the good of the

overarching goal of the corrupt party (to prevent the central agency from identifying

a truthful node). Given [69], it is not a surprise that the near-optimal strategies we

describe for the corrupt party in this paper crucially rely on the fact that the nodes

can report each other as corrupt.

Our problem of choosing the best subset of nodes to corrupt bears intriguing sim-

ilarities to the problem of influence maximization studied by [56], where the goal is to

find an optimal set of nodes to target in order to maximize the adoption of a certain

technology or product. It is an interesting question to see if there are further similar-

ities between these two areas. Additionally, social scientists have studied corruption

extensively (e.g.[35], [71]), though to the best of our knowledge they have not studied

it in the graph-theoretic way that we do in this paper.

2.1.4 Comparison to Corruption in Practice

Finally, we must address the elephant in the room. Despite our theoretical results,

corruption is prevalent in many real-world networks, and yet in many scenarios it

is not easy to pinpoint even a single truthful node. One reason for that is that

some of assumptions do not seem to hold in some real world networks. For example,

we assume that audits from the truthful nodes are not only non-malicious, but also

perfectly reliable. In practice this assumption is unlikely to be true: many truthful

nodes could be non-malicious but simply unable to audit their neighbors accurately.

Further assumptions that may not hold in some scenarios include the notion of a

central agency that is both uncorrupted and has access to reports from every agency,

and possibly even the assumption that the number of corrupt nodes is less than |𝑉 |/2.

In addition, networks 𝐺 may have very low critical numbers 𝑚(𝐺) in practice. For

example, there could be a triangle (named, “President”, “Congress” and “Houses”)

that is all corrupt and cannot be audited by any agent outside the triangle. It is thus

plausible that a corrupt party could use the structure of realistic auditing networks

for their corruption strategy to overcome our worst-case hardness result.

While this points to some shortcomings of our model, it also points out ways
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to change policy that would potentially bring the real world closer to our idealistic

scenario, where a corrupt party has a much more difficult computational task than

the central agency. For example, we can speculate that perhaps information should

be gathered by a transparent centralized agency, that significant resources should go

into ensuring that the centralized agency is not corrupt, and that networks ought

to have good auditing structure (without important agencies that can be audited by

very few nodes).

2.2 Preliminaries

2.2.1 General Preliminaries

We denote undirected graphs by 𝐺 = (𝑉,𝐸), where 𝑉 is the vertex set of the graph

and 𝐸 is the edge set. We denote directed graphs by 𝐷 = (𝑉,𝐸𝐷). When the under-

lying graph is clear, we may drop the subscripts. Given a vertex 𝑢 in an undirected

graph 𝐺, we let 𝒩 (𝑢) denote the neighborhood (set of neighbors) of the vertex in 𝐺.

Similarly, given a vertex 𝑢 in a directed graph 𝐷, let 𝒩 (𝑢) denote the set of outgoing

neighbors of 𝑢: that is, vertices 𝑣 ∈ 𝑉 such that (𝑢, 𝑣) ∈ 𝐸𝐷.

Vertex Separator

Definition 1. (k-vertex separator)([74],[14]) For any 𝑘 ≥ 0, we say a subset of

vertices 𝑈 ⊆ 𝑉 is k-vertex separator of a graph 𝐺, if after removing 𝑈 and incident

edges, the remaining graph forms a union of connected components, each of size at

most 𝑘.

Furthermore, let

𝑆𝐺(𝑘) = min (|𝑈 |: 𝑈 is a 𝑘-vertex separator of 𝐺)

denote the size of the minimal 𝑘-vertex separator of graph 𝐺.
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Small Set Expansion Hypothesis

In this section we define the Small Set Expansion (SSE) Hypothesis introduced in

[83]. Let 𝐺 = (𝑉,𝐸) be an undirected 𝑑-regular graph.

Definition 2 (Normalized edge expansion). For a set 𝑆 ⊆ 𝑉 of vertices, denote

Φ𝐺(𝑆) as the normalized edge expansion of 𝑆,

Φ𝐺(𝑆) =
|𝐸(𝑆, 𝑉 ∖𝑆)|

𝑑|𝑆|
,

where |𝐸(𝑆, 𝑉 ∖𝑆)| is the number of edges between 𝑆 and 𝑉 ∖𝑆.

The Small Set Expansion Problem with parameters 𝜂 and 𝛿, denoted SSE(𝜂, 𝛿),

asks whether 𝐺 has a small set 𝑆 which does not expand or all small sets of 𝐺 are

highly expanding.

Definition 3 ((SSE(𝜂, 𝛿))). Given a regular graph 𝐺 = (𝑉,𝐸), distinguish between

the following two cases:

• Yes There is a set of vertices 𝑆 ⊆ 𝑉 with 𝑆 = 𝛿|𝑉 | and Φ𝐺(𝑆) ≤ 𝜂

• No For every set of vertices 𝑆 ⊆ 𝑉 with 𝑆 = 𝛿|𝑉 | it holds that Φ𝐺(𝑆) ≥ 1− 𝜂

The Small Set Expansion Hypothesis is the conjecture that deciding SSE(𝜂, 𝛿) is

NP-hard.

Conjecture 1 (Small Set Expansion Hypothesis [83]). For every 𝜂 > 0, there is a

𝛿 > 0 such that SSE(𝜂, 𝛿) is NP-hard.

We say that a problem is SSE-hard if it is at least as hard to solve as the SSE

problem. The form of conjecture most relevant to our proof is the following “stronger”

form of the SSE Hypothesis. [84] showed that the SSE-problem can be reduced to a

quantitatively stronger form of itself. In order to state this version, we first need to

define the Gaussian noise stability.
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Definition 4. (Gaussian Noise Stability) Let 𝜌 ∈ [−1, 1]. Define Γ𝜌 : [0, 1] ↦→ [0, 1]

by

Γ𝜌(𝜇) = 𝑃𝑟[𝑋 ≤ Φ−1(𝜇) ∧ 𝑌 ≤ Φ−1(𝜇)]

where 𝑋 and 𝑌 are jointly normal random variables with mean 0 and covariance

matrix

⎛⎝1 𝜌

𝜌 1

⎞⎠ .

The only fact that we will use for stating the stronger form of SSEH is the asymp-

totic behavior of Γ𝜌(𝜇) when 𝜌 is close to 1 and 𝜇 bounded away from 0.

Fact 1. There is a constant 𝑐 > 0 such that for all sufficiently small 𝜖 and all

𝜇 ∈ [1/10, 1/2],2

Γ1−𝜖(𝜇) ≤ 𝜇(1− 𝑐
√
𝜖).

Conjecture 2 (SSE Hypothesis, Equivalent Formulation [84]). For every integer

𝑞 > 0 and 𝜖, 𝛾 > 0, it is NP-hard to distinguish between the following two cases for a

given regular graph 𝐺 = (𝑉,𝐸):

• Yes There is a partition of 𝑉 into 𝑞 equi-sized sets 𝑆1, · · · , 𝑆𝑞 such that Φ𝐺(𝑆𝑖) ≤

2𝜖 for every 1 ≤ 𝑖 ≤ 𝑞.

• No For every 𝑆 ⊆ 𝑉, letting 𝜇 = |𝑆|/|𝑉 |, it holds that Φ𝐺(𝑆) ≥ 1−(Γ1−𝜖/2(𝜇)+

𝛾)/𝜇,

where the Γ1−𝜖/2(𝜇) is the Gaussian noise stability.

We present two remarks about the Conjecture 2 from [4], which are relevant to

our proof of Theorem 2.

Remark 1. [4] The Yes instance of Conjecture 2 implies that the number of edges

leaving each 𝑆𝑖 is at most 4𝜖|𝐸|/𝑞, so the total number of edges not contained in one

of the 𝑆𝑖 is at most 2𝜖|𝐸|.
2Note that the lower bound on 𝜇 can be taken arbitrarily close to 0. So the statement holds with

𝜇 ∈ [𝜖′, 1/2] for any constant 𝜖′ > 0.
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Remark 2. [4] The No instance of Conjecture 2 implies that for 𝜖 sufficiently small,

there exists some constant 𝑐′ such that Φ𝐺(𝑆) ≥ 𝑐′
√
𝜖, provided that 𝜇 ∈ [1/10, 1/2]

and setting 𝛾 ≤
√
𝜖. In particular, |𝐸(𝑆, 𝑉 ∖𝑆)|≥ Ω(

√
𝜖|𝐸|), for any |𝑉 |/10 ≤ |𝑆|≤

9|𝑉 |/10. 3

Remark 1 follows from the definition of normalized edge expansion and the fact

that sum of degree is two times number of edges. Remark 2 follows from Fact 1.

The strong form of SSE Hypothesis 2, Remark 1, and Remark 2 will be particularly

helpful for proving our SSE-hardness of approximation result (Theorem 2).

2.2.2 Preliminaries for Corruption Detection on Networks

We model networks as directed or undirected graphs, where each vertex in the network

can be one of two types: truthful or corrupted. At times, we will informally call

truthful vertices “good” and corrupt vertices “bad.” We say that the corrupt party

has budget 𝑏 if it can afford to corrupt at most 𝑏 nodes of the graph. Given a vertex

set 𝑉 , and a budget 𝑏, the corrupt entity will choose to control a subset of nodes

𝐵 ⊆ 𝑉 under the constraint |𝐵|≤ 𝑏. The rest of the graph remains as truthful

vertices, i.e., 𝑇 = 𝑉 ∖𝐵 ⊆ 𝑉 . We assume that there are more truthful than corrupt

nodes (𝑏 < |𝑉 |/2). It is easy to see that in the case where |𝐵|≥ |𝑇 |, the corrupt nodes

can prevent the identification of even one truthful node, by simulating truthful nodes

(see e.g. [1]).

Each node audits and reports its (outgoing) neighbors’ identities. That is, each

vertex 𝑢 ∈ 𝑉 will report the type of each 𝑣 ∈ 𝒩 (𝑢), which is a vector in {0, 1}|𝒩 (𝑢)|.

Truthful nodes always report the truth, i.e., it reports its neighbor 𝑣 ∈ 𝑇 if 𝑣 is

truthful, 𝑣 ∈ 𝐵 if 𝑣 is corrupt. The corrupt nodes report their neighbors’ identities

adversarially. In summary, a strategy of the bad agents is composed of a strategy to

take over at most 𝑏 nodes on the graph, and reports on the nodes that neighbor them.

3Recall that Fact 1 is true for 𝜇 ∈ [𝜖′, 1/2] for any constant 𝜖′ > 0. Therefore, Remark 2 can
be strengthened and states, for any 𝜖′|𝑉 |≤ |𝑆|≤ (1 − 𝜖′)|𝑉 |, |𝐸(𝑆, 𝑉 ∖𝑆)|≥ Ω(

√
𝜖|𝐸|). This will be

a useful fact for proving hardness of approximation of 𝑚(𝐺, 𝑔) for finding many truthful nodes in
Section 2.5.
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Definition 5 (Strategy for a corrupt party). A strategy for the corrupt party is

a function that maps a graph 𝐺 and budget 𝑏 to a subset of nodes 𝐵 with size |𝐵|≤ 𝑏,

and a set of reports that each node 𝑣 ∈ 𝐵 gives about its neighboring nodes, 𝒩 (𝑣).

Definition 6 (Computationally bounded corrupt party). We say that the cor-

rupt party is computationally bounded if its strategy can only be a polynomial-time

computable function.

The task for the central agency is to find a good node on this corrupted network,

based on the reports. It is clear that the more budget the corrupt party has, the

harder the task of finding one truthful node becomes. It was observed in [1] that, for

any graph, it is not possible to find one good node if 𝑏 ≥ |𝑉 |/2. If 𝑏 = 0, it is clear

that the entire set 𝑉 is truthful. Therefore, given an arbitrary graph 𝐺, there exists

a critical number 𝑚(𝐺), such that if the bad party has budget lower than 𝑚(𝐺), it

is always possible to find a good node; if the bad party has budget greater than or

equal to 𝑚(𝐺), it may not be possible to find a good node. In light of this, we define

the critical number of bad nodes on a graph 𝐺. First, we formally define what we

mean when we say it is impossible to find a truthful node on a graph 𝐺.

Definition 7 (Impossibility of finding one truthful node). Given a graph 𝐺 =

(𝑉,𝐸), the bad party’s budget 𝑏 and reports, we say that it is impossible to identify

one truthful node if for every 𝑣 ∈ 𝑉 there is a configuration of the identities of the

nodes where 𝑣 is bad, and the configuration is consistent with the given reports, and

consists of fewer than or equal to 𝑏 bad nodes.

Definition 8 (Critical number of bad nodes on a graph 𝐺, 𝑚(𝐺)). Given an

arbitrary graph 𝐺 = (𝑉,𝐸), we define 𝑚(𝐺) as the minimum number 𝑏 such that

there is a way to distribute 𝑏 corrupt nodes and set their corresponding reports such

that it is impossible to find one truthful node on the graph 𝐺, given 𝐺, the reports

and that the bad party’s budget is at most 𝑏.

For example, for a star graph 𝐺 with |𝑉 |≥ 5, the critical number of bad nodes is

𝑚(𝐺) = 2. If there is at most 1 corrupt node on 𝐺, the central agency can always find
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a good node, thus 𝑚(𝐺) ̸= 1. If there are at most 2 bad nodes on 𝐺, then the bad

party can control the center node and one of the leaves. It is impossible for central

agency to find one good node.

Given a graph 𝐺, by definition there exists some set of 𝑚(𝐺) nodes that can

make it impossible to find a good node if they are corrupted. However, this does not

mean that the corrupt party can necessarily find this set in polynomial time. Indeed,

Theorem 2 establishes that they cannot always find this set in polynomial time if we

assume the SSE Hypothesis (Conjecture 2) and that P ̸= NP.

2.3 Proofs of Theorems 1, 2, and 3

In the following section, we state our main results by first presenting the close relation

of our problem to the 𝑘-vertex separator problem. Then we use this characterization

to prove Theorem 1. This characterization will additionally be useful for the proofs

of Theorems 2 and 3, which we will give in Section 2.3.2 and Section 2.3.3.

2.3.1 2-Approximation by Vertex Separation

Lemma 1 (2-Approximation by Vertex Separation). The critical number of corrupt

nodes for graph 𝐺, 𝑚(𝐺), can be bounded by the minimal sum of 𝑘-vertex separator

and 𝑘, min𝑘(𝑆𝐺(𝑘) + 𝑘), up to a factor of 2. i.e.,

1

2
min
𝑘

(𝑆𝐺(𝑘) + 𝑘) ≤ 𝑚(𝐺) ≤ min
𝑘

(𝑆𝐺(𝑘) + 𝑘)

Proof of Lemma 1. The direction 𝑚(𝐺) ≤ min𝑘 𝑆𝐺(𝑘) + 𝑘 follows simply. Let 𝑘* =

argmin𝑘(𝑆𝐺(𝑘)+𝑘). If the corrupt party is given 𝑆𝐺(𝑘
*)+𝑘* nodes to corrupt on the

graph, it can first assign 𝑆𝐺(𝑘
*) nodes to the separator, thus the remaining nodes are

partitioned into components of size at most 𝑘*. Then it arbitrarily assigns one of the

components to be all bad nodes. The bad nodes in the connected components report

the nodes in the same component as good, and report any node in the separator as

33



bad. The nodes in the separator can effectively report however they want (e.g. report

all neighboring nodes as bad). It is impossible to identify even one single good node,

because all connected components of size 𝑘 can potentially be bad, and all vertices in

the separator are bad.

The direction 1/2min𝑘(𝑆𝐺(𝑘)+ 𝑘) ≤ 𝑚(𝐺) can be proved as follows. When there

are 𝑏 = 𝑚(𝐺) corrupt nodes distributed optimally in 𝐺, it is impossible to find a

single good node by definition, and therefore, in particular, the following algorithm

(Algorithm 1) cannot always find a good node:

Algorithm 1 Finding one truthful vertex on undirected graph 𝐺
Input: Undirected graph 𝐺

• If the reports on edge (𝑢, 𝑣) does not equal to (𝑢 ∈ 𝑇, 𝑣 ∈ 𝑇 ), remove both 𝑢, 𝑣

and any incident edges. Remove a pair of nodes in each round, until there are

no bad reports left.

• Call the remaining graph 𝐻. Declare the largest component of 𝐻 as good.

Run Algorithm 1 on 𝐺, and suppose the first step terminates in 𝑖 rounds, then:

• No remaining node reports neighbors as corrupt

• |𝑉 |−2𝑖 nodes remain in graph

• ≤ 𝑏 − 𝑖 bad nodes remain in the graph, because each time we remove an edge

with bad report, and one of the end points must be a corrupt vertex.

Note that if two nodes report each other as good, they must be the same type

(either both truthful, or both corrupt.) Since graph 𝐻 only contains good reports,

nodes within a connected component of 𝐻 have the same types. If there exists a

component of size larger than 𝑏 − 𝑖, it exceeds bad party’s budget, and must be all

good. Therefore, Algorithm 1 would successfully find a good node.

Since Algorithm 1 cannot find a good node, the bad party must have the budget

to corrupt the largest component of 𝐻, which means it has size at most 𝑏− 𝑖. Hence,

𝑆𝐺(𝑏− 𝑖) ≤ 2𝑖. Plugging in 𝑏 = 𝑚(𝐺), we get that

34



𝑚(𝐺) =
2𝑖

2
+ 𝑏− 𝑖 ≥ min

𝑘
(𝑆𝐺(𝑘)/2 + 𝑘) ≥ 1

2
min
𝑘

(𝑆𝐺(𝑘) + 𝑘),

where the first inequality comes from 2𝑖 ≥ 𝑆𝐺(𝑏− 𝑖).

Furthermore, the upperbound in Lemma 1 additionally tells us that if corrupt

party’s budget 𝑏 ≤ 𝑚(𝐺)/2, the set output by Algorithm 1 is guaranteed to be good.

Theorem 1. Fix a graph 𝐺 and suppose that the corrupt party has a budget 𝑏 ≤

𝑚(𝐺)/2. Then the central agency can identify a truthful node, regardless of the strat-

egy of the corrupt party, and without knowledge of either 𝑚(𝐺) or 𝑏. Furthermore,

the central agency’s algorithm runs in linear time (in the number of edges in the graph

𝐺).

Proof of Theorem 1. Suppose the corrupt party has budget 𝑏 ≤ 𝑚(𝐺)/2. Run Al-

gorithm 1. We remove 2𝑖 nodes in the first step, and separate the remaining graph

𝐻 into connected components. Notice each time we remove an edge with bad re-

port, at least one of the end point is a corrupt vertex. So we have removed at most

2𝑏 ≤ 𝑚(𝐺) ≤ ⌈|𝑉 |/2⌉ nodes. Therefore, the graph 𝐻 is nonempty, and the nodes in

any connected component of 𝐻 have the same identity. Let 𝑘* ≥ 1 be the size of the

maximum connected component of 𝐻. We can conclude that 𝑆𝐺(𝑘
*) ≤ 2𝑖, since 2𝑖 is

a possible size of 𝑘*-vertex separator of 𝐺.

Notice there are at most 𝑏− 𝑖 ≤ 𝑚(𝐺)/2− 𝑖 bad nodes in 𝐻 by the same fact that

at least one bad node is removed each round. By the upper bound in Lemma 1,

𝑏− 𝑖 ≤ 𝑚(𝐺)/2− 𝑖 ≤ min
𝑘

(𝑆𝐺(𝑘) + 𝑘)/2− 𝑖 ≤ (2𝑖+ 𝑘*)/2− 𝑖 ≤ 𝑘*

2
.

Since 𝑘* ≥ 1, the connected component of size 𝑘* exceeds the bad party’s remain-

ing budget 𝑘*/2, and must be all good.

Algorithm 1 is linear time because it loops over all edges and removes any “bad”

edge that does not have reports (𝑇, 𝑇 ) (takes ≤ |𝐸| time when we use a list with

“bad” edges at the front), and counts the size of the remaining components (≤ |𝑉 |

time), and thus is linear in |𝐸|.
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Remark 3. Both bounds in Lemma 1 are tight. For the lower bound, consider a com-

plete graph with an even number of nodes. For the upper bound, consider a complete

bipartite graph with one side smaller than the other.

To elaborate on Remark 3, for the lower bound, in a complete graph with 𝑛 nodes,

the critical number of bad nodes is 𝑛/2, and min𝑘 𝑆𝐺(𝑘) + 𝑘 = 𝑛.

For the upper bound, consider a complete bipartite graph 𝐺 = (𝑉,𝐸). The vertex

set is partitioned into two sets 𝑉 = 𝑆1 ∪ 𝑆2 where the induced subgraphs on 𝑆1 and

𝑆2 consist of isolated vertices, and every vertex 𝑢 ∈ 𝑆1 is connected with every vertex

𝑣 ∈ 𝑆2. The smallest sum of 𝑘-vertex separator with 𝑘 is obtained with 𝑘 = 1, i.e.,

min𝑘 𝑆𝐺(𝑘) + 𝑘 = min{|𝑆1|, |𝑆2|}+ 1. We argue that this is also the minimal number

of bad nodes needed to corrupt the graph. Without loss of generality , let |𝑆1|< |𝑆2|.

If the bad party controls all of 𝑆1 plus one node in 𝑆2, it can prevent the identification

of a good node. On the other hand, if the bad party controls 𝑏 < |𝑆1|+1 nodes, then

we can always identify a good node. Specifically, we are in one of the following cases:

1. The bad party does not control all of 𝑆1. Then there will be a connected

component of size 𝑛 − 𝑏 > 𝑏 that report each other as good, because the bad

nodes cannot control all of 𝑆2, and any induced subgraph of a complete bipartite

graph with nodes on both sides is connected.

2. The bad party controls all of 𝑆1. In this case, the largest connected component

of nodes that all report each other as good is only 1. However, in this case, we

conclude that the bad nodes must control all of 𝑆1 and no other node (due to

their budget). Hence, any node in 𝑆2 is good.

We end by discussing that the efficient algorithm given in this section does not

address the regime when the budget of the bad party, 𝑏, falls in 𝑚(𝐺)/2 < 𝑏 ≤ 𝑚(𝐺).

Though by definition of 𝑚(𝐺), the central agency can find at least one truthful node as

long as 𝑏 ≤ 𝑚(𝐺), by, for example, enumerating all possible assignments of good/bad

nodes consistent with the report, and check the intersection of the assignment of

good nodes. However, it is not clear that the central agency has a polynomial time

algorithm for doing this. Of course, one can always run Algorithm 1, check whether
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the output set exceeds 𝑏 − 𝑖/2, and concludes that the output set is truthful if that

is the case. However, there is no guarantee that the output set will be larger than

𝑏− 𝑖/2 if 𝑚(𝐺)/2 < 𝑏 ≤ 𝑚(𝐺). We propose the following conjecture:

Conjecture 3. Fix a graph 𝐺 and suppose that the corrupt party has a budget 𝑏 such

that 𝑚(𝐺)/2 < 𝑏 ≤ 𝑚(𝐺). The problem of finding one truthful node given the graph

𝐺, bad party’s budget 𝑏 and the reports is NP-hard.

2.3.2 SSE-Hardness of Approximation for 𝑚(𝐺)

In this section, we show the hardness of approximation result for 𝑚(𝐺) within any

constant factor under the Small Set Expansion (SSE) Hypothesis [83]. Specifically,

we prove Theorem 2.

Theorem 2. For every 𝛽 > 1, there is a constant 𝜖 > 0 such that the following

is true. Given a graph 𝐺 = (𝑉,𝐸), it is SSE-hard to distinguish between the case

where 𝑚(𝐺) ≤ 𝜖 · |𝑉 | and 𝑚(𝐺) ≥ 𝛽 · 𝜖 · |𝑉 |. Or in other words, the problem of

approximating the critical number of corrupt nodes for a graph to within any constant

factor is SSE-hard.

In order to prove Theorem 2, we construct a reduction similar to [4], and show that

the bad party can control auxiliary graph of the Yes case of SSE with 𝑏 = 𝑂(𝜖|𝑉 ′|)

and cannot control the auxiliary graph of the No case of SSE with 𝑏 = Ω(𝜖0.51|𝑉 ′|).

Given an undirected 𝑑-regular graph 𝐺 = (𝑉,𝐸), construct an auxiliary undirected

graph 𝐺′ = (𝑉 ′, 𝐸 ′) in the following way [4]. Let 𝑟 = 𝑑/2. For each vertex 𝑣𝑖 ∈ 𝑉 ,

make 𝑟 copies of 𝑣𝑖 and add to the vertex set of 𝐺′, denoted 𝑣𝑖1, · · · , 𝑣𝑖𝑟. Denote the

resulting set of vertices as 𝑉 = 𝑉 × {1, · · · , 𝑟}. Each edge 𝑒𝑘 ∈ 𝐸 of 𝐺 becomes

a vertex in 𝐺′, denoted 𝑒𝑘. Denote this set of vertices as 𝐸̃. In other words, 𝑉 ′ =

𝑉 ∪ 𝐸̃ = 𝑉 ×{1, · · · , 𝑟}∪𝐸. There exists an edge between a vertex 𝑣𝑖𝑗 and a vertex 𝑒𝑘

of 𝐺′ if 𝑣𝑖 and 𝑒𝑘 were adjacent edge and vertex pair in 𝐺. Note that 𝐺′ is a bipartite

𝑑-regular graph with 𝑑/2|𝑉 |+|𝐸|= 2|𝐸| vertices.

Lemma 2. Suppose 𝑞 = 1/𝜖, and 𝐺 can be partitioned into 𝑞 equi-sized sets 𝑆1, · · · , 𝑆𝑞
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such that Φ𝐺(𝑆𝑖) ≤ 2𝜖 for every 1 ≤ 𝑖 ≤ 𝑞. Then the bad party can control the auxiliary

graph 𝐺′ with at most 4𝜖|𝐸|= 2𝜖|𝑉 ′| nodes.

Proof of Lemma 2. Notice by Remark 1, the total number of edges in 𝐺 not contained

in one of the 𝑆𝑖 is at most 2𝜖|𝐸|.

This implies that a strategy for the bad party to control graph 𝐺′ is as follows.

Control vertex 𝑒𝑘 ∈ 𝐸̃ if 𝑒𝑘 ∈ 𝐸 is not contained in any of the 𝑆𝑖s in 𝐺. Call the set

of such vertices 𝐸* ⊆ 𝐸̃. Let 𝑆*
𝑖 ⊆ 𝑉 ′ be the set that contains all 𝑟 copies of nodes

in 𝑆𝑖 ⊆ 𝑉 . Control one of the 𝑆*
𝑖 𝑠, say 𝑆*

1 . Control all the edge nodes in 𝐸̃ that are

adjacent to 𝑆*
1 . Call this set 𝒩 (𝑆*

1). The corrupt nodes in 𝑆*
1 ∪ 𝒩 (𝑆*

1) report their

neighbors in 𝑆*
1 ∪𝒩 (𝑆*

1) as good, and report 𝐸* as bad. Nodes in 𝐸* can effectively

report however they want; suppose they report every neighboring node as bad. Then,

it is impossible to identify even one truthful node, since assigning any 𝑆*
𝑖 as corrupt

is consistent with the report and within bad party’s budget.

This strategy controls |𝐸*|+|𝑆*
𝑖 |+|𝒩 (𝑆*

1)∖𝐸*| nodes on 𝐺′. Note that |𝒩 (𝑆*
1)∖𝐸*|

is equal to the number of edges that are totally contained in 𝑆1 on 𝐺, which is bounded

by |𝑆1|·𝑑/2 (that is if all edges adjacent to 𝑆1 are totally contained in 𝑆1). If 𝑞 = 1/𝜖,

this strategy amounts to controlling |𝐸*|+|𝑆*
𝑖 |+|𝒩 (𝑆*

1) ∖ 𝐸*|≤ 2𝜖|𝐸|+𝑑/2 · |𝑉 |/𝑞 +

|𝑉 |/𝑞 · 𝑑/2 = 4𝜖|𝐸|= 2𝜖|𝑉 ′| nodes on 𝐺′. Notice, this number is guaranteed to be

smaller than 1/2|𝑉 ′|, as long as 𝑞 > 4.

Note that, different from the argument in [4], we cannot take 𝑟 to be arbitrar-

ily large (e.g. > 𝑂(|𝑉 ||𝐸|)). This is because when 𝑟 is large, 2𝜖|𝐸|+𝑟 · |𝑉 |/𝑞 =

𝑂(𝜖(|𝐸|+|𝑉 ′|)) = 𝑂(𝜖|𝑉 ′|), and will not be comparable with the 𝑂(
√
𝜖|𝐸|) in Lemma 3.

Lemma 3. Let 𝐺 = (𝑉,𝐸) be an undirected 𝑑-regular graph with the property that for

every |𝑉 |/10 ≤ |𝑆|≤ 9|𝑉 |/10 we have |𝐸(𝑆, 𝑉 ∖ 𝑆)|≥ Ω(
√
𝜖|𝐸|). If bad party controls

𝑂(𝜖0.51|𝐸|) = 𝑂(𝜖0.51|𝑉 ′|) < 1/2|𝑉 ′| nodes on the auxiliary graph 𝐺′ constructed from

𝐺, we can always find a truthful node on 𝐺′.

Proof of Lemma 3. Assume towards contradiction that the bad party controls 𝑂(𝜖0.51|𝐸|)

vertices of graph 𝐺′, and we can’t identify a truthful node.
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Claim 1. If the bad party controls 𝑂(𝜖0.51|𝐸|) vertices of graph 𝐺′, and it is impossible

to identify a truthful node, then there exists a set 𝐶 of size 𝑂(𝜖0.51|𝐸|) and separates

𝑉 ′∖𝐶 into sets {𝑇 ′
𝑖}𝑖=1,···,ℓ, each of size 𝑂(𝜖0.51|𝐸|).

Proof of Claim 1. Since the bad nodes can control 𝐺′ with 𝑂(𝜖0.51|𝐸|) vertices, 𝑚(𝐺′) ≤

𝑂(𝜖0.51|𝐸|). By the lower bound in Lemma 1, min𝑘(𝑆𝐺′(𝑘)+𝑘) ≤ 2𝑚(𝐺′) ≤ 𝑂(𝜖0.51|𝐸|).

Let 𝑘* = argmin𝑘(𝑆𝐺′(𝑘) + 𝑘). Then 𝑘* ≤ 𝑂(𝜖0.51|𝐸|), 𝑆𝐺′(𝑘*) ≤ 𝑂(𝜖0.51|𝐸|). By

definition of 𝑆𝐺′(𝑘*), there exists a set of size 𝑆𝐺′(𝑘*) whose removal separates the

remainder of the graph 𝐺′ to connected components of size at most 𝑘*.

Let 𝐶 and 𝑇 ′
𝑖 be the sets guaranteed by Claim 1. Note we have taken 𝑟 = 𝑑/2,

and thus |𝑉 |= |𝐸̃|. In other words, half of the 𝑉 ′ are “vertex” vertices 𝑉 , and half

are “edge” vertices 𝐸̃. Therefore, with sufficiently small 𝜖, |𝐶 ∩ 𝑉 |≤ |𝐶|< 1/2|𝑉 |,

|(∪ℓ
𝑖=1𝑇

′
𝑖 )∩𝑉 |≥ 1/2|𝑉 |, |𝑇 ′

𝑖 ∩𝑉 |≤ |𝑇 ′
𝑖 |< 3/10|𝑉 | for every 𝑖. Therefore, we can merge

the different 𝑇 ′
𝑖 s in Claim 1, and have two sets 𝑇 ′

1 and 𝑇 ′
2, such that |𝑇 ′

1 ∩ 𝑉 |≥ |𝑉 |/5

and |𝑇 ′
2 ∩ 𝑉 |≥ |𝑉 |/5. Furthermore, 𝑇 ′

1 and 𝑇 ′
2 are disjoint, and 𝑇 ′

1, 𝑇
′
2, and 𝐶 cover

𝑉 ′.

Similar to the proof of Lemma 5.1 in [4], we let 𝑇1 ⊆ 𝑉 (resp. 𝑇2 ⊆ 𝑉 ) be

the set of vertices 𝑣 ∈ 𝑉 such that some copy of 𝑣 appears in 𝑇 ′
1 (resp. 𝑇 ′

2). Let

𝑆 ⊆ 𝑉 be the set of vertices 𝑣 ∈ 𝑉 such that all copies of 𝑣 appear in 𝐶. Since

|𝑇 ′
1 ∩ 𝑉 |, |𝑇 ′

2 ∩ 𝑉 |≥ |𝑉 |/5 = 𝑟|𝑉 |/5, both |𝑇1|, |𝑇2|≥ |𝑉 |/5. Furthermore, we observe

that 𝑇1 ∪ 𝑇2 ∪𝑆 = 𝑉 , which follows since 𝑇 ′
1 ∪ 𝑇 ′

2 ∪𝐶 = 𝑉 ′. Now we can lower bound

|𝑇1 ∪ 𝑇2| as follows.

|𝑇1 ∪ 𝑇2|= |𝑉 ∖𝑆|≥ |𝑉 |−|𝐶|/𝑟 ≥ |𝑉 |−𝑐𝜖0.51|𝐸|/𝑟 = |𝑉 |−𝑐𝜖0.51|𝑉 |,

where the first equality uses the fact that 𝑇1 ∪𝑇2 ∪𝑆 = 𝑉 and that 𝑇1 ∪𝑇2 is disjoint

from 𝑆, and the following inequality uses the fact that |𝑆|≤ |𝐶|/𝑟, which follows by

definition.

Since |𝑇1 ∪ 𝑇2| is sufficiently large, we can find a balanced partition of 𝑇1 ∪ 𝑇2

into sets 𝑆1 ⊆ 𝑇1, 𝑆2 ⊆ 𝑇2, such that 𝑆1 ∩ 𝑆2 = ∅, 𝑆1 ∪ 𝑆2 = 𝑇1 ∪ 𝑇2, and |𝑉 |/10 ≤
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|𝑆1|, |𝑆2|≤ 9|𝑉 |/10. From the property of 𝐺 that 𝐸(𝑆, 𝑉 ∖ 𝑆) ≥ Ω(
√
𝜖|𝐸|) in Lemma

3 and the fact that 𝐺 is 𝑑-regular, we know that

𝐸(𝑆1, 𝑆2) = 𝐸(𝑆1, 𝑉 ∖𝑆1)−𝐸(𝑆1, 𝑆) ≥ 𝛼
√
𝜖|𝐸|−𝑑(𝜖0.51|𝐸|/𝑟) = 𝛼

√
𝜖|𝐸|−2𝜖0.51|𝐸|= Ω(

√
𝜖|𝐸|),

for some constant 𝛼. In the first equality we use the fact that 𝑆1, 𝑆2, 𝑆 form a

partition of 𝑉 . Thus 𝐸(𝑆1, 𝑉 ∖𝑆1) = 𝐸(𝑆1, 𝑆2 ∪ 𝑆) = 𝐸(𝑆1, 𝑆2) + 𝐸(𝑆1, 𝑆).

Note that since 𝑆1 ⊆ 𝑇1 and 𝑆2 ⊆ 𝑇2, and 𝑇 ′
1 and 𝑇 ′

2 do not have edge between

them in 𝐺′, the edges 𝐸(𝑆1, 𝑆2) all have to land as "edge vertices" in 𝐶. In other

words, for any 𝑢 ∈ 𝑆1, and 𝑣 ∈ 𝑆2, if (𝑢, 𝑣) ∈ 𝐸, then the vertex (𝑢, 𝑣) ∈ 𝑉 ′ has to be

included in the set 𝐶, thus |𝐶|≥ Ω(
√
𝜖|𝐸|).

This contradicts the fact that there are only 𝑂(𝜖0.51|𝐸|) vertices in 𝐶.

Combining Lemma 2 and Lemma 3, Theorem 2 follows in standard fashion. We

give a proof here for completeness.

Proof of Theorem 2. Suppose for contradiction that there exists some constant 𝛽 > 0

such that there is polynomial time algorithm 𝒜 that does the following. For any

𝜖′ > 0 and an arbitrary graph 𝐺′ = (𝑉 ′, 𝐸 ′), it can distinguish between the case

where 𝑚(𝐺′) ≤ 𝜖′ · |𝑉 ′| and 𝑚(𝐺′) ≥ 𝛽 · 𝜖′ · |𝑉 ′|. Specifically, we will suppose this

holds for 𝜖′ < 1
𝛽2.05 . Then we can use this algorithm to decide the SSE problem as

follows.

Fix 𝜖 < 1
1.5𝛽2.05 , 𝑞 = 1/𝜖, 𝛾 > 0 sufficiently small (≤ 𝑜(

√
𝜖) suffices). Let 𝐺 = (𝑉,𝐸)

be an arbitrary input to the resulting instance of the SSE decision problem (from

Conjecture 2). Construct the graph 𝐺′ = (𝑉 ′, 𝐸 ′) from 𝐺 as done in the beginning

of Section 2.3.2.

If 𝐺 was from the YES case of Conjecture 2, then 𝑚(𝐺′) ≤ 1.5𝜖|𝑉 ′| (Lemma 2). If

𝐺 was from the NO case of Conjecture 2, then 𝑚(𝐺′) > 𝜖0.51|𝑉 ′| (Lemma 3). We can

invoke our algorithm 𝒜 to distinguish these two cases, by letting 𝜖′ = 1.5𝜖 and noting
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that 𝛽 < (1/(𝜖′)0.49) by design, which would decide the problem in Conjecture 2 in

polynomial time.

Now, we can obtain the following Corollary 1 from Theorem 2.

Corollary 1. Assume the SSE Hypothesis and that P ̸= NP. Fix any 𝛽 > 1. There

does not exist a polynomial-time algorithm that takes as input an arbitrary graph

𝐺 = (𝑉,𝐸) and outputs a set of nodes 𝑆 with size |𝑆|≤ 𝑂(𝛽 · 𝑚(𝐺)), such that

corrupting 𝑆 prevents the central agency from finding a truthful node.

In summary, the analysis in this section tells us that given an arbitrary graph,

it is hard for bad party to corrupt the graph with minimal resources. On the other

hand, if the budget of bad nodes is a factor of two less than 𝑚(𝐺), a good party can

always be detected with an efficient algorithm, e.g. using Algorithm 1.

2.3.3 An 𝑂(log|𝑉 |) Approximation Algorithm for 𝑚(𝐺)

In light of the SSE-hardness of approximation of 𝑚(𝐺) within any constant, and the

close relation of 𝑚(𝐺) with 𝑘-vertex separator, we leverage the best known approxi-

mation result for 𝑘-vertex separator to propose an 𝑂(log 𝑛) approximation algorithm

for 𝑚(𝐺). It is useful as a test for central authorities for measuring how corruptible

a graph is. Notably, it is also a potential algorithm for (computationally restricted)

bad party to use to decide which nodes to corrupt.

The paper [63] presents an bicritera approximation algorithm for 𝑘-vertex sepa-

rator, with the guarantee that for each 𝑘, the algorithm finds a subset 𝐵𝑘 ⊆ 𝑉 such

that |𝐵𝑘|≤ 𝑂( log 𝑘
𝜖
) ·𝑆𝐺(𝑘), and the induced subgraph 𝐺𝑉 ∖𝐵𝑘

is divided into connected

components each of size at most 𝑘/(1− 2𝜖) vertices.

Proposition 1 (Theorem 1.1, [63]). For any 𝜖 ∈ (0, 1/2), there is a polynomial-time

( 1
1−2𝜖

, 𝑂( log 𝑘
𝜖
))- bicriteria approximation algorithm for 𝑘-vertex separator.

Interested readers can refer to [63] Section 3 for the description of the algorithm.

Leveraging this algorithm for 𝑘-vertex separator, we can obtain a polynomial-time
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algorithm for seeding corrupt nodes and preventing the identification of a truthful

node.

Theorem 3 (𝑂(log|𝑉 |) Approximation Algorithm). There is a polynomial-time al-

gorithm that takes as input a graph 𝐺 = (𝑉,𝐸) and outputs a set of nodes 𝑆 with

size |𝑆|≤ 𝑂(log|𝑉 |·𝑚(𝐺)), such that corrupting 𝑆 prevents the central agency from

finding a truthful node.

Proof. The algorithm is as follows. Call the bicriteria algorithm for approximating

𝑘-vertex separator in [63] 𝑛 times, once for each 𝑘 in 𝑘 = 1, · · · , 𝑛, where 𝑛 = |𝑉 |.

Each time the algorithm outputs a set of vertices 𝐵𝑘 that divides the remaining graph

into connected components with maximum size 𝑔(𝑘). Choose the 𝑘* for which the

algorithm outputs the smallest value of min𝑘|𝐵𝑘|+𝑔(𝑘). The bad party can control

𝐵𝑘* and one of the remaining connected components (the size of which is at most

𝑔(𝑘*)), and be sure to prevent the identification of one good node, by the same

argument that lead to the upper bound in Lemma 1.

We now prove that |𝐵𝑘* |+𝑔(𝑘*) is an 𝑂(log|𝑉 |) approximation for the quantity of

consideration min𝑘 𝑆𝐺(𝑘)+𝑘. For each 𝑘, we denote our approximation for 𝑆𝐺(𝑘)+𝑘

as 𝑓(𝑘) := |𝐵𝑘|+𝑔(𝑘). Then by the guarantee given in Proposition 1, we know

𝑓(𝑘) = |𝐵𝑘|+𝑔(𝑘) ≤ 𝑂

(︂
log 𝑘

𝜖

)︂
· 𝑆𝐺(𝑘) +

1

1− 2𝜖
𝑘 ≤ 𝑂

(︂
log 𝑘

𝜖

)︂
· (𝑆𝐺(𝑘) + 𝑘).

Thus

min
𝑘

𝑓(𝑘) ≤ min
𝑘

𝑂

(︂
log 𝑘

𝜖

)︂
·(𝑆𝐺(𝑘)+𝑘) ≤ 𝑂

(︂
log 𝑛

𝜖
min
𝑘

(𝑆𝐺(𝑘) + 𝑘)

)︂
≤ 𝑂 (log 𝑛 ·𝑚(𝐺)) .

The last inequality follows from the fact that that min𝑘(𝑆𝐺(𝑘) + 𝑘)/2 ≤ 𝑚(𝐺) ≤

min𝑘(𝑆𝐺(𝑘) + 𝑘) in Lemma 1, and by taking 𝜖 to be a fixed constant, e.g. 𝜖 = 1/3.

So min𝑘 𝑓(𝑘) provides an 𝑂(log 𝑛) approximation of 𝑚(𝐺). The algorithm consists

of 𝑛 calls of the polynomial-time algorithm in Proposition 1, so is also polynomial-

time.
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2.4 Directed Graphs

Here we present the variant of our problem on directed graphs. As discussed in [1],

this is motivated by the fact that in various auditing situations, it may not be natural

that any 𝑢 will be able to inspect 𝑣 whenever 𝑣 inspects 𝑢.

Given a directed graph 𝐷 = (𝑉,𝐸𝐷), we are asked to to find 𝑚(𝐷), the minimal

number of corrupted agents needed to prevent the identification of a single truthful

agent. Firstly, since undirected graphs are special cases of directed graphs, it is clear

that the worst case hardness of approximation results still hold. In this section, we

will define a analogous notion of vertex separator relevant to corruption detection for

directed graphs, and state the version of Theorem 1 for directed graphs.

Definition 9 (Reachability Index). On a directed graph 𝐷 = (𝑉,𝐸𝐷), say a vertex

𝑠 can reach a vertex 𝑡 if there exists a sequence of adjacent vertices (i.e. a path) which

starts with 𝑠 and ends with 𝑡. Let 𝑅𝐷(𝑣) be the set of vertices that can reach a vertex

𝑣. Define the reachability index of 𝑣 as |𝑅𝐷(𝑣)|, or in other words, as the total

number of nodes that can reach 𝑣.

Based on the notion of reachability index, we design the following algorithm,

Algorithm 2, for detecting one good node on directed graphs:

Algorithm 2 Finding one truthful vertex on directed graph 𝐷
Input: Directed graph 𝐷

• If node 𝑢 reports node 𝑣 as corrupt, remove both 𝑢, 𝑣 and any incident edges

(incoming and outgoing). Remove a pair of nodes in each round. Continue until

there are no bad reports left.

• Call the remaining graph 𝐻 = (𝑉𝐻 , 𝐸𝐻). Declare a vertex in 𝐻 with maximum

reachability index as good.

Run Algorithm 2 on directed graph 𝐷, and suppose the first step terminates in 𝑖

rounds. Then:
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• No remaining node reports out-neighbors as corrupt

• |𝑉 |−2𝑖 nodes remain in graph

• ≤ 𝑏 − 𝑖 bad nodes remain in the graph, because each round in step 1 removes

at least one bad node.

The main idea is that, if there exists a node 𝑣 with reachability index larger than

𝑏− 𝑖, at least 𝑏− 𝑖 nodes claim (possibly indirectly) that 𝑣 is good, which means at

least one good node also reports 𝑣 as good, and thus 𝑣 must be good. In the rest of

the section, we use this observation to generalize Theorem 1.

We define a notion similar to 𝑘-vertex separator on directed graphs, show that our

notion provides a 2-approximation for 𝑚(𝐷) when 𝐷 is a directed graph, and that

the equivalent of Theorem 1 also holds in the directed case.

Definition 10 (𝑘-reachability separator). We say a set of vertices 𝑆 ⊆ 𝑉 is a

𝑘-reachability separator of a directed graph 𝐷 = (𝑉,𝐸𝐷) if after the removal of 𝑆 and

any adjacent edges, all vertices in the remaining graph are of reachability at most 𝑘.

Since in an undirected graph, any pair of vertices can reach each other if and only

if they belong to the same connected component, one can check that 𝑘-reachability

separator on an undirected graph is exactly equivalent to a 𝑘-vertex separator. Thus

we use a similar notation, 𝑆𝐷(𝑘), to denote the size of the minimal 𝑘-reachability

separator on 𝐷.

Lemma 4 (2-Approximation Lemma on Directed Graphs).

1

2
min
𝑘

(𝑆𝐷(𝑘) + 𝑘) ≤ 𝑚(𝐷) ≤ min
𝑘

(𝑆𝐷(𝑘) + 𝑘)

Proof. The direction 𝑚(𝐷) ≤ min𝑘 𝑆𝐷(𝑘)+𝑘 is proved as follows. Let 𝑘* = argmin𝑘(𝑆𝐷(𝑘)+

𝑘). If the corrupt party is given min𝑘(𝑆𝐷(𝑘) + 𝑘) nodes to allocate on 𝐷, it can first

assign 𝑆𝐷(𝑘
*) nodes to a 𝑘*-reachability separator 𝐶, such that the remaining nodes

have reachability index at most 𝑘*. Then it arbitrarily assigns one of the vertices 𝑣*

with maximum reachability index plus its 𝑅𝐻(𝑣
*) as bad. The bad nodes in 𝑅𝐻(𝑣

*)
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report any neighbor in the separator 𝐶 as bad and any other neighbor as good.

The nodes in the separator can effectively report however they want (e.g. report all

neighboring nodes as bad).

It is impossible to detect a single good node, because every node 𝑣 can only be

reached by 𝑅𝐻(𝑣) and 𝐶. For every 𝑣 ∈ 𝐻, it being assigned as corrupt or good is

consistent with the reports. If 𝑣 is corrupt, 𝑅𝐻(𝑣) is also assigned as corrupt, thus

all nodes in 𝐻 receive good reports from 𝑅𝐻(𝑣), bad reports from 𝐶 and give bad

reports to 𝐶. If 𝑣 is truthful, all nodes still receive and give the same reports. So for

every 𝑣 ∈ 𝑉𝐻 , assigning 𝑅𝐻(𝑣) as bad, and 𝑉𝐻 ∖𝑅𝐻(𝑣) as good is consistent with the

observed reports. It is impossible to find a good node in 𝐻 by definition.

The proof for 1/2min𝑘(𝑆𝐷(𝑘) + 𝑘) ≤ 𝑚(𝐷) is given by Algorithm 2. Let there

be 𝑚(𝐷) bad nodes distributed optimally on the graph. By definition, these nodes

prevent the identification of a good node. Run Algorithm 2, and suppose the first

step terminates in 𝑖 rounds. This means we have removed at least 𝑖 bad nodes, and

there are at most 𝑚(𝐷) − 𝑖 bad nodes left on 𝐻. If there exists a node on 𝐻 with

reachability 𝑚(𝐷) − 𝑖, then this node must be truthful, since there are not enough

bad nodes left to corrupt all the nodes that can reach it, and all the reports in the

remaining graph are good. Thus |𝑅(𝑣)|< 𝑚(𝐷) − 𝑖 for any 𝑣. Therefore, the set of

2𝑖 removed nodes must be an 𝑚(𝐷)− 𝑖 reachability separator. Hence, we can bound

𝑚(𝐷) as follows.

𝑚(𝐷) = (𝑚(𝐷)− 𝑖) + 2𝑖/2 ≥ min
𝑘

(𝑘 + 𝑆𝐷(𝑘)/2) ≥
1

2
min
𝑘

(𝑆𝐷(𝑘) + 𝑘)

where the first inequality follows from the fact that 2𝑖 ≥ 𝑆𝐷(𝑚(𝐷)− 𝑖).

Theorem 4. Fix a directed graph 𝐷 and suppose that the corrupt party has a budget

𝑏 ≤ 𝑚(𝐷)/2. Then the central agency can identify a truthful node, regardless of

the strategy of the corrupt party, and without the knowledge of either 𝑚(𝐷) or 𝑏.

Furthermore, the central agency’s algorithm runs in linear time.

Proof of Theorem 4. Suppose the corrupt party has budget 𝑏 ≤ 𝑚(𝐷)/2. Run Algo-
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rithm 2. Notice each time we remove an edge with bad report, at least one of the

end point is a corrupt vertex. So we have removed at most 2𝑏 ≤ 𝑚(𝐷) ≤ ⌈|𝑉 |/2⌉

nodes. Therefore, the graph 𝐻 is nonempty. Let 𝑘* ≥ 1 be the maximum reachability

index in 𝐻. Since 𝑏 ≤ 𝑚(𝐷)/2, and there are no bad reports in 𝐻, the reachability

index of a bad node in graph 𝐻 is at most 𝑚(𝐷)/2 − 𝑖 ≤ min𝑘(𝑆𝐷(𝑘) + 𝑘)/2 − 𝑖 ≤

(2𝑖+ 𝑘*)/2− 𝑖 = 𝑘*/2 < 𝑘*.

Then a vertex with reachability index 𝑘* must be found by Algorithm 2, and must

be a truthful node. The linear runtime 𝑂(|𝐸𝐷|) follows from the same analysis as in

the proof of Theorem 1.

2.5 Finding an Arbitrary Fraction of Good Nodes on

a Graph

Being able to detect one good node may seem limited, but in fact, the same arguments

and construction can be adapted to show that approximating the critical number of

bad nodes to prevent detection of any arbitrary 𝛿 fraction of good nodes is SSE-hard.

In this section, we propose the definition of 𝑔-remainder 𝑘-vertex separator, a vertex

separator notion related to identifying arbitrary number of good nodes, present a

2-approximation result, and prove hardness of approximation with arguments similar

to proof of Theorem 2 in Section 2.3.2.

We abuse notation and define 𝑚(𝐺, 𝑔) to be the minimal number of bad nodes

needed to prevent the identification of 𝑔 nodes.

Definition 11 (𝑚(𝐺, 𝑔)). We define 𝑚(𝐺, 𝑔) as the minimal number of bad nodes

such that it is impossible to find 𝑔 good nodes in 𝐺. In particular, 𝑚(𝐺) = 𝑚(𝐺, 1).

Definition 12 (𝑔-remainder 𝑘-vertex Separator). Consider the following sepa-

ration property: after the removal of a vertex set 𝑆, the remaining graph 𝐺𝑉 ∖𝑆 is

a union of connected components, where connected components of size larger than 𝑘

sum up to size less than 𝑔. We call such a set 𝑆 a 𝑔-remainder 𝑘-vertex separator of

𝐺.
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For any integer 0 < 𝑘, 𝑔 < |𝑉 |, we denote the minimal size of such a set as

𝑆𝐺(𝑘, 𝑔). In particular, a minimal 𝑘-vertex separator is a 1-remainder 𝑘-vertex sepa-

rator, i.e., 𝑆𝐺(𝑘) = 𝑆𝐺(𝑘, 1).

Theorem 5. Fix a graph 𝐺 and the number of good nodes to recover, 𝑔. Suppose

that the corrupt party has a budget 𝑏 ≤ 𝑚(𝐺, 𝑔)/2. If 𝑔 < |𝑉 |−2𝑏, then the central

agency can identify 𝑔 truthful nodes, regardless of the strategy of the corrupt party,

and without knowledge either of 𝑚(𝐺, 𝑔) or 𝑏. Furthermore, the central agency’s

algorithm runs in linear time.

Algorithm 3 Finding 𝑔 truthful vertices on an undirected graph 𝐺
Input: Undirected graph 𝐺

• If the reports on edge (𝑢, 𝑣) does not equal to (𝑢 ∈ 𝑇, 𝑣 ∈ 𝑇 ), remove both 𝑢, 𝑣

and any incident edges. Remove a pair of nodes in each round, until there are

no bad reports left.

• Suppose the previous step terminates in 𝑖 rounds. In the remaining graph 𝐻,

rank the connected component from large to small by size. Declare the largest

component as good and remove the declared component until we have declared

𝑔 nodes as good.

Proof of Theorem 5. We claim that central agency can use Algorithm 3, and output

at least 𝑔 good nodes if 𝑏 ≤ 𝑚(𝐺, 𝑔)/2. Step 1 of Algorithm 1 must terminate after

removing fewer than 𝑚(𝐺, 𝑔) nodes, because each round has to remove at least one

bad node, and there are only 𝑚(𝐺, 𝑔)/2 bad nodes in total. Let the number of nodes

removed be 𝑚(𝐺, 𝑔)− 𝛿, so at least 𝑚(𝐺, 𝑔)/2− 𝛿/2 ≥ 𝑏− 𝛿/2 are corrupt. Thus at

most 𝛿/2 bad nodes remain in the graph 𝐻.

Assume towards contradiction that only 𝑦 < 𝑔 nodes output by Algorithm 1 are

good. This means that the 𝑚(𝐺, 𝑔) − 𝛿 removed nodes separate the graph 𝐺 into

connected components where all components with size larger than 𝛿/2 sum to fewer

than 𝑔. Then 𝑚(𝐺, 𝑔)− 𝛿 = 𝑚(𝐺, 𝑦) for 𝑦 < 𝑔, contradicting the fact that 𝑚(𝐺, 𝑔) is

the minimum budget needed to prevent identification of 𝑔 nodes.
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In fact, just like in Section 2.3, Algorithm 3 additionally gives us a characterization

of 𝑚(𝐺, 𝑔) in terms of the size of the smallest 𝑔-remainder 𝑘-vertex separator of a

graph, for an appropriately chosen value of 𝑘.

Lemma 5 (2-Approximation by Vertex Separation). The minimal sum of 𝑔-remainder

𝑘-vertex separator and 𝑘, min𝑘 (𝑆𝐺(𝑘, 𝑔) + 𝑘), bounds the critical number of bad nodes

𝑚(𝐺, 𝑔) up to a factor of 2. i.e.,

1

2
min
𝑘

𝑆𝐺(𝑘, 𝑔) + 𝑘 ≤ 𝑚(𝐺, 𝑔) ≤ min
𝑘

𝑆𝐺(𝑘, 𝑔) + 𝑘.

Proof of Lemma 5. The upper bound follows simply. Let 𝑘* = argmin𝑘 𝑆𝐺(𝑘, 𝑔) + 𝑘.

Given a budget 𝑏 = min𝑘 𝑆𝐺(𝑘, 𝑔)+𝑘, the bad party can remove a set of size 𝑆𝐺(𝑘
*, 𝑔)

and separate the graph into connected components of size at most 𝑘*, except for

fewer than 𝑔 nodes. Control one of the connected components of size at most 𝑘*,

and construct the reports similarly as in Lemma 1. Then the central agency can only

identify fewer than 𝑔 good nodes.

For the lower bound, suppose there are 𝑏 = 𝑚(𝐺, 𝑔) bad nodes distributed opti-

mally on 𝐺 and thus it’s impossible to find 𝑔 good nodes by definition. Run Algorithm

3. Suppose the first step terminates in 𝑖 rounds. After the removal of 2𝑖 nodes, the

graph must be separated into connected components smaller than 𝑏 − 𝑖, except for

fewer than 𝑔 nodes. Then 2𝑖 ≥ 𝑆𝐺(𝑏− 𝑖, 𝑔). Therefore,

1

2
min
𝑘

(𝑆𝐺(𝑘, 𝑔) + 𝑘) ≤ min
𝑘

(︂
𝑆𝐺(𝑘, 𝑔)

2
+ 𝑘

)︂
≤ 1

2
𝑆𝐺(𝑏−𝑖, 𝑔)+(𝑏−𝑖) ≤ 2𝑖

2
+𝑏−𝑖 = 𝑚(𝐺, 𝑔)

Now using the characterization given by 𝑔-remainder 𝑘-vertex separator, we are

ready to prove that it is SSE-hard to approximate the budget needed to prevent any

arbitrary number of good nodes, i.e., 𝑚(𝐺, 𝑔) for any 𝑔 < |𝑉 |/3.
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Theorem 6. For every 𝛽 > 1 and every 0 < 𝛿 < 1, there is a constant 𝜖 > 0 such

that the following is true. Given a graph 𝐺 = (𝑉,𝐸), it is SSE-hard to distinguish

between the case where 𝑚(𝐺, 𝛿|𝑉 |) ≤ 𝜖 · |𝑉 | and 𝑚(𝐺, 𝛿|𝑉 |) ≥ 𝛽 · 𝜖 · |𝑉 |. Or in other

words, the problem of approximating the critical number of corrupt nodes such that it

is impossible to find 𝛿|𝑉 | good nodes within any constant factor is SSE-hard.

We first prove Theorem 6 for 0 < 𝛿 < 1/3. The proof in this regime follows

similar constructions and arguments as in the proof of Theorem 2. Note that the

proof extends naturally for any 0 < 𝛿 < 1/2. This is effectively because the range for

𝜇 in Remark 2 can be made to [𝜖′, 1/2], for any constant 𝜖′ > 0. Further explanation

is provided in proof for Lemma 7.

Firstly, we construct 𝐺′ based on 𝐺 as in Section 2.3.2. Lemma 2 immediately

implies that:

Lemma 6. Suppose 𝑞 = 1/𝜖, and 𝐺 can be partitioned into 𝑞 equi-sized sets 𝑆1, · · · , 𝑆𝑞

such that Φ𝐺(𝑆𝑖) ≤ 2𝜖 for every 1 ≤ 𝑖 ≤ 𝑞. The bad party can prevent the identification

of one good node, and thus 𝛿|𝑉 ′| good nodes, on the auxiliary graph 𝐺′ with 𝑂(𝜖|𝐸|) =

𝑂(𝜖|𝑉 ′|) nodes.

We reprove the analogous lemma to Lemma 3.

Lemma 7. Let 𝐺 = (𝑉,𝐸) be an undirected 𝑑-regular graph with the property that for

every |𝑉 |/10 ≤ |𝑆|≤ 9|𝑉 |/10 we have |𝐸(𝑆, 𝑉 𝑆)|≥ Ω(
√
𝜖|𝐸|). If bad party controls

𝑂(𝜖0.51|𝐸|) = 𝑂(𝜖0.51|𝑉 ′|) < 1/2|𝑉 ′| nodes on the auxiliary graph 𝐺′ constructed from

𝐺, we can always find 𝛿|𝑉 ′| truthful nodes on 𝐺′, for any 𝛿 < 1/3.

Proof of Lemma 7. Let 𝑔 = 𝛿|𝑉 ′|. Assume towards contradiction that the bad party

controls 𝑂(𝜖0.51|𝐸|) vertices in 𝐺′, and we cannot identify 𝑔 truthful nodes.

Claim 2. If the bad party controls 𝑂(𝜖0.51|𝐸|) vertices of graph 𝐺′, and we can’t

identify 𝑔 truthful node, then there exists a set 𝐶 of size 𝑂(𝜖0.51|𝐸|) and separates

𝑉 ′∖𝐶 into sets {𝑇 ′
𝑖}𝑖=1,···,ℓ, each of size |𝑇 ′

𝑖 |≤ 𝑂(𝜖0.51|𝐸|), and sets {𝐴′
𝑗}𝑗=1,···,𝐾, each

of size |𝐴′
𝑗|> Ω(𝜖0.51|𝐸|), and |∪𝐾

𝑗 𝐴
′
𝑗|< 𝑔.

49



Proof of Claim 2. Since the corrupt party can control 𝐺′ with 𝑂(𝜖0.51|𝐸|) vertices,

𝑚(𝐺′, 𝑔) ≤ 𝑂(𝜖0.51|𝐸|). By Lemma 5 min𝑘 𝑆𝐺′(𝑘, 𝑔) + 𝑘 ≤ 2𝑚(𝐺′, 𝑔) ≤ 𝑂(𝜖0.51|𝐸|).

Let 𝑘* = argmin𝑘 𝑆𝐺′(𝑘, 𝑔) + 𝑘. Then 𝑘* ≤ 𝑂(𝜖0.51|𝐸|), 𝑆𝐺′(𝑘*, 𝑔) ≤ 𝑂(𝜖0.51|𝐸|). By

definition of 𝑆𝐺′(𝑘*, 𝑔), there exists a set of size 𝑆𝐺(𝑘
*) after whose removal separates

the remainder of the graph 𝐺 to connected components of size at most 𝑘* except for

fewer than 𝑔 nodes. Thus components of size larger than Ω(𝜖0.51|𝐸|) contain fewer

than 𝑔 nodes.

Let 𝑇 ′ = ∪ℓ
𝑖=1𝑇

′
𝑖 , 𝐴

′ = ∪𝐾
𝑗=1𝐴

′
𝑗. Since |𝐶|= 𝑂(𝜖0.51|𝐸|) = 𝑂(𝜖0.51|𝑉 |), and 𝐶 ∪ 𝑇 ′ ∪

𝐴′ = 𝑉 ′, for small enough 𝜖, |(𝑇 ′ ∪𝐴′) ∩ 𝑉 |≥ 9|𝑉 |/10. From the assumption that we

can’t identify 𝑔 truthful nodes, |𝐴′|< 𝑔 ≤ |𝑉 ′|/3. Otherwise, we can claim the entire

𝐴′ as good and identify 𝑔 truthful nodes. Thus |𝐴′ ∩ 𝑉 |≤ |𝑉 ′|/3 ≤ 2/3|𝑉 |.4

Additionally, use the fact that |𝑇 ′
𝑖 ∩𝑉 |< |𝑉 |/10 for every 𝑖, with sufficiently small

𝜖, we can merge various sets in {{𝐴𝑗}𝑗=1,···,𝐾 , {𝑇𝑖}𝑖=1,···,ℓ} and get two sets 𝑉 ′
1 and 𝑉 ′

2 ,

such that |𝑉 ′
1 ∩ 𝑉 |, |𝑉 ′

2 ∩ 𝑉 |≥ |𝑉 |/10, and 𝑉 ′
1 and 𝑉 ′

2 are separated by 𝐶.

Now, let 𝑉1 ⊆ 𝑉 (resp. 𝑉2 ⊆ 𝑉 ) be the set of vertices 𝑣 ∈ 𝑉 such that some

copy of 𝑣 appears in 𝑉 ′
1 (resp. 𝑉 ′

2). Let 𝑆 ⊆ 𝑉 be the set of vertices 𝑣 ∈ 𝑉 such

that all 𝑟 copies of 𝑣 appears in 𝐶. Since |𝑉 ′
1 ∩ 𝑉 |, |𝑉 ′

2 ∪ 𝑉 |≥ |𝑉 |/10 = 𝑟|𝑉 |/10, both

|𝑉1|, |𝑉2|≥ |𝑉 |/10. Furthermore, we observe that 𝑉1 ∪ 𝑉2 ∪𝑆 = 𝑉 , which follows from

𝑉 ′
1 ∪ 𝑉 ′

2 ∪ 𝐶 = 𝑉 ′. Now we can lower bound |𝑉1 ∪ 𝑉2| as follows.

|𝑉1 ∪ 𝑉2|= |𝑉 ∖𝑆|≥ |𝑉 |−|𝐶|/𝑟 ≥ |𝑉 |−𝑐𝜖0.51|𝐸|/𝑟 = |𝑉 |−𝑐𝜖0.51|𝑉 |

The first equality again follows from the fact that 𝑉1 ∪ 𝑉2 ∪ 𝑆 = 𝑉 , and that 𝑉1 ∪ 𝑉2

is disjoint from 𝑆, and the second inequality follows by definition of 𝑆.

Since 𝑉1 ∪ 𝑉2 is sufficiently large, we can find a balanced partition of 𝑉1 ∪ 𝑉2 into

sets 𝑆1 ⊆ 𝑉1, 𝑆2 ⊆ 𝑉2, 𝑆1 ∩ 𝑆2 = ∅, 𝑆1 ∪ 𝑆2 = 𝑉1 ∪ 𝑉2, |𝑉 |/10 ≤ |𝑆1|, |𝑆2|≤ 9|𝑉 |/10.

From the property of 𝐺 that 𝐸(𝑆, 𝑉 ∖ 𝑆) ≥ Ω(
√
𝜖|𝐸|) in Lemma 3 and the fact that

𝐺 is 𝑑-regular, we know that

4If we use the fact that |𝐴′|< 𝑔 ≤ (|𝑉 ′|−𝜖′|𝑉 |)/2, for some constant 𝜖′, then |𝐴′ ∩ 𝑉 |≤
(|𝑉 ′|−𝜖′|𝑉 ′|)/2 ≤ (1 − 𝜖′)|𝑉 |. We can merge {{𝐴𝑗}, {𝑇𝑖}} to two sets 𝑉 ′

1 , 𝑉 ′
2 such that

|𝑉 ′
1 ∩ 𝑉 |, |𝑉 ′

2 ∩ 𝑉 |≥ 𝜖′|𝑉 |. The rest of the proof still goes through.
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𝐸(𝑆1, 𝑆2) = 𝐸(𝑆1, 𝑉 ∖𝑆1)−𝐸(𝑆1, 𝑆) ≥ 𝛼
√
𝜖|𝐸|−𝑑(𝜖0.51|𝐸|/𝑟) = 𝛼

√
𝜖|𝐸|−2𝜖0.51|𝐸|= Ω(

√
𝜖|𝐸|),

for some constant 𝛼. In the first equality, we use the fact that 𝑆1 ∪ 𝑆2 ∪ 𝑆 = 𝑉 , and

𝑆1, 𝑆2, 𝑆 are disjoint. Thus 𝐸(𝑆1, 𝑉 ∖𝑆1) = 𝐸(𝑆1, 𝑆2 ∪ 𝑆) = 𝐸(𝑆1, 𝑆2) + 𝐸(𝑆1, 𝑆).

Note that since 𝑆1 ⊆ 𝑉1 and 𝑆2 ⊆ 𝑉2, and 𝑇 ′
1 and 𝑇 ′

2 do not have edges between

them in 𝐺′, the edges 𝐸(𝑆1, 𝑆2) all have to land as "edge vertices" in 𝐶. Formally,

𝐸(𝑆1, 𝑆2) ⊆ 𝐸̃ ∩ 𝐶. In other words, for any 𝑢 ∈ 𝑆1, and 𝑣 ∈ 𝑆2, if (𝑢, 𝑣) ∈ 𝐸, then

the vertex (𝑢, 𝑣) ∈ 𝑉 ′ has to be included in the set 𝐶, thus |𝐶|≥ Ω(
√
𝜖|𝐸|).

This contradicts the fact that there are only 𝑂(𝜖0.51|𝐸|) vertices in 𝐶.

Using Lemma 6 and Lemma 7, we can again obtain Theorem 6 for 0 < 𝛿 < 1/2,

with the same argument for the proof of Theorem 2 in Section 2.3.2.

When 1/2 ≤ 𝛿 < 1, we construct an auxiliary graph in the following way. Take

as input any graph 𝐺 = (𝑉,𝐸). Let ℎ = 𝛿/(1 − 𝛿)|𝑉 |, construct 𝐺′ = 𝐺 ∪ ℎ-clique.

Note ℎ = 𝛿|𝑉 ′|. Then, we claim that the critical number of bad nodes such that it is

impossible to detect 𝛿|𝑉 ′|+1 good nodes on 𝐺′ is the same as the critical number of

bad nodes such that it is impossible to find one good node on 𝐺.

Claim 3. Given any graph 𝐺, 1/2 ≤ 𝛿 < 1 and 𝐺′ as constructed,

𝑚(𝐺′, 𝛿|𝑉 ′|+1) = 𝑚(𝐺).

Proof. Firstly, observe that

𝛿|𝑉 ′|= 𝛿(|𝑉 |+ℎ) = 𝛿(|𝑉 |+𝛿/(1− 𝛿)|𝑉 |) = ℎ.

Therefore, one way to prevent identification of 𝛿|𝑉 ′|+1 good nodes on 𝐺′ is to prevent

identification of one good node on 𝐺. Since the ℎ-clique is of size at least |𝑉 ′|/2, and
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report each other as good, they will be detected as good nodes. This strategy requires

bad party to have budget 𝑏 = 𝑚(𝐺). Thus 𝑚(𝐺′, 𝛿|𝑉 ′|+1) ≤ 𝑚(𝐺).

The direction 𝑚(𝐺′, 𝛿|𝑉 ′|+1) ≥ 𝑚(𝐺) follows by the fact that the strategy above

is optimal. In order to prove this, we make the following observation:

Claim 4. Given any graph 𝐺 and 𝑔 ≤ |𝑉 |,

𝑚(𝐺) ≤ 𝑚(𝐺, 𝑔) + 𝑔 − 1

Proof of Claim 4. One way to prevent identification of one good node is to corrupt

𝑚(𝐺, 𝑔) nodes plus the (at most) 𝑔 − 1 detected good nodes. Call the set of the

𝑔 − 1 or fewer detected nodes 𝑆. Notice that any node in 𝐺∖𝑆 that is adjacent to

𝑆 are reported as bad by 𝑆. If not, this node has the same identity with 𝑆, and

should be detected as good as well. Therefore, the bad party is able to corrupt the

set 𝑆 without incurring any change in the reports, since all edges incident to 𝑆 now

have both endpoints corrupt and so the reports are arbitrary. Previously, the set

𝑆 were good in any configuration of identities consistent with the reports and the

budget. But now, the bad party’s budget increases by at least 𝑔 − 1 ≥ |𝑆|, and any

configuration with the set 𝑆’s identity changed to all bad is also consistent with the

reports.

Therefore, no node is good in all configurations, and so no node can be detected as

good. This strategy requires 𝑚(𝐺, 𝑔)+ 𝑔− 1 nodes and prevents identification of one

good node. Since 𝑚(𝐺) is the minimal number of bad nodes so that it is impossible

to detect one good node, 𝑚(𝐺) ≤ 𝑚(𝐺, 𝑔) + 𝑔 − 1.

Now we continue to prove the 𝑚(𝐺′, 𝛿|𝑉 ′|+1) ≥ 𝑚(𝐺) direction of Claim 3. As-

sume towards contradiction that there exists a strategy that controls at least one

node in the ℎ-clique, prevents identification of ℎ + 1 good nodes, and requires fewer

than 𝑚(𝐺) bad nodes in total. Suppose this strategy assigns 𝑎 nodes in the ℎ-clique

as bad, where 1 < 𝑎 < 𝑚(𝐺) ≤ |𝑉 |/2 ≤ ℎ/2. Then ℎ− 𝑎 > ℎ/2 > 𝑚(𝐺) > 𝑏. There-
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fore, the rest of the ℎ-clique forms a connected component with only good reports,

and is of size ℎ− 𝑎, which is larger than the bad party’s budget 𝑏 < 𝑚(𝐺), thus are

declared as good. As a result, the bad party must prevent identification of 𝑎+1 good

nodes in 𝐺 with budget strictly less than 𝑚(𝐺) − 𝑎. This contradicts the fact that

𝑚(𝐺)− 𝑎 ≤ 𝑚(𝐺, 𝑎)− 1 < 𝑚(𝐺, 𝑎+ 1) by Claim 4.

Therefore, the strategy of controlling 𝑚(𝐺) nodes on 𝐺 and let the ℎ-clique be

detected as good is an optimal strategy, 𝑚(𝐺′, 𝛿|𝑉 ′|+1) = 𝑚(𝐺).

Now, with Claim 3, we conclude that for any 1/2 ≤ 𝛿 < 1, approximating

𝑚(𝐺, 𝛿|𝑉 |) within any constant must be SSE-hard. If not, we will obtain an ef-

ficient algorithm for approximating 𝑚(𝐺) by constructing a graph 𝐺′ by adding a
𝛿

1−𝛿
|𝑉 | clique to any graph 𝐺, for some 𝛿, and approximate 𝑚(𝐺) by approximating

𝑚(𝐺′, 𝛿|𝑉 ′|+1), which is just 𝑚(𝐺′, 𝛿′|𝑉 ′|) for some other 0 < 𝛿′ < 1.

Theorem 6 implies a similar corollary about the SSE-hardness of seeding the nodes

on a graph 𝐺 given any constant multiple of the critical number 𝑚(𝐺, 𝛿|𝑉 |) to prevent

detection of any arbitrary fraction of good nodes.

Corollary 2. Assume the SSE Hypothesis and P ̸= NP. Fix any 𝛽 > 1, and 0 < 𝛿 <

1. There does not exist a polynomial-time algorithm that takes as input an arbitrary

graph 𝐺 = (𝑉,𝐸) and outputs a set of nodes 𝑆 with size |𝑆|≤ 𝑂(𝛽 ·𝑚(𝐺, 𝛿|𝑉 |)), such

that corrupting 𝑆 prevents the central agency from finding 𝛿|𝑉 | truthful nodes.
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Chapter 3

A Geometric Model for Opinion

Polarization

3.1 Introduction

Opinion polarization is a widely acknowledged social phenomenon, especially in the

context of political opinions [33, 90, 51], leading to recent concerns over “echo cham-

bers” created by mass media [82] and social networks [25, 75, 7, 6, 39]. The objective

of this paper is to propose a simple, multi-dimensional geometric model of the dynam-

ics of polarization where the evolution of correlations between opinions on different

topics plays a key role.

Many models have been proposed to explain how polarization arises, and this

remains an active area of research [73, 5, 72, 49, 65, 10, 27, 28, 59, 78, 86]. Our

attempt aims at simplicity over complexity. As opposed to a large majority of previous

works, our model does not require social network-based mechanism. Instead, we focus

on influences of advertising or political campaigns that reach a wide segment of the

population.

We develop a high-dimensional variant of biased assimilation [64] and use it as our

main behavioral assumption. The bias assimilation for one topic states that people

tend to be receptive to opinions they agree with, and antagonistic to opinions they

disagree with.

55



The multi-dimensional setting reflects the fact that campaigns often touch on

many topics. For example, in the context of American politics, one might wonder

why there exists a significant correlation between opinions of individuals on, say,

abortion access, gun rights and urgency of climate change [80]. Our model attempts to

illustrate how such correlations between opinions can arise as a (possibly unintended)

effect of advertising exploiting different topics and social values.

In mathematical terms, we consider a population of agents with preexisting opin-

ions represented by vectors in R𝑑. Each coordinate represents a distinct topic, and

the value of the coordinate reflects the agent’s opinion on the topic, which can be

positive or negative. As discussed more fully in Section 3.1.4, we assume that all opin-

ions lie on the Euclidean unit sphere. This reflects an assumption that each agent

has the same “budget of importance” of different topics. We then consider a sequence

of interventions affecting the opinions. An intervention is also a unit vector in R𝑑,

representing the set of opinions expressed in, e.g., an advertising campaign or “news

cycle”.

We model the effect of intervention 𝑣 on an agent’s opinion 𝑢 in the following way.

Supposing an agent starts with opinion 𝑢 ∈ R𝑑, after receiving an intervention 𝑣 it

will update the opinion to the unit vector proportional to

𝑤 = 𝑢+ 𝜂 · ⟨𝑢, 𝑣⟩ · 𝑣 , (3.1)

where 𝜂 > 0 is a global parameter that controls the influence of an intervention. Most

of our results do not depend on a choice of 𝜂 and in our examples we often take 𝜂 = 1

for the sake of simplicity. Smaller values of 𝜂 could model campaigns with limited

persuasive power. This and other design choices are discussed more extensively in

Section 3.1.4.

Intuitively, the agent evaluates the received message in context of its existing

opinion, and assimilates this message weighted by its “agreement” with it. Our model

exhibits biased assimilation in that if the intervening opinion 𝑣 is positively correlated

with an agent’s opinion 𝑢, then after the update the agent opinion moves towards 𝑣,
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and conversely, if 𝑣 is negatively correlated with 𝑢, then the update moves 𝑢 away

from 𝑣 and towards the opposite opinion −𝑣.

One way to think of the intervention is as an exposure to persuasion by a po-

litical actor, like a political campaign message. A different way, in the context of

marketing, is a product advertisement that exploits values besides the quality of the

product. In that context, we can think of one of the 𝑑 coordinates of the opinion

vector as representing opinion on a product being introduced into the market and the

remaining coordinates as representing preexisting opinions on other (e.g., social or

political) issues. Then, an intervention would be an advertising effort to connect the

product with a certain set of opinions or values [93]. Some examples are corporate

advertising campaigns supporting LGBT rights [91] or gun manufacturers associat-

ing their products with patriotism and conservative values [87]. Another scenario of

an intervention is a company (e.g., a bank or an airline [37]) announcing its refusal

to do business with the gun advocacy group NRA. Such advertising strategies can

have a double effect of convincing potential customers who share relevant values and

antagonizing those who do not.

Our main results show that such interventions, even if intending mainly to increase

sales and without direct intention to polarize, can have a side effect of increasing the

extent of polarization in the society. For example, it might be that, in a population

with initial opinions distributed uniformly, a number of interventions introduces some

weak correlations. In our model, these correlations can be profitably exploited by

advertisers in subsequent interventions. As a side effect, the interventions strengthen

the correlations and increase polarization.

For example, suppose that after various advertising campaigns, we observe that

people who tend to like item A (say, electric cars) tend to be liberal, and people

who like a seemingly unrelated item B (say, firearms) tend to be conservative. This

may result from the advertisers exploiting some obvious connections, e.g., between

electric cars and responding to climate change, and between firearms and respect for

the military. Subsequently, future advertising efforts for electric cars may feature

other values associated with liberals in America to appeal to potential consumers: an
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advertisement might show a gay couple driving to their wedding in an electric car.

Similarly, future advertisements for firearms may appeal to conservative values for

similar reasons. The end result can be that the whole society becomes more polarized

by the incorporation of political topics into advertisements.

Throughout the paper, we analyze properties of our model in a couple of scenarios.

With respect to the interventions, we consider two scenarios: either there is one entity

(an influencer) trying to persuade agents to adopt their opinion or there are two

competing influencers pushing different agendas. With respect to the time scale of

intervations, we also consider two cases: the influencer(s) can apply arbitrarily many

interventions, i.e., the asymptotic setting, or they need to maximize influence with

a limited number of interventions, i.e., the short-term setting. The questions asked

are: (i) What sequence of interventions should be applied to achieve the influencer’s

objective? (ii) What are the computational resources needed to compute this optimal

sequence? (iii) What are the effects of applying the interventions on the population’s

opinion structure? We give partial answers to those questions. The gist of them is

that in most cases, applying desired interventions increases the polarization of agents.

3.1.1 Model definition

The formal definition of our model is simple. We consider a group of 𝑛 agents,

whose opinions are represented by 𝑑-dimensional unit vectors, where each coordinate

corresponds to a topic. We will look into how those opinions change after receiving a

sequence of interventions. Each intervention is also a unit vector in R𝑑, representing

the opinion contained in a message that the influencer (e.g., an advertiser) broadcast

to the agents. Our model features one parameter: 𝜂 > 0, signifying how strongly an

intervention influences the opinions.

The interventions 𝑣(1), . . . , 𝑣(𝑡), . . . divide the process into discrete time steps. Ini-

tially, the agents start with opinions 𝑢
(1)
1 , . . . , 𝑢

(1)
𝑛 . Subsequently, applying interven-

tion 𝑣(𝑡) updates the opinion of agent 𝑖 from 𝑢
(𝑡)
𝑖 to 𝑢

(𝑡+1)
𝑖 .

After each intervention, the agents update their opinions by moving towards or

away from the intervention vector, depending on whether or not they agree with it
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(which is determined by the inner product between the intervention vector 𝑣(𝑡) and

the opinion vector), and normalizing suitably. The update rule is given by

𝑢
(𝑡+1)
𝑖 =

𝑤
(𝑡+1)
𝑖⃦⃦⃦

𝑤
(𝑡+1)
𝑖

⃦⃦⃦ , where 𝑤
(𝑡+1)
𝑖 = 𝑢

(𝑡)
𝑖 + 𝜂⟨𝑢(𝑡)

𝑖 , 𝑣(𝑡)⟩ · 𝑣(𝑡) . (3.2)

We note that, by expanding out the definition of 𝑤(𝑡+1)
𝑖 ,

‖𝑤(𝑡+1)
𝑖 ‖2= ⟨𝑤(𝑡+1)

𝑖 , 𝑤
(𝑡+1)
𝑖 ⟩ = 1 + (2𝜂 + 𝜂2)⟨𝑢(𝑡)

𝑖 , 𝑣(𝑡)⟩2 (3.3)

In particular, this implies that ‖𝑤(𝑡+1)
𝑖 ‖≥ 1, and consequently that 𝑢

(𝑡+1)
𝑖 is well-

defined. The norm in (3.2) and everywhere else throughout is the standard Euclidean

norm. Note that applying 𝑣(𝑡) or −𝑣(𝑡) to an opinion 𝑢
(𝑡)
𝑖 results in the same updated

opinion 𝑢
(𝑡+1)
𝑖 .

3.1.2 Example

To illustrate our model, let us consider an empirical example with 𝜂 = 1. Suppose

an advertiser is marketing a new product. The opinion of the population has four

dimensions. The population consists of 500 agents, each with initial opinions 𝑢
(1)
𝑖 =

(𝑢𝑖,1, 𝑢𝑖,2, 𝑢𝑖,3, 0) ∈ R4 subject to 𝑢2
𝑖,1 + 𝑢2

𝑖,2 + 𝑢2
𝑖,3 = 1. The opinion on the new

product is represented by the fourth coordinate, which is initially set to zero for

all agents. These starting opinions are sampled independently at random from the

uniform distribution on the sphere. A typical arrangement of initial opinions is shown

under 𝑡 = 1 in Figure 3-1.

Suppose the advertiser chooses to repeatedly apply an intervention that couples

the product with the preexisting opinion on the first coordinate. More concretely, let

the intervention vector be

𝑣 = (𝛽, 0, 0, 𝛼) , where 𝛼 =
3

4
, 𝛽 =

√
1− 𝛼2 .

In that case, an application of the intervention 𝑣 to an opinion 𝑢
(1)
𝑖 = (𝑢𝑖,1, 𝑢𝑖,2, 𝑢𝑖,3, 0)
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results in ⟨𝑢(1)
𝑖 , 𝑣⟩ = 𝛽𝑢𝑖,1 and

𝑢
(2)
𝑖 =

𝑤
(2)
𝑖

‖𝑤(2)
𝑖 ‖

, 𝑤
(2)
𝑖 = ((1 + 𝛽2)𝑢𝑖,1, 𝑢𝑖,2, 𝑢𝑖,3, 𝛽𝛼𝑢𝑖,1) , ‖𝑤(2)

𝑖 ‖2= 1 + 3𝛽2𝑢2
𝑖,1 .

Note that after applying the intervention the first and last coordinates have the same

sign. In subsequent time step, the intervention 𝑣 is applied again to the updated

opinions 𝑢
(2)
𝑖 and so on.

The evolution of opinions over five consecutive applications of 𝑣 in this process

is illustrated in Figure 3-1. The interventions increase the affinity for the product

for some agents while antagonizing others. Furthermore, they have a side effect of

polarizing the agents’ opinions also on the first three coordinates. A similar example

is included in Appendix B.2.

3.1.3 Outline of our results

We analyze the strategy of influencers in several settings.

In an “asymptotic scenario” , the influencer wants to apply an infinite sequence

of interventions 𝑣(1), 𝑣(2), . . . , that maximizes how many out of the 𝑛 agent opinions

converge to the target vector 𝑣. As is standard, we say that a sequence of vectors

𝑢(1), · · · , 𝑢(𝑡), . . . converges to a vector 𝑣 if lim𝑡→∞||𝑢(𝑡)− 𝑣||= 0. One way to interpret

this scenario is that a campaigner wants to establish a solid base of support for their

party platform.

In a “multiple-influencer scenario", two influencers (such as two companies

or two parties) who have different objectives apply their two respective interventions

on the population in a certain order. We ask how the opinions change under such

competing influences. This scenario can be interpreted as two parties campaigning

their agendas to the population.

In a “short-term scenario” , the influencer is advancing a product/subject which

is expressed in the last coordinate of opinion vectors 𝑢𝑖,𝑑. The influencer assumes some

fixed threshold 0 < 𝑇 < 1 and an upper bound 𝐾 on the number of interventions, and

asks, given 𝑛 opinions 𝑢1, . . . , 𝑢𝑛, how to choose 𝑣(1), · · · , 𝑣(𝐾) in order to maximize
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𝑡 = 1 𝑡 = 2

𝑡 = 3 𝑡 = 4

𝑡 = 5 𝑡 = 6

Figure 3-1: Graphical illustration of the example discussed in Section 3.1.2. Since
we are working in 𝑑 = 4, we illustrate the first three dimensions as spatial positions
and the fourth dimension with a color scale. Initially the opinions are uniformly
distributed on the sphere, with the fourth dimension equal to 0 (no opinion) every-
where. Consecutive applications of the intervention 𝑣 = (

√
7/4, 0, 0, 3/4) in R4 result

in polarization both in spatial dimensions and in the color scale.
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the number of time-(𝐾 + 1) opinions 𝑢
(𝐾+1)
1 , . . . , 𝑢

(𝐾+1)
𝑛 with 𝑢

(𝐾+1)
𝑖,𝑑 > 𝑇 . One inter-

pretation is that advertisers only have a limited number of opportunities to publicize

their products to consumers, and consumers with 𝑢
(𝐾+1)
𝑖 > 𝑇 will decide to buy the

product after the interventions 𝑣(1), · · · , 𝑣(𝐾) are applied.

We briefly summarize our results for these scenarios. In Section 3.3 we start

by showing that random interventions lead to a strong form of polarization. More

precisely, assuming uniformly distributed initial opinions, we prove that applying an

independent uniformly random intervention at each time step leads the opinions to

form two equally-sized clusters converging to a pair of (moving) antipodal points.

In Section 3.4 we consider the asymptotic scenario, where there is one influencer

with a desired campaign agenda 𝑣 and unlimited numbers of interventions at its dis-

posal. We ask which sequence of interventions maximizes the number of opinions

that converge to the agenda 𝑣. Somewhat surprisingly, we show that such optimal

strategy does not necessarily promote the campaign agenda directly at every step.

Instead, it finds a hemisphere containing the largest number of initial opinions, con-

centrates the opinions in this hemisphere around an arbitrary point, and only in the

last stage nudges them gradually towards the target agenda. We then show that it

is computationally hard to approximate this densest hemisphere (and therefore the

optimal strategy) to any constant factor. Again, strong polarization emerges from

our dynamic: there exists a pair of antipodal points such that all opinions converge

to one of them.

In Section 3.5 we study the short-term scenario where one influencer is allowed

only one intervention. In Section 3.5.1, we describe a case study with one influencer

and two agents in the population. We assume that the influencer wants to increase

the correlations of agent opinions with the target opinion 𝑣 above a given threshold

𝑇 > 0. We show consequences of optimal interventions depending on if the influencer

can achieve this objective for one or both agents. In Section 3.5.2, we consider a

similar scenario, but with a large number of agents. In that case, it surprisingly

turns out that the problem of finding optimal intervention in this short-term setting

is related to the problem analyzed in the asymptotic setting. Finding the optimal
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intervention is equivalent to finding a spherical cap containing the largest number of

initial opinions.

In Section 3.6, we study two competing influencers. At each time step, one of

the influencers is selected at random to apply its intervention. One might hope that

having multiple advertisers can make the resulting opinions more spread-out, but we

prove that this not the case. We show that, as time goes to infinity, all opinions

converge to the convex cone between the two intervention vectors. Furthermore, we

show that the if the correlation between the interventions is high enough, the strong

form of polarization emerges: the opinions of the population concentrate around two

antipodes moving around in the convex cones of the two interventions.

3.1.4 Design choices

Our goal in this work is to provide a simple, elegant and analyzable model demon-

strating how correlations between different topics and natural interventions lead to

polarization. That being the case, there are many societal mechanisms related to

polarization that we do not discuss here.

First, in contrast to majority of existing literature, we present a mechanism inde-

pendent from opinion changes induced by interactions between individuals. Second,

we do not address aspects such as replacement of the population or unequal exposure

and effects of the interventions. We do not consider any external influences on the

population in addition to the interventions. Our model does not align with (limited)

theoretical and empirical research suggesting that in certain settings exposure to con-

flicting views can decrease polarization [79, 68, 41, 40] or works that question the

overall extent of polarization in the society [34, 11].

In general we assume that the influencers have full knowledge of the agent opinions.

This is not a realistic assumption and in fact our results in Section 3.4 show that

in some settings the optimal influencer strategy is infeasible to compute even with

the full knowledge of opinions. On the other hand, we observe polarization also in

settings where the influencers apply interventions that are agnostic to the opinions,

for example with purely random interventions in Section 3.3 or competing influencers
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in Section 3.6.

We sometimes discuss the uniform distribution of initial opinions on R𝑑. We do

this as the uniform distribution may be viewed as the most diverse and establish-

ing polarization starting from the uniform distribution hints that we are modelic a

generic phenomenon. Most of our results do not make assumptions about the initial

distribution.

We assume that any group of topics can be combined into an intervention with

the effect given by (3.1). A more plausible model might feature some “internal”

(content) correlations between topics in addition to “external” (social) correlations

arising out of the agents’ opinion structure. For example, topics may have innate

connections, causing inherent correlations between corresponding opinions (e.g., being

positive on renewable energy and recycling). Furthermore, there are certain topics

(e.g., undesirability of murder) on which nearly all members of the population share

the same inclination. As a matter of fact, it is common for marketing strategies

to exploit unobjectionable social values (see, e.g., [93]). However, we presume that

under suitable circumstances (e.g., due to inherent correlations we just mentioned)

the “polarizing” topics might present a more appealing alternative for a campaign.

Our model concerns such a case, where the “unifying” topics might be excluded from

the analysis. We note that other works have also suggested that focusing on polarizing

topics may be appealing for campaigns [78].

Below we discuss a couple of specific design choices in more detail:

Euclidean unit ball We make an assumption that all opinions and interventions

lie on the Euclidean unit ball. Note that the interpretation of this representation is

somewhat ambiguous. The magnitude of an opinion on a given subject 𝑢𝑖,𝑘 might

signify the strength of the opinion, the confidence of the agent or relative importance

of the subject to the agent. While these are different measures, there are psychological

reasons to expect that, e.g., “issue interest” and “extremity of opinion” are correlated

[62, 9, 10]. Especially taking the magnitudes as signifying the relative importance,

we believe that the assumption that this “budget of importance” for any given agent
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is fixed is quite natural. That being said, we are also motivated by simplicity and

tractability.

Multiple ways of relaxing or modifying this assumption are possible. While we

do not study these variants in this paper, we now discuss them very briefly. At least

empirically, our basic findings about ubiquity of polarization seem to remain valid for

those modified models.

Perhaps the simplest modification is to use the same update rule as in (3.2) with

a different norm (eg., ℓ1 or ℓ∞ norm). Such variant would also assume that opinions

and interventions lie on the unit sphere of the respective norm. Our experiments

suggest that, qualitatively, both ℓ1 and ℓ∞ variants behave similarly to the Euclidean

norm.

In another direction, rather than having all opinions on the unit sphere, fixed, but

different norms 𝑧𝑖 can be specified for different agents. Then, the update rule (3.2)

could be modified as

𝑤
(𝑡+1)
𝑖 = 𝑢

(𝑡)
𝑖 + 𝜂 ·

⟨
𝑢
(𝑡)
𝑖

𝑧𝑖
, 𝑣(𝑡)

⟩
· 𝑣(𝑡) ,

with normalization preserving ‖𝑢(𝑡+1)
𝑖 ‖= 𝑧𝑖. As long as the values of 𝑧𝑖 are bounded

from below and above, the resulting dynamic is essentially identical and our results

carry over to this more general setup.

Yet another possibility is to consider opinion unit vectors 𝑢 ∈ R𝑑+1 with 𝑢𝑑+1 ≥ 0

and interpret the first 𝑑 coordinates as opinions and the last coordinate as “unused

budget”. Therefore, large values of 𝑢𝑑+1 signify generally uncertain opinions and small

values of 𝑢𝑑+1 correspond to strong opinions. There are multiple possible rules for

interventions, where an intervention can have 𝑑 or 𝑑+1 coordinates, and with different

treatments of the last coordinate. We leave the details for another time.

Effects of applying 𝑣 and −𝑣 In our model, an effect of an intervention 𝑣 is

exactly the same as for the opposite intervention −𝑣. This might look like a cynical

assumption about human nature, but arguably it is not entirely inaccurate. For
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example, experiments on social media show that not only exposure to similar ideas

(the “echo chamber” effect), but also exposure to opposing opinions causes beliefs

to become more polarized [6]. This is even more apparent if a broader notion of an

intervention is considered. Using a recent example, social media platforms banning or

disassociating from certain statements can have a polarizing effect [12]. Furthermore,

in our model this effect occurs only if all the components of an opinion are negated.

A related, more general objection is that direct persuasion is not possible in our

model. If an agent has an opinion 𝑢 with ⟨𝑢, 𝑣⟩ < 0, directly applying 𝑣 only makes the

situation worse. Instead, an effective influencer needs to apply interventions utilizing

different subjects to gradually move 𝑢 through a sequence of intermediate positions

towards 𝑣. Our answer is that we posit that a lot of, if not all, persuasion actually

works that way: to convince that “𝑥 is good”, one argues that “𝑥 is good, since it is

quite like 𝑦, which we both already agree is good”.

Notions of polarization While the notion of polarization is clear when discussing

one topic, it is not straightforward to interpret in higher dimensions. Let 𝑆 ⊆ R𝑑

be a set of 𝑛 opinions. Writing 𝑢 = (𝑢1, . . . , 𝑢𝑑) for 𝑢 ∈ 𝑆, a natural measure of

polarization of 𝑆 on a single topic 𝑖 is

𝜌𝑖(𝑆) =
1

|𝑆|2
max
𝑇⊂𝑆

∑︁
𝑢∈𝑇,𝑢′∈𝑆∖𝑇

(𝑢𝑖 − 𝑢′
𝑖)
2,

and we may generalize it to higher dimensions by measuring the polarization as:

𝜌(𝑆) =
1

|𝑆|2
max
𝑇⊂𝑆

∑︁
𝑢∈𝑇,𝑢′∈𝑆∖𝑇

‖𝑢− 𝑢′‖2.

It is clear from the definition that

max
𝑖

𝜌𝑖(𝑆) ≤ 𝜌(𝑆) ≤
∑︁
𝑖

𝜌𝑖(𝑆).

If we consider an example set 𝑆1 with 𝑛/2 opinions at 𝑢 and 𝑛/2 opinions at −𝑢,

then clearly 𝜌(𝑆1) =
∑︀

𝑖 𝜌𝑖(𝑆1), but in any other example, the upper bound will
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not be tight. For example, if 𝑆2 is the set of the 2𝑑 vertices of a hypercube, i.e.,

𝑆2 = 1/
√
𝑑 · {−1, 1}𝑑, then 𝜌𝑖(𝑆2) = 1/𝑑 for all 𝑖, but 𝜌(𝑆2) converges to 1/2 as

𝑛 → ∞. This corresponds to the fact that while the society is completely polarized

on each topic, two random individuals will agree on about half of the topics. In

Section 3.2 we refer to such a situation as exhibiting issue radicalization, but no issue

alignment.

Ultimately, in many of our results we do not worry about these issues, since we

observe a strong form of polarization, where all opinions converge to two antipodal

points.

3.1.5 Other variants

Other than discussed above, there are many possible variants that can lead to inter-

esting future work. These include:

• “Targeting”, where the influencer can select subgroups of the population and

apply interventions groupwise.

• Models where the strength of an intervention 𝜂 varies across agents and/or time

steps.

• Perturbing preferences with noise after each step.

• Replacement of the population, e.g., introducing new agents with “fresh” opin-

ions or removing agents that stayed in the population for a long time or who

already “bought” the product, i.e., exceeded the threshold 𝑢𝑖,𝑑 > 𝑇 . For ex-

ample, this could correspond to "one-time" purchase product like a house or a

fridge, or situations where the customer’s opinion is more difficult to change as

time passes.

• Models where the initial opinions are not observable or partially observable.

• Expanding the model by adding peer effects and social network structure and

exploring the resulting dynamics of polarization and opinion formation. This
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can be done in different ways and we expect that polarization will feature in

many of them. For example, [38] show polarization for random interventions in

what they term the “party model”.

• Strategic competing influencers: in the studied scenarios with competing influ-

encers, we assume that they apply fixed interventions. One can ask: suppose

the influencers have their own target opinions, what is each campaigner’s op-

timal sequence of messages in face of the other campaigner? Then, resulting

equilibrium of opinion formation could be analyzed. This can be modeled as a

dynamic game where the game state is the opinion configuration and optimal

strategies may be derived using sequential planning and control.

3.2 Related works

As mentioned, there is a multitude of modeling and empirical works studying opinion

polarization in different contexts [73, 5, 8, 72, 49, 65, 70, 10, 27, 28, 59, 86, 78,

6]. Broadly speaking, previous works have proposed various possible sources for

polarization, including peer interactions, bias in individuals’ perceptions, and global

information outlets.

There is an extensive line of models of opinion exchange on networks with peer

interactions, where individuals encounter neighboring individuals’ opinions and up-

date their own opinions based on, e.g., pre-defined friend/hostile relations [89], or

the similarity and relative strength of opinions [68], etc. This branch of work often

attributes polarization to homophily of one’s social network [27] that is induced by

the self-selective nature of social relations and segregation of like-minded people [95]

and exacerbated by the echo chamber effect of social media [75].

A parallel proposed mechanism points to psychological biases in individuals’ opin-

ion formation processes. One example is biased assimilation [64, 27, 10, 6]: the ten-

dency to reinforce one’s original opinions regardless if other encountered opinions

align with them or not. For example, [6] observed that even when social media users

are assigned to follow accounts that share opposing opinions, they still tend to hold
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their old political opinions and often to a more extreme degree. On the modeling side,

[27] showed that DeGroot opinion dynamics with the biased assimilation property on

a homophilous network may lead to polarization.

Existing works have also proposed models where polarization occurs even when

information is shared globally [97, 70]. For example, [70] propose a model where

competition for readership between global information outlets causes news to become

polarized in a single-dimensional setting. Another example is [97], a classical work

on the formation of mass opinion. It theorizes that each individual has political

dispositions formed in their own life experience, education and previous encounters

that intermediate between the message they encounter and the political statement

they make. Therefore, hearing the same political message can cause different thinking

processes and changes in political preferences in different individuals.

It is noteworthy that the majority of previous work focuses on polarization on a

single topic dimension. Two exceptions are [10], which studies biased assimilation with

opinions on multiple topics and [11] that observed non-trivial correlations between

people’s attitudes on different issues. We note that [10] uses a different updating rule

to observe dynamics that differ from our work: in their simulations, polarization on

one issue typically does not result in polarization on others. There is also a class

of models [5, 72, 65] that concern multi-dimensional opinions where an opinion on a

given topic takes one of finitely many values (e.g., + or −). These models do not

seem to have a geometric structure of opinion space similar to ours and usually focus

on formation of discrete groups in the society rather than total polarization. Another

model [76] uses a geometric (affine) rule of updating multi-dimensional opinions.

Unlike us, they seem to be modeling pre-existing, “intrinsic” correlations between

topics rather than the emergence of new ones and they are concerned mostly with

convergence and stability of their dynamics.

A related paper [78] contains a geometric model of opinion (preference) structures.

Both this and our model propose mechanisms through which information outlets

acting for their own benefit can lead to increased disagreement in the society. The

key difference to our model is that their population’s preferences are static and do
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not update, but the outlets are free to choose what information to offer to their

customers. By contrast, in our model, the influencers have pre-determined ideologies

and compete to align agents’ opinions with their own. In other words, [78] focuses

on modeling of competitive information acquisition, and our paper on modeling the

influence of marketing on the public opinion.

Our model suggests that under the conditions of biased assimilation, opinion ma-

nipulation by one or several global information outlets can unintentionally lead to a

strong form of polarization in multi-dimensional opinion space. Not only do people

polarize on individual issues, but also their opinions on previously unrelated issues

become correlated. This form of polarization is known as issue alignment [11] in po-

litical science and sociology literature. Issue alignment refers to an opinion structure

where the population’s opinions on multiple (relatively independent) issues correlate.

It is related to issue radicalization, where the opinions polarize for each issue sepa-

rately. Compared to issue radicalization, issue alignment is theorized to pose more

constraints on the opinions an individual can take, resulting in polarized and clustered

mass opinions even when the public opinions are not extreme in any single topic, and

presenting more obstacles for social integration and political stability [11]. In light

of this, one way to view our model is as a mathematical mechanism by which this

strong form of polarization can arise and worsen due to companies’, politicians’, and

the media’s natural attempts to gain support from the public.

On the more technical side, we note that our update equation bears similarity to

Kuramoto model [53] for synchronization of oscillators on a network in the control

literature. In this model, each oscillator 𝑖 is associated with the point 𝜃𝑖 on the two-

dimensional sphere, and 𝑖 updates its point continuously as a function of its neighbors’

points 𝜃𝑗:

𝜃𝑖 = 𝜔𝑖 +
𝐾

𝑁
sin(𝜃𝑗 − 𝜃𝑖),

where 𝐾 is the coupling strength and 𝑁 is the number of nodes in the network. In

two dimensions, our model can be compared to Kuramoto model with 𝜔𝑖 = 0 on
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a star graph, with the influencers at the center of the star connected to the entire

population, where the influencers’ opinions do not change and the update strength

is qualitatively similar to sin((𝜃𝑣 − 𝜃𝑢)/2) (see (3.15)). However, we note a crucial

difference: in the Kuramoto dynamic, 𝜃𝑖 always moves towards 𝜃𝑗, i.e. nodes always

move towards synchronization, but in our dynamic, opinions 𝜃𝑖 are allowed to move

further away from 𝜃𝑗 when the angle between their opinions are obtuse. In addition,

the central node in our model can be strategic in choosing its positions, while the

central node in Kuramoto model follows the synchronization dynamics of the system.

We think this property provides a better model for opinion interactions.

Subsequent work A work by Gaitonde, Kleinberg and Tardos [38], announced

after we posted the preprint of this paper, proposes a framework that generalizes

our random interventions scenario from Section 3.3. They prove several interesting

results, including a strong form of polarization under random interventions in some

related models. They also shed more light on the scenario of dueling influencers

from Section 3.6, showing that in case the dueling interventions are orthogonal, the

resulting dynamics exhibits a weaker kind of polarization.

3.3 Asymptotic scenario: random interventions po-

larize opinions

In this section, we analyze the long-term behavior of our model in a simple random

setting. We assume that, for given dimension 𝑑 and parameter 𝜂, at the initial time

𝑡 = 1 we are given 𝑛 opinion vectors 𝑢(1)
1 , . . . , 𝑢

(1)
𝑛 . Subsequently, we sample a sequence

of interventions 𝑣(1), 𝑣(2), . . . , each 𝑣(𝑡) iid from the uniform distribution on the unit

sphere 𝑆𝑑−1. At time 𝑡 we apply the random intervention 𝑣(𝑡) to every opinion vector

𝑢
(𝑡)
𝑖 , obtaining a new opinion 𝑢

(𝑡+1)
𝑖 .

We want to show that the opinions {𝑢(𝑡)
𝑖 } almost surely polarize as time 𝑡 goes

to infinity. We need to be careful about defining the notion of polarization: since

the interventions change at every time step, the opinions cannot converge to a fixed
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vector. Instead, we show that for every pair of opinions the angle between them

converges either to 0 or to 𝜋. More formally:

Theorem 7. Consider the model of iid interventions described above for some 𝑑 ≥ 2,

𝜂 > 0 and initial opinions 𝑢
(1)
1 , . . . , 𝑢

(1)
𝑛 . For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 and 𝑡 → ∞,

Pr
[︁
‖𝑢(𝑡)

𝑖 − 𝑢
(𝑡)
𝑗 ‖→ 0 ∨ ‖𝑢(𝑡)

𝑖 + 𝑢
(𝑡)
𝑗 ‖→ 0

]︁
= 1 .

This leads to a corollary which follows by applying the union bound (with prob-

ability 0 in each term) for each pair of opinions 𝑢
(𝑡)
𝑖 , 𝑢

(𝑡)
𝑗 :

Corollary 3. For any 𝑑 ≥ 2, 𝜂 > 0, initial opinions 𝑢
(1)
1 , . . . , 𝑢

(1)
𝑛 and a sequence

of uniform iid interventions, almost surely, there exists 𝐽 ⊆ {1, . . . , 𝑛} such that the

diameter of the set

{︁
(−1)1[𝑖∈𝐽 ] · 𝑢(𝑡)

𝑖 : 𝑖 ∈ {1, . . . , 𝑛}
}︁

converges to zero.

Remark 4. Consider initial opinions of 𝑛 agents that are independently sampled from

a distribution Γ that is symmetric around the origin, in the sense that Γ(−𝐴) = Γ(𝐴)

for every set 𝐴 ⊆ 𝑆𝑑−1. Then, with high probability, the opinions converge to two po-

larized clusters of size roughly 𝑛/2. Indeed, consider sampling 𝑛 independent vectors

𝑢1, . . . , 𝑢𝑛 from Γ and 𝑛 independent signs 𝜎1, . . . , 𝜎𝑛 ∈ {±1}. Then 𝜎1𝑢1, . . . , 𝜎𝑛𝑢𝑛

are independent samples from Γ. Moreover, if the sizes of the two clusters for

𝑢1, . . . , 𝑢𝑛 are 𝑟 and 𝑛 − 𝑟 then the size of each cluster for 𝜎1𝑢1, . . . , 𝜎𝑛𝑢𝑛 is dis-

tributed according to Bin(𝑟, 1/2) + Bin(𝑛 − 𝑟, 1/2) = Bin(𝑛, 1/2) (this is due to the

observation that 𝑢𝑖 and −𝑢𝑖 converge to the opposite clusters).

Remark 5. For simplicity we do not elaborate on this later, but we note that, both

empirically and theoretically, the convergence in our results is quite fast. This con-

cerns Theorem 7, as well as the results presented in the subsequent sections.

We now proceed to the proof of Theorem 7:
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3.3.1 Notation and main ingredients

Before we proceed with explaining the proof, let us make a general observation that

we will use frequently. Let 𝑑 ≥ 2 and 𝜂 > 0 and let 𝑓 : 𝑆𝑑−1 × 𝑆𝑑−1 → 𝑆𝑑−1 be the

function mapping an opinion 𝑢 and an intervention 𝑣 to an updated opinion 𝑓(𝑢, 𝑣),

according to (3.2) and (3.3). It should be clear that this function is invariant under

isometries: namely, for any real unitary transformation 𝐴 : 𝑆𝑑−1 → 𝑆𝑑−1 we have

𝑓(𝐴𝑢,𝐴𝑣) = 𝐴𝑓(𝑢, 𝑣) . (3.4)

In our proofs we will be often using (3.4) to choose a convenient coordinate system.

Let us turn to Theorem 7. Again, let 𝑑 ≥ 2 and 𝜂 > 0. Without loss of generality

we will consider only two starting opinions called 𝑢
(1)
1 and 𝑢

(1)
2 . To prove Theorem 7,

we need to show that almost surely one of the vectors 𝑢(𝑡)
1 −𝑢

(𝑡)
2 and 𝑢

(𝑡)
1 +𝑢

(𝑡)
2 vanishes.

We proceed by using martingale convergence. Specifically, let

𝛼𝑡 := arccos⟨𝑢(𝑡)
1 , 𝑢

(𝑡)
2 ⟩ .

That is, 0 ≤ 𝛼𝑡 ≤ 𝜋 is the primary angle between 𝑢
(𝑡)
1 and 𝑢

(𝑡)
2 .

The proof rests on two claims. First, 𝛼𝑡 is a martingale:

Claim 5. E[𝛼𝑡+1 | 𝛼𝑡] = 𝛼𝑡.

Second, we show a property which has been called “variance in the middle” [20]:

Claim 6. For every 𝜀 > 0, there exists 𝛿 > 0 such that,

𝜀 ≤ 𝛼𝑡 ≤ 𝜋/2 =⇒ Pr [𝛼𝑡+1 < 𝛼𝑡 − 𝛿 | 𝛼𝑡] > 𝛿 , (3.5)

and, symmetrically,

𝜋/2 ≤ 𝛼𝑡 ≤ 𝜋 − 𝜀 =⇒ Pr [𝛼𝑡+1 > 𝛼𝑡 + 𝛿 | 𝛼𝑡] > 𝛿 . (3.6)

These two claims imply Theorem 7 by standard tools from the theory of martin-
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gales (eg., [94]):

Claims 5 and 6 imply Theorem 7. As a consequence of applying Claim 6 ⌈𝜋/𝛿⌉ times,

we obtain that for every 𝜀 > 0 there exist 𝑘0 ∈ N and 𝜂 < 1 such that

𝜀 ≤ 𝛼𝑡 ≤ 𝜋 − 𝜀 =⇒ Pr [∀1 ≤ 𝑘 ≤ 𝑘0 : 𝜀 ≤ 𝛼𝑡+𝑘 ≤ 𝜋 − 𝜀 | 𝛼𝑡] ≤ 𝜂 .

Subsequently, it follows that for any fixed 𝜀 > 0 and 𝑇 ∈ N,

Pr [∀𝑡 ≥ 𝑇 : 𝜀 ≤ 𝛼𝑡 ≤ 𝜋 − 𝜀] = 0 . (3.7)

By Claim 5, the sequence of random variables 𝛼𝑡 is a bounded martingale and

therefore almost surely converges. Accordingly, let 𝛼* := lim𝑡→∞ 𝛼𝑡. We now argue

that Pr[0 < 𝛼* < 𝜋] = 0. To that end,

Pr[0 < 𝛼* < 𝜋] ≤
∞∑︁
𝑠=1

Pr

[︂
1

𝑠
< 𝛼* < 𝜋 − 1

𝑠

]︂
≤

∞∑︁
𝑠=1

Pr

[︂
∃𝑇 : ∀𝑡 ≥ 𝑇 :

1

2𝑠
< 𝛼𝑡 < 𝜋 − 1

2𝑠

]︂
≤

∞∑︁
𝑠=1

∞∑︁
𝑇=1

Pr

[︂
∀𝑡 ≥ 𝑇 :

1

2𝑠
< 𝛼𝑡 < 𝜋 − 1

2𝑠

]︂
= 0 ,

where we applied (3.7) in the last line. Hence, almost surely, either 𝛼* = 0, which is

equivalent to ‖𝑢(𝑡)
1 − 𝑢

(𝑡)
2 ‖→ 0 or 𝛼* = 𝜋, equivalent to ‖𝑢(𝑡)

1 + 𝑢
(𝑡)
2 ‖→ 0.

In the subsequent sections we proceed with proving Claims 5 and 6. In Sec-

tion 3.3.2 we prove Claim 5 for 𝑑 = 2. In Section 3.3.3 we show the same claim for

𝑑 ≥ 3 by a reduction to the case 𝑑 = 2. Finally, in Section 3.3.4 we use a continuity

argument to prove Claim 6.

In the following proofs, we fix 𝑑, 𝜂, time 𝑡 and the opinions of two agents at that

time. For simplicity, we will denote the relevant vectors as 𝑢 := 𝑢
(𝑡)
1 , 𝑢′ := 𝑢

(𝑡)
2 and

𝑣 := 𝑣(𝑡).
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𝑣
𝑓(𝑢′, 𝑣)𝑢

′

𝑢

𝑓(𝑢, 𝑣)

𝛼𝑡

𝛽

𝛾′

𝛾

𝑢′

𝑣
𝑣*

𝑢𝜀

Figure 3-2: On the left an illustration of the vectors and angles in the proof of Claim 5.
On the right an illustration for the proof of Claim 6.

3.3.2 Proof of Claim 5 for 𝑑 = 2

It follows from (3.4) that we can assume wlog that 𝑢 = (1, 0) and 𝑢′ = (cos𝛼𝑡, sin𝛼𝑡)

(recall that by definition 0 ≤ 𝛼𝑡 ≤ 𝜋 holds). Let us write the random intervention

vector as 𝑣 = (cos 𝛽, sin 𝛽), where the distribution of 𝛽 is uniform in [0, 2𝜋). We will

also write (cf. Figure 3-2 for an overview)

𝑓(𝑢, 𝑣) = (cos 𝛾, sin 𝛾) , 𝑓(𝑢′, 𝑣) = (cos(𝛼𝑡 + 𝛾′), sin(𝛼𝑡 + 𝛾′)) , 𝛾, 𝛾′ ∈ [−𝜋, 𝜋) .

Note that 𝛾 is a function of the intervention angle 𝛽, and it should be clear that

𝛾(𝛽) = −𝛾(−𝛽). Accordingly, the distribution of 𝛾 is symmetric around zero and in

particular E 𝛾 = 0 (where the expectation is over 𝛽). Applying (3.4), it also follows

E 𝛾′ = 0.

Let ̂︀𝛼 := 𝛼𝑡+𝛾′−𝛾. Since ̂︀𝛼 is equal to the directed angle from 𝑓(𝑢, 𝑣) to 𝑓(𝑢′, 𝑣),

one might think that we have just established E[𝛼𝑡+1 | 𝛼𝑡] = 𝛼𝑡. However, recall that

we defined 𝛼𝑡+1 to be the value of the (primary) undirected angle between 𝑓(𝑢, 𝑣)

and 𝑓(𝑢′, 𝑣). In particular, it holds that 0 ≤ 𝛼𝑡+1 ≤ 𝜋, but we cannot assume that

about ̂︀𝛼. On the other hand, it is clear that if 0 ≤ ̂︀𝛼 ≤ 𝜋, then indeed 𝛼𝑡+1 = ̂︀𝛼.

Therefore, in the following we will show that 0 ≤ ̂︀𝛼 ≤ 𝜋 always holds, which implies

E[𝛼𝑡+1 | 𝛼𝑡] = E[̂︀𝛼 | 𝛼𝑡] = 𝛼𝑡 + E 𝛾′ − E 𝛾 = 𝛼𝑡.

To that end, we start with showing a weaker bound −𝜋 < ̂︀𝛼 < 2𝜋. To see
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this, we first establish that −𝜋/2 < 𝛾, 𝛾′ < 𝜋/2. The argument for 𝛾 is as follows: if

⟨𝑢, 𝑣⟩ ≥ 0, then 𝑓(𝑢, 𝑣) is a convex combination of 𝑢 and 𝑣. Therefore, an intervention

cannot move 𝑓(𝑢, 𝑣) away from 𝑢 by an angle of more than 𝜋/2. If 𝑣 ̸= 𝑢, then also

𝑓(𝑢, 𝑣) ̸= 𝑣, so in fact the angle must be strictly less, that is −𝜋/2 < 𝛾 < 𝜋/2. If

⟨𝑢, 𝑣⟩ < 0, then −𝜋/2 < 𝛾 < 𝜋/2 follows from the same argument applied to −𝑣

(since the effect of both interventions is the same). Finally, −𝜋/2 < 𝛾′ < 𝜋/2 holds

by (3.4) and the same proof. Since we know 0 ≤ 𝛼𝑡 ≤ 𝜋, we obtain −𝜋 < ̂︀𝛼 < 2𝜋.

Since we know −𝜋 < ̂︀𝛼 < 2𝜋, the inequality 0 ≤ ̂︀𝛼 ≤ 𝜋 is equivalent to sin ̂︀𝛼 ≥ 0.

Geometrically, this property means that the ordered pair of vectors (𝑢, 𝑣) has the

same orientation as the pair (𝑓(𝑢, 𝑣), 𝑓(𝑢′, 𝑣)). To avoid case analysis, we prove this

claim by a calculation:

Claim 7. sin ̂︀𝛼 ≥ 0.

Proof. We defer the proof to Appendix B.1.

3.3.3 Proof of Claim 5 for 𝑑 ≥ 3

In this case we will write the random intervention vector as 𝑣 = 𝑣‖ + 𝑣⊥ where 𝑣‖ is

projection of 𝑣 onto the span of 𝑢 and 𝑢′. In particular, 𝑣‖ and 𝑣⊥ are orthogonal.

We will now prove a stronger claim E [𝛼𝑡+1 | 𝛼𝑡, ‖𝑣‖‖] = 𝛼𝑡.

Accordingly, condition on the value ‖𝑣‖‖= 𝑅. Observe that, by symmetry, vector

𝑣‖ is distributed uniformly in the two-dimensional space span{𝑢, 𝑢′} among vectors of

norm 𝑅. In other words, we can write 𝑣‖ = 𝑅𝑉 , where 𝑉 is a uniform two-dimensional

unit length vector.

Denote the non-normalized vectors after intervention as

̂︀𝑢 := 𝑢+ 𝜂⟨𝑢, 𝑣‖⟩(𝑣‖ + 𝑣⊥) , ̂︀𝑢′ := 𝑢′ + 𝜂⟨𝑢′, 𝑣‖⟩(𝑣‖ + 𝑣⊥) .
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Let 𝑐 := 2𝜂 + 𝜂2. We proceed with calculations:

⟨̂︀𝑢, ̂︀𝑢′⟩ = ⟨𝑢, 𝑢′⟩+ 𝑐⟨𝑢, 𝑣‖⟩⟨𝑢′, 𝑣‖⟩ = ⟨𝑢, 𝑢′⟩+ 𝑐𝑅2⟨𝑢, 𝑉 ⟩⟨𝑢′, 𝑉 ⟩ ,

‖̂︀𝑢‖2 = 1 + 𝑐⟨𝑢, 𝑣‖⟩2 = 1 + 𝑐𝑅2⟨𝑢, 𝑉 ⟩ ,

‖̂︀𝑢′‖2 = 1 + 𝑐⟨𝑢′, 𝑣‖⟩2 = 1 + 𝑐𝑅2⟨𝑢′, 𝑉 ⟩ .

Note that all these formulas are valid also for 𝑑 = 2, with the only difference that

𝑅 = 1 holds deterministically in that case.

Since 𝑐(𝜂) = 2𝜂 + 𝜂2 is a bijection on R>0, there exists ̂︀𝜂 > 0 such that 𝑐𝑅2 =

2̂︀𝜂 + ̂︀𝜂2. Accordingly, for any 𝑑 ≥ 3 and 𝜂 > 0, the joint distribution of ⟨̂︀𝑢, ̂︀𝑢′⟩, ‖̂︀𝑢‖
and ‖̂︀𝑢′‖ conditioned on 𝛼𝑡 = arccos(⟨𝑢, 𝑢′⟩) and ‖𝑣‖‖= 𝑅 is the same as their joint

distribution for 𝑑 = 2 and ̂︀𝜂, conditioned on the same value of 𝛼𝑡.

Since 𝛼𝑡+1 = arccos
(︁

⟨̂︀𝑢,̂︀𝑢′⟩
‖̂︀𝑢‖‖̂︀𝑢′‖

)︁
, the same correspondence holds for the distribution

of 𝛼𝑡+1 conditioned on 𝛼𝑡 and ‖𝑣‖‖= 𝑅. Therefore, E [𝛼𝑡+1 | 𝛼𝑡, ‖𝑣‖‖= 𝑅] = 𝛼𝑡 follows

by Claim 5 for 𝑑 = 2, which we already proved.

3.3.4 Proof of Claim 6

Again we use (3.4) to choose a coordinate system and assume wlog that 𝑢 = (1, 0, . . . , 0)

and 𝑢′ = (cos𝛼𝑡, sin𝛼𝑡, 0, . . . , 0). Our objective is to show that, with probability at

least 𝛿, we will have 𝛼𝑡+1 − 𝛼𝑡 > 𝛿 (in case 𝛼𝑡 ≤ 𝜋/2) or 𝛼𝑡+1 − 𝛼𝑡 < −𝛿 (in case

𝛼𝑡 ≥ 𝜋/2). To start with, we will show that by symmetry we need to consider only

the first case 𝛼𝑡 ≤ 𝜋/2.

Note that the intervention function 𝑓 exhibits a symmetry 𝑓(−𝑢, 𝑣) = −𝑓(𝑢, 𝑣).

Furthermore, we also have arccos⟨𝑢, 𝑢′⟩ = 𝜋 − arccos⟨𝑢,−𝑢′⟩. Consequently,

𝛼𝑡+1 − 𝛼𝑡 = arccos⟨𝑓(𝑢, 𝑣), 𝑓(𝑢′, 𝑣)⟩ − arccos⟨𝑢, 𝑢′⟩

= 𝜋 − arccos⟨𝑓(𝑢, 𝑣), 𝑓(−𝑢′, 𝑣)⟩ − (𝜋 − arccos⟨𝑢,−𝑢′⟩)

= −( arccos⟨𝑓(𝑢, 𝑣), 𝑓(−𝑢′, 𝑣)⟩ − arccos⟨𝑢,−𝑢′⟩) .

As a result, indeed it is enough that we prove (3.5) and then (3.6) follows by replacing
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𝑢′ with −𝑢′.

Consider vector 𝑣* := (cos 𝜀, sin 𝜀, 0, . . . , 0) (see Figure 3-2). We will now show

that if 𝜀 ≤ 𝛼𝑡 ≤ 𝜋/2 and the intervention 𝑣 is sufficiently close to 𝑣*, then 𝑣 decreases

the angle between 𝑢 and 𝑢′. To that end, let us use a metric on 𝑆𝑑−1 given by

𝐷(𝑢, 𝑣) := arccos⟨𝑢, 𝑣⟩ .

Note that this metric is strongly equivalent to the standard Euclidean metric restricted

to 𝑆𝑑−1. We can now use the triangle inequality to write

𝛼𝑡+1 = 𝐷(𝑓(𝑢, 𝑣), 𝑓(𝑢′, 𝑣))

≤ 𝐷(𝑓(𝑢, 𝑣), 𝑓(𝑢, 𝑣*)) +𝐷(𝑓(𝑢, 𝑣*), 𝑣*) +𝐷(𝑣*, 𝑓(𝑢′, 𝑣*)) +𝐷(𝑓(𝑢′, 𝑣*), 𝑓(𝑢′, 𝑣)) .

(3.8)

Let us bound the terms in (3.8) one by one.

First, since, by (3.2), 𝑓(𝑢, 𝑣*) is a strict convex combination of 𝑢 and 𝑣* (note

that in our coordinate system neither 𝑢 nor 𝑣* depends on 𝛼𝑡), we have

𝐷(𝑓(𝑢, 𝑣*), 𝑣*) = 𝑑(𝜀) < 𝐷(𝑢, 𝑣*) = 𝜀 .

Similarly,

𝐷(𝑣*, 𝑓(𝑢′, 𝑣*)) ≤ 𝐷(𝑣*, 𝑢′) = 𝛼𝑡 − 𝜀 .

Second, since 𝑓 is continuous, 𝐷(𝑣, 𝑣*) < 𝛿′ for small enough 𝛿′ > 0 implies that both

𝐷(𝑓(𝑢, 𝑣), 𝑓(𝑢, 𝑣*)) and 𝐷(𝑓(𝑢′, 𝑣*), 𝑓(𝑢′, 𝑣)) are as small as needed (for example, less

than (𝜀− 𝑑(𝜀))/4).

All in all, we have that for some 𝛿′ = 𝛿′(𝜀) > 0,

𝐷(𝑣, 𝑣*) < 𝛿′ =⇒ 𝛼𝑡+1 <
𝜀− 𝑑(𝜀)

4
+ 𝑑(𝜀) + (𝛼𝑡 − 𝜀) +

𝜀− 𝑑(𝜀)

4

= 𝛼𝑡 −
𝜀− 𝑑(𝜀)

2
.
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However, clearly, the event 𝐷(𝑣, 𝑣*) < 𝛿′ has some positive probability 𝛿′′. Therefore,

taking 𝛿 := min(𝛿′′/2, (𝜀− 𝑑(𝜀))/2), we have

Pr [𝛼𝑡+1 < 𝛼𝑡 − 𝛿 | 𝛼𝑡] > 𝛿 ,

as claimed in (3.5).

3.4 Asymptotic scenario: finding densest hemisphere

In this section we study the asymptotic scenario with one influencer who wishes to

propagate a campaign agenda 𝑣* ∈ R𝑑. We assume that the influencer can use an

unlimited number of interventions and its objective is to make the opinions of as

many agents as possible to converge to 𝑣*. More specifically, in this section we denote

the initial opinions of agents at time 𝑡 = 1 by 𝑢1, . . . , 𝑢𝑛. Given these preexisting

opinions of 𝑛 agents, we want to find a sequence of interventions, 𝑣(1), 𝑣(2), 𝑣(3) . . .

that maximizes the number of agents whose opinions converge to 𝑣*.

The thrust of our results is that finding a good strategy for the influencer is com-

putationally hard. However, both the optimal strategy and some natural heuristics

result in the polarization of agents.

3.4.1 Equivalence of optimal strategy to finding densest hemi-

sphere

We first argue that the problem of finding an optimal strategy is equivalent to identi-

fying an open hemisphere that contains the maximum number of agents. An (open)

hemisphere is an intersection of the unit sphere with a homogeneous open halfspace

of the form
{︀
𝑥 ∈ R𝑑 : ⟨𝑥, 𝑎⟩ > 0

}︀
for some 𝑎 ∈ R𝑑.

Theorem 8. For any 𝑣*, there exists a strategy to make at least 𝑘 agents converge to

𝑣* if and only if there exists an open hemisphere containing at least 𝑘 of the opinions

𝑢1, . . . , 𝑢𝑛.
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A surprising aspect of Theorem 8 is that the maximum number of agents that can

be persuaded does not depend on the target vector 𝑣*. As we argue in Remark 6, this

is somewhat plausible in the long-term setting with unlimited number of interventions.

We also note that the number of interventions required to bring the opinions up to a

given level of closeness to 𝑣* does depend on 𝑣*.

Proof of Theorem 8. First, we prove that the hemisphere condition is sufficient for

the existence of a strategy to make the agents’ opinions converge (Claim 8). Then we

prove the trickier direction: that the hemisphere condition is also necessary for the

existence of such a strategy (Claim 12).

Claim 8. If opinions 𝑢1, . . . , 𝑢𝑘 are contained in an open hemisphere, then there is

a sequence of interventions making all of 𝑢1, . . . , 𝑢𝑘 converge to 𝑣*.

Proof. By definition of open hemisphere, there is a vector 𝑎 ∈ R𝑑 such that ⟨𝑢𝑖, 𝑎⟩ > 0

for every agent 𝑖 = 1, . . . , 𝑘. By (3.2), it is clear that repeated application of 𝑎 makes

all the points converge to 𝑎 as time 𝑡 → ∞ .

After all the points are clustered close enough to 𝑎, by a similar argument they

can be “moved around” together towards another arbitrary point 𝑣*. For example,

if ⟨𝑣*, 𝑎⟩ > 0, the intervention 𝑣* can be applied repeatedly. If ⟨𝑣*, 𝑎⟩ ≤ 0, one can

proceed in two stages, first applying an intervention proportional to (𝑣* + 𝑎)/2, and

then applying 𝑣*.

Remark 6. As a possible interpretation of the mechanism in Claim 8, it is not

unheard of in campaigns on political issues to use an analogous strategy. First, build

a consensus around a (presumably compromise) opinion. Then, “nudge” it little by

little towards another direction.

In an extreme case one can imagine this mechanism even flipping the opinions

of two polarized clusters. One example of this could be the reversal of the opinions

on certain issues of 20th century Republican and Democratic parties in the US (this

particular phenomenon can be found in many texts, e.g. [61]).
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To prove the other direction of Theorem 8, we will rely on the notions of conical

combination and convex cone. A conical combination of points 𝑢1, . . . , 𝑢𝑛 ∈ R𝑑 is any

point of the form
∑︀𝑛

𝑖=1 𝛼𝑖𝑢𝑖 where 𝛼𝑖 ≥ 0 for every 𝑖. A convex cone is a subset of

R𝑑 that is closed under finite conical combinations of its elements. Given a finite set

of points 𝑆 ⊆ R𝑑, the convex cone generated by 𝑆 is the smallest convex cone that

contains 𝑆.

Claim 9. Suppose that for a given sequence of interventions, the opinions 𝑢1, . . . , 𝑢𝑛

converge to the same point 𝑣*. Then, for any unit vector 𝑢𝑛+1 that lies in the convex

cone of 𝑢1, . . . , 𝑢𝑛, we have that 𝑢𝑛+1 also converges to 𝑣*.

Proof. It suffices to prove that if at time 𝑡 an opinion 𝑢
(𝑡)
𝑛+1 lies in the convex cone of

other opinions 𝑢(𝑡)
1 , . . . , 𝑢

(𝑡)
𝑛 , then after applying one intervention 𝑣(𝑡) the new opinion

𝑢
(𝑡+1)
𝑛+1 lies in the convex cone of 𝑢(𝑡+1)

1 , . . . , 𝑢
(𝑡+1)
𝑛 . Then the claim follows by induction.

To prove this, we can simply write out 𝑢(𝑡+1)
𝑛+1 , using the relation 𝑢

(𝑡)
𝑛+1 =

∑︀𝑛
𝑖=1 𝜆𝑖𝑢

(𝑡)
𝑖

(where we use the notation 𝑢 ∝ 𝑣 to mean that 𝑢 = 𝑐 · 𝑣 for some constant 𝑐 > 0):

𝑢
(𝑡+1)
𝑛+1 ∝ 𝑢

(𝑡)
𝑛+1 + 𝜂

⟨
𝑢
(𝑡)
𝑛+1, 𝑣

(𝑡)
⟩
· 𝑣(𝑡)

=
𝑛∑︁

𝑖=1

𝜆𝑖𝑢
(𝑡)
𝑖 + 𝜂 ·

𝑛∑︁
𝑖=1

𝜆𝑖

⟨
𝑢
(𝑡)
𝑖 , 𝑣(𝑡)

⟩
· 𝑣(𝑡)

=
𝑛∑︁

𝑖=1

𝜆𝑖

(︁
𝑢
(𝑡)
𝑖 + 𝜂 ·

⟨
𝑢
(𝑡)
𝑖 , 𝑣(𝑡)

⟩
· 𝑣(𝑡)

)︁
=

𝑛∑︁
𝑖=1

𝜆𝑖 · 𝑐𝑖𝑢(𝑡+1)
𝑖 (3.9)

where the constants in (3.9) are 𝑐𝑖 :=
⃦⃦⃦
𝑢
(𝑡)
𝑖 + 𝜂 · ⟨𝑢(𝑡)

𝑖 , 𝑣(𝑡)⟩ · 𝑣(𝑡)
⃦⃦⃦
. Specifically, they

are all nonnegative.

Claim 10. Suppose there are two opinions 𝑢1, 𝑢2 that are antipodal, i.e., 𝑢1 = −𝑢2.

Then these two opinions will remain antipodal in future time steps. In particular,

they will never converge to a single point.

Proof. This follows directly from (3.2), noting that, for any intervention 𝑣, we have

𝑢1 + 𝜂 · ⟨𝑢1, 𝑣⟩ · 𝑣 = − (𝑢2 + 𝜂 · ⟨𝑢2, 𝑣⟩ · 𝑣).
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We will also use the following consequence of the separating hyperplane theorem:

Claim 11. A collection of unit vectors 𝑎1, . . . , 𝑎𝑛 cannot be placed in an open hemi-

sphere if and only if the zero vector lies in the convex hull of 𝑎1, . . . , 𝑎𝑛.

Now we are ready to establish the reverse implication in Theorem 8.

Claim 12. Suppose that we start with agent opinions 𝑢1, . . . , 𝑢𝑛 and that there is no

hemisphere that contains 𝑀 of those opinions. Then, there is no strategy that makes

𝑀 of the opinions converge to the same point.

Proof. Assume towards contradiction that there exists a strategy that makes 𝑀 opin-

ions converge to the same point, and assume wlog that they are 𝑢1, . . . , 𝑢𝑀 . By as-

sumption, we know that there is no hemisphere that contains all of 𝑢1, . . . , 𝑢𝑀 , hence,

by Claim 11, there is a convex combination of 𝑢1, . . . , 𝑢𝑀 that equals 0. Therefore,

there is also a conical combination of 𝑢1, . . . , 𝑢𝑀−1 that equals −𝑢𝑀 , where wlog we

assume that the coefficient on 𝑢𝑀 is initially nonzero. By Claim 9, we conclude that

if 𝑢1, . . . , 𝑢𝑀−1 converge to the same point, then so does −𝑢𝑀 . But that means that

−𝑢𝑀 and 𝑢𝑀 converge to the same point, which is a contradiction by Claim 10.

That concludes the proof of Theorem 8.

Remark 7. One consequence of Theorem 8 is that if the agent opinions are initially

distributed uniformly on the unit sphere, and if the number of agents 𝑛 is large com-

pared to the dimension 𝑑, an optimal strategy converging as many opinions as possible

to 𝑣* results, with high probability, in dividing the population into two groups of roughly

equal size, where the opinions inside each group converge to one of two antipodal limit

opinions (i.e., 𝑣* and −𝑣*). Furthermore, this optimal strategy, which, as discussed

below, might not be easy to implement, will not perform significantly better than a

very simple strategy of fixing a random intervention and applying it repeatedly. Of

course the simple strategy will also polarize the agents into two approximately equally

large groups.

82



3.4.2 Computational equivalence to learning halfspaces

Theorem 8 implies that an optimal strategy for the influencer is to compute the

open hemisphere that is the densest, i.e., it contains the most opinions, and then

apply the procedure from Claim 8 to converge the opinions from this hemisphere to

𝑣*. In this section we study the computational complexity of this problem. While

different approaches are possible, we focus on hardness of approximation and worst-

case complexity.

Definition 13 (Densest hemisphere). The input to the densest hemisphere problem

consists of parameters 𝑛 and 𝑑 and a set of 𝑛 unit vectors 𝐷 = {𝑢1, . . . , 𝑢𝑛} with

𝑢𝑖 ∈ 𝑆𝑑−1. The objective is to find vector 𝑎 ∈ 𝑆𝑑−1 maximizing the number of points

from 𝐷 that belong to the open halfspace
{︀
𝑥 ∈ R𝑑 : ⟨𝑥, 𝑎⟩ > 0

}︀
.

We analyze the computational complexity of the densest hemisphere problem in

terms of the number of vectors 𝑛, regardless of dimension 𝑑. In particular, the compu-

tationally hard instances that exist as we will show in Theorem 9 have high dimension,

without any guarantees beyond 𝑑 ≤ 𝑛 (which can always be assumed wlog). On the

other hand, the algorithms from Theorem 10 run in time polynomial in 𝑛 uniformly

for all values 𝑑 ≤ 𝑛.

In contrast, the case of finding densest hemisphere in fixed dimension 𝑑 can be

solved efficiently. For example, an optimal solution can be found by considering 𝑂(𝑛𝑑)

halfspaces defined by 𝑑-tuples of input vectors. We omit further details.

Our main result in this section relies on equivalence of the densest hemisphere

problem and the problem of learning noisy halfspaces. Applying a work by Gu-

ruswami and Raghavendra [43] we will show that it is computationally difficult to

even approximate the densest hemisphere up to any non-trivial constant factor:

Theorem 9. Unless P=NP, for any 𝜀 > 0, there is no polynomial time algorithm 𝐴𝜀

that distinguishes between instances of densest hemisphere problem such that, letting

𝐷 := {𝑢1, . . . , 𝑢𝑛}:

• Either there exists a hemisphere 𝐻 such that |𝐷 ∩𝐻|/𝑛 > 1− 𝜀.
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• Or for every hemisphere 𝐻 we have |𝐷 ∩𝐻|/𝑛 < 1/2 + 𝜀.

Consequently, unless P=NP, for any 𝜀 > 0 there is no polynomial time algorithm 𝐴𝜀

that, given an instance 𝐷 that has a hemisphere with density more than 1− 𝜀, always

outputs a hemisphere with density more than 1/2 + 𝜀.

In other words, even if guaranteed the existence of an extremely dense hemisphere,

no polynomial time algorithm can do significantly better than choosing an arbitrary

hyperplane and outputting the one of its two hemispheres that contains the larger

number of points. At the same time, [17] (relying on earlier work [16]) shows that

there exists an algorithm that finds a dense hemisphere provided that this hemisphere

is stable in the sense that it remains dense even after a small perturbation of its

separating hyperplane:

Theorem 10 ([17]). For every 𝜇 > 0, there exists a polynomial time algorithm 𝐴𝜇,

that, given an instance 𝐷 = {𝑢1, . . . , 𝑢𝑛} of the densest hemisphere problem, provides

the following guarantee:

Let 𝑎 ∈ 𝑆𝑑−1 be the vector that maximizes the size of intersection |𝐷 ∩ 𝐻𝑎,𝜇|

for halfspace 𝐻𝑎,𝜇 = {𝑥 : ⟨𝑥, 𝑎⟩ > 𝜇}. Then, the algorithm 𝐴𝜇 outputs a hemisphere

corresponding to a homogeneous halfspace 𝐻𝑎′ = {𝑥 : ⟨𝑥, 𝑎′⟩ > 0} such that |𝐷∩𝐻𝑎′ |≥

|𝐷 ∩𝐻𝑎,𝜇|.

We emphasize that the only inputs to the algorithms are 𝑛, 𝑑 and the set of

vectors 𝐷, and that the complexity is measured as a function of 𝑛. For example, the

algorithm 𝐴𝜇 runs in polynomial time for every 𝜇 > 0, but the running time is not

uniformly polynomial in 1/𝜇.

In the remainder of this section we elaborate on how to obtain Theorem 9 from

known results. To that end, we start with defining the related problem of finding

maximum agreement halfspace.

Definition 14 (Maximum Agreement Halfspace). In the problem of maximum agree-

ment halfspace, the inputs are parameters 𝑛 and 𝑑, and a labeled set of points 𝐷 =
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{(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} ∈ R𝑑 × {±1}. The objective is to find a halfspace 𝐻 = {𝑥 :

⟨𝑥, 𝑎⟩ > 𝑐} for some 𝑎 ∈ R𝑑 and 𝑐 ∈ R which maximizes the agreement

𝐴(𝐷,𝐻) =

∑︀𝑛
𝑖=1 1 [𝑦𝑖 · 𝑥𝑖 ∈ 𝐻]

𝑛
.

There is a strong hardness of approximation result for maximum halfspace agree-

ment [43] (see also [32, 24, 15, 2] for related work):

Theorem 11 ([43]). Unless P=NP, for any 𝜀 > 0, there is no polynomial time

algorithm 𝐴𝜀 that distinguishes the following cases of instances of maximum agreement

halfspace problem:

• There exists a halfspace 𝐻 such that 𝐴(𝐷,𝐻) > 1− 𝜀.

• For every halfspace 𝐻 we have 𝐴(𝐷,𝐻) < 1/2 + 𝜀.

As in Theorem 9, the hard instances are not guaranteed to have any dimension

bounds beyond trivial 𝑑 ≤ 𝑛.

As pointed out in [17], there exists a reduction from the maximum agreement

halfspace problem to the densest hemisphere problem that preserves the quality of

solutions. Since this reduction is only briefly sketched in [17], we describe it below.

The reduction proceeds as follows: Given a labeled set 𝐷 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} ∈

R𝑑 × {±1}, we map it to 𝐷′ = {𝑥′
1, . . . , 𝑥

′
𝑛} ∈ R𝑑+1 using the formula

𝑥′
𝑖 =

1√︀
1 + ‖𝑥𝑖‖2

· (𝑦𝑖𝑥𝑖, 1) .

In other words, we proceed in three steps: first, we negate each point that came with

negative label 𝑦𝑖 = −1. Then, we add a new coordinate and set its value to 1 for

every point 𝑥𝑖. Finally, we normalize each resulting point so that it lies on the unit

sphere in 𝑆𝑑.

This is a so-called “strict reduction”, which is expressed in the following claim:

Claim 13. The solutions (halfspaces) for an instance 𝐷 of Maximum Agreement

Halfspace are in one-to-one correspondence with solutions (hemispheres) for the re-
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duced instance 𝐷′ of Densest Hemisphere. Furthermore, for a corresponding pair of

solutions (𝐻,𝐻 ′) the agreement 𝐴(𝐷,𝐻) is equal to the density |𝐷′ ∩𝐻 ′|/𝑛.

Proof. It is more convenient to think of solutions for 𝐷′ as homogeneous, open half-

spaces 𝐻 ′ = {𝑥 ∈ R𝑑+1 : ⟨𝑥, 𝑎⟩ > 0}.

With that in mind, we map a solution to the maximum agreement halfspace

problem 𝐻 = {𝑥 ∈ R𝑑 : ⟨𝑥, 𝑎⟩ > 𝑐} to a solution to the densest hemisphere problem

𝐻 ′ = {(𝑥, 𝑥𝑑+1) ∈ R𝑑+1 : ⟨(𝑥, 𝑥𝑑+1), (𝑎,−𝑐))⟩ > 0}. Clearly, this is a one-to-one

mapping between open halfspaces in R𝑑 and homogeneous open halfspaces in R𝑑+1.

Furthermore, it is easy to verify that 𝑦𝑖 ·𝑥𝑖 ∈ 𝐻 if and only if 𝑥′
𝑖 ∈ 𝐻 ′ and therefore

𝐴(𝐷,𝐻) = |𝐷′ ∩𝐻 ′|/𝑛.

Theorem 9 follows from Theorem 11 and Claim 13 by standard (and straightfor-

ward) arguments from complexity theory.

3.5 Short-term scenario: polarization as externality

The analysis of the asymptotic setting with unlimited interventions tells us what

is feasible and what is not. A fundamentally different question is how to persuade

as many as possible with a limited number of interventions. This is motivated by

bounded resources or time that usually allow only limited placements of campaigns

and advertisements. Furthermore, arguably only the initial interventions can be con-

sidered effective: in the long run the opinions might shift due to external factors and

become more unpredictable and harder to control. Therefore, in this section we dis-

cuss strategies where the influencer has only one intervention at its disposal, and its

goal is to get as many agents as possible to exceed certain “threshold of agreement”

with its preferred opinion. Throughout this section, we fix 𝜂 = 1 in Equation 3.1, so

an opinion 𝑢 is updated to be proportional to 𝑤 = 𝑢+ ⟨𝑢, 𝑣⟩ · 𝑣.

Both scenarios we discuss in this section describe a situation where a “new” product

or idea is introduced. Therefore, we assume that the agents have some preexisting

opinions in R𝑑−1 and that they are neutral as to the new idea, with the 𝑑-th coordinate
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set to zero for every agent. Our results indicate significant potential for polarization

in such a situation. This is in spite of the fact that the influencer might only care

about persuading a number of agents towards the new subject, without intention to

polarize.

Since we are dealing with scenarios with only one intervention, we use the following

notational convention: an initial opinion of agent 𝑖 is denoted 𝑢𝑖 and the opinion after

intervention is denoted ̃︀𝑢𝑖.

3.5.1 One intervention, two agents: polarization costs

We consider a simple example that features only two agents and one influencer who is

allowed one intervention. We imagine a new product, such that the agents are initially

agnostic about it, i.e., 𝑢𝑖,𝑑 = 0 for 𝑖 = 1, 2. Given an intervention 𝑣, we are interested

in two issues: First, what will be new opinions of agents about the product ̃︀𝑢𝑖,𝑑?

Second, assuming that the initial correlation between opinions is 𝑐 = ⟨𝑢1, 𝑢2⟩, what

will be the new correlation ̃︀𝑐 = ⟨̃︀𝑢1, ̃︀𝑢2⟩? We think of the correlation as a measure

of agreement between the agents and therefore interpret differences in correlation as

changes in the extent of polarization.

In order to answer these questions, we introduce notions of two- and one-agent

interventions corresponding to two natural strategies:

Definition 15. The two-agent intervention is an intervention that maximizes min(̃︀𝑢1,𝑑, ̃︀𝑢2,𝑑).

The one-agent intervention maximizes max(̃︀𝑢1,𝑑, ̃︀𝑢2,𝑑).

The motivation for this definition is as follows. Assume that there exists a thresh-

old 𝑇 > 0 such that agent 𝑖 is going to make a positive decision (e.g., buy the product

or vote a certain way) if its coordinate ̃︀𝑢𝑖,𝑑 exceeds 𝑇 . Then, if the influencer cares

only about inducing agents to make the decision, it has two natural choices for the

intervention. One option is the case where it is possible to induce two decisions, i.e.,

achieve ̃︀𝑢1,𝑑, ̃︀𝑢2,𝑑 > 𝑇 . By continuity considerations, it is not difficult to see that

an intervention that achieves this can be assumed to maximize min(̃︀𝑢1,𝑑, ̃︀𝑢2,𝑑) with̃︀𝑢1,𝑑 = ̃︀𝑢2,𝑑 (such intervention is also optimal if the influencer bets on convincing both
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agents without knowing 𝑇 ). The other case is to appeal only to one of the agents,

disregarding the second agent and concentrating only on achieving, say, ̃︀𝑢1,𝑑 > 𝑇 .

Let 𝑐 = ⟨𝑢1, 𝑢2⟩ be the initial correlation between opinions and let 𝑐two and 𝑐one

be the correlations after applying, respectively, the two- and one-agent interventions.

Our main result in this section is:

Proposition 2. Let 𝜌 := 𝑐two − 𝑐one be a value that we call the polarization cost.

Then, we always have 𝜌 ≥ 0 with exact values given as

𝑐two = 1−
√
2(1− 𝑐)√
3𝑐+ 5

, 𝑐one =
𝑐
√
2√

𝑐2 + 1
. (3.10)

The values of 𝜌, 𝑐two and 𝑐one as functions of 𝑐 are illustrated in Figure 3-3. Propo-

sition 2 states that the one-agent intervention always results in smaller correlation

than the two-agent intervention. Note that we made a modeling assumption that the

influencer will always choose an intervention as opposed to doing nothing. This is

consistent with a scenario where the influencer’s objective is to increase the opinions

above the threshold 𝑇 . In that case doing nothing is certain to give no gain to the

influencer.

The main conclusion of this theorem is consistent with our other results. In the

setting we consider, in the absence of any external mitigation, the self-interested

influencer without direct intention to polarize might be incentivized to choose the

intervention that increases polarization. If polarization is regarded as undesirable,

the polarization cost can be thought of as the externality imposed on the society.

Looking at Figures 3-3 and 3-4, this effect seems most pronounced for initial

correlation around 𝑐 ≈ −0.5, where the one-agent intervention increases polarization,

the polarization cost is large and the range of thresholds 𝑇 for which the influencer

profits from the one-agent strategy is relatively large. This suggests that a situation

where the society is already somewhat polarized is particularly vulnerable to spiraling

out of control. It also suggests that situations where the level of commitment required

for the decision (i.e., the threshold 𝑇 ) is large increase the risk of polarization.

We also note that this overall picture is complicated by the case of positive initial
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correlation 𝑐 > 0. In that case both two- and one-agent interventions actually increase

the correlation between the agents, even though the two-agent intervention does so

to a larger extent. The analysis leading to the proof of Proposition 2 is contained in

Appendix B.3.

Figure 3-3: Illustration of the polar-
ization cost as a function of the ini-
tial correlation 𝑐. The dashed line
is the initial correlation included as
a reference point. The red and blue
lines are correlations after applying
two- and one-agent interventions re-
spectively. The green line shows the
polarization cost 𝑐two − 𝑐one.

Figure 3-4: The after-intervention
opinions of both agents ̃︀𝑢𝑖,𝑑 as func-
tions of initial correlation 𝑐. The red
line represents the opinion of either
agent after applying the two-agent in-
tervention. The blue line is the opin-
ion of the second agent after the one-
agent intervention. For reference, the
dashed line (1/3) shows the opinion of
the first agent in the one-agent inter-
vention (which does not depend on 𝑐).
The grey area represents the range of
thresholds 𝑇 where it is preferable for
the influencer to apply the one-agent
intervention.

3.5.2 One intervention, many agents: finding the densest spher-

ical cap

A more general version of the problem of persuading with limited number of inter-

ventions features 𝑛 agents with opinions 𝑢1, . . . , 𝑢𝑛 ∈ R𝑑. The influencer is given a

threshold 0 ≤ 𝑇 < 1 and can apply one intervention 𝑣 with the objective of maxi-
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mizing the number of agents such that ̃︀𝑢𝑖,𝑑 > 𝑇 . As before, we assume that intially

𝑢𝑖,𝑑 = 0 and that 𝑇 can be interpreted as a threshold above which a consumer decides

to buy the newly advertised product, or more generally take a desired action, such as

voting, donating, etc.

Interestingly, we show that this problem is equivalent to a generalization of the

densest hemisphere problem from the long-term scenario discussed in Section 3.4.

More precisely, it is equivalent to finding a densest spherical cap of a given radius

(that depends on the threshold 𝑇 ) in 𝑑− 1 dimensions.

We give the technical statement in the proposition below. We make an assumption

0 ≤ 𝑇 < 1/3, since 1/3 is the maximum value that can be achieved in the 𝑑-th

coordinate by a single intervention, cf. Figure 3-4. In order to state Proposition 3,

we slightly abuse notation and write vectors 𝑢 ∈ R𝑑 as 𝑢 = (𝑢*, 𝑢𝑑) for 𝑢* ∈ R𝑑−1,

𝑢𝑑 ∈ R.

Proposition 3. In the setting above, let

𝑐 :=
2𝑇

1− 3𝑇 2
, 𝑧 :=

√︀√
1 + 3𝑐2 − 1√

3𝑐
, 𝛽 := arccos(𝑧) .

Then, the number of agents with ̃︀𝑢𝑖,𝑑 > 𝑇 is maximized by applying an intervention

𝑣 := (cos 𝛽 · 𝑣*, sin 𝛽) (3.11)

for a unit vector 𝑣* ∈ R𝑑−1 that maximizes the number of agents satisfying

⟨𝑢*
𝑖 , 𝑣

*⟩ > 𝑐 .

The proof of Proposition 3 is contained in Appendix B.4. Note that the solution

to this short-term problem for 𝑇 going to zero approaches the densest hemisphere

solution to the long-term problem discussed in Section 3.4.
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3.6 Asymptotic effects of two dueling influencers: two

randomized interventions polarize

Finally, we analyze a scenario where there are two influencers with differing agendas,

represented by different1 intervention vectors 𝑣 and 𝑣′. We consider the randomized

setup, where at each time step, one of the influencers is randomly chosen to apply

their intervention. We demonstrate that this setting also results, in most cases and

in a certain sense, in the polarization of agents.

Recall that a convex cone of two vectors 𝑣 and 𝑣′ is the set {𝛼𝑣 + 𝛽𝑣′ : 𝛼, 𝛽 ≥ 0}.

A precise statement that we prove is:

Theorem 12. Let ⟨𝑣, 𝑣′⟩ > 0 and let a starting opinion 𝑢(1) be such that ⟨𝑢(1), 𝑣⟩ ≠ 0

or ⟨𝑢(1), 𝑣′⟩ ≠ 0. Then, as 𝑡 goes to infinity and almost surely, either the Euclidean

distance between 𝑢(𝑡) and the convex cone generated by 𝑣 and 𝑣′ or between 𝑢(𝑡) and

the convex cone generated by −𝑣 and −𝑣′ goes to 0.

In order to justify the assumptions of Theorem 12, note that if an agent starts

with an opinion 𝑢(1) such that

⟨𝑢(1), 𝑣⟩ = ⟨𝑢(1), 𝑣′⟩ = 0 , (3.12)

applying 𝑣 or 𝑣′ never changes their opinion. In Theorem 12 we show that if (3.12)

does not hold and, additionally, ⟨𝑣, 𝑣′⟩ > 0, (if ⟨𝑣, 𝑣′⟩ < 0 we can exchange 𝑣′ with −𝑣′

without changing the effects of any interventions), the opinion vector with probability

1 ends up either converging to the convex cone generated by 𝑣 and 𝑣′ or the convex

cone generated by −𝑣 and −𝑣′. In particular, since vectors 𝑢 for which (3.12) holds

form a set of measure 0, if 𝑛 initial opinions are sampled iid from an absolutely con-

tinuous distribution, almost surely all opinions converge to the convex cones (which

are themselves sets of measure 0 for 𝑑 > 2).

Furthermore, this notion of polarization is strengthened if the correlation between

the two interventions is large. As in Theorem 7, the best we can hope for is that
1We also assume that 𝑣 ̸= −𝑣′, as otherwise the intervention effects are the same in our model.
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for each pair of opinions either the distance between 𝑢
(𝑡)
1 and 𝑢

(𝑡)
2 or between 𝑢

(𝑡)
1 and

−𝑢
(𝑡)
2 converges to 0. Letting 𝑉 := span{𝑣, 𝑣′} and 𝑊 := 𝑉 ⊥ and writing any vector

𝑢 as a sum of its respective projections 𝑢 = 𝑢𝑉 + 𝑢𝑊 , we show:

Theorem 13. Suppose that ⟨𝑣, 𝑣′⟩ > 1/
√
2 + 𝜂 and let 𝑢(1)

1 , 𝑢
(1)
2 be such that (𝑢(1)

1 )𝑉 ̸=

0, (𝑢(1)
2 )𝑉 ̸= 0. Then, almost surely, either ‖𝑢(𝑡)

1 −𝑢
(𝑡)
2 ‖ converges to 0, or ‖𝑢(𝑡)

1 +𝑢
(𝑡)
2 ‖

converges to 0.

In other words, the stronger notion of convergence, same as in Section 3.3 with

uniformly drawn random interventions, reappears in case the correlation between

two interventions 𝑣 and 𝑣′ is larger than 1/
√
2 + 𝜂. In particular, we have strong

convergence for any 𝜂 > 0 and ⟨𝑣, 𝑣′⟩ ≥
√
2/2 ≈ 0.71, and for 𝜂 = 1 for ⟨𝑣, 𝑣′⟩ >

√
3/3 ≈ 0.58. Our experiments suggest that this convergence occurs also for other

non-zero values of the correlation ⟨𝑣, 𝑣′⟩, but we do not prove it here.

Also note that same in spirit as Remark 3.1, the usual argument from symmetry

shows that if the initial opinions are independent samples from a symmetric distribu-

tion, then with high probability the opinions divide into two clusters of roughly equal

size.

The case when 𝑣 and 𝑣′ are orthogonal is different. As we mentioned, if ⟨𝑣, 𝑣′⟩ > 0,

i.e., the angle between 𝑣 and 𝑣′ is less than 𝜋/2, then all opinions converge to the two

“narrow” convex cones, respectively between 𝑣 and 𝑣′ and between −𝑣 and −𝑣′ —

namely, the pairs of vectors among 𝑣, 𝑣′,−𝑣, and −𝑣′ between which there are acute

angles. Similarly, if ⟨𝑣, 𝑣′⟩ < 0, then the opinions converge to two cones between 𝑣

and −𝑣′ and between −𝑣 and 𝑣′. In case ⟨𝑣, 𝑣′⟩ = 0 the four convex cones form right

angles, so such a result is not possible.

However, we can still show that an initial opinion 𝑢(1) converges to the same

quadrant in which it starts with respect to 𝑣 and 𝑣′. Namely, for all 𝑡, we have that

sgn
(︀⟨︀
𝑢(𝑡), 𝑣

⟩︀)︀
= sgn

(︀⟨︀
𝑢(1), 𝑣

⟩︀)︀
and sgn

(︀⟨︀
𝑢(𝑡), 𝑣′

⟩︀)︀
= sgn

(︀⟨︀
𝑢(1), 𝑣′

⟩︀)︀
, and furthermore

the distance between 𝑢(𝑡) and the subspace 𝑉 goes to 0 with 𝑡:

Proposition 4. Suppose that ⟨𝑣, 𝑣′⟩ = 0 and let an initial opinion 𝑢(1) be such that

⟨𝑢(1), 𝑣⟩ ≠ 0 and ⟨𝑢(1), 𝑣′⟩ ≠ 0. Then, almost surely, the following facts hold:
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1. ‖𝑢(𝑡)
𝑊 ‖→ 0 as 𝑡 → ∞.

2. For all 𝑡, sgn
(︀⟨︀
𝑢(𝑡), 𝑣

⟩︀)︀
= sgn

(︀⟨︀
𝑢(1), 𝑣

⟩︀)︀
and sgn

(︀⟨︀
𝑢(𝑡), 𝑣′

⟩︀)︀
= sgn

(︀⟨︀
𝑢(1), 𝑣′

⟩︀)︀
.

Fascinatingly, Gaitonde, Kleinberg and Tardos [38] showed subsequently to our

initial preprint that strong polarization does not occur for orthogonal interventions.

Specifically, they proved that two opinions in 𝑆𝑑−1 with random interventions chosen

iid from the standard basis {𝑒1, . . . , 𝑒𝑑} do not polarize in the sense of 𝑢(𝑡)
1 − 𝑢

(𝑡)
2 or

𝑢
(𝑡)
1 − 𝑢

(𝑡)
2 vanishing, but they do exhibit a weaker form of polarization. We refer to

their paper for more details.

In order to prove Theorem 12, we first show that the distance between 𝑢(𝑡) and

𝑉 almost surely goes to 0 as 𝑡 → ∞, by showing that the norm of the projection of

𝑢(𝑡) onto 𝑊 converges to 0. Then, we demonstrate that the convex cone spanned by

𝑣 and 𝑣′ is absorbing: when the projection of 𝑢(𝑇 ) onto 𝑉 falls in the cone, then the

projections of 𝑢(𝑡) for 𝑡 ≥ 𝑇 always stay in the cone as well.

Finally, we show that almost surely the projection of 𝑢(𝑡) onto 𝑉 eventually enters

either the cone spanned by 𝑣 and 𝑣′, or the cone spanned by −𝑣 and −𝑣′. More

concretely, we show that at any time 𝑡, there is a sequence of 𝑇 interventions that

lands the projection of 𝑢(𝑡+𝑇 ) in one of the cones, for some 𝑇 that is independent of

𝑡. Since this sequence occurs with probability 2−𝑇 , which is independent of 𝑡, the

opinion almost surely eventually enters one of the cones.

3.6.1 Proofs of Theorem 12 and Proposition 4

We start with the fact the opinions converge to the subspace 𝑉 spanned by the two

intervention vectors. Recall that 𝑉 = span{𝑣, 𝑣′} and that 𝑊 = 𝑉 ⊥. In the following

we will write ⟨𝑣, 𝑣′⟩ = cos 𝜃 for 0 < 𝜃 ≤ 𝜋/2.

Proposition 5. Let ⟨𝑣, 𝑣′⟩ ≥ 0 and take an opinion vector 𝑢 such that ‖𝑢𝑉 ‖= 𝑐 ≥ 0.

Furthermore, let ̃︀𝑢 be the vector resulting from randomly intervening on 𝑢 with either

𝑣 or 𝑣′. Then:

1. ‖̃︀𝑢𝑊‖2≤ ‖𝑢𝑊‖2.
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2. With probability at least 1/2, ‖̃︀𝑢𝑊‖2≤ ‖𝑢𝑊‖2·(1− 𝜉), where

𝜉 = min

(︂
1

2
, (𝜂 + 𝜂2/2) · 𝑐

2𝜃2

16

)︂
.

Proof. Recall from (3.2)–(3.3) that if 𝑣 ∈ {𝑣, 𝑣′} is the intervention vector, then

̃︀𝑢 = 𝑘(𝑢+ 𝜂 ⟨𝑢, 𝑣⟩ · 𝑣)

where 𝑘 =
√︁

1
1+(2𝜂+𝜂2)·⟨𝑢,𝑣⟩2 is the normalizing constant. Observe that when we project

onto 𝑊 , the component in the direction of 𝑣 vanishes, so we have that

̃︀𝑢𝑊 = 𝑘 · 𝑢𝑊 ,

and the first claim easily follows since 𝑘 ≤ 1.

To establish the second point, we need to show that with probability 1/2 we have

𝑘2 < 1 or, equivalently, ⟨𝑢, 𝑣⟩2 = ⟨𝑢𝑉 , 𝑣⟩2 > 0. Since 𝜃 ̸= 0, the projected vector 𝑢𝑉

cannot be orthogonal both to 𝑣 and 𝑣′ (cf. Figure 3-5). More precisely, for at least one

of 𝑣 ∈ {𝑣, 𝑣′} the primary angle between 𝑢𝑉 and 𝑣 (or −𝑣) must be at most 𝜋/2−𝜃/2

and consequently

|⟨𝑢𝑉 , 𝑣⟩| ≥ ‖𝑢𝑉 ‖·|cos(𝜋/2− 𝜃/2)|≥ 𝑐 · 𝜃/4 ,

resulting in

𝑘2 =
1

1 + (2𝜂 + 𝜂2) · ⟨𝑢𝑉 , 𝑣⟩2
≤ max

(︂
1

2
, 1− (𝜂 + 𝜂2/2) · 𝑐

2𝜃2

16

)︂
.

Next, we show that the convex cone of vectors 𝑣 and 𝑣′ is absorbing:

Proposition 6. Let ⟨𝑣, 𝑣′⟩ ≥ 0 and take 𝑢 to be an opinion vector and ̃︀𝑢 to be a vector

resulting from intervening on 𝑢 with either 𝑣 or 𝑣′. If 𝑢𝑉 is a conical combination of

𝑣 and 𝑣′, then also ̃︀𝑢𝑉 is such a conical combination.

Proof. Assume wlog that the vector applied is 𝑣 and let 𝑘 be the same constant as in
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𝑣

𝑣′

𝑢𝑉 ̃︀𝑢𝑉

𝜃

Figure 3-5: Projection onto the subspace 𝑉 = span{𝑣, 𝑣′}.

the proof of Proposition 5. Then,

̃︀𝑢/𝑘 = 𝑢+ 𝜂 · ⟨𝑢, 𝑣⟩ · 𝑣 = 𝑢𝑉 + 𝜂 · ⟨𝑢𝑉 , 𝑣⟩ · 𝑣 + 𝑢𝑊 .

Therefore, ̃︀𝑢𝑉 can be written as a nonnegative linear combination of 𝑢𝑉 and 𝑣, where

we use the fact that ⟨𝑢𝑉 , 𝑣⟩ is nonnegative, which follows since 𝑢𝑉 is a conical com-

bination of 𝑣 and 𝑣′, and ⟨𝑣, 𝑣′⟩ ≥ 0.

Next, we prove that when ⟨𝑣, 𝑣′⟩ > 0, the opinion 𝑢(𝑡) not only approaches subspace

𝑉 , but also a specific area of 𝑉 , namely, either cone(𝑣, 𝑣′) or cone(−𝑣,−𝑣′).

Proposition 7. Let ⟨𝑣, 𝑣′⟩ > 0 and consider a vector 𝑢(𝑡) such that ‖𝑢(𝑡)
𝑉 ‖≥ 𝑐 > 0.

Then, there exists 𝑇 := 𝑇 (𝑐, 𝜃, 𝜂) such that with probability at least 2−𝑇 , vector 𝑢
(𝑡+𝑇 )
𝑉

will either be a conical combination of 𝑣 and 𝑣′ or a conical combination of −𝑣 and

−𝑣′.

Proof. First, for any vector 𝑢(𝑡) such that ‖𝑢(𝑡)
𝑉 ‖≥ 𝑐 > 0, at least one of 𝑣, 𝑣′,−𝑣,−𝑣′

has positive inner product with 𝑢(𝑡) (and 𝑢
(𝑡)
𝑉 ) which can be lower bounded by a

function of 𝑐 and 𝜃 (see Figure 3-5). Take such a vector and call it 𝑣. By the

argument from Proposition 5, applying 𝑣 repeatedly will bring 𝑢(𝑡+𝑇 ) arbitrarily close

to it. More precisely, for every 𝜀 > 0, there exists 𝑇1 = 𝑇1(𝑐, 𝜃, 𝜂, 𝜀) such that

‖𝑢(𝑡+𝑇1)
𝑉 − 𝑣‖< 𝜀 and ‖𝑢(𝑡+𝑇1) − 𝑣‖< 𝜀 both hold.

Furthermore, since ⟨𝑣, 𝑣′⟩ > 0, there exists 𝜀 > 0 such that if ‖𝑢(𝑡) − 𝑣‖< 𝜀, then

applying the other intervention vector (𝑣 or 𝑣′) once guarantees that 𝑢(𝑡+1)
𝑉 enters the
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convex cone between 𝑣 and 𝑣′ or, respectively, between −𝑣 and −𝑣′. In particular, if

𝑢
(𝑡)
𝑉 already is in the convex cone, then applying either intervention will keep it inside

by Proposition 6. On the other hand, if 𝑢(𝑡)
𝑉 is not yet in the cone, but at the distance

at most 𝜀 to 𝑣, then applying the other intervention will bring it inside the cone (see

Figure 3-5).

Therefore, there exists a sequence of 𝑇 (𝑐, 𝜃, 𝜂) = 𝑇1 + 1 interventions that make

𝑢
(𝑡+𝑇 )
𝑉 enter cone(𝑣, 𝑣′) or cone(−𝑣,−𝑣′). Clearly, this sequence occurs with probabil-

ity 2−𝑇 .

We are now ready to prove Theorem 12.

Proof of Theorem 12. Let ‖𝑢(1)
𝑉 ‖= 𝑐 > 0. Proposition 5 tells us that the squared norm

of the projection 𝑢
(𝑡)
𝑊 onto subspace 𝑊 = 𝑉 ⊥ never increases, and with probability

1/2 decreases by the multiplicative factor 1− 𝜉(𝑐, 𝜂, 𝜃) < 1. By induction (note that

𝜉 increases with 𝑐), 𝑢(𝑡)
𝑊 converges to 0, and consequently ‖𝑢(𝑡) − 𝑢

(𝑡)
𝑉 ‖ converges to 0,

almost surely.

In order to show that convergence to one of the two convex cones occurs, we

apply Proposition 7. Since at any time step 𝑡, there exists a sequence of 𝑇 choices

that puts 𝑢(𝑡+𝑇 )
𝑉 in one of the convex cones, and since 𝑇 depends only on the starting

parameters 𝑐, 𝜃, and 𝜂, we get that 𝑢
(𝑡)
𝑉 almost surely eventually enters one of the

cones. By Proposition 6 and induction, once 𝑢
(𝑡)
𝑉 enters a convex cone, it never

leaves.

Proposition 4 follows as a corollary of Propositions 5 and 6:

Proof of Proposition 4. The first statement is an inductive application of Proposi-

tion 5, exactly the same as in the proof of Theorem 12.

The second statement follows from noting that out of four orthogonal pairs of

vectors {𝑣, 𝑣′}, {𝑣,−𝑣′}, {−𝑣, 𝑣′}, or {−𝑣,−𝑣′}, there is exactly one such that 𝑢(1)
𝑉 is

a (strict) conical combination of this pair (by assuming ⟨𝑢(1), 𝑣⟩ ≠ 0 and ⟨𝑢(1), 𝑣′⟩ ≠ 0

we avoid ambiguity in case 𝑢
(1)
𝑉 is parallel to 𝑣 or 𝑣′). By the same argument as in

Proposition 6 and by induction, if the initial projection 𝑢
(1)
𝑉 is strictly inside one of

the convex cones, the projection 𝑢
(𝑡)
𝑉 remains strictly inside forever.
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3.6.2 Proof of Theorem 13

Consider the subspace 𝑉 = span{𝑣, 𝑣′} with some coordinate system (cf. Figure 3-5)

imposed on it. As is standard, a unit vector 𝑢 ∈ 𝑉 can be represented in this system

by its angle 𝛼(𝑢) ∈ [0, 2𝜋) as measured counterclockwise from the positive 𝑥-axis.

Given a unit vector 𝑣 ∈ 𝑉 , let 𝑓𝑣 : [0, 2𝜋) → [0, 2𝜋) be the function with the

following meaning: given a unit vector 𝑢 ∈ 𝑉 with angle 𝛼 = 𝛼(𝑢), the value 𝑓𝑣(𝛼) =

𝛼(̃︀𝑢) represents the angle of vector ̃︀𝑢 resulting from applying intervention 𝑣 to vector

𝑢. Note that 𝛼(𝑣) is a fixed point of 𝑓𝑣. Also, by Proposition 6, both functions 𝑓𝑣

and 𝑓𝑣′ map the interval corresponding to cone(𝑣, 𝑣′) to itself.

The main part of our argument is the following lemma, which we prove last:

Lemma 8. If ⟨𝑣, 𝑣′⟩ = cos 𝜃 > 1/
√
2 + 𝜂, then functions 𝑓𝑣 and 𝑓𝑣′ restricted to the

convex cone of 𝑣 and 𝑣′ are contractions, i.e., there exists 𝑘 = 𝑘(𝜃, 𝜂) < 1 such that

for all vectors 𝑢, 𝑢′ ∈ cone(𝑣, 𝑣′), letting 𝛼 := 𝛼(𝑢), 𝛽 := 𝛼(𝑢′), 𝑣 ∈ {𝑣, 𝑣′}, we have

|𝑓𝑣(𝛽)− 𝑓𝑣(𝛼)| ≤ 𝑘 · |𝛽 − 𝛼| , (3.13)

where the distances |𝑓𝑣(𝛽)− 𝑓𝑣*(𝛼)| and |𝛽−𝛼| are in the metric induced by 𝑆1, i.e.,

“modulo 2𝜋”.

Proof of Theorem 13. Lemma 8 implies that the angle distance between two opinions

𝑢
(𝑡)
1 , 𝑢

(𝑡)
2 ∈ 𝑉 starting in the convex cone deterministically converges to 0 as 𝑡 goes to

infinity. Of course, this is equivalent to their Euclidean distance ‖𝑢(𝑡)
1 −𝑢

(𝑡)
2 ‖ converging

to 0. We now make a continuity argument to show that such convergence almost surely

occurs also for general 𝑢(𝑡)
1 , 𝑢

(𝑡)
2 ∈ 𝑆𝑑−1. To this end, we let 𝑔𝑣, 𝑔𝑣′ : 𝑆

𝑑−1 → [0, 2𝜋)

as natural extensions of 𝑓𝑣, 𝑓𝑣′ : the value 𝑔𝑣(𝑢) denotes the angle of the projectioñ︀𝑢𝑉 of the new opinion onto 𝑉 , after applying 𝑣 on opinion 𝑢 (cf. Figure 3-5). Note

that the value 𝑔𝑣(𝑢) depends only on the angle 𝛼(𝑢𝑉 ) and the orthogonal projection

length ‖𝑢𝑊‖:

𝑔𝑣(𝑢) = 𝑔𝑣(𝛼(𝑢𝑉 ), ‖𝑢𝑊‖) .

In this parametrization, for 𝑢 ∈ 𝑉 we have 𝑓𝑣(𝛼(𝑢)) = 𝑔𝑣(𝑢) = 𝑔𝑣(𝛼(𝑢), 0).
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By Theorem 12, for any starting opinions 𝑢
(1)
1 and 𝑢

(1)
2 having non-zero projec-

tions onto 𝑉 , almost surely there exists a 𝑡 such that (𝑢
(𝑡)
1 )𝑉 and (𝑢

(𝑡)
2 )𝑉 end up

inside (possibly different) convex cones. We consider the case of 𝑢(𝑡)
1 and 𝑢

(𝑡)
2 both in

cone(𝑣, 𝑣′), other three cases being analogous. Furthermore, almost surely, ‖(𝑢(𝑡)
1 )𝑊‖

and ‖(𝑢(𝑡)
2 )𝑊‖ converge to 0. Hence, it is enough that we show that almost surely

|𝛼((𝑢(𝑡)
1 )𝑉 )− 𝛼((𝑢

(𝑡)
2 )𝑉 )| (in 𝑆1 distance) converges to zero.

To this end, let 𝛿 > 0. By uniform continuity of 𝑔𝑣, we know that for small enough

value of 𝑟, we have

|𝑔𝑣(𝛼, 𝑟)− 𝑔𝑣(𝛼, 0)| <
1− 𝑘

4
· 𝛿

for every 𝛼 ∈ [0, 2𝜋), where 𝑘 is the Lipschitz constant from (3.13). Therefore,

almost surely, for 𝑡 large enough, for 𝑢(𝑡)
1 and 𝑢

(𝑡)
2 parameterized as 𝑢(𝑡)

1 = (𝛼1, 𝑟1) and

𝑢
(𝑡)
2 = (𝛼2, 𝑟2) we have

|𝑔𝑣(𝛼1, 𝑟1)− 𝑔𝑣(𝛼2, 𝑟2)| ≤ |𝑔𝑣(𝛼1, 𝑟1)− 𝑔𝑣(𝛼1, 0)|+ |𝑔𝑣(𝛼1, 0)− 𝑔𝑣(𝛼2, 0)|+ |𝑔𝑣(𝛼2, 0)− 𝑔𝑣(𝛼2, 𝑟2)|

≤ 1− 𝑘

4
· 𝛿 + 𝑘 · |𝛼1 − 𝛼2|+

1− 𝑘

4
· 𝛿 ≤

(︂
𝑘 +

1− 𝑘

2

)︂
·max(|𝛼1 − 𝛼2|, 𝛿) .

Since 𝑘 + (1 − 𝑘)/2 < 1, and applying the same argument to 𝑓𝑣′ , we conclude by

induction that the distance |𝛼1(𝑡)− 𝛼2(𝑡)| must decrease and stay below 𝛿 in a finite

number of steps. Since 𝛿 > 0 was arbitrary, it must be that |𝛼1(𝑡)− 𝛼2(𝑡)| converges

to 0, concluding the proof of Theorem 13.

It remains to prove Lemma 8:

Proof. Proof of Lemma 8. Recall that we assumed a two-dimensional coordinate

system on 𝑉 . Let 𝑓 := 𝑓(1,0), i.e., 𝑓 corresponds to the intervention along the 𝑥-axis

in this coordinate system. Clearly, functions 𝑓𝑣 and 𝑓𝑣′ are cyclic shifts of 𝑓 modulo

2𝜋. More precisely, we have

𝑓𝑣(𝛼) = 𝛼(𝑣) + 𝑓(𝛼− 𝛼(𝑣)) , (3.14)

where arithmetic in (3.14) is modulo 2𝜋. Furthermore, 𝑓 is symmetric around the
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intervention vector, i.e., 𝑓(𝛼) = 2𝜋 − 𝑓(2𝜋 − 𝛼) for 0 < 𝛼 ≤ 𝜋. Hence, to prove that

𝑓𝑣 and 𝑓𝑣′ restricted to cone(𝑣, 𝑣′) are contractions, it is enough that we show that

𝑓 restricted to the interval [0, 𝜃] is a contraction (recall that we assumed cos2(𝜃) >

1/(2 + 𝜂)).

Figure 3-6: The graph of the “pull function” 𝛼− 𝑓(𝛼) in case 𝜂 = 1.

To that end, we use (3.2) to calculate the formula for 𝑓 for 0 ≤ 𝛼 ≤ 𝜋/2 as

𝑓(𝛼) = arccos

(︃
(1 + 𝜂) cos𝛼√︀

1 + (2𝜂 + 𝜂2) cos2 𝛼

)︃
. (3.15)

More computation using elementary calculus (we omit the details) establishes

that, additionally, for every 0 ≤ 𝛼 < 𝛽 ≤ 𝜋/2:

1. 𝑓(𝛼) ≤ 𝛼. In other words, applying the intervention brings vector 𝑢 closer to

the intervention vector.

2. 𝑓(𝛼) < 𝑓(𝛽), i.e., applying the intervention does not change relative ordering

of vectors wrt the intervention vector.

3. If 𝛽 ≤ 𝜃* := arccos
(︁√︁

1
2+𝜂

)︁
, then 0 ≤ 𝛼 − 𝑓(𝛼) < 𝛽 − 𝑓(𝛽), i.e., in absolute
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terms, the “pull” on a vector is stronger the further away it is from the interven-

tion vector (until the correlation reaches the threshold 1/
√
2 + 𝜂, cf. Figure 3-6).

The preceding items taken together imply that for every 0 ≤ 𝛼 < 𝛽 ≤ 𝜃* we have

0 < 𝑓(𝛽)− 𝑓(𝛼) < 𝛽−𝛼. To conclude that 𝑓 is a contraction, we observe that 𝑓 and

its derivative 𝑓 ′ are continuous on the interval [0, 𝜃*]. If there exist sequences (𝛼𝑘)

and (𝛽𝑘) in [0, 𝜃] for 𝜃 < 𝜃* such that |𝑓(𝛼𝑘)− 𝑓(𝛽𝑘)|/|𝛽𝑘 − 𝛼𝑘| converges to 1, then,

by compactness, there exist convergent sequences 𝛼𝑘 → 𝛼* and 𝛽𝑘 → 𝛽* such that

|𝑓(𝛼𝑘)− 𝑓(𝛽𝑘)|/|𝛽𝑘 − 𝛼𝑘|→ 1. Then,

1. Either 𝛼* ̸= 𝛽* and by continuity we get 𝑓(𝛽*)−𝑓(𝛼*) = 𝛽*−𝛼*, contradicting

the third property above.

2. Or 𝛼* = 𝛽*, which by continuity of 𝑓 ′ implies 𝑓 ′(𝛼*) = 1 for some 0 ≤ 𝛼* < 𝜃*.

But that would imply that the derivative of 𝛼−𝑓(𝛼), i.e., 1−𝑓 ′(𝛼), vanishes at

𝛼* < 𝜃*, again contradicting the third property above (see also Figure 3-6).
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Chapter 4

A Median Voter Theory for Liquid

Democracy

4.1 Introduction

4.1.1 Liquid Democracy and Problem Set-up

Liquid democracy is an election paradigm first proposed in [67] that attracts increas-

ing attention and experimentation from Pirate Party’s implementation to recent years

[13, 22, 36, 58, 44, 54, 77, 21, 98, 46]. It is a delegable proxy voting scheme where

each voter can choose to vote directly or delegate to another voter on a given issue.

The delegation is transitive.

Previous works have examined liquid democracy both theoretically and empiri-

cally. Most existing works analyze liquid democracy for decision problems where a

"correct" outcome exists, and analyze its voting quality compared to traditional di-

rect democracy under this epistemic assumption [54, 46, 44]. The intuitive advantage

of liquid democracy in this setting is clear: delegating to others with more domain

knowledge can lead to better collective decision-making with lower aggregate effort

and time invested in learning about the issue at hand for each individual. Under such

assumptions, several papers have studied delegation models where voters delegate to

others with higher voting accuracy, randomly, or with more sophisticated mechanisms
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on underlying social networks [54, 46, 44, 21].

However, there is an orthogonal dimension of interest for democracy that is equally

important and in fact prevalent in practice, where no “correct" outcome exists, and

voters possess heterogeneous preferences according to which they evaluate policy can-

didates. This setting reflects many realistic elections including general presidential

elections and many public policy regulation decisions involving stakeholders with con-

trasting interests. Heterogeneous preferences is also a common assumption for models

of voting in game theory and political economy literature [31, 42, 88, 30]. Whether

and how liquid democracy is advantageous in this ideological setting is an interesting

open direction. Philosophically, liquid democracy’s effectiveness in this domain seems

well-grounded: voters not only want to delegate to voters with better knowledge, but

also those with similar preferences.

Relatively few existing works study liquid democracy under heterogeneous pref-

erences. One such work is [21]. It models delegation and voting in liquid democracy

as a game where voters’ preferences are modeled as discrete-valued types {0, 1}, i.e.,

each voter prefers either the outcome 0 or 1. In addition, voters also vary in their

ability to cast votes that correctly match their preferences, defined as accuracy 𝑞𝑖,

the likelihood of voter 𝑖 casting a vote matching her type, after paying a learning cost

𝑒𝑖. The goal for each voter is to maximize the probability that she casts a vote man-

ifesting her true type (i.e., correctly expressing). The authors derive pure-strategy

Nash equilibrium where members of a connected components delegate to voters of

the same type with the highest voting accuracy. Therefore, domain knowledge is still

the fundamental force that motivates the delegation.

We take a different angle in modeling, aiming to emphasize how a voter in a

continuous preference spectrum delegate when learning about policies are costly (for

example, would a voter delegate to the less extreme voter, or a more extreme voter?).

By doing so, we capture a key motivation behind the proposal of liquid democracy:

voters may not have enough information about the policy at hand to make informed

choices, but may have information about other voters they are familiar with. One

point of departure from the previous game-theoretic model is the continuous-valued
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voter preference in our model. In our model, voters have heterogeneous and contin-

uous ideological preferences, reflecting reality more closely, and also similar to the

single-peaked preferences prevalent in game theory.

Different from the previous rational model of liquid democracy [21, 98], we adopt

an outcome-oriented aspect in the modeling of utility. In [21], each voter maximizes

his probability of casting a vote according to his type, instead of maximizing the

probability that his type wins. Maximizing the probability of correct expression is

not always equivalent to maximizing probability of the best outcome. In the current

model, in contrary, the utility is derived from the result of the election directly.

Another point of departure from previous model is the continuous policy prior.

We derive equilibrium results with policy candidates drawn from a probability distri-

bution instead of being fixed {0, 1}. The modeling choice is motivated by the question

of whether a formed delegation network can be reused for various decision making;

so even facing multiple rounds of voting, as long as voters still expect policies to be

drawn from a similar pool, the delegation they form can be extended for multiple

rounds of voting.

Transitivity is a key feature and assumption in liquid democracy. "Trust" is

assumed to be transitive, as for liquid democracy to work properly in an ideal case,

voters delegating to neighbors they trust ideally leads to a voter they trust at the end

of the chain. This assumption is not problematic in models with correct outcomes and

voters delegating to better informed individuals. However, it will be interesting to

see whether this transitivity works out when voters have heterogeneous preferences,

because myopic and locally sound delegation could potentially lead to someone with

opposite or much more extreme preferences. In this paper, we will show that this

transitivity holds directionally. In particular, whether to delegate to less extreme or

more extreme voters depend on the learning cost and one’s stance in the political

spectrum, and chains break naturally once reaching someone with deciding voting

power. Or more precisely, the coalition-proof Nash equilibriums derived in this paper

can be constructed by local delegations.

To this end, the current paper aims to bring the element of preference and ideology
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into the picture and model how rational delegation plays out among a population of

voters with their political stance and ideologies varying continuously. We will first

recapture some familiar incentive structure for voting in populations with continuous

preferences, and show how this incentive structure motivates the formation of different

delegation networks in equilibrium.

4.1.2 Main Results

We study pure-strategy coalition-proof Nash equilibrium in the a liquid democracy

voting game where voters have heterogenous and continuous preferences. We are able

to recapture some of the classical results on voting derived in theory and observed

in practice such as median voter theorem and the relationship between turnout and

voters’ political stance in a left-right spectrum. Political economy literature has desig-

nated extensive debate on both why voters turn out and who have higher probability

of turning out. For example, there are arguments and supports both for moderate

voters to have low turnout incentives as in "swing-voters curse" and extreme voters

to have lower voting incentives as no policies represent them well [42]. Our model

shows that the form of the policy prior is one possible mechanism for the various in-

centive structure to form. For example, low incentive of learning for moderate voters

could occur naturally when a group of voters with single-peaked preferences facing

unknown policies drawn from a single probability distributions (Proposition 8).

Echoing classical results that policy favored by the median voter wins in elections

where voters have single-peaked preferences [50, 19], when allowed delegation, dele-

gating to median forms coalition-proof Nash equilibriums (when median voters have

enough incentive to turn out), as shown in Theorem 14 and 15. However, as learning

cost increases, a region of disincentivised voters forms in the middle of the political

spectrum. In particular, when learning cost is moderate, Theorem 16 shows that

new structure of coalition-proof NE emerges where extreme voters delegate inward

and moderate voters delegate outward to the most moderate voter who is still incen-

tivised to learn. Non-trivial delegation to opposite political spectrum occurs in order

to rule out more unfavored coalitions.
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The analysis indicates that liquid democracy provides some remedy for moderate

voters’ expression of preference through delegation when learning cost is moderate,

but may cause all motivated voters to vote randomly when cost of learning exceeds a

threshold.

4.1.3 Related Work

Theoretical and empirical studies on liquid democracy

Several models have been proposed to analyze liquid democracy previously, with

focuses on settings where a correct outcome exists [54, 46, 44]. Both supportive

and unfavoring conclusions are drawn. Procaccia etal. [54, 44] present condition for

the mechanism to lead to super voters which will distort the collective social choice

accuracy. Halpern etal. [46] classified various delegating mechanisms and provides

condition for the final voting outcome to surpass direct majority vote. Bloembergen

etal. [21], a previous rational model for delegation characterizes graph conditions for

the underlying social network so that voting equilibrium exists and characterize the

equilibrium delegation path on the graphs.

Liquid democracy has also been implemented and experimented in real-world deci-

sion makings, including Pirate party in Germany and Google [58, 47, 85, 13]. Previous

empirical studies have examined liquid democracy’s performance in practice in cor-

porate, non-corporate organizations and in political parties[58, 47, 85]. It has been

observed that a common drawback of liquid democracy is the emergence of super

voter that occupies disproportional decision weights.

Median voter theorem and political economy

Median voter model first appeared in [50] as an informal assertion and observation

that political parties gravitate towards the position occupied by median voters. On

the other hand, from a social choice theory perspective (thus viewing the policies

as given instead of strategically generated), [19] first proved Median voter theorem,

showing that in ranked preference elections, any voting rule that satisifies Condorcet
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criterion elects candidate closest to the the median’s preference.

At the core of median voter theories in is a connection between some characteristics

of the voting population and the policy outcome. It abstracts away other features

of the political process and provide testable implications from some characteristics

of voting population to the policy outcome [29]. Thus it will be interesting to see

whether and how delegative voting like liquid democracy retains this bridge.

Game-theoretic modeling of voting: incentives, turnout and outcome

The political economy literature has designated extensive attention to voting, pro-

viding plural of models that intend at explaining voting behavior, including voter

turnouts, incentives, and winning policies. For example, it has been observed both

theoretically and empirically that more moderate voters may have lower turn-out rate

[42, 88, 31]. This resonates with the incentive structure that the current model has.

4.2 Model

Consider a population of 𝑛 agents 𝒩 = {1, 2, · · · , 𝑛}, where 𝑛 is an odd number.1

The agents are to vote and collectively elect a policy from two candidates 𝑝0, 𝑝1 ∈ R.

We use 𝑣𝑖 ∈ {0, 1} for agent 𝑖’s vote on the policies and write 𝑣 for the vote profile.

The policy will be selected using majority rule, i.e., the policy that derives more votes

wins. Specifically, let 𝑦 ∈ {0, 1} denote the index of the policy that is elected, and

𝑦 = ℎ(𝑣) where ℎ(𝑣) = 1 if and only if
∑︀

𝑖 𝑣𝑖 >
𝑛
2
. The agents have heterogeneous

preferences on an elected policy: they prefer a policy that is closer to their own

ideological bias as will be explained later.

However, at the beginning each agent does not observe the value of the policies

𝑝0, 𝑝1. Each agent can vote by herself and choose whether to learn the policies. Al-

ternatively, the agent can choose to delegate her vote to another agent and her vote
1We set 𝑛 to be odd to have a single median and to guarantee existence of coalition-proof pure

strategy Nash equilibrium of the form in Theorem 14. In the low learning cost scenario (Section
4.4.2), under some settings of if the middle two voters are sufficiently far away from each other such
that each prefers random voting than other’s choice in expectation, one of the middle two voters
being the dictator can be not be a cpNE.
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will be the same as the delegated agent’s vote. We provide the timeline and specifics

of the game as below.

Timeline.

The game proceeds in three stages 0, 1, 2. At stage 0, Nature draws two poli-

cies that are unobservable to the agents. At stage 1, each agent submits her action,

consisting of a tuple (𝑑𝑖, ℓ𝑖), where 𝑑𝑖 ∈ 𝒩 names the voter that 𝑖 delegates to, and

ℓ𝑖 ∈ {0, 1} represents 𝑖’s learning decision, i.e., if ℓ𝑖 = 1, voter 𝑖 commits to perfectly

observe both of the policies at a learning cost in stage 2. At stage 2, each agent 𝑖

with ℓ𝑖 = 1 observes 𝑝0, 𝑝1 (privately) at a learning cost. Each agent who has not

delegated casts her vote on the policies. All of these settings are common knowledge.

Priors on the policies.

We assume that the agents share a common prior on the policies; in particular,

they agree that the policies are independently drawn according to a probability density

function 𝑓 , i.e.,

𝑝0, 𝑝1 ∼ 𝑓. (4.1)

We assume that 𝑓 is symmetric around 0.2

Delegation network.

At stage 1, each agent 𝑖 simultaneously chooses whether to delegate her vote to

another agent (or herself). If she selects an agent 𝑗, her vote will be the same as

the delegated agent 𝑗’s vote, i.e., 𝑣𝑖 = 𝑣𝑗. We denote agent 𝑖’s delegation decision as

𝑑𝑖 ∈ 𝒩 and 𝑑𝑖 = 𝑖 when agent 𝑖 decides to vote by herself. Therefore, a delegation

network 𝒢 = (𝒩 , ℰ) is induced by the agents’ delegation decisions ((𝑖, 𝑗) ∈ ℰ if and

only if 𝑑𝑖 = 𝑗). The emergent delegation network 𝒢 = (𝒩 , ℰ) is observed by all the

agents.

Note that the delegation exhibits transitivity : If agent 𝑖 delegates to agent 𝑗 and

2We will briefly discuss in Section 4.4.1 on how the form of prior influence the incentive structures
of the current model, and how the analysis techniques for deriving cpNEs generalize.
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agent 𝑗 delegates to 𝑘, then 𝑣𝑗 = 𝑣𝑘 and then 𝑣𝑖 = 𝑣𝑗.3 Without loss of generality, we

consider delegation profiles where 𝑑𝑖 represents the end of delegation chain starting

from 𝑖; this is because all voters know any other voters’ actions, and can predict where

his delegation ends, and thus he always has the ability to directly delegate in one step.

Learning, voting, and utility functions

At stage 2, agents simultaneously cast their votes. If an agent delegated her vote

to another, then her vote is determined via the delegation network 𝒢 as explained. If

an agent did not delegate, she makes her decision on the policies. A policy 𝑦 = ℎ(𝑣)

is then elected based on majority rule. Agent 𝑖’s utility derived from her learning

decision and the election is given by

𝑢𝑖(𝑝0, 𝑝1, 𝑣, 𝑏𝑖) = −(𝑝ℎ(𝑣) − 𝑏𝑖)
2 − 𝑐1I{ℓ𝑖 = 1}, (4.2)

where 𝑏𝑖 ∈ R represents agent 𝑖’s ideological bias. Agent 𝑖 prefers a policy that is

closer to her ideological bias. Agents’ ideological biases are common knowledge. We

sometimes refer to the set of voters directly by the set of their biases, i.e., ℬ =

{𝑏1, · · · , 𝑏𝑛}.

4.3 Preliminary

We will solve the delegation game using solution concepts coalition-proof Nash equi-

librium [18] and Strong Nash equilibrium [3]. While Nash equilibrium concerns with

unilateral deviations, both of these concepts concern with deviations by subsets of

players, rendering them especially suitable for studying voting games. Due to the

nature of most voting schemes, deviation by one agent rarely changes the outcome

of the game, making many arbitrary and unrealistic voting profiles Nash equilibria.

Allowing deviations by groups of agents provides an important way for equilibrium

refinement. Therefore, we focus on deriving coalition-proof Nash equilirbriums for

3When a delegation cycle forms, it is accounted as no one in the cycle casts a vote. We generally
do not need to worry about this in our model, because voters know any other voter’s action.
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liquid democracy game,

A Strong Nash equilibrium is a Nash equilibrium where there does not exist a

subset of players 𝐽 accompanied with a deviating strategy 𝑠𝐽 who find it beneficial to

deviate (everyone in that coalition becomes strictly better off). Formally, for 𝑛-player

game with strategy sets {𝑆𝑗}𝑛𝑗=1 and payoff functions {𝑢𝑗 :
∏︀𝑛

𝑖=1 𝑆
𝑖 → R}𝑛𝑗=1, Strong

Nash equilibrium is defined as follows.

Definition 16 (Strong Nash Equilibrium [3, 18]). 𝑠* ∈
∏︀𝑛

𝑗=1 𝑆
𝑗 is a Strong Nash

equilibrium if and only if for all 𝐽 ⊆ {1, · · · , 𝑛}, and for all 𝑠𝐽 ∈
∏︀𝑛

𝑗∈𝐽 𝑆
𝑗, there exists

an agent 𝑖 ∈ 𝐽 such that 𝑢𝑖(𝑠
*) ≥ 𝑢𝑖(𝑠𝐽 , 𝑠

*
−𝐽), where 𝑠*−𝐽 := {𝑠*𝑗}𝑗 /∈𝐽 .

In contrast, a coalition-proof Nash equilibrium is a slightly weaker notion that is

defined against deviations where no sub-coalitions have incentive to further deviate.

A coalition-proof Nash equilibrium is a Nash equilibrium where no subset of players

benefit from deviating in a self-enforcing way, i.e., such that no sub-coalition benefit

from further deviating.

Formally, consider an 𝑛-player game Γ = [{𝑢𝑖}𝑛𝑖=1, {𝑆𝑖}𝑛𝑖=1], where 𝑆𝑖 is player 𝑖’s

strategy set and 𝑢𝑖 :
∏︀𝑛

𝑗=1 𝑆
𝑗 → R is player 𝑖’s payoff function. Let 𝒥 be the set

of proper subsets of {1, · · · , 𝑛}, and denote an element of 𝒥 (a coalition) as 𝐽 ∈ 𝒥 .

Let 𝑆𝐽 :=
∏︀

𝑖∈𝐽 𝑆
𝑖. Let −𝐽 denote the complement of 𝐽 in {1, · · · , 𝑛}. Finally, for

each 𝑠′−𝐽 ∈ 𝑆−𝐽 , let Γ ∖ 𝑠′−𝐽 be the game induced on subset 𝐽 by the actions 𝑠′−𝐽 of

coalition −𝐽 , i.e.,

Γ ∖ 𝑠′−𝐽 :=
[︀
{𝑢̃𝑖}𝑖∈𝐽 , {𝑆𝑖}𝑖∈𝐽

]︀
, (4.3)

where 𝑢̃𝑖(𝑠𝐽) := 𝑢𝑖(𝑠𝐽 , 𝑠
′
−𝐽) for all 𝑖 ∈ 𝐽 and 𝑠𝐽 ∈ 𝑆𝐽 .

Definition 17 (Coalition-proof Nash Equilibrium [18]). (i) In a single player game

Γ, 𝑠* ∈ 𝑆 is a Coalition-Proof Nash equilibrium if and only if 𝑠* maximizes

𝑢1(𝑠).

(ii) Let 𝑛 > 1 and assume that Coalition-Proof Nash equilibrium has been defined

for games with fewer than 𝑛 players. Then,
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(a) For any game Γ with 𝑛 players, 𝑠* ∈ 𝑆 is self-enforcing if, for all 𝐽 ∈ 𝒥 ,

𝑠*𝐽 is a Coalition-Proof Nash equilibrium in the game Γ ∖ 𝑠*−𝐽

(b) For any game Γ with 𝑛 players, 𝑠* ∈ 𝑆 is a Coalition-Proof Nash equilib-

rium if it is self-enforcing and if there does not exist another self-enforcing

strategy vector 𝑠 ∈ 𝑆 such that 𝑢𝑖(𝑠) > 𝑢𝑖(𝑠*) for all 𝑖 = 1, · · · , 𝑛.

In other words, an agreement is coalition-proof if it is efficient within the class of

self-enforcing agreements, where self-enforceability requires that no coalition (proper

subset) can benefit by deviating in a self-enforcing way. Specifically, a Strong Nash

Equilibrium is always a coalition-proof Nash equilibrium, because it is immune to all

deviations and is efficient within the set of all strategy profiles. We will leverage this

simple fact to prove the equilibrium in Theorem 14 is coalition-proof by proving it to

be Strong. Note that the equilibriums in Theorem 16 is a cpNE (not Strong NE). We

will elaborate in remarks in Section 4.4.3 on which non-self-enforcing deviation exist

for the equilibrium strategy profile in Theorem 16.

4.3.1 Terminologies for liquid democracy game

Each liquid democracy game with voters 𝒩 with preference peaks {𝑏1, · · · , 𝑏𝑛}, learn-

ing cost 𝑐 and prior P, denote the median vote as 𝑚. Each equilibrium strategy profile

𝑠 induces a delegation graph 𝒟𝑠, a directed graph with directed edges corresponding

to delegations. As all voters are aware of any other voter’s action in a Nash equilib-

rium, we can without loss of generality focus on delegation graphs with only direct

delegations. (The diameter of the graph is 1).

Each equilibrium strategy profile also induces a decision rule, a function (deter-

ministic or random, depending on whether there exist voters who conceive mixed

strategy in the equilibrium profile 𝑠) that maps each pair of 𝑝0, 𝑝1 to the outcome

that the equilibrium produces. We denote it as 𝑓𝑠 : R2 → R.

For example, the strategy profile where every voter always picks policy 0 induces

a constant decision rule 𝑓(𝑥, 𝑦) = 𝑥. The strategy profile where all voters delegate

to a voter with bias 𝑏𝑖 induces a decision rule 𝑓(𝑥, 𝑦) = argmin𝑝∈{𝑥,𝑦}(𝑝 − 𝑏𝑖)
2. The
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strategy profile where all voters delegate to a voter that votes uniformly at random

induces a decision rule,

𝑓(𝑥, 𝑦) =

⎧⎪⎨⎪⎩𝑥 w.p. 1/2

𝑦 w.p. 1/2

(4.4)

Obviously, the first two example rules are deterministic (for every input pair (𝑥, 𝑦),

the output is deterministic), the last example rule is a random function. Note again

that the expected utility from the first rule (arbitrary voting) and the third rule

(random voting) are the same for every voter.

We define incentive of learning according to an individual rationality constraint.

Individual rationality means that if the game consists of a voter by herself, she prefers

learning about the policies to voting randomly.

Definition 18 (Individual rationality). We say that a voter 𝑖 satisfies individual

rationality (IR) if her expected gain from learning and picking the policy that she

favors compared to being assigned a policy candidate randomly equals or exceeds the

learning cost 𝑐, i.e.,

E
[︂

max
𝑝∈{𝑝0,𝑝1}

𝑢𝑖(𝑝)

]︂
− E𝑢𝑖(𝑝0) ≥ 𝑐, (IR)

where 𝑝0, 𝑝1 ∼ P, independently.

IR is a necessary condition for any voter to submit ℓ𝑖 = 1 in the game. This is

because if an agent does not satisfy (IR), even when she gains all delegations and is

the dictator of the election, she still prefers voting randomly to learning, thus ℓ𝑖 = 1

is strictly dominated.

In addition, we naturally define the quantity on the left-hand side of (IR),[︀
max𝑝∈{𝑝0,𝑝1} 𝑢𝑖(𝑝)

]︀
− E𝑢𝑖(𝑝0) as voter 𝑖’s incentive of learning.

Definition 19 (Incentive of learning ℐ𝑖). Voter 𝑖’s incentive of learning is defined as

E
[︀
max𝑝∈{𝑝0,𝑝1} 𝑢𝑖(𝑝)

]︀
− E𝑢𝑖(𝑝0), denoted as ℐ𝑖.

In particular, plugging in the quadratic utility as defined in our model, we slightly

abuse notation and write that a voter with bias 𝑏 has incentive of learning ℐ(𝑏) =
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E
[︀
max𝑝∈{𝑝0,𝑝1}−(𝑏− 𝑝)2

]︀
− E [−(𝑏− 𝑝0)

2].

At times we would need to evaluate a voter’s expected untility under another

voter’s decision rule. We define three relevant concepts as follows.

Definition 20 (Choice function 𝑓𝑖). The choice function of voter 𝑖 maps policy can-

didates to the policy that maximizes 𝑖’s utility, i.e., chooses the policy closer to the

voter 𝑖’s bias 𝑏𝑖: 𝑓𝑖(𝑝0, 𝑝1) = argmin𝑝∈{𝑝0,𝑝1}|𝑝− 𝑏𝑖|.

Note that for any utility function that is essentially a distance metric, 𝑢𝑖(𝑦) ∼=

𝑑(𝑦, 𝑏𝑖) (in our model, the distance is Euclidean distance), choice function is of this

form.

Definition 21 (E𝑢𝑖(𝑓𝑗)). Voter 𝑖’s expected utility under voter 𝑗’s choice function is

defined as E𝑢𝑖(𝑓𝑗) = E
[︁
−
(︀
𝑏𝑖 − argmin𝑝∈{𝑝0,𝑝1}|𝑝− 𝑏𝑚|

)︀2]︁
For example, in a strategy profile where all voters delegate to the median voter 𝑚, a

voter 𝑖 with bias 𝑏𝑖’s expected utility is 𝑢𝑖(𝑓𝑚) = E
[︁
−
(︀
𝑏𝑖 − argmin𝑝∈{𝑝0,𝑝1}|𝑏𝑚 − 𝑝|

)︀2]︁.
Definition 22 (Indifferent ball 𝐵𝑖). We say that a voter 𝑗’s bias 𝑏𝑗 is in the indifferent

ball of voter 𝑖 with bias 𝑏𝑖, 𝑏𝑗 ∈ 𝐵𝑖, if 𝑖 weakly prefers delegating to 𝑗 to voting himself,

i.e.,𝑢𝑖(𝑓𝑖)− 𝑐 ≤ 𝑢𝑖(𝑓𝑗), or elaborately:

E
[︂

max
𝑝∈{𝑝0,𝑝1}

−(𝑏𝑖 − 𝑝)2
]︂
− 𝑐 ≤ E

⎡⎣−(︃𝑏𝑖 − argmin
𝑝∈{𝑝0,𝑝1}

|𝑏𝑗 − 𝑝|

)︃2
⎤⎦ . (4.5)

Notice that 𝐵𝑖 becomes larger as 𝑐 increases. With quadratic-formed utility, 𝐵𝑖

in general is not symmetric around 𝑏𝑖.

4.3.2 Discussion of model constructs

𝑛 is odd

We require 𝑛 to be odd in order to have one unique median. Even values of 𝑛 create

equilibriums very sensitive to specific settings of learning cost 𝑐 through the possibility

of tie-breaking, which is distracting from the main form of equilibrium we would like
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to illustrate (i.e., under regimes of low learning cost, delegation aggregate inward, and

under regimes of relatively high learning cost, central spectrum delegate outward).

For example, Theorem 14 would not hold for even 𝑛. For many specific combination

of learning cost and voter distribution, one of the middle voter votes and everyone

delegating to him is a cpNE. However, observe that for any set of voters, if we make

learning cost 𝑐 small enough, this is no longer a cpNE, while both middle voters learn

and vote, remaining voters delegate to the one closer to them is a cpNE (because each

of them prefers random tie-breaking when they disagree to defaulting to the other’s

preferred policy). This type of tie-breaking behavior and resulting multitude of equi-

libria highly sensitive to specific values of 𝑐 seems more distracting than illuminating

of the core forces at work of the game, so we restrict to odd values of 𝑛 each learning

cost regime has a unified form of equilibrium.

Functional form of utility function 𝑢(·)

The current analysis uses the specific quadratic form of utility function in two

places. One is in the proof of monotonicity of the incentive structure (i.e., extreme

voters have more incentive to learn than the middle voters), Proposition 8. The

second is in the proof for convexity (i.e., the utility function of any voter with bias

between voter 𝐴 and voter 𝐵 can be expressed as a convex combination of 𝑢𝐴(·) and

𝑢𝐵(·) plus a constant).

The argument of Prop 8 heavily relies on the quadratic form of the utility function

by expanding out the quadratic and makes an optimization-style argument.

The exact claim of convexity is not true for general utility functions since general

utilities may contain higher order terms of the bias parameter, but more general form

of convexity for general utility function may hold. For example, for any form of single-

peaked utility that can be written as a distance metric (i.e., 𝑢𝑖(𝑦) ∼= 𝑑(𝑦, 𝑏𝑖) for some

metric 𝑑, when 𝐴 and 𝐵 prefer a decision rule 𝑓 to 𝑔, anyone with bias between 𝐴

and 𝐵 also does, circumventing this exact convex combination argument for general

distance functions.

This been said, it is a open question which other single-peaked and symmetric
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(around the peak) utility functions Prop 8 extends to. We conjecture that concavity

may be a sufficient condition. However, for any other single-peaked and symmetric

utility form to which Prop 8 does extend, Theorems 14,15,16,17 extend immediately.

Prior, separate priors, and prior’s form In general, the probability from which

policies 𝑝1 and 𝑝2 are generated from plays an important role on the incentive structure

of voters. Generally speaking, when the two policies share the same prior, the position

of the peak of this prior can change which voter has the most incentive to learn

(therefore, this shifts the incentive structure). When the two policies are drawn from

different priors, voters possess prior information on how the two policies differ. In this

case, monotonicity property of the incentives can be partially reverted (i.e., on the

tail of the spectrum, the incentive of learning decays with |𝑏|, more extreme voters

have lower incentives to learn). We will expand on this in Section 4.4.1.

4.4 Results on Pure-strategy Coalition-proof Nash

Equilibria

In this section, we present our results on pure-strategy Nash equilibrium of liquid

democracy voting game. We will show that the form of pure-strategy delegation pro-

file varies with the learning cost parameter 𝑐. In particular, when learning cost is

low enough, all voters delegating to the median voter is a coalition-proof Nash equi-

librium. As learning cost increases, moderate voters lose incentive to learn, someone

less moderate but still retain IR becomes the dictator. Interestingly, all other voters

(including those from the opposite extreme of the political spectrum) delegating to

this voter forms a coalition-proof Nash equilibrium.

4.4.1 Incentive structure

First, as the main building block of the equilibrium analysis, we study the incen-

tive structure in this game. We observe that in this model, with any unbiased and
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symmetric prior distribution, voters’ learning incentives increase with their biases’

distance from 0.

Proposition 8 (Monotonicity of incentive of learning ℐ(𝑏)). Let 𝑝0, 𝑝1 be drawn inde-

pendently from any continuous prior distribution P that is symmetric around 0, then

incentive of learning, ℐ(𝑏) = E
[︀
max𝑝∈{𝑝0,𝑝1}−(𝑏− 𝑝)2

]︀
− E [−(𝑏− 𝑝0)

2], monotoni-

cally increases with voter’s bias |𝑏|.

This monotonicity may be shown through explicit calculation when the functional

form of the prior distribution P is known and may even be extended to more general

forms of utility functions that induce distances among 𝑏𝑖’s. If the functional form of

the prior is not known or intractable, this monotonicity claim is still true due to the

following general argument. Note that the argument we provide here is dependent on

the quadratic functional form of the utility.

Proof. We will start by proving a voter with a positive bias 𝑏𝑖 has higher incentive to

learn than the voter with bias 0. We will then prove through a similar argument that

an voter with bias 𝑏+ 𝜀 has higher incentive to learn than the voter with bias 𝑏 > 0,

for any 𝑏 > 0, 𝜀 > 0. By symmetry, an voter with a negative 𝑏𝑖 has higher incentive

to learn than the voter with peak 0, and voter with 𝑏𝑖 − 𝜀 > 0 has more incentive to

learn than 𝑏𝑖 < 0, for any 𝜖 > 0. These together complete the proof that incentive of

learning ℐ(𝑏) monotonically increases with |𝑏|.

First, we compare incentive of learning ℐ(𝑏) to ℐ(0), for any 𝑏 > 0. We want to

show ℐ(𝑏)−ℐ(0) > 0. The first term ℐ(𝑏) = E
[︀
max𝑞∈{𝑝0,𝑝1}−(𝑏− 𝑞)2

]︀
−E [−(𝑏− 𝑝)2],

and the second term ℐ(0) = E
[︀
max𝑞∈{𝑝0,𝑝1}−𝑞2

]︀
−E [−𝑝2]. Substract the second from

the first and simplify,

115



ℐ(𝑏)− ℐ(0) = E
[︂

max
𝑞∈{𝑝0,𝑝1}

−(𝑏− 𝑞)2
]︂
− E

[︀
−(𝑏− 𝑝)2

]︀
− E

[︂
max

𝑞∈{𝑝0,𝑝1}
−𝑞2

]︂
+ E

[︀
−𝑝2

]︀
(4.6)

= −E min
𝑞∈{𝑝0,𝑝1}

(𝑏− 𝑞)2 + E min
𝑞∈{𝑝0,𝑝1}

𝑞2 + E𝑏2 − E2𝑏𝑝 (4.7)

= −E min
𝑞∈{𝑝0,𝑝1}

(𝑏− 𝑞)2 + E min
𝑞∈{𝑝0,𝑝1}

𝑞2 + 𝑏2 (4.8)

= −Emin{𝑝20 − 2𝑏𝑝0, 𝑝
2
1 − 2𝑏𝑝1}+ Emin{𝑝20, 𝑝21}. (4.9)

We can in fact prove Eq.(4.9)> 0 through an argument on the incidence level.

Facing any incidence of two policies {𝑝0, 𝑝1}, the optimization problem of the voter

with bias = 0 is equivalent to min{𝑝20, 𝑝21}, while voter with a positive bias 𝑏 solves

min{𝑝20 − 2𝑏𝑝0, 𝑝
2
1 − 2𝑏𝑝1}, 𝑏 > 0. Let 𝑝 be the policy that voter with bias 0 prefers,

𝑝 := argmin{𝑝20, 𝑝21}. Notice that a feasible strategy for voter 𝑏 > 0 is to copy and also

always choose 𝑝. Therefore, min{𝑝20 − 2𝑏𝑝0, 𝑝
2
1 − 2𝑏𝑝1} ≤ 𝑝2 − 2𝑏𝑝, for any realization

of 𝑝0, 𝑝1, thereby, Emin{𝑝20 − 2𝑏𝑝0, 𝑝
2
1 − 2𝑏𝑝1} ≤ E [𝑝2 − 2𝑏𝑝].

Now, find any set of incidences with positive measure where voter 𝑏 has a better

strategy than following 𝑝. For example, anytime 𝑝0, 𝑝1 both fall in [0, 𝑏], which occurs

with probability P (𝑝 ∈ [0, 𝑏])2 > 0, voter 𝑏 can choose the policy closer to 𝑏 instead

of 𝑝, positively improving his utility. Therefore, the inequality holds strictly,

Emin{𝑝20 − 2𝑏𝑝0, 𝑝
2
1 − 2𝑏𝑝1} < E

[︀
𝑝2 − 2𝑏𝑝

]︀
= E𝑝2. (4.10)

The last equality follows from E𝑝 = 0. With 𝑝0, 𝑝1 ∼ P drawn from prior

distribution P symmetric around 0, the expectation of the optimal policy 𝑝 is 0.

(𝑝(𝑝0, 𝑝1) + 𝑝(−𝑝0,−𝑝1) = 0, thus E𝑝 = 0.) The quantity in Equation (4.9) is strictly

positive.

In fact, this type of argument extends to show that 𝑏 + 𝜀 has more incentive to

learn than 𝑏, for any 𝑏 > 0, 𝜀 > 0. Analogous to the term in Eq (4.9), we would like

to show that the difference of learning incentive between voter 𝑏 + 𝜀 and voter 𝑏 is
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greater than 0.

ℐ(𝑏+ 𝜀)− ℐ(𝑏) (4.11)

= E
[︂
max
𝑝0,𝑝1

−(𝑏+ 𝜀− 𝑝)2
]︂
− E

[︀
−(𝑏+ 𝜀− 𝑝)2

]︀
−
(︂
E
[︂
−max

𝑝0,𝑝1
(𝑏− 𝑝)2

]︂
− E

[︀
−(𝑏− 𝑝)2

]︀)︂
(4.12)

= −Emin
𝑝0,𝑝1

{𝑝20 − 2𝑏𝑝0 − 2𝜀𝑝0, 𝑝
2
1 − 2𝑏𝑝1 − 2𝜀𝑝1}+ Emin

𝑝0,𝑝1
{𝑝20 − 2𝑏𝑝1, 𝑝

2
1 − 2𝑏𝑝1},

(4.13)

Again, facing any incidence of two policies {𝑝0, 𝑝1}, let 𝑝 be the policy that voter

with bias 𝑏 prefers, i.e., 𝑝 = argmin{𝑝20 − 2𝑏𝑝2, 𝑝
2
2 − 2𝑏𝑝1}. Copying voter 𝑏’s choice is

a feasible strategy for voter 𝑏+ 𝜀. Therefore,

Emin{𝑝20 − 2𝑏𝑖𝑝0 − 2𝜀𝑝0, 𝑝
2
1 − 2𝑏𝑖𝑝1 − 2𝜀𝑝1} (4.14)

≤ E
[︀
𝑝2 − 2𝑏𝑖𝑝− 2𝜀𝑝

]︀
(4.15)

= E
[︀
𝑝2 − 2𝑏𝑖𝑝

]︀
− E [2𝜀𝑝] (4.16)

Note that for a voter with positive 𝑏, her expected optimal policy is positive, i.e.,

E𝑝 > 0. One way to see this is that for any incidence of {𝑝0, 𝑝1}, voter 𝑏’s optimal

policy is always greater than or equal to voter 0’s optimal policy, i.e., 𝑝 ≥ 𝑝, always.

Furthermore, with positive probability (at least P(𝑝0, 𝑝1 ∈ [0, 𝑏]) = P(𝑝0 ∈ [0, 𝑏])2 > 0,

since 0 and 𝑏 disagree for these realizations), 𝑝 > 𝑝. Therefore, E𝑝 > E𝑝 = 0.

From Eq (4.16), E𝑝 > 0 implies that Emin{𝑝20 − 2𝑏𝑝0 − 2𝜀𝑝0, 𝑝
2
1 − 2𝑏𝑝1 − 2𝜀𝑝1} <

E [𝑝2 − 2𝑏𝑝], i.e., the difference of incentive of learning between voters ℐ(𝑏+ 𝜀)−ℐ(𝑏)

in Eq (4.13) is positive.

Proposition 8 is an important building block that underlies all main analysis and

results including Theorems 14,16,17 in this paper. It reveals the incentive structure

of the liquid democracy game with a single prior: more extreme voters have higher
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incentives to learn than voters in the middle of the political spectrum.

As a result, as learning cost varies, while voters on the more extreme opinion

stance still satisfy individual rationality, voters in the middle start to lose incentives

to learn. In fact, as we will show in Section 4.4.2-4.4.4, learning cost is the key

parameter that dictates the form of equilibrium delegation. More explicitly, when

learning cost is low, all voters delegating inward to median is a coalition-proof NE.

When learning cost is intermediate, one of the most moderate incentivised learner

attracts all delegations (i.e., extreme voters delegate inward, and moderate voters

delegate outward) forms a coalition-proof Nash equilibrium. When learning cost

exceeds a certain threshold, voting arbitrarily (say always choose 𝑝0) remains as the

only pure-strategy Nash equilibrium.

In general, the probability from which policies 𝑝0 and 𝑝1 are generated from plays

an important role on the incentive structure of voters. Generally speaking, when

the two policies share the same prior, the position of the peak of this prior can

change which voter has the least incentive to learn (therefore, this shifts the incentive

structure). When the two policies are drawn from different priors, voters possess prior

information on how the two policies differ. In this case, monotonicity property of the

incentives can be partially reverted (i.e., on the tail of the spectrum, the incentive of

learning decays with |𝑏|, more extreme voters have lower incentives to learn).

It is noteworthy that upon changing of forms of priors, as long as the incentive

structure of the game is classified, results similar to that in Theorems 14,16,17 can still

be claimed based on the new incentive structure, through identifying the least extreme

voters still with incentives to learn. When median satisfy IR, then equilibrium form

in Theorem 14,15 hold. When median do not satisfy IR, then equilibrium form in

Theorem 16 holds.

4.4.2 Results on low learning cost

We start by presenting equilibrium results for low learning cost where all voters satisfy

individual rationality (IR).
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Theorem 14. Suppose the learning cost 𝑐 is low enough such that ℐ𝑖 ≥ 𝑐 for all voter

𝑖. Assume there is no other voter in median voter’s indifferent ball, then median voter

𝑚 learns and votes truthfully, everyone delegates to 𝑚 is a Strong Nash equilibrium

(therefore also a coalition-proof NE).

Proof of Theorem 14. Assume towards contradiction that there exists a set of voters

who find it beneficial to deviate. The size of this set must be > 𝑁/2 (with strict

inequality), because otherwise the voting result will not change. This means someone

from the left of the median and someone from the right of the median are both in this

coalition. However, this indicates that median 𝑚 will also benefit from this deviation.

This is because if voter 𝐴 and 𝐵 both prefer a decision rule 𝑓 to 𝑔, then anyone,

𝐶, between 𝐴 and 𝐵 also prefers rule 𝑓 to 𝑔 (by writing 𝑢𝐶(𝑥) = 𝑎𝑢𝐴(𝑥)+𝑏𝑢𝐵(𝑥)+𝑐,

point-wise for any outcome 𝑥. Note that this 𝑐 is a constant independent of 𝑥.

Therefore E𝑥∼P𝑢𝐶(𝑥) = 𝑎E𝑥∼P𝑢𝐴(𝑥)+ 𝑏E𝑥∼P𝑢𝐵(𝑥)+ 𝑐 , for P induced by any decision

rule.) This means that there exists a decision rule that median strictly prefers than

the decision rule induced by herself being the dictator. Such decision rule does not

exist. Contradiction.

In fact, an approximate converse to Theorem 14 exists. It states that any coalition-

proof Nash equilibrium must be close to the decision rule induced by median being

the dictator.

Lemma 9. Suppose the learning cost 𝑐 is low enough such that all voters satisfy (IR).

Let 𝑠 be a coalition-proof NE of this game, and 𝑢𝑚(𝑠) be median voter’s utility induced

by this strategy profile. Then the utility that median voter derived from 𝑠 is at most 𝑐

away from the Emax𝑝1,𝑝2{𝑢𝑚(𝑝1), 𝑢𝑚(𝑝2)}− 𝑐 ≤ 𝑢𝑚(𝑠) ≤ Emax𝑝1,𝑝2{𝑢𝑚(𝑝1), 𝑢𝑚(𝑝2)}.

In words, any cpNE yields an expected utility for the median voter at least the

same as the expected utility of median voter where he owns all voting power and

votes truthfully, E𝑢𝑚(𝑓𝑚)− 𝑐. I.e., let 𝑓 be induced by any cpNE, let 𝑓𝑚 be induced

by 𝑚 being the dictator. Then E𝑢𝑚(𝑓𝑚)− 𝑐 ≤ E𝑢𝑚(𝑓) ≤ E𝑢𝑚(𝑓𝑚).
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Proof. Assume towards contradiction that there exists such cpNE 𝑠 that gives less

expected utility to the median voter than median dictator - 𝑐. This means if the

median voter deviates to learn and vote truthfully, there does not exist a set of

(𝑁 − 1)/2 (remember that 𝑁 is odd) voters who find it beneficial to deviate with the

median. This means that at least one voter to the left of median and one voter to

the right of median find strategy profile 𝑠 strictly better than 𝑠′ (median learns and

everyone delegate to median). By the same argument as the proof for Theorem 14,

median also strictly prefers the decision rule induced by this cpNE to the decision

rule induced by himself being the dictator. This contradicts the assumption that this

cpNE yields less expected utility for the median compared to median having all the

voting power.

To further understand the form of coalition-proof Nash equilibriums in this game,

we show that in fact, only one learner exists in any pure-strategy Nash equilibrium.

Lemma 10. In a Nash Equilibrium, if the voting outcome is non-stochastic, then

there exists at most one voter who learns,
∑︀

𝑖∈𝒩 ℓ𝑖 = 1.

Proof. Suppose there exist 𝐾 ≥ 2 voters who learn and vote in a Nash equilibrium.

Order these voters from left to right according to their ideological biases. In a Nash

equilibrium, any learner votes according to her utility function (otherwise she influ-

ence the outcome with zero probability and she should not have learned in the first

place).

Note that any voting function induced by liquid democracy is a weighted majority

function. In any non-stochastic weighted majority function with 𝐾 inputs, let 𝑗 be

the index such that
∑︀𝑗

𝑖=1𝑤𝑖 > 𝑁/2,
∑︀𝑗−1

𝑖=1 𝑤𝑖 < 𝑁/2. Then 0 is chosen iff 𝑣𝑗 = 0.

Other voters can delegate to this pivotal voter 𝑗 without changing the result of

the election (because each such voter realizes when she agrees with the pivotal voter,

she wins, when she disagrees with the pivotal voter, she loses. Delegating to the

pivotal voter does not change the voting result, so her utility increases 𝑐). There-

fore, the currently considered profile with 𝐾 ≥ 2 learners is not a Nash equilibrium.

Contradiction. 𝐾 can only be 1.
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Note that Lemma 10 holds generally for this game, regardless of learning cost 𝑐.

Though Theorem 14 has a condition where median’s indifferent ball contains no

other voters 𝐵𝑚 = 𝑚, putting results in Lemma 9 and Lemma 10 together, we can

immediately derive that when there are voters in the 𝐵𝑚, any pure-strategy coalition-

proof NE, if exists, has to be of the form of a unique voter in median’s indifferent ball

being the dictator.

Theorem 15. Suppose the learning cost 𝑐 is low enough such that all voters sat-

isfy (IR). If a pure-strategy cpNE exists, it is of the following form: a voter in

median voter’s indifferent ball 𝐵𝑚 learns and votes according to her preference, and

over 𝑁/2 voters delegating to her.

Proof of Theorem 15. According to Lemma 10, if a pure-strategy cpNE exists, only

one voter learns in this pure-strategy cpNE. According to Lemma 9, median voter’s

utility under this pure-strategy cpNE is greater than or equal to Emax{𝑢𝑚(𝑝0), 𝑢𝑚(𝑝1)}−

𝑐, which is the definition of the indifferent ball of voter 𝑚. Thus the unique learner

resides in 𝐵𝑚.

Finally, we separate the property of convexity that are useful for proving both

Theorem 14 and Lemma 9.

Claim 14 (Convexity of preference). When voter 𝐴 and 𝐵 both prefer a decision rule

𝑓 to 𝑔, then anyone, 𝐶, with bias between 𝐴 and 𝐵’s biases (i.e. 𝑏𝐶 = 𝜆𝑏𝐴+(1−𝜆)𝑏𝐵,

for some 𝜆 ∈ [0, 1]) also prefers rule 𝑓 to 𝑔.

Proof. When voter 𝐶’s preference peak is between voter 𝐴 and 𝐵, i.e., 𝑏𝐶 = 𝜆𝑏𝐴 +

(1− 𝜆)𝑏𝐵, we can write 𝑢𝐶(𝑥) = 𝜆𝑢𝐴(𝑥) + (1− 𝜆)𝑢𝐵(𝑥) + 𝑐 with the same 𝜆. This is

because:
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𝜆𝑢𝐴(𝑥) + (1− 𝜆)𝑢𝐵(𝑥) = −𝜆(𝑥− 𝑏𝐴)
2 − (1− 𝜆)(𝑥− 𝑏𝐵)

2

= −𝑥2 − 2𝑏𝐶𝑥− 𝜆𝑏2𝐴 − (1− 𝜆)𝑏2𝐵

= −(𝑥− 𝑏𝐶)
2 − 𝑐

= 𝑢𝐶(𝑥)− 𝑐,

where 𝑐 = −𝑏2𝐶 +𝜆𝑏2𝐴+(1−𝜆)𝑏2𝐵, a constant independent of 𝑥. Each decision rule

induces a probability distribution of the chosen policy, denoting P𝑓 . By linearity of

expectation, for any decision rule 𝑓, voter 𝐶’s expected utility is a convex combination

of voter 𝐴 and 𝐵’s (plus a constant):

E𝑥∼P𝑓
𝑢𝐶(𝑥) = 𝜆E𝑥∼P𝑓

𝑢𝐴(𝑥) + (1− 𝜆)E𝑥∼P𝑓
𝑢𝐵(𝑥) + 𝑐,

Therefore, when both 𝐴 and 𝐵 prefers a decision rule 𝑓 to 𝑔, 𝐶 also prefers 𝑓

to 𝑔, because E𝑥∼P𝑓
𝑢𝐴(𝑥) > E𝑥∼P𝑔𝑢𝐴(𝑥) and E𝑥∼P𝑓

𝑢𝐵(𝑥) > E𝑥∼P𝑔𝑢𝐵(𝑥), implies that

E𝑥∼P𝑓
𝑢𝐶(𝑥) > E𝑥∼P𝑔𝑢𝐶(𝑥).

When both voter 𝐴 and 𝐵 prefer a decision rule 𝑓 to 𝑔, any voter with bias

between 𝐴 and 𝐵 also does. Therefore, a deviating coalition can always be extended

to include any voter whose bias is a convex combination of members in the coalition.

4.4.3 Intermediate learning cost

When learning cost 𝑐 is high enough, the median voter 𝑚 may lose incentive to learn

even when the game contains only herself. Specifically, for any cost 𝑐, there exists

a radius 𝑟 such that voters with biases outside of (−𝑟, 𝑟) satisfy (IR), and others do

not, a natural result of voters’ learning incentives increasing with distance from the

center (Proposition 8). In the following, we prove that when voters in the center lose

incentives to learn, depending on the parameters (learning cost 𝑐 and positions of

voters 𝒩 ), (i) one voter learns and all voters delegating to him is a coalition-proof
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Nash equilibrium, or (ii) all voters vote arbitrarily is the only coalition-proof Nash

equilibrium.

Lemma 11. Suppose the learning cost 𝑐 is such that there exist voters on both sides

of 0 that satisfy IR. Let 𝑚− be the first voter to the left of the 0 that satisfies IR,

denote her bias as 𝑏−. Let 𝑚+ be the first voter to the right of the 0 that satisfies

IR, denote her bias as 𝑏+. Then, any voter 𝑖 ∈ 𝒩 prefers delegating to of one of

𝑚−,𝑚+ to voting randomly (equivalent to arbitrarily). Then, at least one of 𝑚−,𝑚+

is preferred by > 𝑁/2 voters as a delegate to voting randomly.

If one of 𝑚−,𝑚+ is preferred by > 𝑁/2 voters as a delegate to voting arbitrarily,

let it be 𝑚*; if both satisfy (i), let the one preferred by more voters be 𝑚* (break tie

arbitrarily).

Theorem 16. Suppose the learning cost 𝑐 is such that there exist voters on both sides

of 0 that satisfy IR. Then voter 𝑚* learns and votes according to her preference, all

other voters delegate to her (directly or indirectly) is a cpNE.

To unpack the claims here, Lemma 11 states as long as there exists incentivised

voters on both side of 0, any voters between the two incentivised voters always prefers

delegating to one of them to voting randomly. Theorem 16 ensures the existence of

cpNE and describes the form of one cpNE under such learning cost. In the following,

we first prove Lemma 11, and then present proof of Theorem 16.

Proof of Lemma 11. We will show that any voter 𝑖 ∈ 𝒩 prefers either 𝑚− or 𝑚+ to

randomly casting a vote, and the lemma follows.

First, any voter ℓ to the left of 𝑚− prefers delegating to 𝑚− to arbitrarily casting a

vote. To this voter ℓ, randomly casting a vote (regardless of the probability assigned

to 𝑝0, 𝑝1) is dominated by delegating to the voter with peak 0, which is further dom-

inated by delegating to 𝑚−. Compared to voting arbitrarily, ℓ′𝑠 expected loss from
𝑝0+𝑝1

2
∈ [𝑏ℓ, 0] is outweighed by the expected gain from 𝑝0+𝑝1

2
∈ [0,−𝑏ℓ]. By mono-

tonicity, delegating to 𝑚−, someone with closer peak, increases ℓ’s utility compared

to delegating to 0. Thus to ℓ, 𝑚− ≻ 0 ≻ vote randomly. Similarly, any voter to the

right of 𝑚+ prefers delegating to 𝑚+ to voting arbitrarily.
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Next, for any voter 𝑖 between 𝑚− and 𝑚+, randomly casting a vote is strictly

dominated by randomly delegating to 𝑚− and 𝑚+ with probability 1/2. To see this, in

the incidences where 𝑚− and 𝑚+ disagree, 𝑖 gets the same expected utility as random

voting. In the incidences where 𝑚− and 𝑚+ agree, 𝑖 in fact would also agree (by

convexity), and gets strictly higher expected utility than random voting. Finally, for

general voters, mixing between delegation to 𝑚− and 𝑚+ is dominated by delegating

to the one yielding higher expected utility. Therefore, any voter 𝑖 ∈ [𝑚−,𝑚+] prefers

delegating to one of 𝑚−,𝑚+ to random voting.

Therefore, any voter in 𝒩 prefers delegating to one of 𝑚−,𝑚+ to random voting.

When 𝑁 is odd, at least one of 𝑚− and 𝑚+ is preferred by > 𝑁/2 voters to randomly

casting a vote.

Now, we are ready to prove Theorem 16.

Proof of Theorem 16. WLOG, let 𝑚* be 𝑚−. In the following, we first check that

𝑚− learns and votes truthfully, and all other voters delegate to her is cpNE.

First, we only need to consider coalitions with > 𝑁/2 members. Note that by the

same token as the previous proofs, the coalition must be entirely on one side of 𝑚−.

There are fewer than 𝑁/2 voters to the left of 𝑚−, so assume towards contradiction

that a coalition 𝐶 exists to the right of 𝑚− with a self-enforcing deviation 𝑠𝐶 . There

exists at least one voter who learns in this deviation 𝑠𝐶 . Otherwise, the coalition

votes (individually or collectively) randomly, contradicting the the fact that > 𝑁/2

voters prefer delegating to 𝑣− to random voting.

In a self-enforcing deviating strategy, any voter who learns must vote truthfully

(otherwise, either he forms a singleton deviating sub-coalition, or his vote has zero

influence for all incidences of 𝑝0, 𝑝1 thus learning is not incentive compatible). Denote

the set of voters who learn and vote in 𝐶 by 𝐿(𝐶). By individual rationality, the

voter(s) in 𝐿(𝐶) have peaks equal to or to the right of 𝑣+. However, over 𝑁/2 voters

prefer 𝑣− to 𝑣+, thus also prefer 𝑣− to the the weighted majority rule induced by 𝐿(𝐶).

Coalition 𝐶 does not contain this set of voters, so is of size < 𝑁/2. Contradiction.

In fact, since we did not restrict the coalition’s size to be < 𝑁 , we have already
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checked that it is efficient within all self-enforcing agreements (equivalent to it not

having a self-enforcing deviation of size 𝑁).

Remark 8. Note that although the strategy profile {𝑚− learns, voters who prefer

random voting votes randomly} is a Nash equilibrium, and results in the same voting

outcome as Theorem 16, it is in fact not a cpNE. To see this, some 𝑘 voters in

the right-end of the spectrum vote collectively/individually randomly while the rest

delegates to a learner 𝑚−. This effectively truncates the size of the voting population

to 𝑁 − 𝑘. Among these 𝑁 − 𝑘 voters (who either vote or delegate), there may exist

a voter 𝑚′ to the left of 𝑚− who finds it beneficial to deviate to learn and vote. Then

all voters to the left of 𝑚′ will deviate to delegating to 𝑚′, making the overall voting

outcome more left-leaning than the cpNE in Theorem 16.

As a result, interestingly, although extreme right-wing voters may not like 𝑚−’s

decision rule, they may find it necessary to delegate to 𝑚− in order to rule out a more

left-leaning coalition.

Remark 9. Unlike the equilibrium in Theorem 14, the equilibrium in Theorem 16 is in

fact not a Strong Nash equilibrium. This is because there exists non-self-enforcing de-

viation from this equilibrium. Suppose 𝑚* = 𝑚−, consider the following coalition: find

a voter 𝑟 (to the right of 𝑚+) with bias 𝑏𝑟 large enough such that E𝑢𝑟(𝑓𝑚) > E𝑢𝑟(𝑓𝑚−),

ane let her claim to vote according to median 𝑚’s utility. Then all voters to the right

of 𝑚, including 𝑚 form a coalition that everyone strictly benefit from deviating. Since

the equilibrium in Theorem 16 does not protect against this coalition, it is not Strong.

However, notice that as we would expect, this deviation is not self-enforcing. Voter

𝑟 herself forms a deviating singleton sub-coalition whose utility increase from further

deviating to vote according to her own bias.

4.4.4 High learning cost

When learning cost is high so that no voter satisfies IR, the only pure-strategy NE is

everyone voting arbitrarily. In fact, depending on the form of the prior distribution

P, learning cost does not need to be so high that no voter satisfies IR. There exist
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cases where one side of the political spectrum contains incentivised learners yet no one

learns forms the only NE. This is due to the opposite-wing voters forming a randomly

voting coalition. We will show it specifically through construction. These results are

encapsulated in Theorem 17.

Theorem 17. Let 𝑐* be the minimum cost such that ℐ𝑖 ≤ 𝑐*, for all 𝑖. There exists

constant 𝑐ℎ ≤ 𝑐* such that for any learning cost 𝑐 ≥ 𝑐ℎ, in any NE (thus cpNE), every

voter votes arbitrarily (e.g., chooses 𝑝0).

Proof of Theorem 17. For general cases, 𝑐ℎ = 𝑐* suffices. No voter satisfies IR, thus

the only pure-strategy NE is everyone voting arbitrarily.

Next, we show that there exists prior P and 𝒩 such that 𝑐ℎ < 𝑐*, i.e., no vot-

ers learn despite some satisfy IR. By Theorem 16, this necessarily means that all

incentivised voters are to the same side of 0. We show existence by construction.

It suffices to show that there exists ℓ, 𝑟 ∈ R, |ℓ|< |𝑟| such that voter with bias 𝑟

prefers random (arbitrary voting) to delegating to ℓ.

Take any integrable and square-integrable distribution P with cdf 𝐹 . Fix any

𝑟 > 0. Consider the decision rule 𝑓 * that min{𝑢𝑟(𝑝0), 𝑢𝑟(𝑝1)} when 𝑝0+𝑝1
2

≤ 𝑟 and

max{𝑢𝑟(𝑝0), 𝑢𝑟(𝑝1)} when 𝑝0+𝑝1
2

> 𝑟. 𝑓 * is dominated by random (arbitrary) voting.

Denote 𝑟’s expected utility induced by this 𝑓 * as 𝑢𝑟(𝑓
*), and 𝑟’s expected utility from

delegating to ℓ as 𝑢𝑟(ℓ).

Observe that two voters with biases ℓ and 𝑟 agree when 𝑝0+𝑝1
2

∈ [ℓ, 𝑟], and disagree

otherwise. Therefore, delegating to ℓ is same as choosing argmin𝑢𝑟(𝑝0, 𝑝1) when

ℓ ≤ 𝑝0+𝑝1
2

≤ 𝑟, and choosing argmax𝑢𝑟(𝑝0, 𝑝1) when 𝑝0+𝑝1
2

> 𝑟 or 𝑝0+𝑝1
2

< ℓ. Therefore,

the sequence of 𝑢ℓ as ℓ → −∞ forms a decreasing sequence with lower bound 𝑢𝑟(𝑓
*).

By monotone convergence theorem, {𝑢ℓ} converges. In fact, the limit is necessarily

𝑢𝑟(𝑓
*) since the decision rule differs from 𝑓 * by a decreasing amount 𝐹 (ℓ). {𝑢𝑟(ℓ)}

converges to 𝑢𝑟(𝑓
*) < 𝑢𝑟𝑎𝑛𝑑. As a result, there exists ℓ such that 𝑢ℓ < 𝑢𝑟𝑎𝑛𝑑. In words,

for any 𝑟 > 0, there exists some ℓ < 0 such that a voter with peak 𝑟 prefers random

voting to delegating to any voter with a peak ≤ ℓ.

Now, fix 𝑟 > 0, find ℓ such that 𝑢ℓ < 𝑢𝑟𝑎𝑛𝑑. If |𝑟|> |ℓ|, let 𝑟′ = |ℓ|+𝜖, for some small
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𝜖 > 0, otherwise, let 𝑟′ = 𝑟. Note that 𝑟′ also prefers random voting to ℓ; otherwise, 𝑟

prefers ℓ’s decision to random voting by convexity. Construct the following population

and learning cost 𝑐. Let 𝒩 = 𝐿 ∪𝑅 where 𝐿 = {𝑁/2− 1 voters with peaks equal ℓ}

and 𝑅 = {𝑁/2 + 1 voters with peaks equal 𝑟′}, and let 𝑐 ∈ (ℐℓ, ℐ𝑟′ ) so that voters in

𝐿 satisfy IR, while the voters in 𝑅 do not. Voters in 𝑅 prefer arbitrary voting to 𝐿’s

decision rule. Therefore, everyone in 𝑅 votes arbitrarily is a dominant strategy, and

𝐿 best respond by voting arbitrarily. The only Nash equilibrium is everyone voting

arbitrarily.

4.5 Discussion and future directions

An important general remark for the results in this paper is that though they describe

the final result of the delegation (the final effective voters), any delegation graph that

leads to the delegation outcome suffices as a cpNE. For example, local delegation

that lead to median and everyone directly delegating to median both map to the

same cpNE, and thus are equivalent as far as the theorems presented here concern.

Therefore, further equilibrium refinements seems both feasible and reflecting real-

ity more closely. For example, trembling-hand equilibrium may be a suitable solution

concept for justifying chains of local delegation that lead to the median over everyone

directly delegating to the median, as the chain may probabilistically terminate with

a voter decides to learn before the chain reaches median.

Another important element of the game worth further exploration is information

in this game. Suppose voters only have local information about others’ preferences,

it seems the delegation is still locally computable or approximatable, especially if the

quantile of the voter are provided as auxiliary information to the nodes. This also

connects with the rest of liquid democracy literature with models naturally residing

on networks. For example, consider the following concrete formulation: given a graph

𝒢 = (𝑉,𝐸), publicly known to all voters in the society. Each voter 𝑣𝑖 ∈ 𝑉 is assigned

a preference peak 𝜇𝑖 ∈ R, known to himself and all neighbors. A locally computable
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voting strategy profile would be 𝑠𝑖 = 𝑓(𝒢, 𝜇𝑗) with all 𝑗 ∈ 𝒩 (𝑣𝑖).

The fundamental forces at play in the current model are incentive and relative

position in the population. In fact, in models with learning noise, it could also be

realistic for the forces to play reversely: accumulating enough voting power may work

as an incentive to motivate voters to pay higher learning cost for a higher accuracy.

This is beyond the realm of the current paper, but may be modelled by imposing

a concave function between learning accuracy and and learning effort, and analyze

the equilibrium delegation and effort investment that arise. For example, let learning

cost increase linearly with learning effort, and learning quality be concave in learning

effort. Consider a two-step game: in the first step, agents form the delegation graph;

in the second step, voters observe final voting power distribution, bids a learning

investment and start voting. This formulation models liquid democracy as a voting

process where both the voting weights and efforts are endogenously constructed.
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Chapter 5

Conclusion

In this thesis, we studied three mathematical models for informational interactions in

social contexts: corruption detection on networks, multi-dimensional opinion dynam-

ics and elections that allow delegation. Some of these models provide insight on the

structure of networks that allows good surveillance in face of corrupt agents. Some

models further this theme by demonstrating mechanisms that allow good aggrega-

tion of information even when all agents have heterogeneous preferences and behave

strategically.

In some of these models or in certain parametric regimes, undesirable social out-

comes occur: polarization as an unintended outcome of biased assimilation (a natural

tendency of cognition) and information outlet’s natural attempt (and need) to per-

suade; polarization and abandoning of votes as an outcome of liquid democracy when

learning costs are high. In others, desirable social outcomes are ensured by robust

designs: on networks with good expanding properties, one can always identify at least

one truthful node with only local reports; liquid democracy achieves outcome nearly

consistent or even better than direct voting when cost is low to intermediate.

From the point of view of mathematics and its application, two general syntheses

that arise for robustness are expander graphs and its applications in networks, and

median and its applications in information aggregation and statistics. We were able

to show the the strength of expander graphs’ even for guaranteeing robustness for

highly stylized and dynamic agent-based model. We were also able to extend the
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the power of "median is robust" to a social choice problem with a game structure.

Median’s surprising reappearance in delegative voting, resembling the form of median

voter theorem in economics, also sheds some light on seeing median voter theorem

and natural strategic outcome of voting not only as a game theoretic outcome, but

also a robust statistical procedure that aggregates data, which are voters’ preferences,

and a even possible robust protection against corruption in elections.

Another reappearing theme in this thesis is local computation. Liquid democracy,

identity reconstruction with local reports, and opinion update are all social functions

that can be locally computed. This is not only interesting from a social perspective

because local computation is feasible and the status quo socially, but also from a

computational perspective because local computation is efficient computationally.

To bear in mind are the limitations of theoretical deviations. Models start with

behavior assumptions, the model itself may exhibits several variations, and the results

also often specify various parameters. We look forward to experiments and small-

scale applications of many of the mechanisms, models, and theoretical results that

appeared in this thesis. Whether the empirical results confirm or contradict the

theoretical predictions, we are hopeful that they will further shed light on both the

understanding of human and social behaviors, and the design of computationally

efficient and incentive-compatible mechanisms in an ever-expanding social world.
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Appendix A

Supplementary Material for

Chapter 2

A.1 Omitted Results

We give an NP-hardness result for computing min𝑘 𝑆𝐺(𝑘) + 𝑘 exactly. Note that this

is insufficient to say anything about corruption detection, as min𝑘 𝑆𝐺(𝑘) + 𝑘 only

gives a 2-approximation to the critical number 𝑚(𝐺), but we include this observation

here as it may be of independent interest.

Theorem 18. It is NP hard to compute min𝑘 𝑆𝐺(𝑘) + 𝑘 exactly.

Proof. It is known that finding 𝑘-vertex separator for a graph is NP hard [63]. We

present a reduction of the problem of computing min𝑘 𝑆𝐺(𝑘) + 𝑘 to the 𝑘-vertex sep-

arator problem.

Assume towards contradiction that there is a polynomial-time algorithm 𝒜 for

finding min𝑘 𝑆𝐺(𝑘) + 𝑘. Then for any graph 𝐺 and any 𝑀 < |𝑉 |, the minimal 𝑀 -

vertex separator of the graph 𝐺 = (𝑉,𝐸) can be found in the following way. Construct

a graph 𝐺′ = (𝑉 ′, 𝐸 ′), where

𝐺′ = 𝐺 ∪ {𝑛2 disjoint M-cliques},

with 𝑛 ≫ 𝑁 := |𝑉 |. Construct a second auxiliary graph 𝐺′′ = (𝑉 ′′, 𝐸 ′′), such that
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𝐺′′ = 𝐺′ ∪ {𝑘𝑛+𝑁 disjoint (𝑛− 1)-cliques appended to each vertex of V’}.

Each (𝑛 − 1)-clique is appended to a vertex of 𝐺′ in the sense that each node of

the clique is connected to the vertex in 𝐺′ with an edge. The idea is to make each

vertex in 𝐺′ "𝑛 times larger".

Run the polynomial-time algorithm 𝒜 for finding min𝑘 𝑆𝐺′′(𝑘) + 𝑘 on graph 𝐺′′.

The algorithm outputs a vertex set 𝑆 ′′ ⊆ 𝑉 ′′, which divides 𝐺′′ into connected com-

ponents of with maximal size 𝑘′′.

Lemma 12. Let 𝐺′′ be as constructed above, 𝑘′′ and 𝑆 ′′ be the output given by an

algorithm that computes min𝑘 𝑆𝐺′′(𝑘)+ 𝑘. Then 𝑘′′ = 𝑛𝑀 , and without loss of gener-

ality, the subset 𝑆 ′′ contains only vertices from the original graph 𝐺. In other words,

finding min𝑘 𝑆(𝑘)+𝑘 of 𝐺′′ is equivalent to finding the 𝑀-vertex separator of 𝐺. i.e.,

argmin
𝑘

𝑆𝐺′′(𝑘) + 𝑘 = 𝑛𝑀,

min
𝑘

𝑆𝐺′′(𝑘) + 𝑘 = 𝑆𝐺(𝑀) + 𝑛𝑀.

Proof of Lemma 12. Let 𝑓𝐺′′(𝑘) := 𝑆𝐺′′(𝑘) + 𝑘, and let 𝑓 *
𝐺′′ := min𝑘 𝑓𝐺′′(𝑘). Note

there exists following upper bound for 𝑓 *
𝐺′′ .

𝑓 *
𝐺′′ ≤ 𝑆𝐺(𝑀) + 𝑛𝑀

This is achieved by removing the 𝑀 -vertex separator of 𝐺 from 𝐺′′ and divide

𝐺′′
𝑉 ′′∖𝑆𝐺(𝑀) into connected components with size at most 𝑛𝑀 .

Now we prove that 𝑓 *
𝐺′′ has to be exactly 𝑆𝐺(𝑀)+𝑛𝑀 by showing that 𝑓𝐺′′(𝑘) >

𝑓 *
𝐺′′ for 𝑘 > 𝑛𝑀 , and for 𝑘 < 𝑛𝑀 .

1. 𝑓𝐺′′(𝑘) > 𝑓 *
𝐺′′ for all 𝑘 < 𝑛𝑀 .
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For 𝑘 < 𝑛𝑀 :

𝑓𝐺′′(𝑘) ≥ 𝑛2 + 𝑘 > 𝑆𝐺(𝑀) + 𝑛𝑀,

because the separator has to include at least one vertex from each of the 𝑛2

disjoint 𝑛𝑀 -cliques in 𝐺′′. This value 𝑓𝐺′′(𝑘) is clearly larger than 𝑆𝐺(𝑀)+𝑛𝑀

when 𝑛 ≫ 𝑁 > 𝑀 .

2. 𝑓𝐺′′(𝑘) > 𝑓 *
𝐺′′ for all 𝑘 > 𝑛𝑀 .

Claim 15. We claim that it suffices to only consider 𝑘 in the form of 𝑘 =

𝑛𝑀 + 𝑛𝛼, where 𝛼 ∈ Z+. i.e. for any 𝑘 > 𝑛𝑀 , 𝑓𝐺′′(𝑘) ≥ 𝑓𝐺′′(𝑛𝑀 + 𝑛𝛼) for

some 𝛼 ∈ Z+.

Proof of Claim 15. Call the nodes in 𝐺 to which each of the 𝑛-clique is ap-

pended to (while constructing 𝐺′′) the center of the 𝑛-clique in 𝐺′′. If 𝑘 cannot

be expressed in the form of 𝑛𝑀 + 𝑛𝛼, this means the corresponding separator

𝑆 contain some non-center nodes of the 𝑛-cliques in 𝐺′′.

If the center ̸∈ 𝑆, while some other node(s) of the clique ∈ 𝑆, there exists

another 𝑆*, |𝑆*|< |𝑆| that includes the center instead of the other node(s), and

suffice to be a 𝑘-vertex separator. This is because after the removal of the center

node, the rest of the clique can be of size at most (𝑛− 1), and 𝑘 > 𝑛𝑀 > 𝑛− 1.

Suppose the center ∈ 𝑆, while some of the other node(s) of the clique also ∈ 𝑆,

in order to obtain a 𝑘-vertex separator. Then 𝑆* that only contains center will

suffice to be 𝑘-vertex separator, because 𝑘 > 𝑛.

By Claim 15, for any 𝑘 > 𝑛𝑀 , 𝑓𝐺′′(𝑘) ≥ 𝑓𝐺′′(𝑛𝑀 + 𝑛𝛼) for some 𝛼 ∈ Z+. In

words, there is never any incentive to include any non-center nodes of an 𝑛-

cliques in separator 𝑆. Without loss of generality, 𝑆 ⊆ 𝑉𝐺, and 𝑘 = 𝑛𝑀 +𝑛𝛼 ≥

𝑛𝑀 + 𝑛.

𝑓𝐺′′(𝑛𝑀 + 𝑛𝛼) > 𝑛𝑀 + 𝑛 > 𝑆𝐺(𝑀) + 𝑛𝑀
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when 𝑛 ≫ 𝑁 .

Summarizing 1 and 2, we conclude that

𝑓 *
𝐺′′ = 𝑓𝐺′′(𝑛𝑀) = 𝑆𝐺(𝑀) + 𝑛𝑀

This gives us a polynomial time algorithm to find any 𝑀 -vertex separator for

any graph 𝐺, and any value 𝑀 . This contradicts the fact that computing 𝑀 -vertex

separator is NP-hard. Therefore, there does not exist polynomial time algorithm for

computing min𝑆𝐺(𝑘) + 𝑘.
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Appendix B

Supplementary Material for Chapter

3

B.1 Proof of Claim 7

Let us embed our underlying space R2 in R3 by setting the last coordinate to zero.

Letting × denote the cross product, we have

𝑢× 𝑢′ = (0, 0, sin𝛼𝑡) , 𝑓(𝑢, 𝑣)× 𝑓(𝑢′, 𝑣) = (0, 0, sin ̂︀𝛼) .
Since the case 𝛼𝑡 ∈ {0, 𝜋} is easily handled by noticing that ̂︀𝛼 = 𝛼𝑡, we can assume

that 0 < 𝛼𝑡 < 𝜋. In that case, it is enough that we prove

⟨𝑢× 𝑢′, 𝑓(𝑢, 𝑣)× 𝑓(𝑢′, 𝑣)⟩ = sin𝛼𝑡 sin ̂︀𝛼 ≥ 0 . (B.1)
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Setting 𝐶(𝑤) :=
√︀

1 + (2𝜂 + 𝜂2)⟨𝑤, 𝑣⟩2, we apply (3.2) and bilinearity of cross prod-

uct to compute

𝑓(𝑢, 𝑣)× 𝑓(𝑢′, 𝑣) =
1

𝐶(𝑢)𝐶(𝑢′)

(︁
𝑢× 𝑢′ + 𝜂(⟨𝑢, 𝑣⟩(𝑣 × 𝑢′) + ⟨𝑢′, 𝑣⟩(𝑢× 𝑣))

)︁
=

1

𝐶(𝑢)𝐶(𝑢′)

(︁
𝑢× 𝑢′ + 𝜂(𝑢× 𝑢′ + (⟨𝑢, 𝑣⟩𝑣 − 𝑢)× (𝑢′ − ⟨𝑢′, 𝑣⟩𝑣))

)︁
(B.2)

=
1 + 𝜂

𝐶(𝑢)𝐶(𝑢′)
· 𝑢× 𝑢′ , (B.3)

where in (B.2) we used the identity 𝑎× 𝑏+ 𝑐× 𝑑 = 𝑎× 𝑑+ 𝑐× 𝑏+ (𝑎− 𝑐)× (𝑏− 𝑑),

and in (B.3) we used that both ⟨𝑢, 𝑣⟩𝑣− 𝑢 and 𝑢′ −⟨𝑢′, 𝑣⟩𝑣 are projections of vectors

onto the line orthogonal to 𝑣, and therefore they are parallel and their cross product

vanishes.

Consequently, we conclude that 𝑓(𝑢, 𝑣)×𝑓(𝑢′, 𝑣) is parallel to 𝑢×𝑢′ with a positive

proportionality constant, which implies (B.1) and concludes the proof.

B.2 Example with two advertisers

For another slightly more involved example, suppose there are two advertisers mar-

keting their products. Agents’ opinions now have five dimensions (𝑑 = 5) with the

fourth and fifth coordinates corresponding to the opinions on these two products.

Initially, 500 opinions on the first three coordinates are distributed randomly and

uniformly on a three-dimensional sphere, and the last two coordinates are equal to

zero:

𝑢𝑖 = (𝑢𝑖,1, 𝑢𝑖,2, 𝑢𝑖,3, 0, 0) subject to 𝑢2
𝑖,1 + 𝑢2

𝑖,2 + 𝑢2
𝑖,3 = 1 .

Suppose the two advertisers apply interventions 𝑣1 and 𝑣2 in an alternating fashion.

We take 𝑣1 and 𝑣2 to be orthogonal, letting

𝑣1 = (𝛽, 0, 0, 𝛼, 0) , 𝑣2 = (0, 𝛽, 0, 0, 𝛼) , 𝛼 =
3

4
, 𝛽 =

√
1− 𝛼2 .
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We proceed to apply 𝑣1 and 𝑣2 in an alternating fashion. In Figure B-1 we illus-

trate the agents’ opinions after each advertiser applied their intervention two, four

and six times (so the total of, respectively, four, eight and twelve interventions have

been applied). A pattern of polarization on the fourth and fifth coordinates can be

observed. At the same time, the pattern on the first three coordinates is more com-

plicated. The opinions on these dimensions are scattered around a circle on the plane

spanned by the first two coordinates. This is a somewhat special behavior that arises

because vectors 𝑣1 and 𝑣2 are orthogonal. It is connected to the difference between

Theorem 12 and Proposition 4 discussed in Section 3.6.

B.3 Proof of Proposition 2

Recall that the two-agent intervention maximizes min(̃︀𝑢1,𝑑, ̃︀𝑢2,𝑑). Due to symmetry,

we will consider wlog the one-agent intervention that maximizes ̃︀𝑢1,𝑑. Substituting

into (3.2), we get that applying an intervention 𝑣 results in

̃︀𝑢𝑖,𝑑 =
⟨𝑢𝑖, 𝑣⟩ · 𝑣𝑑√︀
1 + 3⟨𝑢𝑖, 𝑣⟩2

. (B.4)

Recalling (3.4), we can apply any unitary transformation on the opinions without

changing the correlations, and hence assume that

𝑢1 := (sin𝛼, cos𝛼, 0, . . . , 0) , 𝑢2 := (− sin𝛼, cos𝛼, 0, . . . , 0) (B.5)

for some 0 ≤ 𝛼 ≤ 𝜋/2 and accordingly, 𝑐 = cos2 𝛼 − sin2 𝛼 = cos(2𝛼). In particular,

𝛼 = 0 means that the agents are in full agreement, 𝛼 = 𝜋/4 corresponds to the case

of orthogonal opinions and 𝛼 = 𝜋/2 is the case where the opinions are antipodal.

Assuming (B.5), once we fix the first two coordinates of the intervention 𝑣1 and 𝑣2,

also the values of ⟨𝑢1, 𝑣⟩ and ⟨𝑢2, 𝑣⟩ become fixed. Therefore, due to (B.4), the values

of ̃︀𝑢𝑖,𝑑 depend only on 𝑣𝑑 in a linear fashion. Accordingly, the influencer should place

as much weight as possible on the last coordinate and we can conclude that both two-

and one-agent interventions have 𝑣𝑗 = 0 for 2 < 𝑗 < 𝑑. Hence, in the following we
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𝑡 = 5

𝑡 = 9

𝑡 = 13

Figure B-1: Illustration of the process described in Appendix B.2. This time we need
to visualize five dimensions. This is done with spatial positions for the first three
dimensions 𝑗 = 1, 2, 3 and two different color scales for 𝑗 = 4, 5. Accordingly, two
figures are displayed for each time step 𝑡 = 5, 9, 13. In each pair of figures the points
in the left figure have the same spatial positions as in the right figure and the colors
illustrate dimensions 𝑗 = 4 (on the left) and 𝑗 = 5 (on the right).
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will assume wlog that 𝑑 = 3, 𝑢1 = (sin𝛼, cos𝛼, 0) and 𝑢2 = (− sin𝛼, cos𝛼, 0) (see

Figure B-2).

𝑢1𝑢2

𝑣⊥ =
√
3/3 · 𝑢1

𝛼𝛼

𝑢1𝑢2 𝑣⊥

𝛼𝛼

Figure B-2: The projection of one-agent (left) and two-agent (right) interventions
onto the first two dimensions.

First, consider the one-agent intervention maximizing ̃︀𝑢1,3. Clearly, the interven-

tion should be of the form

𝑣one = cos 𝛽 · 𝑢1 + sin 𝛽 · (0, 0, 1)

for some 0 ≤ 𝛽 ≤ 𝜋/2. Substituting in (B.4), we compute

(̃︀𝑢1,3)
2 =

cos2 𝛽 sin2 𝛽

1 + 3 cos2 𝛽
. (B.6)

Maximizing (B.6), we get the maximum at cos 𝛽 =
√
3/3 and

𝑣one =

√
3

3
· 𝑢1 +

√
6

3
· (0, 0, 1) ,

resulting in ̃︀𝑢1,3 = 1/3. The value 1/3 is the benchmark for what can be achieved

by one intervention. It is a maximum value for ̃︀𝑢1,3 attainable provided that initially

𝑢1,3 = 0.

What is the effect of this intervention on the other opinion 𝑢2? Since ⟨𝑢2, 𝑣one⟩ =
√
3𝑐/3, substituting into (B.4) we get

̃︀𝑢2,3 =

√
3𝑐/3 ·

√
6/3√

1 + 𝑐2
=

𝑐
√
2

3
√
1 + 𝑐2

.
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The value of ̃︀𝑢2,3 as a function of the correlation 𝑐 ∈ [−1, 1] is shown in blue in

Figure 3-4. In particular, it increases from −1/3 to 1/3, passing through 0 for 𝑐 = 0.

Moving to the two-agent intervention, in this case it is not difficult to see (cf. Fig-

ure B-2) that the intervention vector should be of the form

𝑣two = (0, cos 𝛽, sin 𝛽)

for some 0 ≤ 𝛽 ≤ 𝜋/2. A computation in a computer algebra system (CAS) estab-

lishes that ̃︀𝑢1,3 = ̃︀𝑢2,3 is maximized for

cos2 𝛽 =

√
2(
√
3𝑐+ 5−

√
2)

3(𝑐+ 1)
,

yielding an expression

̃︀𝑢1,3 = ̃︀𝑢2,3 =

√︃
3𝑐+ 7− 2

√
6𝑐+ 10

9(𝑐+ 1)
.

This function is depicted in Figure 3-4 in red. In particular, for 𝑐 ∈ [−1, 1], it increases

from 0 to 1/3 and its value at 𝑐 = 0 is approximately 0.27. Furthermore, its growth

close to 𝑐 = −1 is of the square-root type.

Turning to the new correlation values 𝑐one and 𝑐two, another CAS computation

using the formulas for 𝑣one and 𝑣two gives

𝑐one =
𝑐
√
2√

𝑐2 + 1
, 𝑐two = 1−

√
2(1− 𝑐)√
3𝑐+ 5

,

establishing (3.10). To conclude the proof we need another elementary calculation

showing that 𝑐two ≥ 𝑐one always holds. We omit the details, referring to Figure 3-3

and noting that in the critical region for 𝑐 = 1− 𝜀 we have

𝑐two = 1− 1

2
𝜀− 3

32
𝜀2 +𝑂(𝜀3) ≥ 𝑐one = 1− 1

2
𝜀− 3

8
𝜀2 +𝑂(𝜀3) .
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B.4 Proof of Proposition 3

Let us write a generic intervention vector as

𝑣 = (cos 𝛽 · 𝑣*, sin 𝛽) ,

where 0 ≤ 𝛽 ≤ 𝜋/2, 𝑣* ∈ R𝑑−1 and ‖𝑣*‖= 1. If 𝑣 is applied to an opinion vector

𝑢𝑖 = (𝑢*
𝑖 , 0) and we let 𝑐𝑖 := ⟨𝑢*

𝑖 , 𝑣
*⟩, substituting into (3.2) we can compute

𝑢𝑖 + ⟨𝑢𝑖, 𝑣⟩ · 𝑣 = (𝑢*
𝑖 , 0) + 𝑐𝑖 cos 𝛽(cos 𝛽 · 𝑣*, sin 𝛽) = (𝑢*

𝑖 + 𝑐𝑖 cos
2 𝛽 · 𝑣*, 𝑐𝑖 cos 𝛽 sin 𝛽) ,

and therefore, using (3.3),

̃︀𝑢𝑖,𝑑 =
𝑐𝑖 cos 𝛽 sin 𝛽√︀
1 + 3𝑐2𝑖 cos

2 𝛽
=

𝑐𝑖𝑧
√
1− 𝑧2√︀

1 + 3𝑐2𝑖 𝑧
2
, (B.7)

where we let 𝑧 := cos 𝛽.

Consider a fixed unit vector 𝑣* ∈ R𝑑−1. In order to maximize ̃︀𝑢𝑖,𝑑 for an opin-

ion 𝑢𝑖 with ⟨𝑢*
𝑖 , 𝑣

*⟩ = 𝑐𝑖, we need to optimize over 𝑧 in (B.7), resulting in 𝑧 =√︁√︀
1 + 3𝑐2𝑖 − 1/(

√
3𝑐𝑖) and, substituting,

̃︀𝑢𝑖,𝑑 =

√︀
1 + 3𝑐2𝑖 − 1

3𝑐𝑖
. (B.8)

The right-hand side of (B.7) is easily seen to be increasing in 𝑐𝑖 > 0 for a fixed

𝑧. Therefore, in order to maximize the number of points with ̃︀𝑢𝑖,𝑑 > 𝑇 for a fixed

𝑣*, we solve the equation 𝑇 =
√
1+3𝑐2−1

3𝑐
for 𝑐, resulting in 𝑐 = 2𝑇

1−3𝑇 2 and apply the

intervention

𝑣 = (cos 𝛽 · 𝑣*, sin 𝛽) ,

just as claimed in (3.11). This intervention results in ̃︀𝑢𝑖,𝑑 > 𝑇 for all opinions satis-

fying ⟨𝑢*
𝑖 , 𝑣

*⟩ > 𝑐. In other words, the objective ̃︀𝑢𝑖,𝑑 > 𝑇 is achieved for exactly those

opinions contained in the spherical cap {𝑥 ∈ R𝑑−1 : ⟨𝑥, 𝑣*⟩ > 𝑐}. Maximizing over all

directions 𝑣* ∈ R𝑑−1 completes the proof.
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