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Abstract

Photovoltaics (PV) have experienced notable development over the last forty years. PV
module costs have declined 20% on average with every doubling of cumulative capacity, while
global PV installations have increased at an average rate of 30% per year. However, costs
must fall even further if PV is to achieve cost-competitiveness at high penetration levels
and in a wide range of locations. Understanding the mechanisms that underlie the past cost
evolution of PV can help sustain its pace of improvement in the future.

This thesis explores the drivers of and constraints to cost reduction and large-scale
deployment of PV. By developing novel conceptual and mathematical models, we address the
following questions: (1) What caused PV’s cost to fall with time? (2) How may materials
constraints influence PV cost and deployment? These questions are addressed in the analyses
presented in Chapters 2-4.

Chapter 2 assesses the causes of cost reduction observed in PV modules since 1980. We
develop a new model that identifies the causes of improvement at the engineering level and
links these to higher-level mechanisms such as economies of scale. The methodology advanced
can be used to evaluate the causes of improvements in any technology. By developing
a model of PV modules, we find that in the early stages of the technology (1980-2001),
improvements in the material usage and module conversion efficiency played an important
role in reducing module cost. These improvements were mainly driven by research and
development (R&D) efforts. As the PV technology matured (2001-2012), economies of scale
from larger manufacturing plants resulted in significant gains. Both market-expansion policies
and public R&D stimulated cost reduction, with the former contributing the majority of the
cost decline from 1980 to 2012.

Chapter 3 turns to assessing the materials constraints to PV cost reduction. We ask
how fast metals production should be scaled up to match the increasing demand by the PV
sector, if installations grow to meet a significant portion of energy demand. Unlike previous
studies, which primarily used inherently uncertain factors such as reserves to estimate limits
to technology scalability, we use past growth rates of a large set of metals as a benchmark for
future growth rates. This analysis shows that thin-film PV technologies such as CIGS and
CdTe that employ rare metals would require unprecedented growth rates in metals production
even for the most conservative PV growth scenarios. On the other hand, crystalline silicon
PV can provide 100% of global electricity without silicon exceeding the historical growth
rates observed by all metals in the periodic table.

Chapter 4 assesses the risks that material inputs bring to technologies today. This study
develops cost-riskiness metrics based on the price behavior of metals along two dimensions:
average price and price volatility. We first compare a large set of metals using these cost-
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riskiness metrics. We observe that metals obtained as byproducts have higher risk than
major metals. We then apply these metrics to different PV technologies by treating them as
a portfolio of metals. We find that designs such as CIGS and CdTe, which use byproduct
metals with high average prices and price volatilities, show signals of cost-riskiness. The
approach advanced here can serve as an assessment of the cost-riskiness of technologies
introduced by their materials inputs.

Jessika E. Trancik
Associate Professor of Data, Systems, and Society
Thesis Supervisor and Doctoral Committee Chair
Robert L. Jaffe
Otto (1939) and Jane Morningstar Professor of Science, Professor of Physics
Doctoral Committee Member
Joel P. Clark
Professor of Materials Science and Engineering
Doctoral Committee Member
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Chapter 1

Introduction

1.1 Research motivation

Photovoltaics (PV) may be an attractive energy technology for mitigating climate change.

Solar energy is the largest energy resource on Earth [1]. Using current PV technology in less

than 1% of the land area of the United States for a year, one could meet the yearly energy

consumption of the nation [2]. Despite some variability in its temporal and geographical

availability, solar energy is well-distributed across the world, unlike fossil fuels and hydropower

[3]. PV technologies have low emissions from operation, while emissions during manufacturing

and decommissioning solar panels have the potential to go to zero as these processes are

increasingly powered by low-carbon sources [4].

Besides the characteristics that make PV a good candidate for climate change mitigation,

PV is an extraordinary energy technology from a technological change perspective. The costs

of renewable energy technologies have fallen dramatically over the last 40 years [5], and PV in

particular was one of the most rapid among electricity technologies due to ongoing research,

production and installation experience, and scale economies [6, 7]. As of 2015, silicon-based

PV modules were roughly 100 times cheaper than they were 40 years ago [6]. Global PV

deployment has also been growing rapidly, at over 30% per year in this period [8, 9].

Continued PV deployment could reduce greenhouse gas emissions [4] and other pollutants

from energy systems [10]. For PV deployment to experience continued growth in the future,

however, particularly when considering the additional costs of addressing solar intermittency

[11], further cost reductions are likely needed [12]. For this reason, it is important to identify

what drove PV’s past cost evolution to gain insight into maintaining the pace of improvement
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in the future. In the process one may shed light on the drivers of technological progress in

general.

Despite the rapid past decline in renewable energy technology costs, there may be

constraints that could slow down or reverse these trends in the future. A relevant constraint

for PV is materials [13, 14], which constitute a significant share of PV costs [15, 16, 17].

Increasing adoption of PV technologies at rates that would be relevant for climate change

mitigation would require unprecedented growth in metals production [18, 19, 20]. Some

current PV technologies use rare metals, e.g. tellurium and indium, which are obtained as

byproducts of major metals such as copper and zinc [21, 22, 23]. Being byproducts, their price

and production are dictated by the economics of the major metals that host them, giving

rise to concerns about whether supply can meet demand increases [24, 25, 26, 27] with prices

that remain stable enough for cost-effective PV production [28]. Assessing such materials

constraints is critical for understanding the scalability of technologies, and sustaining high

rates of deployment and cost improvement.

1.2 Background

Improvement trends in photovoltaics (PV) and other technologies have been studied by

several research communities. One common approach, which we call ‘correlational analysis’,

focuses on the relationship between a performance measure such as cost, and production or

research investment levels [29]. One of the most widely-used correlational analysis models is

the experience curve, which describes the relationship between a technology’s cost and its

cumulative production as a power law. Studies use the experience curve as an explanatory

tool to measure the past improvement rates of technologies or as a predictive tool to estimate

future rates [30, 31, 32, 29, 33]. For example, PV module costs fell by roughly 20% with

every doubling of cumulative production since 1970s [34, 8]. Several mechanisms have

been proposed to explain this cost reduction, such as research and development efforts,

learning-by-doing, and economies of scale [7, 35, 36, 34, 37, 38]. While useful for comparing

the improvement rates of different technologies, correlational analyses treat technologies as

black boxes and do not model the determinants of cost within the technology. In addition,

the definitions of these mechanisms in the literature are diverse and overlapping [38, 8, 39]

making it difficult to separate their influence on technological improvement.
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Another group of studies models technology costs in a detailed manner [40, 41, 42, 43, 15].

These are mainly bottom-up engineering cost models that disaggregate the total cost of a

technology into its cost components at a given snapshot in time, in order to understand

how the components of a technology or a manufacturing process determine its cost. Only a

few past studies decomposed technology costs into components over time (e.g. for coal-fired

electricity [44]). In general what is missing from these studies is a method to disentangle the

effects of simultaneous changes to multiple features of a technology.

In order to gain insight into the factors that led to the improvement of a technology over

time, methods are needed that go beyond correlational analyses and static cost decompositions.

In Chapter 2, we introduce the idea of a dynamic-yet-mechanistic model, which can be

applied to PV or other technologies, and which captures engineering features.

As noted earlier, materials availability may limit the cost and deployment trends of PV

[13, 18, 45, 21]. Previous research has highlighted that the availability of input materials

at affordable prices would be essential for scaling up PV production in a cost-effective

way [14, 13, 43, 42]. However, if the demand for materials grows rapidly while supply is

constrained, materials prices can rise, limiting PV’s potential for cost improvement. This

can make an input a ‘critical’ material from the perspective of a technology or industry.

Previous studies generally described materials as ‘critical’ if they are essential to industry

and difficult to substitute, but sourced from few and politically unstable regions [46, 47, 48,

49, 50, 51]. Studies have identified possible critical materials not only for PV but for many

technologies, basing indicators of short-term and long-term risks on various political, economic

and technological factors. Assessments of long-term risks have usually been made based on

projections about future demand as well as future supply, the latter mainly determined by

geology and technological capabilities to extract materials. On the other hand, short-term

risks can be influenced more significantly by other factors such as the political situation in

sourcing regions, or the effects of being a byproduct metal [28, 52].

In the case of PV, concerns about long-term materials risks have spurred research on

materials availability for a rapidly growing PV industry [53, 21, 13, 54]. If PV deployment

follows the growth trajectories outlined in several energy scenarios [55, 56, 57, 58, 59, 60,

61, 62], the demand for input materials will increase [18]. Studies have mainly focused on

assessing the limits using data on reserves, together with expected annual production levels

for long-term PV deployment. However, reserve estimates are uncertain and updated as
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discoveries occur, limiting the usefulness of this approach. In Chapter 3 we introduce a new

approach that characterizes the long-term risks while recognizing these sources of uncertainty.

We also analyze short-term materials risks that may already be evident in current data.

Many metals have been deemed critical, including those used in low-carbon technologies

such as PV, wind turbines and electric cars [63, 64, 65, 66, 67]. Across past studies, various

definitions and indicators of criticality have been used, leading to different results in the

comparison of metals [68]. However, these definitions have not focused on the risks to

technology production costs. In Chapter 4, we propose a definition of criticality to evaluate

the risks that may be posed by input materials in the short term from the perspective of

technology costs.

1.3 Research contributions

This thesis is motivated by the dramatic reductions in PV costs over the past half century

and by the potential material constraints that might limit further cost reductions. We aim

to understand and evaluate the factors that enable and inhibit scaling up PV deployment:

What are the mechanisms by which PV and other technologies improve, and what are the

material constraints to further improvement and widespread deployment?

Addressing these research questions requires several new conceptual and mathematical

models. One of the conceptual advancements of this thesis is that it views technology

cost trends as processes that can be modeled starting from the components within the

technology. This marks a departure from the correlational analyses used in previous studies

that treat a technology as a black box when describing its cost trend over time. The

conceptual advancement of this thesis allows one to identify the causes of improvement at the

engineering level and to connect them to higher-level mechanisms such as learning-by-doing.

The causes are identified by a novel dynamic and mechanistic model of technological change

with two steps. The first step is to build a cost model that describes how several key variables

determine the cost of a technology, and the second step is to develop a cost change model

that computes the contributions of the key variables to the overall cost change, when the

dependencies between variables are taken into account. By analyzing the mechanisms of

improvement over time, this method bridges dynamic models of technology evolution and

detailed engineering cost models.
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By applying these models to PV module costs, we obtain critical lessons for technological

improvement and policy. We find that multiple low-level mechanisms, such as increasing

conversion efficiency, decreasing material usage, and increasing wafer area, played key roles in

reducing PV costs. Technologies consisting of multiple features each with room for innovation,

as in the case of PV, may be more likely to experience rapid cost declines. In the earlier

stages of PV technology, public R&D was the main high-level mechanism that reduced costs

by improving multiple low-level variables such as material usage and conversion efficiency.

As the technology matured, economies of scale, which were achieved through building larger

manufacturing plants, became a more significant high-level mechanism, approaching R&D in

importance. Economies of scale will likely offer an avenue for further cost reductions.

This thesis also contributes insight to the ongoing debate on the effectiveness of market-

expansion policies versus publicly-funded R&D [31, 69, 70], by estimating their relative

contributions to cost reduction. We show that policies that stimulate market growth have

played a key role in enabling PV’s cost reduction, through privately-funded R&D and scale

economies, and to a lesser extent learning-by-doing. These policies contribute around 70%

of the cost decline in PV modules between 1980 and 2012. Going forward, complementing

market-expansion policies by public R&D may help reduce the risks of exhausting the

improvement potential of current silicon-based module technology. For example, exploring

technologies based on other abundant semiconductor materials may unlock the potential for

lower costs.

This thesis also advances the current understanding of materials constraints to technology

cost and deployment trends. We evaluate materials-related risks over both the long term and

the short term. In analyzing long-term risks, we project the material requirements of PV into

the future. Unlike previous studies, which primarily used inherently uncertain factors such

as reserves to estimate limits to technology scalability, we study constraints on long-term

technological adoption by looking at historical metals production data. We quantify a range

of past growth rates in the metals production sector by pooling historical annual production

data on many metals. We use these historical growth rates to assess the degree to which

future growth scenarios fall within the range of trends observed in the past. Our method of

pooling data for many metals, instead of focusing on PV metals only, allows one to deal with

the uncertainty about the path a given metal may follow in the future.

We apply our new method to quantify the possible materials constraints that might affect
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costs of different PV technologies in the future. We observe that the median growth rate

across all metals in the last 40 years was 2.3% per year. The maximum growth rate was 15%

per year, while 95% of the past growth rates were below 9% per year. This information allows

us to better observe differences between PV technologies in terms of long-term materials

constraints. We find that the annual growth rates required for the production of byproduct

metals (indium, gallium, tellurium, and selenium) employed in thin-film PV technologies to

satisfy projected PV demand levels in 2030 are either unprecedented or fall on the higher

end of the historical growth rates distribution. On the other hand, silicon supply restrictions

do not appear to pose a binding scalability constraint, due to the abundance of this metal.

In analyzing the short-term materials risks of PV, we argue that metals price data contains

information on material availability risks. If metals supply is constrained relative to demand,

this can cause volatile prices. PV manufacturers or other users of metals may be adversely

affected since increasing materials prices can increase production costs unexpectedly. To

evaluate these effects, we propose a definition of metals criticality, namely the cost-riskiness

that materials can bring to the technologies they are used in. This definition adds to the

previous criticality literature and can be used to evaluate the materials risks of any technology.

To measure cost riskiness, we pool historical data on many metals as we do to analyze

long-term materials risks. We measure the cost riskiness that a technology can face due to

materials availability along two dimensions: Average price and price volatility of the metals.

While average price provides information on the contribution of a unit mass of material

to the overall technology cost, price volatility reflects the fluctuations in this impact. We

observe that there are already signals of riskiness for certain metals, namely the byproduct

metals such as tellurium and indium, since the prices of byproduct metals are higher and

more volatile than other metals. PV technologies that use these materials, such as CdTe and

CIGS, may be exposed to higher risks.

Our work on both the long-term and short-term materials risks can be used to assess

whether a photovoltaic material that works well in a lab or a small commercial setting is a

good candidate for reaching terawatt-scale PV adoption. We provide tools and insights that

scientists and engineers who develop technologies can use to evaluate materials criticality.

The methods and findings in this thesis can also be used to assess other low-carbon energy

technologies, such as battery technologies.
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1.4 Thesis overview

The following three chapters address the main research question of this thesis – how can we

evaluate the enabling factors and constraints in scaling up PV deployment? The chapters

are based on a journal paper that has been published [19], another paper that is in review

[6], and a third paper that is in preparation.

Chapter 2. The second chapter assesses the causes for decreasing PV technology costs. Our

method quantifies the low-level mechanisms that have reduced the costs at the engineering

level and links these to high-level mechanisms. Applying this method to PV modules reveals

that the key drivers of cost reduction have been changing over time. The most important

low-level mechanism in 1980-2001 was the increased module efficiency that contributed almost

30% of the module cost decline in this period, and the main high-level mechanism that drove

this change was research and development (R&D). After 2001, as the PV technology matured

and manufacturing plant sizes grew, economies of scale became more significant, approaching

R&D in importance. Overall, both market-expansion policies and public R&D have been

important, with the former contributing around 70% of the cost decline in PV modules in

1980-2012.

Chapter 3. The third chapter turns to assessing the long-term materials risks that may

slow down the cost decline and production growth in PV. We analyze long-term constraints

by looking at historical metals production data. We first ask how fast metals production

should be scaled up to match increasing PV deployment. We then compare the required

growth rates in metals production to the past growth rates observed for a large set of metals

over the last forty years, to see whether the required growth rates have a historical precedent.

This analysis shows that thin-film PV technologies such as CIGS and CdTe that employ rare

metals would require unprecedented growth rates in metals production to provide even low

amounts of global electricity. On the other hand, crystalline silicon PV can provide 100% of

global electricity without silicon exceeding the historical growth rates.

Chapter 4. The fourth chapter studies the materials risks that can affect PV technology

costs and which may already be evident in price data. We ask what signals we get from the

price behavior of metals that can indicate the risks in using these materials in PV production.
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We first develop metrics to characterize the cost risk of a metal based on its average price

and price volatility. We find that byproduct metals are in general riskier. We then develop a

method for evaluating the cost-riskiness of a technology by treating it as a portfolio of metals.

Demonstrating this approach on PV, we find that PV technologies such as CdTe and CIGS

that rely on byproduct metals may face higher cost-riskiness, whereas other technologies

such as perovskites perform better along our cost-riskiness metrics.
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Chapter 2

Evaluating the causes of photovoltaics

cost reduction

Photovoltaics (PV) module costs have declined rapidly over forty years but the reasons remain

elusive. We advance a conceptual framework and quantitative method for quantifying the

causes of cost changes in a technology, and apply it to PV modules. Our method begins

with a cost model that breaks down cost into variables that changed over time. Cost change

equations are then derived to quantify each variable’s contribution. We distinguish between

changes observed in variables of the cost model – which we term low-level mechanisms of cost

reduction – and R&D, learning-by-doing, and scale economies, which we refer to as high-level

mechanisms. Increased module efficiency was the leading low-level cause of cost reduction

in 1980-2012, contributing over 25% of the decline. Government-funded and private R&D

was the most important high-level mechanism over this period. After 2001, however, scale

economies became a more significant cause of cost reduction, approaching R&D in importance.

Policies that stimulate market growth have played a key role in enabling PV’s cost reduction,

through privately-funded R&D and scale economies, and to a lesser extent learning-by-doing.

The method presented here can be adapted to retrospectively or prospectively study many

technologies, and performance metrics besides cost.1

1This chapter has been submitted for review with co-authors James McNerney and Jessika E. Trancik [6].
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2.1 Introduction

Photovoltaics (PV) have exhibited the most rapid cost decline among energy technologies [4]

(Fig. 2-1.) In parallel with cost declines and performance improvement, global PV deployment

has grown rapidly [5]. Continued PV deployment could help reduce greenhouse gas emissions

and other pollution from energy systems [10], and contribute to climate change mitigation [4].

For PV deployment to experience sustained growth in the future, however, particularly when

considering the additional costs of addressing solar intermittency [11], further cost declines

are likely needed [12]. This paper aims to identify the causes of PV’s rapid cost declines

in the past and gain insight into maintaining the pace of improvement in the future. More

fundamentally, we aim to advance a model for understanding the mechanisms of technology

improvement at multiple levels, from human efforts to devices, that can be applied to many

technologies and measures of performance.

Improvement trends in PV and other technologies have been studied by various research

communities. Correlational analysis is a common approach in these studies, often focusing

on cost (or other measure of performance) and production or research investment levels [29].

One of the most widely-used models is the experience curve, which relates a technology’s

cost to cumulative production as a power law. Using this relationship as an explanatory or

predictive tool, studies have estimated the rates of performance improvement for a range

of technologies [30, 31, 32, 29, 33]. For example, PV module costs fell by about 20% with

every doubling of cumulative capacity since the 1970s [34, 8]. Several explanations for this

cost decline have been proposed, such as public research and development efforts and various

consequences of market growth [7], including learning-by-doing, economies of scale, and

private research and development efforts [35, 36, 34, 37, 38]. These studies share an approach

to examining technology cost evolution where important high-level drivers of cost reduction

are assumed and their influence on cost is inferred based on correlation. Technologies are

treated as black boxes and the causes of cost reduction within technology are not modeled

mechanistically.

Another group of studies uses detailed, device-level cost models, to understand how

features of a technology or manufacturing process contribute to costs at one or more snapshots

in time. Several such studies exist for PV, and they provide information on how individual

cost components contribute to total costs, while taking into account the physics of PV
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Figure 2-1: Costs are shown in orange, and prices are shown in purple. References: Reichel-
stein [71], Pillai [72], Maycock price data from [8] and cost data from [73], Swanson [74], Ravi
[75], Mints [9], Christensen [76], Nemet [8], Powell [41], Goodrich [77], Feldman [78]. Values
are averages across different PV technologies except for those in Powell [41] (multicrystalline
silicon) and Goodrich [77] (monocrystalline silicon). Differences across datasets show the
effect of sampling errors.

technologies [40, 41, 42, 43, 15]. They also propose avenues for future technical improvement

at the device or manufacturing level, and estimate cost reductions that might be achieved in

the future [79]. Missing from these studies, however, is a method of accurately quantifying

how each change to a feature of the technology or manufacturing process contributes to

cost reductions, when many changes occur simultaneously. This knowledge is needed to

understand the mechanisms of cost reduction but requires further modeling advances.

Pursuing both dynamic and detailed, device-level models is critical for identifying the

causes of improvement in PV and other technologies. This combined approach would address

inherent limitations in using correlational analyses to identify causal effects, especially in

the case where data is limited, as is often the case in technology evolution research. This

approach would also address the lack of dynamics in device-level studies. A few past studies

have begun to develop such a methodology by decomposing technology costs over time [8, 44].

A study of the drivers of PV module cost changes from the 1970s to the early 2000s [8]

pioneered a bridge of this kind, and found that learning-by-doing had a limited effect on cost

reductions.
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In this paper we propose a new conceptual framework and dynamic-yet-detailed quanti-

tative model for analyzing PV’s (or any technology’s) cost evolution. We start with a cost

equation that computes costs from a set of explanatory variables, such as module efficiency,

wafer area, and manufacturing plant size. From this we derive cost change equations that

estimate the contribution of each variable to cost changes. Since multiple simultaneous

changes to variables have different impacts on cost than individual changes summed together,

attributing cost changes to individual variables is challenging. Our method of estimating

variable contributions is based on adapting calculus derivative formulas to finite differences.

In attributing PV’s cost decline to particular causes, we draw a distinction between low-

level causes (or mechanisms) and high-level causes (or mechanisms). Low-level mechanisms

explain cost reduction in terms of changes to particular variables of a cost model. High-

level mechanisms explain cost reduction in terms of processes like public and private R&D,

learning-by-doing, and scale economies that can influence technology costs in less specific

ways. High-level mechanisms are discussed widely in studies of historical technology evolution.

By considering both the low-level and high-level causes of PV’s improvement we uncover

lessons that are useful for a variety of decision-makers. These may include engineers who

design and manufacture PV modules, or firm managers and government policy-makers

who develop strategy to support technological development. For example, our findings

contribute to a long-standing debate concerning the effect of public investments in R&D

versus market-expansion policies [31, 69, 70].

We focus on crystalline silicon PV modules because of their long history and dominant

market share among PV technologies [80]. Since the 1950s, this technology has improved

steadily due to R&D and manufacturing efforts [40]. We analyze the costs starting in

1980, when space applications of PV were overtaken by terrestrial applications, which did

not require as high quality and reliability [81, 8, 82]. We look at typical costs globally,

since PV modules are manufactured and traded globally. The method we develop can be

adapted to study PV systems as a whole (including non-module cost components that show

significant potential for cost reduction [83, 84]), and a wide range of other technologies and

measures of performance other than cost [85, 10, 86]. The method might also prove a useful

quantitative framework for eliciting high-quality input from experts on the prospects for

future technological improvements [87].

This paper is organized as follows: Section 2.2 provides a detailed explanation of the cost
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model. Section 2.3 explains the method of attributing cost changes to variables. Section

2.4 shows the results of our analysis and the connection between low-level and high-level

mechanisms. In Section 2.5 we discuss the implications for future developments in PV and

conclude.

2.2 Cost model

We first develop a cost model for PV modules. The cost components are calculated based on

quantities (or usage ratios) 𝜑 and prices of inputs 𝑝 used in manufacturing.

𝐶𝑚

(︂
$

𝑚𝑜𝑑𝑢𝑙𝑒

)︂
=

1

𝑦𝑚

∑︁
𝑖 ̸=𝑐,𝑤

𝜑𝑚𝑖𝑝𝑖⏟  ⏞  
non-cell module costs

+
𝑛𝑚𝑐

𝑦𝑚𝑦𝑐

∑︁
𝑖 ̸=𝑤

𝜑𝑐𝑖𝑝𝑖⏟  ⏞  
non-wafer cell costs

+
𝑛𝑚𝑐𝑛𝑐𝑤

𝑦𝑚𝑦𝑐𝑦𝑤

∑︁
𝑖

𝜑𝑤𝑖𝑝𝑖,⏟  ⏞  
wafer costs

(2.1)

where

𝑦𝑚 yield at module manufacturing

𝑦𝑐 yield at cell manufacturing

𝑦𝑤 yield at wafer manufacturing

𝜑𝑚𝑖 quantity of input 𝑖 per module

𝜑𝑐𝑖 quantity of input 𝑖 per cell

𝜑𝑤𝑖 quantity of input 𝑖 per wafer

𝑝𝑖 price of input 𝑖

𝑛𝑚𝑐 number of cells per module

𝑛𝑐𝑤 number of wafers per cell.

While this equation has been written to represent wafer, cell, and module costs, which is an

decomposition scheme specific to PV, the formulation of costs in terms of usage ratios (𝜑)

and input prices (𝑝) is a general one that can describe any technology. 𝜑 variables generally

change as the result of engineering efforts to improve efficiency and materials utilization,

while 𝑝 variables change due to bulk purchasing, scarcity or other market effects [19], or

input substitutions.

At each of the three levels of PV manufacturing costs – wafer production, cell production,

and module production (vertical levels in Fig. 2-2) – there are costs for materials, labor,

25



module 
cost

cell cost

wafer cost

Cost of other 
materials

Plant size dependent 
costs

Cost of other 
materials

Plant size dependent 
costs

Silicon 
cost

Cost of other 
materials

Plant size dependent 
costs

slurry, wire, crucible electricity, O&M, labor, 
depreciation

electricity, O&M, labor, 
depreciation

electricity, O&M, labor, 
depreciation

aluminum and silver, 
chemicals

glass, frame, backsheet, 
junction box, cable

Figure 2-2: Cost components for wafer, cell and module levels (vertical disaggregation) and
different input types (horizontal disaggregation).

operation & maintenance, electricity, and depreciation of plant and equipment. Decomposing

by level disaggregates the production process for PV modules, but creates challenges here for

estimating the sources of cost reduction over time. A consistent categorization of costs is

needed for every time period of interest starting with 1980, but such early cost data is scarce.

Instead we accomplish this consistency over time by decomposing module production costs

into three components by input type: silicon costs, non-silicon material costs, and plant-size

dependent costs (horizontal categories in Fig. 2-2). These components are further modeled

as described below.

2.2.1 Silicon costs

Historical prices of silicon (i.e. polysilicon) can be obtained from the literature [35, 88, 8] or

from industry sources [9]. The amount of silicon used per wafer is a function of wafer area,

silicon density, silicon layer thickness, and silicon utilization (the fraction of the silicon ingot

used in the wafer after accounting for losses). Multiplying by the number of cells and the

price of silion, total silicon cost for the module can be expressed as

Si cost = 𝑛𝑚𝑐
𝐴ℎ𝜌

𝑈
𝑝𝑠 = 𝑛𝑚𝑐𝐴𝑣𝜌𝑝𝑠. (2.2)
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Factor Unit 1980 2001 2012
Plant size (𝐾) MW/yr 0.125 14 400
Module efficiency (𝜂) unitless 8% 13% 15%
Polysilicon price (𝑝𝑠) 2015$/kg 66 32 21
Wafer area (𝐴) cm2 80 150 243
Silicon usage (𝑣) ≡ thickness (𝑡)/utilization (𝑈) cm 0.25 0.07 0.04
Yield (𝑦) unitless 75% 88% 95%
Share of materials costs (𝜃) unitless 0.58 0.43 0.65
Scaling factor (𝑏) unitless 0.27 0.27 0.27
Module cost 2015$/W 22.1 4.1 1.3

References: Plant size: 2012 [9, 41]. Module efficiency: 1980 [8, 9]. Silicon usage:
1980 [89, 8], 2001: [90, 8], 2012: [41]. Share of materials costs: 1980: [91], 2001:
[73], 2012: [41]. Scaling factor: all years [73]. Other values shown in the table are
obtained from [9].

Table 2.1: Data used to calculate module cost components.

Here 𝑛𝑚𝑐 is the number of cells per module, 𝐴 is wafer area, ℎ is wafer thickness, 𝜌 = 2.33

g/cm3 is wafer density, 𝑈 is silicon utilization, and 𝑝𝑠 is the price of polysilicon. We define

the combination 𝑣 ≡ ℎ/𝑈 , which we refer to as ‘silicon usage’ for simplicity. The data for

these variables are provided in Table 2.1.

2.2.2 Non-silicon materials costs

Non-silicon materials include the crucible used to produce silicon ingots; slurry and wire

used for wafer-sawing; aluminum and silver pastes, chemicals and screens used in cell

manufacturing; and glass, frame, backsheet, encapsulant, ribbon, junction box and cable used

in the module [41]. To a first-approximation, the usage of these materials can be categorized

as proportional to wafer area (e.g. aluminum pastes), proportional to module area (e.g.

glass), proportional to module perimeter (e.g. frame), or neither (e.g. junction box), so that

costs would take the form

non-Si materials costs = 𝑐0 + 𝑛𝑚𝑐𝑐1𝐴 + 𝑐2𝐴𝑚 + 𝑐3𝑃 (2.3)

with 𝐴 representing wafer area, 𝐴𝑚 the module area, 𝑃 the module perimeter, and the 𝑐𝑖

various constants. Because of data limitations, and since most materials costs depend on

area, we ignore the fixed and perimeter dependent categories in this expression. Since the

27



late 1970s wafer area 𝐴 and module area 𝐴𝑚 have increased proportionally,2 𝐴 ∝ 𝐴𝑚. Thus

we simplify Eq. (2.3) to

non-Si materials costs = 𝑛𝑚𝑐𝑐𝐴, (2.4)

where 𝑐 is the per-area cost of all non-silicon materials and 𝐴 is wafer area. Here the non-Si

materials costs account for the costs at all of the wafer, cell and module levels. We derive the

value of 𝑐 from estimated materials costs in the three time periods. Based on the literature,

the share of materials costs in PV modules varied between 35-65% [73, 41]. We calculate the

materials costs using the total module cost and the fraction due to materials, subtract the

cost of silicon, and divide out the wafer area to obtain 𝑐.

2.2.3 Plant size-dependent costs

We assume that electricity, labor, maintenance and depreciation costs per wafer varies with

the plant size due to scale economies. We model this group of costs as

plant size-dependent costs = 𝑛𝑚𝑐𝑝0

(︂
𝐾

𝐾0

)︂−𝑏

, (2.5)

where 𝐾0 is a reference plant size, 𝑝0 represents the total of these costs for a plant with the

reference size, and 𝑏 is the scaling factor. For convenience we take 𝐾0 = 400 MW (the value

for 2012), though this choice is just a convention since the effects of a different choice of

𝐾0 would be absorbed into a different value for 𝑝0. We use 𝑏 = 0.27 as the scaling factor

[73]. We obtain this value by computing the change in labor, capital, utilities and overhead

costs between plants of two sizes described in [73]. We obtain 𝑝0 for 2012 from [41]. For

1980 and 2001 we compute 𝑝0 by computing non-materials costs and dividing out the factor

(𝐾/𝐾0)
−𝑏.

2The relationship between wafer area and module area is given by

𝐴module =
𝑛𝑚𝑐𝐴

𝛼

where 𝑛𝑚𝑐 is the number of cells per module and 𝛼 is the area utilization, the fraction of module area used
by cells. Both wafer area and module area increased about three-fold in the last twenty years, while 𝛼 and
𝑛𝑚𝑐 have stayed almost constant in a typical module [76, 41].
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2.2.4 Final cost equation

The power output of a module 𝐾𝑚 is given by

𝐾𝑚 =
𝜎𝑛𝑚𝑐𝐴𝜂

𝛼
(2.6)

where 𝜎 = 0.1 W/cm2 is the solar constant, 𝑛𝑚𝑐 is the number of cells per module, 𝐴 is

wafer area, 𝜂 is module efficiency, and 𝛼 is module area utilization. We assume a constant

value of 𝑛𝑚𝑐 = 72. Summing the three components of module costs, and dividing by module

capacity, total costs are

𝐶

(︂
$

𝑊

)︂
=

𝛼

𝜎𝐴𝜂𝑦

[︃
𝐴𝑣𝜌𝑝𝑠 + 𝑐𝐴 + 𝑝0

(︂
𝐾

𝐾0

)︂−𝑏
]︃
. (2.7)

Some wafers, cells, and modules created during production are faulty and must be discarded,

leading to waste and additional costs. To account for this we include the production yield 𝑦

above.3 We populate Eq. (2.7) with historical data from three snapshots in time: 1980, 2001

and 2012 (Table 2.1). Theoretically one could model all of the cost components including

the materials, electricity, labor and so on as dependent on both plant size and wafer area.

However, the data to populate such a sophisticated model is not available. Therefore we

make a compromise and model the electricity, labor, maintenance and depreciation costs as

scaling with plant size, while we model materials costs as dependent on wafer area.

Using the cost equation and the data in Table 2.1, we obtain the three cost components

for 1980, 2001 and 2012. The cost components are illustrated in Fig. 2-2 and their values are

shown in Table 2.2. While all of the cost components have gone down in units of $/W, their

shares of total cost have varied. In particular silicon has became a smaller fraction of total

cost over time, while non-silicon materials have become a larger fraction. The share of the

plant-size dependent costs increased between 1980 and 2001 and then decreased after 2001.

Our decomposition variables are similar to [8] (and one of the time periods we consider

(1980-2001) is the same as in [8]), though there are a few important differences which are

summarized here. We include the contribution of non-silicon material costs, which are not

considered in [8]. To avoid double-counting the reductions from efficiency improvements,

we model silicon usage in units of g/module instead of g/W. Similarly we model plant
3Wafer, cell and module production each have individual process yields, though for simplicity we represent

overall yield with one value.
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Cost component 1980 2001 2012
2015$/W Percentage 2015$/W Percentage 2015$/W Percentage

Silicon cost 5.70 26% 0.41 10% 0.12 9%
Non-silicon materials cost 7.14 32% 1.34 33% 0.72 55%
Plant size-dependent cost 9.29 42% 2.33 57% 0.46 35%

Total module cost 22.13 4.08 1.30

Table 2.2: Cost components in 1980, 2001 and 2012. Total module costs are obtained from
[9].

output in units of modules/year instead of W/year. The share of costs that we find to be

plant size-dependent and area-dependent are different. In [8], all costs are modeled as being

plant-size dependent while we model only non-materials costs as plant-size-dependent, based

on [73]. Also based on [73] we use a higher exponent for scale-dependent costs, 𝑏 = 0.27 versus

𝑏 = 0.18 in [8]. Therefore, compared with [8] our plant scale variable affects a smaller fraction

of total module costs, while influencing this fraction more strongly. We similarly model all

materials costs as area-dependent, and all non-materials costs as non-area-dependent. As a

result a much larger fraction of costs are independent of wafer area in our model, 35-60%

depending on the period versus 4% in [8]. Other differences in the modeling approach used

here and in [8] are discussed at the end of Section 2.3.

2.3 Attributing cost changes to variables

How much of the cost reduction in PV modules came from each variable in Eq. (2.7)?

Here we outline a general approach for computing these contributions from an equation

for costs, with the derivation given in the SI. Identifying the determinants of a change in

technology costs is more challenging than obtaining snapshots of cost components over time

for two reasons. First, one must unravel the network describing how cost components (e.g.

non-silicon materials costs) depend on input variables (e.g. wafer area). A second challenge

is to decompose cost changes in discrete time.

To address these challenges, we first write down (through knowledge of a technology) an

equation for cost as a function of a vector of explanatory variables (EVs):

𝐶(r𝑡) =
∑︁
𝑖

𝑐𝑖(r
𝑡). (2.8)
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𝐶 is the cost of the technology and r𝑡 is the vector of EVs at time 𝑡. The total cost is a sum

over several cost components 𝑐𝑖 that depend on the EVs. Often the cost components can be

written as products of functions of the EVs, as is the case with Eq. (2.7), so that we can

write

𝑐𝑖(r
𝑡) = 𝑐𝑖0

∏︁
𝑗

𝑔𝑖𝑗(𝑟
𝑡
𝑗) (2.9)

where 𝑔𝑖𝑗(𝑟
𝑡
𝑗) gives the dependence of the 𝑖th cost component on the 𝑗th variable. The

prefactor 𝑐𝑖0 combines any other constants that do not depend on the EVs. In the SI we

show that the change to total cost is approximately

∆𝐶 ≈
∑︁
𝑗

(︃∑︁
𝑖

𝑐𝑖 ∆ ln 𝑔𝑖𝑗

)︃
≡ ∆𝐶approx, (2.10)

where 𝑐𝑖 ≡
√︀
𝑐𝑖(r1)𝑐𝑖(r2) is the geometric average of the cost component 𝑖 in the two time

periods, and ∆ ln 𝑔𝑖𝑗 = ln 𝑔𝑖𝑗(𝑟
2
𝑗 ) − ln 𝑔𝑖𝑗(𝑟

1
𝑗 ). Eq. (2.10) implies that the contribution of the

𝑗th variable is

∆𝐶𝑗 =
∑︁
𝑖

𝑐𝑖 ∆ ln 𝑔𝑖𝑗 . (2.11)

Eq. (2.11) provides an estimate of how much cost reduction the 𝑗th variable is individually

responsible for.

In our case, the EVs are r𝑡 =
(︀
𝐴𝑡, 𝜂𝑡, 𝑦𝑡,𝐾𝑡, 𝑝𝑡𝑠, 𝑣

𝑡, 𝑐𝑡, 𝑝𝑡0
)︀
. The cost components in Eq.

(2.7) can be written in the form of Eq. (2.9) as

𝑐1(r) =
(︁𝛼𝜌
𝜎

)︁
𝑣𝑝𝑠𝜂

−1𝑦−1 (2.12)

𝑐2(r) =
(︁𝛼
𝜎

)︁
𝑐𝜂−1𝑦−1 (2.13)

𝑐3(r) =

(︃
𝛼

𝜎𝐾−𝑏
0

)︃
𝑝0𝐾

−𝑏𝐴−1𝜂−1𝑦−1, (2.14)

which are (from top to bottom) silicon costs, non-silicon materials costs, and plant-dependent

costs. Then Eq. (2.11) can be computed to form the estimates for individual variables. For
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example, the module cost change due to the change in efficiency is

∆𝐶𝜂 =

3∑︁
𝑖=1

𝑐𝑖∆ ln 𝜂−1 =

[︃
3∑︁

𝑖=1

√︀
𝑐𝑖(r1)𝑐𝑖(r2)

]︃(︂
ln

𝜂1

𝜂2

)︂
. (2.15)

To complete the approach, we make one final modification to Eq. (2.11). ∆𝐶 is a

non-linear function of variable changes ∆𝑟𝑗 ; however, ascribing portions of ∆𝐶 to particular

variables necessarily means making a linear approximation. This in turn means that the sum

over ∆𝐶𝑗 (i.e. ∆𝐶approx) can be greater or less than the actual change in cost ∆𝐶. Our goal

is to score the relative importance of different EVs, not to characterize the non-linearity of

∆𝐶, so in computing the contributions of EVs we normalize Eq. (2.11) as follows:

∆𝐶norm
𝑗 =

∆𝐶

∆𝐶approx
∆𝐶𝑗 . (2.16)

This normalization guarantees that the sum over ∆𝐶norm
𝑗 sum to ∆𝐶, and percentages based

on ∆𝐶norm
𝑗 sum to 1.

An important departure from the method of [8] is that we start with a cost equation

first rather than beginning directly with cost change equations. This two-step approach

has significant advantages. It ensures that our cost change equations are consistent with

a realizable cost model, whose values can be directly compared with actual costs. A cost

model shows explicitly how variables jointly determine total cost, making it easier to see

what modeling assumptions are being made. It also helps to avoid double-counting or

undercounting the effects of explanatory variables on costs, because the dependence of cost

on each variable has been fully accounted for in the cost model.4

4As an example of how double-counting can occur, silicon usage in PV modules is sometimes expressed in
units of grams per watt. However, silicon usage per watt can decrease either because of a reduced silicon
need per wafer, or because of an efficiency improvement. Efficiency of PV modules improved at the same
time that silicon needs per wafer decreased. As a result, silicon usage per watt has changed more than silicon
usage per wafer has. If the full cost reduction benefit of higher efficiency were already counted elsewhere,
then the silicon-usage benefit of higher efficiency will be double-counted.

Double-counting is less likely to occur if the analysis of cost changes starts with an equation for cost.
In constructing this equation, the grams-per-watt units of silicon usage would have to be reconciled with
the watts units of efficiency × wafer area × the solar constant to recover the correct units for cost. Once
this reconciling of units is done, the cost change equations that are derived from the cost equation will
automatically avoid double-counting as well.
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Figure 2-3: Contribution of the low-level mechanisms to module cost decline in 1980-2001
(left), 2001-2012 (middle), and 1980-2012 (right). Mechanisms are listed in the order of
decreasing contribution for the 1980-2001 period.

2.4 Results and discussion

In this section we first discuss the low-level mechanisms of module cost reduction, which

refer to changes to variables in the cost equation. We then relate the low-level mechanisms to

high-level mechanisms of cost reduction, which refer to processes at the level of institutions

arising from human efforts.

2.4.1 Low-level mechanisms of cost reduction

Figure 2-3 and Table 2.3 show the changes in module cost due to each variable in the two

periods, 1980-2001 and 2001-2012, and the entire period, 1980-2012. Improving efficiency

was the largest contributor in the first period, responsible for 29% of the cost reduction.

In the second period, module efficiency was only the fourth most significant factor, and its

contribution dropped to 13%. Efficiency increased at the wafer and cell levels through many

improvements, such as surface passivation [81], anti-reflective coating [92], and texturing of

the wafers [93, 94], and at the module level with improvements such as a glass structural

layer laminated design [81].
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Cost change due to: 1980-2001 2001-2012 1980-2012
∆2015$/W Percentage ∆2015$/W Percentage ∆2015$/W Percentage

∆ Efficiency -5.20 29% -0.35 13% -5.55 27%
∆ Non-Si materials costs -3.66 20% -0.43 15% -4.09 20%

∆ Wafer area -3.37 19% -0.54 20% -3.92 19%
∆ Silicon usage -2.22 12% -0.14 5% -2.36 11%

∆ Plant size -2.04 11% -0.86 31% -2.90 14%
∆ Yield -1.71 9% -0.19 7% -1.90 9%

∆ Silicon price -1.28 7% -0.10 4% -1.39 7%
∆ p0 1.45 -8% -0.17 6% 1.28 -6%

Change in module cost -18.05 100% -2.78 100% -20.83 100%

Table 2.3: Contribution of the low-level mechanisms to module cost decline in 1980-2001 (left),
2001-2012 (middle), and 1980-2012 (right). Mechanisms are listed in the order of decreasing
contribution for the 1980-2001 period. Cost changes due to the low-level mechanisms and
their percentage contributions are normalized as explained in Eq. 2.16 in Section 2.3.

The second most significant factor in 1980-2001 was lower per wafer area costs of non-

silicon materials, contributing 20% of the cost decline. The contribution of this factor in

2001-2012 was 15%. Non-silicon materials include substances such as as glass, laminate, and

metal paste that become embedded in the module as well as slurry and wire used during

production. The cost of these materials has been reduced by various process and module

design improvements. For example, the cost of slurry used in wafer cutting may be reduced

by recycling, with recycling rates up to 80% reported [95].

Increasing wafer area was an important factor in both periods. Wafer area almost doubled

from 80 cm2 to 150 cm2 in 1980-2001, and grew significantly again to about 240 cm2 by 2012.

A doubling of wafer area, given a fixed number of cells per module, means that each module

assembled produces twice as much power. Material costs are mostly proportional to area,

but other assembly costs are insensitive to area [96, 8], so that larger wafer area yields cost

savings.

Process improvements led to increasing yields in wafer, cell and module production.

Overall yield increased from 75% in 1980 to 95% in 2012. The change in yield contributed

9% and 7% to the module cost decline in 1980-2001 and 2001-2012, respectively. Reduced

handling of wafers, cells and modules due to automation, and improvements in processes

such as wafering, help to increase yield [95]. We note that other improvements (such as

larger wafer sizes) can decrease yields [94], so that yield considerations can be a limiting

factor for otherwise cost-saving practices.

Decreasing silicon usage also contributed to module cost reductions. Silicon usage depends
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on wafer thickness ℎ and silicon utilization 𝑈 . To study the total cost reduction from both

variables, we define the combination 𝑣 ≡ ℎ/𝑈 . In 1980-2001 wafer thickness decreased from

about 500 𝜇m to 250 𝜇m while silicon utilization increased from about 20% to 35%. Reduced

thickness and higher utilization contributed about equally to the silicon cost reduction in

this period. Silicon usage continued to decrease in 2001-2012, though it had a less significant

cost impact. The industry developed thinner wafers both to reduce the cost of silicon and to

increase conversion efficiency [92]. Silicon utilization also increased, though losses remain

high, with about 50% of entering silicon lost during slicing of wafers from silicon ingots.

Decreasing thickness contributed about 70% of silicon cost reduction in this period while

utilization contributed the remaining 30%.

Changes in polysilicon price contributed about 7% and 4% of the module cost decline

in 1980-2001 and 2001-2012, respectively. The endpoints of our analysis lie on either side

of a temporary period of silicon shortage in 2005-2008, during which polysilicon prices

surged. Before this period, most polysilicon was used by the semiconductor industry. The

PV industry used wafers rejected by the semiconductor industries, which has higher purity

requirements [90]. Around 2006 polysilicon demand by the PV industry surpassed that of the

semiconductor industry and polysilicon producers responded by increasing capacity. While

more than 80% of the global polysilicon production was consumed by the semiconductor

industry before 2000 [97], about 90% went to manufacturing PV cells as of 2012 [98].

The pre-factor 𝑝0 in Eq. (2.5) provides the level of plant-size dependent costs for a

plant of a fixed size 𝐾0, thus accounting for the overall level of electricity, labor, capital and

depreciation costs at each time. The change in 𝑝0 was estimated to have increased cost in

the 1980-2001 period and decreased cost in the 2001-2012 period. As described in Section

2.2 we calibrate 𝑝0 in 1980 and 2001 by requiring non-material costs in our cost model to

match values from our data. We regard the variable with caution since changes are difficult

to interpret and it is likely to propagate uncertainty in the data. However, its effects are

among the smallest in both periods.

Finally, increasing manufacturing plant sizes resulted in scale economies through shared

infrastructure, reduced labor requirements, higher yield, and better quality control [99].

Typical plant sizes have scaled up with the industry, starting from 0.125 MW in 1980 and

growing to 14 MW in 2001 and to 400 MW in 2012. Plant size became an especially significant

factor in the more recent period, contributing almost a third of the decline in module cost.
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In Section A.2 of the Supporting Information we estimate the sensitivity of our results

to the uncertainty in the input variables shown in Table 2.1. We conclude that overall our

results are robust to changes in the variables.

Our findings show some similarities to earlier reported results [8], as well as some

differences. Similar to [8] we find that the contribution of increasing module efficiency to

cost reduction in the 1980-2001 period was around 30%. While [8] finds the sources of cost

declines to be heavily concentrated in plant size and module efficiency changes, we find

cost-reducing effects were spread across a number of variables. In [8] the costs of non-silicon

materials are not considered, though we find that non-silicon material costs contributed as

much to cost reduction as silicon did in this period. We obtain a lower estimate for the

contribution of plant size in this period (11% versus 46%), and larger contributions for wafer

area (19% versus 3%), silicon consumption (11% versus 3%) and yield (9% versus 2%). We

find a roughly similar magnitude for silicon price (7% versus 12%).

2.4.2 High-level mechanisms of cost reduction

1980-2001

% contribution
to module cost change

0 20 40 60 80

other

EOS

LBD

public and private R&D

2001-2012

% contribution
to module cost change
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Overall (1980-2012)
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Figure 2-4: Percentage contribution of the high-level mechanisms to module cost decline in
1980-2001 (left), 2001-2012 (middle), and 1980-2012 (right). R&D = Research and develop-
ment, LBD = Learning-by-doing, EOS = Economies of scale, Other = other mechanisms
such as spillovers. We categorize the changes that require a lab setting or a nonroutine
production activity (e.g. experimental production line) as being caused by R&D [100, 101].
We consider an improvement to have been made by LBD if it was achieved as a result of
repeated routine manufacturing activity and if it was incremental in nature [100]. Changes
that result from increases to the scale of the module manufacturing plant we categorize as
EOS.

Low-level cost reductions were driven by various ‘high-level’ mechanisms such as research

and development, learning-by-doing, and economies of scale. Estimating the contributions of
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Figure 2-5: Percent contribution of market expansion policies (e.g. feed-in-tariffs, renewable
portfolio standards) to module cost reduction in 1980-2001 (left), 2001-2012 (middle), and
1980-2012 (right). Scale economies, learning-by-doing, and private R&D were all stimulated
by market expansion. Our data does not let us separate the effects of private and public R&D.
To accommodate this, we add 50% of total R&D contributions to the contributions of scale
economies and learning-by-doing. This effectively assumes that 50% of R&D improvements
came from private R&D (roughly commensurate with the share of R&D expenditures in
clean energy [7, 102, 103, 104]). Uncertainty bars show the total contribution from market
expansion policies that would result under the alternate assignments of low-level mechanisms
to high-level mechanisms shown in Fig. A-12 without accounting for uncertainty in the
private R&D estimate.

these mechanisms is useful because they align more closely with the policy levers often used

to drive down cost. To estimate how much each contributed to cost reduction in PV modules

(Fig. 2-4), we categorize each low-level variable according to which high-level mechanism was

most responsible for its change. In Section A.3 of the Supporting Information we perform a

sensitivity analysis to test the effect of these assumptions. Our conclusions about the relative

importance of different high-level mechanisms are robust to various schemes for relating

low-level and high-level mechanisms (see Fig. A-12).

Changes that require a lab setting or a nonroutine production activity (e.g. experimental

production line) are labeled as being caused by research and development (R&D) [100, 101].

R&D can result in improvements to either the manufacturing process or the technology

being produced. We consider an improvement to have been made by learning-by-doing

(LBD) if it was achieved as a result of repeated routine manufacturing activity and if it

was incremental in nature [100]. Cost changes that result from increases to the module

manufacturing plant scale, and from volume purchases of materials or scale economies in

materials supplier industries, we categorize as economies of scale (EOS).

Based on this we categorize improvements to module efficiency, wafer area and silicon

usage under R&D. Improvements to cell efficiency were largely achieved by R&D done

at national labs, universities and companies. Closing the gap between cell and module
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efficiencies also required R&D to improve module assembly processes such as encapsulation

and interconnections. Larger wafer area was achieved through R&D on single crystal growing

and multicrystalline ingot casting. Wafer thickness and silicon utilization improved though

manufacturing techniques such as wire-sawing that were improved through R&D. LBD may

have been an additional driver of wafer area and silicon usage, which are affected by the

efficiency of the manufacturing process.

Yield likely improved mainly through LBD, as advances in quality control of wafers

and cells reduced rejects and increased automation reduced excess handling. R&D may

have played a role, though we expect that improving yield mainly involved repeated routine

manufacturing activity.

The increasing size of module plants brought about economies of scale (EOS), as manufac-

turers simultaneously prepared for higher demand [8] and looked for better access to capital

[77]. Larger plants realized cost savings from spreading out the costs of shared infrastructure

across greater output and from physical or geometric scaling relationships [105, 106]. In our

model we assume all non-material costs realize scale benefits so that increasing plant sizes

lowers the cost per watt of labor, capital equipment, and electricity.

Silicon prices were driven by different developments over time. Until the mid-2000s,

demand for silicon wafers by the PV industry was met mainly with wafers rejected by the

semiconductor industry. The availability of silicon was a positive externality of semiconductor

production and not a result of R&D, LBD, or EOS in the PV industry. We therefore categorize

silicon price’s high-level mechanism as ‘other’ for 1980-2001. The PV industry surpassed

the semiconductor industry in silicon demand around 2006 [107], leading to a price spike

and supply shortage. To maintain supply, the PV industry developed its own production of

polysilicon. In this period knowledge spillover and scale economies were important. Know-

how of producing single crystal silicon ingots and slicing wafers was acquired from the

semiconductor industry by the PV industry, which rapidly scaled-up its own capacity. For

2001-2012 we therefore choose EOS as the main high-level mechanism for decreasing silicon

price.

Decreases to non-silicon materials costs were important sources of cost reduction in both

time periods. Non-silicon materials costs can be decomposed into material usage (mass/area)

times material price (dollars/mass). We propose that R&D helped reduce materials usage

through new module designs, while EOS led to the decreasing prices due to volume purchases
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or scale economies in materials supplier industries. We assign decreases in non-silicon

materials costs equally to R&D and EOS, and explore the effect of other assignments in Fig.

A-12.

Finally we choose ‘other’ as the high-level mechanism for the change in 𝑝0. 𝑝0 includes

different types of costs (electricity, labor, capital and depreciation) and multiple high-level

mechanisms can affect it. For example, the labor costs component of 𝑝0 can be reduced

through LBD. We do not have the information to break down 𝑝0, and therefore cannot

quantify the high-level mechanisms governing it. However, this issue does not affect the

results much since the module cost change due to the change in 𝑝0 has been small.

Adding the effects of low-level variables, we estimate the percent changes in module

cost due to R&D, LBD, and EOS in the two time periods (Fig. 2-4). In the Supporting

Information, we consider other plausible categorizations of low-level variables and show the

maximum and minimum values achieved with these alternate categorizations. Fig. A-12

shows two alternative cases that include recategorizing 𝑐, 𝐴 and 𝑣. These two alternative

categorizations are meant to reflect the lowest and highest values R&D, EOS and LBD can

take, so that robust conclusions can be drawn.

Our estimates show a strong impact from R&D. R&D played a dominant role in the first

period, improving multiple low-level variables that reduced cost significantly. (Table 2.3.)

R&D’s impact is high in the second period as well. LBD is estimated to have had a small

impact, though we show in Fig. A-12 that LBD’s impact could be higher to the extent that

it contributed to improvements in wafer area and silicon usage.

Scale economies changed from being a minor contributor in the first period to a significant

one in the second. Though plant sizes grew far more in percentage terms during the

first period, and were responsible for significant cost reductions in absolute terms, cost

reductions overall were dominated by R&D-driven efficiency, wafer area, and material usage

improvements. These improvements slowed down in the second period (Table 2.1), permitting

EOS to contribute a larger share.

Private R&D, learning-by-doing and scale economies were all stimulated by market

expansion (e.g. through feed-in-tariffs, renewable portfolio standards). Unfortunately our

data does not let us separate the effects of private and public R&D, however we know that the

expenditure share of each is roughly 50% [7, 102, 103, 104]). If 50% of R&D improvements

came from private R&D, then market expansion would have contributed about 67% of cost
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Figure 2-6: Module cost reductions from one-at-a-time changes to low-level variables. The
reduction in module cost below the 2012 value is shown for each one-at-a-time variable
change. Most variables are adjusted up or down by 25%, in a direction that reduces cost.
Yield was changed from 95% to 100%. Plant size is increased by a factor of 3 (dark blue)
and a factor of 10 (light blue).

reduction over both periods. These results are shown in Fig. 2-5, where uncertainty bars

reflect the range in contribution from market expansion policies that would result under the

alternate assignments of low-level mechanisms to high-level mechanisms given in Fig. A-12.

These results show clearly that PV is an example of a technology where market expansion

played a significant role in stimulating innovative activity and driving down costs [7, 108].

Some cost reductions came from improvements made outside of the PV industry, and

were not stimulated by PV market expansion. We make a rough estimate of the upper

bound on these effects using the variables that were affected by outside developments. 𝑝0

includes equipment costs in module manufacturing, and some equipment improvements (e.g.

wire-sawing) took place in other industries and were transmitted to module manufacturing

as knowledge spillovers. Some reductions in non-silicon materials costs may have come from

improvements in other industries that yielded price reductions. As noted earlier the price

of silicon was affected by developments in the semi-conductor industry. Summing the cost

reductions from these three variables, we estimate that at most 20% of PV’s cost reduction

came from developments outside the PV industry in 1980-2012.

2.4.3 Prospective cost reductions

Considering the various low-level and high-level causes of historical cost declines, how effective

would different strategies be at reducing module costs going forward? To gain insight we

perform two simple analyses to assess how influential each low-level and high-level mechanism

is for reducing costs under our model. In the first analysis, each low-level variable is changed
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Figure 2-7: Percent contributions to module cost reduction below the 2012 value in a scenario
where several low-level variables are changed simultaneously. Left: Percent contributions of
low-level mechanisms from changing all variables at the same time by the amounts shown.
Separate bars are shown for the cases where plant size increases by a factor of 3 (dark blue)
and a factor of 10 (light blue). Right: Percent contributions of each high-level mechanism.
R&D = Research and development, LBD = Learning-by-doing, EOS = Economies of scale,
Other = other mechanisms such as spillovers.

one-at-a-time, starting from its 2012 value, in a direction that reduces cost. With the

exceptions of yield and plant size we change each variable by the same percentage of ±25%

to see how much cost reduction results. While different variables are not equally likely to

realize a given percentage improvement, this approach lets us see how strongly each variable

influences cost. To avoid using an unphysical yield above 100% instead of raising it by 25%

we set yield equal to 100%. Plant size historically grew by very large factors far exceeding

25% – 114-fold in 1981-2001, and 29-fold in 2001-2012, and a 25% increase would not be

expected to achieve much cost reduction. Instead we consider a 3-fold and a 10-fold increase

in plant size. The latter increase would result in plant sizes of about 4 GW/year, roughly

double the size of the largest plants in China currently. The results are shown in the left

panel of Fig. 2-6. The most influential variables are efficiency, plant size, and non-silicon

materials costs. Plant-size contributes substantially, though as plants become larger it may

become more difficult to increase plant sizes by factors large enough to realize significant

further gains.

High-level mechanisms often stimulate improvements in several low-level variables at the

same time, and therefore we also model the simultaneous occurrence of multiple low-level

mechanisms. To assess the cost change contribution of each low-level variable, we need to use

the cost change equations developed in Section 2.3. (This is in contrast to the one-at-a-time
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changes to low-level variables described above, whose contributions to cost change can be

computed by comparing total costs at each snapshot in time.) In this second analysis we

alter all low-level variables simultaneously by the amounts given above. We then group the

cost changes from these variables by high-level mechanism in the same way as in the second

period of our historical analysis. The results5 are shown in Fig. 2-7. Changing all variables

at once, with a 10-fold increase in plant size, module costs decline to 44% of the 2012 value.

As was observed historically, combined public and private R&D accounts for most of the

decline in this scenario.

Our model can be used as a tool to perform prospective analyses to guide future engineering

and policy efforts. The above analysis shows one scenario in which high-level mechanisms

drive several low-level mechanisms. In this scenario, summing the percent contributions of

learning-by-doing and scale economies, in the case of a 10X plant size increase, about 40% of

total cost reduction results from mechanisms related to market-expansion (or roughly 65%

if we assign 50% of future R&D-related improvements to the private sector, commensurate

with the past share of private R&D funding [7, 102, 103, 104]).

Several scenarios could be developed to prospectively investigate the effects of low-level

mechanisms, public R&D funding strategies, market-expansion policies, private R&D, and

other firm-level strategy. Expert elicitation could be used to assess the potential for changing

low-level variables in the cost equation. (The quantitative framework can enable the elicitation

to focus on detailed variables that technical experts are familiar with, and may therefore

help to elicit more reliable information from experts than has traditionally been achieved

[87, 109].) Using this information, an exploration of the effects of different combinations

of high- and low-level mechanisms could inform decisions in the public and private sectors.

This approach could be applied not only to PV modules, but PV systems, energy storage,

and other technologies, as well as performance metrics other than cost.

2.5 Conclusions and policy implications

PV module costs declined dramatically in the last forty years. To identify the reasons, we

advance an analysis method that bridges top-down, high-level analyses of technology cost

5In the 10X plant size case, plant size and non-Si materials costs swap places in the ranking of their effects.
This can happen since changing all variables at once has different effects on cost than changing variables
one-at-a-time and then aggregating their effects.
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evolution with bottom-up engineering models. The method begins with a cost equation

relating a technology’s costs to a set of low-level explanatory variables, e.g. technical

performance characteristics such as efficiency or material usage. Cost change equations are

then derived to estimate each variable’s contribution. These variables explain cost changes

‘at a low-level’, and we term changes to these variables low-level mechanisms of cost reduction.

Other processes like R&D, learning-by-doing, and scale economies may instigate several

low-level mechanisms and drive down costs as a whole. We term these high-level causes of

cost reduction.

We find that cost reductions in PV modules were fairly evenly distributed across a number

of low-level mechanisms, which may help explain why this technology experienced relatively

steady cost reductions over the past three decades. We estimate that changes to efficiency

contributed 27% to the cost reduction from 1980-2012, non-silicon materials costs 20%, wafer

area 19%, plant size 14%, silicon usage 11%, yield 9%, and silicon price 7%.

Several high-level mechanisms were important. These include public and private R&D

and economies of scale, which contributed an estimated 67% and 24%, respectively, of the

cost decline between 1980 and 2012. Learning-by-doing, defined here as incremental and

resulting from a repeated, routine manufacturing process (e.g. not requiring an experimental

production line), contributed 9% of the cost decline during this period.

Looking across both the 1980-2001 and the 2001-2012 periods, our findings suggest that

the key drivers of decreasing costs have been changing over time. Economies of scale in

particular have had a greater impact more recently, and likely offer an avenue for further cost

reductions. Notably, the typical 2012 plant size in our data set has been surpassed by several

new Chinese plants with typical sizes of 1-2 GW/year [77]. However there may be a limit to

how much plant sizes will grow, and savings from economies of scale may be exhausted over

time.

R&D, both public and private, was a key driver of module cost reduction historically and

can be valuable going forward in improving module efficiency and reducing materials use.

Improvements to module efficiency in particular would help cut the per-watt cost of all cost

components of PV modules (as well as PV systems). Variables that might face limitations

in the short term are manufacturing yield, which is already close to 100%, and wafer area,

which is constrained by yield considerations.

Market-expansion policies have played a central role in driving down the costs of PV
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modules, with private R&D, economies of scale, and learning-by-doing together contributing

an estimated 67% of the cost decline in PV modules between 1980 and 2012. This finding

contributes to an ongoing debate on the effectiveness of market-expansion policies, as

complements to publicly-funded R&D [69]. In the case of PV, our analysis shows definitively

that private sector activity, which was incentivized by government policies in various nations

[84], was critically important for driving down costs. Additionally, our findings support the

importance of public R&D to complement private sector activity, which may focus more on

refinements to technology and manufacturing rather than the more major innovations needed

as the limits to incremental improvements are reached [69, 31]. These results add insight to

earlier findings from correlational analyses on the importance of market expansion in driving

energy patenting (as a proxy for innovative activity) in recent years [7], with public R&D

having played the dominant role in the 70s and 80s.

Looking forward, market expansion policies can continue to support cost declines, through

a virtuous, mutually-reinforcing cycle of technology improvement and emissions reductions

[84]. However, our results suggest that these policies should be complemented by public

R&D to reduce the risks of exhausting the improvement potential of current-generation,

silicon-based module technology, by exploring devices based on other abundant semiconductor

materials with the potential for lower processing costs [19].

In this work we provide a reconstruction of trends in PV modules across time using three

representative points in time, drawing from a variety of sources. It is important to note that

the data used in this work has uncertainties, for example due to the incomplete sampling of

firms. Nevertheless we provide a framework for modeling costs and cost changes that can be

populated with the best available data.

This analysis can be helpful in guiding engineering efforts, the formulation of energy and

climate policy, and research investments by government and the private sector. The method

outlined here can be applied to many technologies to understand the reasons for past changes

in cost or other performance, and to explore promising opportunities for future improvement.
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Chapter 3

Metal production requirements for

rapid photovoltaics deployment

If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be

supplied at an increasing rate. In this paper, we quantify the effect of PV deployment levels

on the scale of metals production. For example, we find that if cadmium telluride {copper

indium gallium diselenide} PV accounts for more than 3% {10%} of electricity generation

by 2030, the required growth rates for the production of indium and tellurium would exceed

historically-observed production growth rates for a large set of metals. In contrast, even if

crystalline silicon PV supplies all electricity in 2030, the required silicon production growth

rate would fall within the historical range. More generally, this paper highlights possible

constraints to the rate of scaling up metals production for some PV technologies, and outlines

an approach to assessing projected metals growth requirements against an ensemble of past

growth rates from across the metals production sector. The framework developed in this paper

may be useful for evaluating the scalability of a wide range of materials and devices, to inform

technology development in the laboratory, as well as public and private research investment.1

3.1 Introduction

Photovoltaics (PV) is a low-carbon technology that has the potential to reduce greenhouse

gas emissions if deployed at large scale. [110, 111, 4] As of 2012, PV provides only 0.4% of

1This chapter has been published in Energy and Environmental Science [19] with co-authors James
McNerney, Robert L. Jaffe and Jessika E. Trancik.
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the world’s electricity. [112] Its deployment is growing rapidly, however, at an average rate of

30% per year, [5] as the technology steadily improves and costs decline. [113, 114, 115, 7, 31]

The future growth of PV has been estimated in various energy scenarios, based on

projections of energy demand and the cost and performance of technologies in the future.

Various international organizations, [55, 56] environmental agencies and industry associations,

[57, 58] energy companies and other corporations [59, 60] and academic institutions and

researchers [61, 62] have contributed to this literature. Another group of studies focuses

on resource constraints and the potential for future PV deployment. For example, various

researchers have analyzed the material constraints on PV deployment that are imposed by

annual metal production levels or reserves [53, 13, 18, 54] and have discussed the potential

for increasing PV deployment by reducing the material intensity of PV technologies. [21, 43,

54, 45]

While these studies address the production scale of metals eventually needed, they do not

directly address the time frame over which scaling up should be achieved. In this paper, we

ask whether metals production can be scaled up at a pace that matches the rapidly increasing

PV deployment levels put forward in aggressive low-carbon energy scenarios. Based on the

projected PV deployment levels in 2030, we estimate the growth rates required for metals

production to satisfy the metal demand by the PV sector. We present a new perspective on

the metal requirements of PV deployment by comparing the required growth rates with the

growth rates observed in the past by a large set of metals (the full set of metals for which

yearly production data is available for all years in the period 1972 to 2012). (See Section B.1

of Appendix B for details.)

We include in our analysis the absorber layer materials of three PV technologies man-

ufactured and sold today: crystalline silicon (c-Si) technology (roughly 90% of annual PV

production today) [80] and two thin-film PV technologies, cadmium telluride (CdTe) and

copper indium gallium diselenide (CIGS) (with roughly 5% and 2% of annual PV production

today), [80] building on our earlier, preliminary results. [20] Whereas c-Si is based on an

abundant metal, silicon, CdTe and CIGS utilize metals that have low crustal abundance and

are obtained as byproducts of other metals’ production.

In this paper we aim to provide a thorough analysis of the required growth rates for

silicon in c-Si, tellurium in CdTe, and indium, gallium and selenium in CIGS to meet a range

of projected PV growth scenarios. To complement this analysis of past and projected metals
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growth rates, we also compare the projected levels of metals production to their estimated

scalability potential based on metals reserves. The approach developed in this paper may

also be useful for studying the scalability potential of other technologies as well, in light of

the production growth requirements of raw materials.

3.2 Methods

We estimate the growth rates required for metals production to meet the metal demand

associated with projected global PV deployment levels in 2030. These projected levels are

based on a number of published energy scenarios ranging from low to high PV deployment

(Table 3.1). We note that providing a high proportion of the total electricity through PV

would require energy storage technologies that would also entail material requirements. [116]

This paper concentrates on the materials used in PV technologies but could be extended to

analyze energy storage technologies.

The analysis begins with estimating the required annual production in 2030 for each PV

metal of interest. We then calculate the annual growth rate needed for the metals production

to reach the required level in 2030. To estimate the required metal production in 2030, we

consider the projected demand for the metal by both the PV sector and non-PV end-use

sectors of the metal,

𝑃𝛽 = 𝑋𝛼𝐼𝛼𝛽 + 𝑁𝛽(1 + 𝑛𝛽)18 (3.1)

where

𝑃𝛽 required production for metal 𝛽 in 2030 [metric tons/year (t/y)]

𝑋𝛼 deployment for PV technology 𝛼 during 2030 [GW/y]

𝐼𝛼𝛽 intensity of metal 𝛽 for PV technology 𝛼 [t/GW]

𝑁𝛽 metal 𝛽 used by non-PV end-uses in 2012 [t/y]

𝑛𝛽 annual growth rate in non-PV end-uses of metal 𝛽 [unitless]

The projected demand for a metal 𝛽 by a PV technology 𝛼 in 2030 is determined by the

projected annual deployment level of the PV technology in 2030, 𝑋𝛼, and the anticipated

material intensity of metal 𝛽 in 2030, 𝐼𝛼𝛽 . We calculate the annual PV deployment in 2030,

𝑋𝛼, by using the cumulative installed PV capacity for 2030 projected by the energy scenarios
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Table 3.1: Cumulative Installed PV Capacity Projections for
2030.

Energy Scenario

Cumulative
installed PV

capacity (GW)

Approximate % of
global electricity

from PV

IEA WEOa 720 3

Solar Generation 6b 1850 8

GEAc 3000 13

Shelld 5500 24
a 450 scenario [55]
b Paradigm shift scenario [58]
c GEA-supply, conventional transportation, full portfolio
scenario [61]
d Scramble scenario [59]
Note: Installed capacity figures rounded to nearest ten
GW. Approximate percentage of global electricity is cal-
culated assuming 15% capacity factor for PV [58] and a
total global electricity generation of 30000 TWh in 2030.
[55]

(Table 3.1) and assuming a constant percent annual growth from 2012 to 2030. The material

intensity, 𝐼𝛼𝛽 (in g/W or t/GW), for a metal in a PV module is given by

𝐼𝛼𝛽 =
𝑡𝛼𝜌𝛼𝑤𝛼𝛽

𝜎𝜂𝛼𝑈𝛼𝛽𝑦𝛼
(3.2)

where

𝑡𝛼 thickness of absorber layer for PV technology 𝛼 [𝜇m]

𝜌𝛼 density of layer for PV technology 𝛼 [g/cm3]

𝑤𝛼𝛽 mass fraction of metal 𝛽 within the layer for PV technology 𝛼 [unitless]

𝜂𝛼 module efficiency for PV technology 𝛼 [unitless]

𝜎 solar constant [1000 W/m2]

𝑈𝛼𝛽 utilization fraction of metal 𝛽 in manufacturing PV technology 𝛼 [unitless]

𝑦𝛼 yield in cell and module manufacturing for PV technology 𝛼 [unitless]

For each PV metal, we consider a range of estimates for material intensity in 2030. Table

3.2 provides the parameters used to obtain these estimates and the resulting high, medium

and low material intensity values. The ranges for material intensity considered are 10-30
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Table 3.2: Parameters for Material Intensity and the Resulting Material Intensity,
𝐼𝛼𝛽 , for Each Element.

Elements Cases 𝑡𝛼 𝜂𝛼 𝑈𝛼𝛽 𝑦𝛼 𝜌𝛼 𝑤𝛼𝛽 𝐼𝛼𝛽
(𝜇m) (%) (%) (%) (g/cm3) (%) (t/GW)

In in CIGS
high 2 14 75 73

5.75 22
28

medium 1.2 15.7 80 90 13
low 1.1 20 95 98 7

Ga in CIGS
high 2 14 75 73

5.75 7
9

medium 1.2 15.7 80 90 4
low 1.1 20 95 98 2

Se in CIGS
high 2 14 30 85

5.75 50
161

medium 1.2 15.7 60 90 41
low 1.1 20 95 98 17

Te in CdTe
high 2.5 11.7 50 85

5.85 53
156

medium 2 14 70 90 70
low 1 18 95 97 19

Cd in CdTe
high 2.5 11.7 50 85

5.85 47
138

medium 2 14 70 90 62
low 1 18 95 97 17

Si in c-Si
high 180 14.8 45 95

2.33 100
6629

medium 120 18 55 98 2882
low 50 20.5 90 99 638

In, Ga, Se: 𝑡𝛼 high [43, 45]; 𝑡𝛼 medium, 𝑡𝛼 low [45]; 𝜂𝛼 high [117]; 𝜂𝛼 medium,
𝜌𝛼, 𝑤𝛼𝛽 for In, 𝑤𝛼𝛽 for Ga [43]; 𝜂𝛼 low [118]; 𝑈𝛼𝛽 high for In, 𝑈𝛼𝛽 high for Ga
[43], other 𝑈𝛼𝛽 values [118]; 𝑤𝛼𝛽 for Se [119]; 𝑦𝛼 high for In, 𝑦𝛼 high for Ga [43],
other 𝑦𝛼 values [118].
Te, Cd: 𝑡𝛼 high, 𝜌𝛼, 𝑤𝛼𝛽 for Te [43]; 𝜂𝛼 high, 𝜂𝛼 low [42]; 𝑡𝛼 medium, 𝑡𝛼 low,
𝑈𝛼𝛽 high for Te, 𝑈𝛼𝛽 low for Te, 𝑦𝛼 high, 𝑦𝛼 medium [118]; 𝜂𝛼 medium [45]; 𝑈𝛼𝛽

medium for Te [14]; 𝑦𝛼 low [120]. 𝑈𝛼𝛽 values for Cd are assumed to be the same
as Te. 𝑤𝛼𝛽 for Cd is 1-𝑤𝛼𝛽 for Te.
Si: 𝜌𝛼 [41]; all remaining parameters [40].
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(a) Indium
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(c) Selenium
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(d) Tellurium
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Figure 3-1: Annual production of metals over time, 1972-2012. Black points show the actual
production data, while blue lines are obtained by fitting a line to the natural logarithm of
the production data (using the least squares method) for each 18-year period in 1972-2012.
The slope of the each fitted line represents the annual growth rate for that 18-year period.
The inset in each figure is the histogram of the annual growth rates obtained by this curve
fitting method. The goodness-of-fit varies substantially across the metals and time periods
investigated. The method of reporting tellurium production data changed in 2007, resulting
in an arbitrary jump. [121] Therefore the Te data for the last 6 years are not taken into
account when estimating the growth rates. This is indicated by the gray color used for the
last 6 fitted lines.
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t/GW for In, 2-10 t/GW for Ga, and 20-160 t/GW for Se in CIGS; 20-160 t/GW for Te and

20-140 t/GW for Cd in CdTe; and 640-6630 t/GW for Si in c-Si when material losses during

manufacturing are considered. The high material intensity estimate corresponds to today’s

level.

The demand by non-PV end-uses of each metal in 2030 is estimated by using the median

of the historical growth rates of that metal over all 18-year periods between 1972 and 2012.

To account for the variability in the historical growth rates and the uncertainty regarding the

future of the non-PV end-uses of the metal, we also calculate a confidence interval around the

median growth of the non-PV end-uses defined by the 1st and 3rd quartiles of the distribution

of historical growth rates over all 18-year periods between 1972-2012.

We calculate the growth rate, 𝑟𝛽, required for the metals production in 2012 to reach

the required level in 2030 by assuming a constant percentage annual growth rate and using

equation (3.3):

𝑃𝛽 = 𝑃0𝛽 × (1 + 𝑟𝛽)18 (3.3)

where

𝑃0𝛽 production of metal 𝛽 in 2012 [t/y] (from [122, 123, 124, 125, 126, 127])

𝑃𝛽 production of metal 𝛽 in 2030 [t/y] (found in eq. 3.1)

After obtaining the required growth rates, 𝑟𝛽, we compare them to historical growth

rates of metals production in order to determine whether the required growth rates have

historical precedent. When studying the historical growth rates, we use a large set of

metals to obtain a more complete picture of the metals production sector. We obtain the

annual global production values for 32 metals for the last 40 years from the U.S. Geological

Survey. [122, 123, 124, 125, 126, 127] These represent all metals for which continuous yearly

production data is available.

We study material resources at the purity grade reported by the US Geological Survey.

(See Table B-1 in Appendix B.) We note that byproduct metals such as Te are generally

tracked at higher levels of purity than primary metals such as Si, since only the refined

byproduct is globally traded. Because of this, we carry out an additional analysis on

metallurgical grade Si, a higher purity form that is the precursor to most (97%) Si used
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in solar cells [128, 129, 130], to see whether this partially-refined material with smaller

production scale is able to support deployment of Si-based PV. This analysis also limits the

raw Si resource, since currently metallurgical grade Si is produced more selectively from silica

deposits with relatively low starting level of impurities. [131] We note that data on MG-Si

is limited to the period from 1990 - 2012, and that data prior to 2004 excludes production

by China, further limiting the number of observations. To maintain consistency with other

metals, in Figures 3-1-3-4 we use total production of Si given in the USGS data, for which a

full 40 year history of most recent production data is available.

We calculate the historical annual growth rates for each metal for all overlapping 18-year

periods between 1972-2012. Annual growth rates are calculated based on 18-year time

horizons to match the time horizon of the metals growth projections considered (2012-2030).

Because we are interested in growth rates that are sustained over all possible 18-year periods,

we measure the growth rates over overlapping periods rather than disjoint periods. The

average annual growth rate of metals production over each 18-year period is estimated

by fitting a straight line to the natural logarithm of the production over time using the

least-squares method (Figure 3-1). This is not meant to be a high-fidelity model and we

emphasize that the goodness-of-fit varies substantially across the metals and 18-year time

periods studied. This level of fidelity is appropriate for answering the following question: If

we approximate past and future growth in metals production as following an exponential

trend over an 18-year period, how do future required growth rates compare to those observed

in the past?

3.3 Results and Discussion

In this section, we first present historical growth rates in the production of metals. Next,

we show the growth rates required for the PV metals to reach various projected annual PV

installation levels in 2030, and compare these to historical growth rates. Third, we briefly

discuss constraints on scaling up the production of byproduct metals based on the production

levels of their host metals, as well as the estimated metals reserves.
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Figure 3-2: Historical growth rates over time are shown for the metals of interest. Growth
rates are calculated and plotted in a backward looking manner: The growth rate corresponding
to a year is calculated using the production values from the previous 18 years. Reporting of
the Te production data changed in 2007, [121] therefore the data for the last 6 years are not
taken into account when estimating the growth rates.

3.3.1 Historical Growth Rates

Figure 3-1 shows the annual production values for a set of PV metals over time (1972-2012).

The inset in each plot shows a histogram of the annual growth rates for the corresponding

metal over all 18 year periods. As can be seen in Figure 3-1, the variability in annual growth

rates differs across metals but the distribution of growth rates is constrained to a fairly

narrow range, falling below 10% growth per year for these metals with the exception of In.

The change in growth rates over time are different for each PV metal (Figure 3-2). In

and Ga have experienced growth rates that are mostly above 5% per year, which is high

compared to the other four metals. In, Ga, and Te growth rates have changed significantly

over time, unlike Se and Cd rates, which have fluctuated within a small range between -1%

and 3% per year. Si growth rate has also been lower and more stable compared to In, Ga,

and Te, and recently increased to 5% per year.

To gain a broader picture of the metals production industry, we also obtain the growth

rates for the 32 metals available in the USGS database (Figure 3-3). Figure 3-3(a) shows the
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histogram of the aggregated growth rates observed by the set of 32 metals over all 18-year

periods in 1972-2012. We see that the median growth rate is 2.3% per year. A growth rate

of 9% per year at the 95th percentile of the aggregated growth rate distribution is marked

with a vertical dashed line in Figure 3-3(a). We interpret 9% per year as an upper end of

business-as-usual growth. If a growth rate of 9% per year is sustained over an 18-year period,

the annual production will increase by almost a factor of 5 over this period. Also important

to our analysis is the maximum growth rate that has been sustained over an 18-year period,

which is 14.7% per year.
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(b) Historical growth rates over time

Figure 3-3: (a): Histogram shows the distribution of the historical annual growth rates
of production of 32 metals observed in 1972-2012 over 18-year periods. Growth rates are
calculated by fitting lines to the natural logarithm of the production values in each of the
18-year periods in 1972-2012. The median 18-year average annual growth rate is 2.3%.
(b): 18-year average annual growth rates in metals production have been almost constant
over time for the 32 metals studied. Annual growth rates are backward looking: they are
calculated using the production values from the previous 18 years. The solid midline is the
median of the growth rates of 32 metals for each year. The blue dotted lines show the 5th
and 95th percentiles. The dashed purple lines show the minimum and the maximum growth
rates observed. Note: The data coming from the last 6 years of Te production are excluded
from both panel (a) and panel (b) due to a change in the reporting of the Te production
data in 2007. [121]

Figure 3-3(b) shows how the historical growth rates change over time. We observe that

the median 18-year average growth rate has been mostly stable over time. An upward trend

is observed in the median as well as the interval between the 5th and 95th percentiles after

2005. Even with this upward trend in recent years, the growth rates have been stable, and

the median growth rate stayed below 5% per year.

Using overlapping time periods to obtain the 18-year average annual growth rates places
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greater weight on years falling in the middle of the time span considered (1972-2012). However

we note that this does not introduce a bias in the histogram shown in Figure 3-3(a), as the

annual production growth rates across the aggregated set of metals trend neither up nor

down over the period considered (1972-2012), as shown in Figure B-3 in Appendix B.

3.3.2 Comparison of Projected and Historical Growth Rates

Figure 3-4 shows the annual growth rates required for the production of PV metals to meet

the demand of a wide range of annual PV installation levels in 2030. The lower and upper

ends of each colored band in Figure 3-4 are based on growth in non-PV end-uses at rates

defined by the 1st and 3rd quartiles of the distribution of their historical 18-year average

growth rates.

When explaining the results, we focus on the medium material intensity case and the

annual PV installation level corresponding to the “Solar Generation 6, paradigm shift”[58]

scenario. The Solar Generation 6 [58] scenario projects a relatively modest growth in PV

installations. In this scenario, the cumulative installed capacity reaches 1850 GW in 2030,

[58] and generates around 2430 TWh in a year assuming an average capacity factor of 15%.

If the total annual global electricity generation in 2030 is 30000 TWh, [55] then PV supplies

around 8% of the world’s electricity in this scenario. When we assume that PV installation

grows at a constant percentage annual growth rate starting from about 100 GW cumulative

installed capacity in 2012, the annual PV installations in 2030 would be 275 GW to reach

the 1850 GW cumulative installed capacity in 2030. In Figure 3-4, the vertical line marked

with the “8% SolarGen6” corresponds to this annual installation level, and 8% refers to the

portion of the global electricity provided by PV.

If CIGS provides all of the 275 GW annual installations projected by the Solar Generation

6 [58] scenario in 2030, the required growth rate for In is approximately 14% per year for

the medium intensity case, as shown in Figure 3-4(a). This rate is almost unprecedented

considering that the highest growth rate that has been observed historically by a large group

of metals is 14.7% (as shown in Figure 3-3(a)). 14% per year is also high compared to In’s

recent growth rates, where In production has been growing at a rate lower than 10% per

year (Figure 3-2). A growth rate of 14% per year means that In production increases from

780 t/y in 2012 to 8250 t/y in 2030, which is over a factor of 10 increase. In this scenario,

the annual Ga and Se production each needs to grow at 11% per year, as shown in Figure
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3-4(b) and Figure 3-4(c). These growth rates are greater than the majority of the historical

growth rates experienced by all metals (Figure 3-3(a)). For Se, the projected 11% per year

is significantly higher than the growth rates that Se has experienced in the last forty years

(Figure 3-2), and corresponds to an increase in annual production of 2240 t/y in 2012 to

14660 t/y in 2030. On the other hand, the required growth rate for Ga, 11% per year, is

slightly above what Ga has been experiencing in the recent years (Figure 3-2). This rate

means that Ga production increases from 380 t/y in 2012 to 2490 t/y in 2030.

If we constrain metals growth rates to the maximum historical rate of 14.7%, the annual

CIGS deployment levels in 2030 would be limited by In to 340 GW. Se and Ga would allow

the annual CIGS deployment to be up to 580 GW and 700 GW, respectively, if CIGS were

not limited by In.

If CdTe provides 8% of the global electricity generation in 2030 corresponding to the Solar

Generation 6 [58] scenario, in which case the annual CdTe installation in 2030 is 275 GW, Te

production needs to grow at 23% per year for the medium material intensity case as shown

in Figure 3-4(d). 23% per year is significantly higher than the highest historical growth rate

observed for all of the 32 metals (Figure 3-3(a)). 23% per year growth rate corresponds to a

more than fortyfold increase in the annual Te production - from 500 t/y in 2012 to 20760

t/y in 2030. Cd, on the other hand, requires only 4% per year growth rate in this scenario

(Figure 3-4(e)) - an increase from 20900 t/y to 42340 t/y. Historically, Cd production has

been growing at very low rates and even decreased over sustained time periods as can be

observed in the negative rates in Figure 3-2. 4% growth per year is relatively low compared

to the required growth rates of other byproduct metals.

The maximum CdTe deployment in 2030 would be determined by Te, if Te growth rate

does not exceed the maximum historically observed growth rate (14.7% per year) observed by

all of the 32 metals. In this case, the annual CdTe deployment in 2030 would be limited to

80 GW. Cd would allow up 3600 GW annual CdTe deployment, if there were no constraints

imposed by Te.

The median historical growth rates for In and Ga are 𝑛𝐼𝑛 = 10% and 𝑛𝐺𝑎 = 6.8%, are

on the higher end of the historical growth rates of all metals. Since we project the growth of

non-PV end-uses based on the historical growth rates and the share of non-PV end-uses is

very high compared to PV uses, the non-PV demand for both In and Ga is projected to be

high. In comparison, a larger fraction (40%) of Te is used for PV compared to In and Ga,
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which have only up to 5% of their production dedicated to PV uses. For this reason, the

required Te growth rates are more directly related to the level of PV installations than CIGS

metals are as seen in Figure 3-4.

Instead of CIGS or CdTe, if all of the 275 GW annual PV installation comes from

c-Si, Si production needs to increase only by 2.5% per year (Figure 3-4(f)). This growth

rate is close to the median historical growth rate observed for all metals, 2.3% per year.

Unlike byproduct metals, the increasing PV deployment does not cause much increase in the

required growth rates for Si. This is mainly due to the fact that PV constitutes only a tiny

fraction of Si’s end-uses. For the medium material intensity case, the required growth rate

for Si does not exceed 5% per year up to 1000 GW of annual deployment. For all annual

deployment levels explored in this analysis (up to 6000 GW per year in 2030, supplying 100%

of forecasted electricity consumption) the required growth rates for Si stay within the range

of historical growth rates observed for all metals. (We estimate that silver production for use

in contacts for c-Si cells can supply high levels of c-Si PV deployment (up to 80% of global

electricity by c-Si in 2030) without exceeding historical growth rates. See Appendix B for

details. Silver might also be replaced with other materials.) [15, 132, 133] We find the same

results using only metallurgical grade Si (see Methods section) as the basis for Si growth rate

measurements, rather than all Si. Applying the same analysis to this alternative measure of

useable Si production, in Appendix B, we find that required growth rates remain within the

historical range with 100% of global electricity supplied by Si-based solar cells.

It is worth noting that although the growth rates are lower for Si, the increase in the

amount of annual Si production from 2012 to 2030 is two to three orders of magnitude higher

compared to other PV metals (In, Ga, Te, Se) because it is produced at a much larger scale.

A growth rate of 2.5% per year correspond to an increase in Si production from 7.8 millions

t/y in 2012 to 12.2 million t/y in 2030.

3.3.3 Discussion of Constraints on Metals Production Growth

In, Ga, Se, Te, and Cd have low crustal abundances and are extracted economically today

only as byproducts of other ‘host’ metals. However a significant quantity of byproduct metal

is never extracted from the mined ore. Below we briefly discuss the scalability potential

of byproduct metals if they were recovered with 100% efficiency from the mined mineral

at today’s production levels of host metals, and compare these production levels to those

57



10
0

10
1

10
2

10
3

0

10

20

30

40

50

a
n
n
u
a
l 
m

e
ta

l 
g
ro

w
th

 r
a
te

 (
%

)

annual CIGS PV installation in 2030 (GW) 

 3
%

  
 W

E
O

 4
5
0
 

 8
%

  
 s

o
la

rG
e
n
6
 

1
3
%

  
 G

E
A

 

2
4
%

  
 S

h
e
ll 

7
5
%

(a) Indium, 𝑛𝐼𝑛 = 10%
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(b) Gallium, 𝑛𝐺𝑎 = 6.8%
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(c) Selenium, 𝑛𝑆𝑒 = 1.4%
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(d) Tellurium, 𝑛𝑇𝑒 = 1.4%
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(e) Cadmium, 𝑛𝐶𝑑 = 0.6%

10
0

10
1

10
2

10
3

0

10

20

30

40

50

a
n
n
u
a
l 
m

e
ta

l 
g
ro

w
th

 r
a
te

 (
%

)
annual Si PV installation in 2030 (GW) 

 3
%

  
 W

E
O

 4
5
0
 

 8
%

  
 s

o
la

rG
e
n
6
 

1
3
%

  
 G

E
A

 

2
4
%

  
 S

h
e
ll 

7
5
%

(f) Silicon, 𝑛𝑆𝑖 = 2.2%

Figure 3-4: Required growth rates for metals production to reach a range of annual PV
installation levels in 2030. The bands with different colors show the required growth rates
for different levels of material intensities given in Table 3.2. The lower and upper ends of
each band are obtained by assuming that the non-PV end-uses grow at rates equal to the 1st
and 3rd quartiles, respectively, of the historical growth rate distribution of that metal over
each 18-year period between 1972-2012. The median of the 18-year average growth rates
observed between 1972-2012 for each metal, (𝑛), is shown below each plot. The vertical
lines indicate the assumed annual installation level for the PV technology corresponding
to each energy scenario. The percentage on the left of the scenario names indicate the
fraction of global electricity generation coming from PV. The energy scenarios originally
report only the cumulative PV installations. By assuming a constant percent annual growth
rate, we calculated the annual installation level in 2030. The horizontal line at 9% growth
rate corresponds to the 95th percentile of the historical growth rates for all 32 metals as
shown in Figure 3-3.
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required to meet 8% of global electricity (corresponding to the Solar Generation 6 scenario.)

[58] We also compare the projected metals production requirements to estimates of global

metals reserves. We note, however, that the reserves estimates are revised over time to reflect

newly identified mineable deposits, and therefore should not be considered fixed constraints

on metals production. [134, 135]

We find that for a scenario in which 8% of the global electricity in 2030 is provided by PV

(CIGS, CdTe, or c-Si), and under the assumption of medium material intensity, the required

levels of annual production for In, Te, and Se exceed the estimated potential production levels

for today by large amounts. The required annual Te production in 2030 also exceeds the Te

reserves, [136] while the required annual In production in 2030 approaches the estimated In

reserves. The cumulative production by 2030 would far exceed the reserves for In and Te.

Ga and Si production are less constrained as discussed further below.

The amount of annually recoverable In is 1350 t/y based on the average In content of the

zinc ore, sphalerite (ZnS),[63] and the annual zinc production of 13.5 million tons in 2012.

[122] The required annual In production in 2030 to meet 8% of electricity demand (∼8300

t/y) is about 6 times the annually recoverable In (1350 t/y), and close to the estimated

global In reserves (11000 t). [137]

The potential Te and Se production can be estimated to be around 1430 t/y and 5500

t/y, respectively, based on the average Te and Se content of the anode in the electrolytic

copper refineries [138] and the global electrolytic copper refinery production in 2011. [139]

The required production for Te to meet 8% of electricity demand in 2030 (∼20800 t/y) is

an order of magnitude larger than the potential production (∼1400 t/y) and almost equal

to the estimated reserves (24000 t). [136] The required production for Se in 2030 (∼14700

t/y) is more than twice the potential recoverable amount (∼5500 t/y). The estimated Se

reserves (120000 t) [136] would be sufficient for around 8 years, at the required 2030 annual

production levels.

The amount of Cd that is potentially recoverable from zinc ores can be estimated to

be about 40500 t/y, based on the average Cd content of the zinc ore, sphalerite (ZnS), [63]

and the annual zinc production of 13.5 million tons in 2012 [122]. For Cd, the required

production in 2030 for the Solar Generation 6 scenario [58] (∼42300 t/y) is also above the

potential production (∼41000 t/y); however, the difference is proportionately less compared

to In, Te, and Se. If the required level of annual Cd production is sustained, the estimated
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Cd reserves (500000 t) [136] would be sufficient for around 12 years.

Ga has the highest crustal abundance among all of the byproduct metals analyzed in

this paper. Ga availability can be estimated to be 12500 t/y based on the average content

of bauxite ores, [140] and the annual bauxite production in 2012, 250 million tons. [122]

The required Ga production in 2030 for the Solar Generation 6 scenario [58] (∼2500 t/y)

is almost an order of magnitude below the estimated maximum recoverable Ga based on

today’s bauxite production levels (∼12500 t/y), and much lower than the estimated Ga

reserves (400000 t). [141]

Unlike the byproduct metals discussed above, Si is abundant: it comprises about 28% of

the Earth’s crust as a constituent of various minerals. [142] Although the U.S. Geological

Survey does not report quantitative estimates of Si reserves, it states that the reserves are

ample. [136] If the annual Si production grows at its historical average annual growth rate of

2.2% (as shown in Figure 3-1), then the annual Si production in 2030 will reach 11.5 million

t/y in 2030. This is only 6% lower than the annual Si production level required by the Solar

Generation 6 scenario [58] in 2030, which is 12.2 million t/y.

3.4 Conclusion

Continued rapid growth in PV deployment could require significant growth in the supply

of some metals. In this paper, we estimate the growth rates needed in metals production

to match PV deployment projections in 2030 for a range of future energy scenarios. We

compare the required growth rates for six PV metals (In, Ga, Se, Te, Cd, and Si) with the

historical growth rates observed for a large set of metals. We also compare the required

production levels of the byproduct metals to their scalability potential based on metals

reserves estimates.

The annual growth rates required for the byproduct metals (In, Ga, Te, and Se) production

to satisfy the energy scenario-projected PV demand levels in 2030 are either unprecedented

or fall on the higher end of the historical growth rates distribution. Growth projections for

CdTe {CIGS} to supply 3% {10%} or greater electricity demand by 2030 would require

unprecedented metals production growth rates for Te {In}. These estimates are for the

medium material intensity case. The required metals growth rates will be even higher if

material intensity remains at today’s levels, the ‘high materials intensity’ case. In contrast,
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our results suggest that c-Si technology can provide up to 100% of global electricity in 2030

without Si production exceeding the historical growth rates observed across a large set of

metals.

The scalability potential of In, Te, and Se also fall short of the required production levels

for these metals in 2030 based on estimated metals reserves. Ga has a higher scalability

potential based on its higher abundance in bauxite ores. The Cd supply does not appear to

be constraining because of its higher abundance in ores and decreasing demand by non-PV

uses due to its toxicity. Finally, Si supply restrictions do not appear to pose a binding

scalability constraint, due to the abundance of this metal.

This paper focuses on three main PV technologies that have been commercialized, CdTe,

CIGS and c-Si. We find that at least one of these technologies, c-Si, is scalable based on

the analysis of required metals production growth rates and Si availability. When the high

processing costs of Si are considered, there is still room for improvement and possibly the

introduction of non-Si based PV technologies, in order to reduce module costs. This study

highlights, however, the importance from a scalability perspective of reducing the material

intensity of other PV technologies (for example by using concentrators), or utilizing earth

abundant materials. These general insights apply to a range of existing and future PV

technologies.

In this paper, the required metals growth rates reported rely on estimates of the future

demand for non-PV end-uses, based on the range of observed historical growth rates of

these metals. We note that if non-PV end-uses grow more rapidly or slowly than observed

historically, the comparison of projected and historical growth rates to meet PV scenarios

would change.

The analysis of required growth rates in the context of historical growth rates provides a

new perspective for assessing the raw material needs for future energy deployment scenarios.

This approach can also be useful for analyzing the materials requirements of other technologies,

to assess their scalability and inform technology development and research investment. We

note that while the availability of raw materials is a necessary condition for scaling up

technology production, other factors including production energy requirements [143, 128, 129]

and the regional distribution of resources [131], should also be considered in an analysis of

sufficient conditions for scalability.
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Chapter 4

Criticality signals from metal price

fluctuations with a focus on

photovoltaics

Renewable energy technologies such as photovoltaics (PV) have an exceptional track record of

falling costs and growing deployment. However, questions remain as to whether materials

availability could prevent the cost-effective production of these technologies. This work focuses

on a particular definition of metals criticality, which is the cost riskiness that metals bring

to the technologies they are used in, and develops an approach that can serve as a first-pass

assessment. We first characterize and compare the price dynamics of a wide set of metals.

We find that the median price of byproduct metals are 45 times higher than the median price

of major metals on average across all years over the period 1973-2012, while the median price

volatility of byproduct metals was 69% higher than the median price volatility of major metals.

We then evaluate the cost riskiness of PV technologies by treating a technology as a portfolio

of metals. We find that PV technologies such as CdTe and CIGS that rely on byproduct

metals, which show high price volatility and prices, may face higher cost riskiness, whereas

other technologies such as perovskites would be expected to be less risky. The cost-riskiness

metrics proposed in this work can be readily applied to other technologies.
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4.1 Introduction

Despite past improvements, there may be scalability constraints that could slow down the

cost trend and growth of PV. A scalability constraint that is relevant for PV is materials

availability [13, 14]. Materials are important inputs and constitute a significant share of PV

costs. Some of the current PV technologies use rare metals, whose availability and prices

are risky. This is mainly because they are obtained as byproducts of major metals such as

copper and zinc [21, 22, 23]. Being byproducts, their price and availability are dictated by

the economics of major metals [24, 25, 26, 27].

Previous studies have identified possible materials constraints across many sectors of the

economy and have shown that this may cause risks for companies, countries and regions

[46, 47, 48, 49, 50, 51]. In general, these studies described metals as ‘critical’ if they are

essential to industry and difficult to substitute, but sourced from few and politically unstable

regions. Across these studies different definitions and indicators of criticality have been

used [68]. Many metals used in technologies that can play a role in the transition to a

low-carbon economy, such as PV, wind turbines and electric cars, have been deemed critical

[63, 64, 65, 66, 67]. However, past studies have not analyzed how material availability risks

may affect technology costs.

Here we assess materials availability risks from the perspective of technology costs, by

introducing the concept of cost riskiness. This is the risk that input materials may bring to

the technologies they are used in due to changes in material prices. Changes in price can act

as an indicator of risks in the metals production system because price can become volatile

due to physical unavailability, speculation or imperfect information. These changes can

introduce added uncertainty and risks for producers, consumers and other stakeholders [144].

Metals that have inelastic supply (e.g. due to complex or inflexible production processes or

limited excess supply) or metals that have inelastic demand (e.g. since they are essential,

difficult to substitute, or represent a small portion of the overall cost of the product they

are used in) may have higher price fluctuations in the case of demand and supply shocks,

respectively. Price volatility has been proposed as an indicator of criticality in a few studies

[145, 146]; however, it has not been investigated from the perspective of technology cost

riskiness before.

To analyze cost riskiness, we use currently available data on metals prices and explore
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signals in the price behavior that can indicate the risks of using certain metals in a technology.

Specifically we ask: How do different metals compare in terms of price dynamics (averages and

fluctuations around the averages)? How much cost riskiness may PV technologies experience

due to their input metals?

We compare metals based on their price dynamics by using historical data for 35 metals

over a 40-year period (1973-2012). We quantify the low-frequency changes in the historical

price data from moving averages and the high-frequency changes from volatilities. We then

apply these metrics to several PV technologies, including those that have been commercialized

and those that are being developed in the labs, to compare their cost riskiness due to the

metals they employ. Although we focus on PV here, the cost-riskiness metrics we propose

can be used to evaluate any technology and make comparisons across technologies. The

insights from this analysis can be used to inform the developments of technologies.

In Section 4.2, we describe the methods and data used to obtain the cost-riskiness metrics.

We discuss how metals compare in terms of price dynamics, and apply the cost-riskiness

metrics to the metals used in PV technologies in Section 4.3. We conclude in Section 4.4.

4.2 Methods

4.2.1 Description of the data

We obtain global yearly price and production data from the U.S. Geological Survey publica-

tions [147], which are available to the public. We include many metals in our dataset to get

a broad picture. Our dataset includes 33 metals and 2 metal groups (platinum group metals

and rare earth elements), ranges from major industrial metals to metals produced at smaller

scales and used in more specialized applications, and captures most of the important metals

which are produced, traded, and used worldwide. This dataset covers 38 of the 62 naturally

occurring metals/metalloids. Only 9 metals that are included in the USGS database were not

included in our analysis due to incomplete data. In Appendix C we provide more information

about the reasons for including or not including certain metals.

Besides comparing metals on an individual basis, we also want to identify the differences

between certain groups of metals. Therefore, we categorize the metals in our dataset as shown

in Table 4.1. Our analyses will especially highlight the characteristics of major metals and

byproduct metals. We categorize metals as ‘major metals’ if they are the primary products of
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Table 4.1: Metal groups in this study. We categorize metals
as ‘major metals’ if they are the primary products of their
mines. Metals that are 100% obtained as byproducts are in
the ‘byproducts’ category, while ‘others’ are those that may
be obtained as byproducts or primary products of a mine.
Note that the data is at the aggregate level for rare earth
elements and platinum group metals.

Major metals Byproducts Others
Aluminum Arsenic Cobalt
Chromium Bismuth Vanadium
Copper Cadmium Beryllium
Lead Gallium Niobium
Magnesium Germanium Lithium
Manganese Indium Mercury
Nickel Rhenium Molybdenum
Silicon Selenium Antimony
Strontium Tellurium Tantalum
Tin Thallium Tungsten
Zinc Rare earth elements Silver

(15 lanthanides, Gold
yttrium, scandium) Platinum group metals

(platinum, palladium,
rhodium, ruthenium,

osmium, iridium)
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their mines. Metals that are 100% obtained as byproducts are in the ‘byproducts’ category,

while ‘others’ are those that may be obtained as byproducts or as primary products of a

mine.

For major metals, both price and production data are available at the USGS website

starting from as early as 1900. For other metals, data may start later. In order to compare

metals on an equal time frame, our analysis focuses on 1973-2012 as this is the period for

which data are available for all of the metals in our dataset.

4.2.2 Description of the cost-riskiness metrics

We analyze metal price dynamics over time and across metals by quantifying the low- and

high-frequency changes as described below. To quantify the low-frequency changes, we

calculate the moving average. Given a price sequence1 for a metal for 1973-2012, {𝑝𝑡}40𝑡=1, we

calculate a moving average sequence using a time window of interest. Using shorter time

windows would reveal the fluctuations more, while longer time windows would emphasize the

overall trend. Say, the time window is 20 years, then the moving average sequences for the

price, {𝑀𝐴𝑡}21𝑡=1, are found in the following formula:

𝑀𝐴𝑡 =
1

20

∑︁𝑡+19

𝑖=𝑡
𝑝𝑖. (4.1)

We also obtain the moving average sequence for the production data when we compare metals

in terms of low-frequency price and production changes in Section 4.3. The moving average

for production is obtained by using the same procedure as above.

To characterize the short-term variations in price, we calculate volatility. The volatility of

a price series is commonly calculated as the standard deviation of period-over-period changes

in prices [148, 52, 144]. We start by calculating the year-to-year changes in prices. Given a

price sequence for a metal for 1973-2012, {𝑝𝑡}40𝑡=1, the yearly price change sequence, {𝜌𝑡}39𝑡=1

is obtained by taking the first difference of the logarithm of the price sequence:

𝜌𝑡 = ln 𝑝𝑡+1 − ln 𝑝𝑡. (4.2)

The logarithmic differences can also be interpreted as yearly percentage changes in price

when they are small. The volatility for a price change sequence with length 𝑛 is the standard

1Note that the yearly prices are deflated to their real values in 2012 by using the GDP deflator.
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deviation of the yearly changes:

𝜎𝑡 =

√︃∑︀𝑡=𝑛
𝑡=1 (𝜌𝑡 − 𝜌)2

(𝑛− 1)
. (4.3)

4.2.3 Application of the cost-riskiness metrics to technologies

For a technology, we can evaluate the price trend and price volatility of its metals individually.

However, in order to compare PV technologies that are composed of multiple metals, we

need a method to combine the cost riskiness of individual metals. To our knowledge only one

previous study attempted to analyze the risks due to input metals at a technological level by

combining the risks of individual metals [149]. In this work we treat each technology as a

portfolio of metals and obtain an aggregate score for a technology by weighting the price

and price volatility of its individual metals.

The expected average price of the portfolio (i.e. a PV technology) is the weighted sum of

the individual metal’s prices:

𝑝𝑡𝑒𝑐ℎ =
∑︁
𝑖

𝑚𝑖𝑝𝑖, (4.4)

where 𝑝𝑖 is the price of metal 𝑖 [2012$/t] and 𝑚𝑖 is the material intensity of metal 𝑖 [t/GWp]

in the technology.

The weighted price is similar to the ‘vulnerability to supply restriction’ dimension of

criticality used in previous studies (e.g. [50]). When price is weighted by material usage,

it shows the economic importance of the metals for the technology, therefore the economic

consequence that could be suffered in case of a supply disruption. A similar weighting

approach can be used to obtain the economy-wide importance of a metal by weighting the

price by the economy-wide usage.

The price volatility of the portfolio (i.e. a PV cell technology) is shown in Eq. 4.5. This

time we use the mass fractions of metals in the technology as weights to represent their

proportional effect on the technology. The weighted price volatility is determined not only by

the price volatilities of the individual metals but also how their yearly price changes correlate

with each other. If they are perfectly uncorrelated, the technology’s price variance is the sum

over all metals of the square of the fraction of the metal in the cell times the metals’ price

variance. If there is a correlation, the second term adds to or subtracts from the first term.
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(a) Price versus production (40-year window)
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Figure 4-1: Average price versus average production for 1973-2012, using (a) a 40-year
window and (b) overlapping 20-year windows. Major metals are shown in blue, byproduct
metals are in magenta, and other metals are in gray. Annual price and production data are
collected from the U.S. Geological Survey publications [147]. Prices are in real 2012 USD.
Note that there has been limited movement across the x-axis over time. The relationship
between price and production is 𝑝 ∼ 𝑑−0.57 in (a) and 𝑝 ∼ 𝑑−0.56 in (b), where 𝑝 is price and
𝑑 is production.

𝜎𝑡𝑒𝑐ℎ =

√︃∑︁
𝑖

𝑤2
𝑖 𝜎

2
𝑖 +

∑︁
𝑖

∑︁
𝑗 ̸=𝑖

𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗 , (4.5)

where 𝑤𝑖 is the mass fraction of metal 𝑖, 𝜎𝑖 is the price volatility of metal 𝑖, and 𝜌𝑖𝑗 is the

correlation coefficient of yearly price changes of metal 𝑖 and 𝑗.

4.3 Results and Discussion

4.3.1 Low-frequency changes: Moving averages

When we analyze the low-frequency changes (moving averages) in price, we observe differences

across metals. Plotting the average price against average production for the 40 year-period

between 1973 and 2012 (Figure 4-1(a)) shows that average production and average price

are negatively correlated across metals. This plot identifies a group of high-price and low-

production metals in the upper left corner of the plot, and a second group with low price

and high production in the lower right corner. Byproduct metals (in magenta) appear close

to the upper left with their low production levels and high price. Major metals (in blue) are

69



on the lower right corner due to their high production and low price levels.

The difference between the average prices of byproducts and major metals has persisted

over time. When the median price level is plotted over time for different metal groups (Figure

4-2(a)) for a sliding time window of 20 years, we see that on average across all years the

median price of byproduct metals are 1.65 orders of magnitude higher (45 times more) than

the median price of major metals.

When we pool all of the price values obtained by using 20-year sliding windows (Figure

4-2(b)), we observe that byproducts have a wider distribution with a higher median. While

only 9% of the major metals (1 metal out of 11) has median price above the median of all

metals combined, 64% of the byproduct metals (7 metals out of 11) have medians that exceed

the median for all metals. Note that very similar results are obtained when we use shorter

sliding windows such as 5-year windows.

Another result that emerges from Figure 4-1(b) is that movement along the production

axis (x-axis) has been limited. In the 40 year-period between 1973 and 2012, no metal has

moved from very low production to very high production. This has implications for scalability

of technologies utilizing byproduct metals. Studying these past trajectories can provide

context for changes in production and price needed to widely adopt new technologies.

4.3.2 High-frequency changes: Volatility

Figure 4-3 ranks metals based on their price volatility calculated for the 40-year time window

of 1973-2012. We observe that metal groups differ in price volatility as well: Major metals

(blue) tend to have lower price volatility on average compared to other metals, while more

byproduct metals (magenta) rank among the highest.

Next we explore how the price volatilities of different metal groups change over time. We

calculate the price volatility of each metal for 20-year sliding time windows in 1973-2012.

We then plot the median value obtained from all metals in each metal group in a given

year (Figure 4-2(c)). We see that on average across all years, the median price volatility of

byproduct metals are 69% higher than the median price volatility of major metals.

When we pool all of the price volatility values obtained by using 20-year sliding windows

(Figure 4-2(d)), we observe that byproducts have a wider distribution with a higher median.

While only 9% of the major metals (1 metals out of 11) has median price volatility above

the median of all metals combined, 73% of the byproduct metals (8 metals out of 11) have
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Figure 4-2: (a) Median price for metal groups over time. The median value shown refers
to the median of the average prices obtained for each metal at the end of a 20-year time
window. Note the logarithmic scale. (b) Boxplots of average prices obtained for each metal
for each 20-year sliding window in 1973-2012. (c) Median price volatility for metal groups
over time. The median value shown refers to the median of the volatility value obtained for
each metal at the end of a 20-year time window. (d) Boxplots of volatilities obtained for
each metal for each 20-year sliding window in 1973-2012. Prices are in 2012 real USD.
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Figure 4-3: Price volatility for 1973-2012, using a 40-year window. Major metals are shown
in blue, byproduct metals are in magenta, and other metals are in gray. Price volatility is
the standard deviation of the logarithmic price returns obtained for the period 1973-2012.
Annual price data was collected from the U.S. Geological Survey publications [147]. Prices
have been converted to real 2012 USD before volatility was calculated.

medians that exceed the median for all metals. Note that similar results are obtained when

we use shorter sliding time windows, such as 5-year windows.

Major metals, which are produced at larger scales as shown in Fig. 4-1(a) and Fig. 4-1(b),

have higher natural abundances and more established production channels and markets.

These metals may have benefited from the learning effect and economies of scale to a greater

extent than the metals that are produced in low quantities.

4.3.3 Application of cost-riskiness metrics to photovoltaics (PV) tech-

nologies

As deployment of PV increases, rapid growth in PV manufacturing will require production

of sufficient amount of PV materials in a cost-effective and timely manner [19]. Studying the

cost riskiness of PV technologies can be especially useful for informing early-stage technologies

in terms of scalability.

In this section we compare PV technologies based on the cost riskiness due to the metals

they employ. We calculate aggregate cost-riskiness scores for each technology as described in
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Section 4.2. Table 4.2 shows the data and cost-riskiness metric values for the metals used in

the PV technologies included in our analysis. Although we demonstrate our cost-riskiness

metrics on PV cell technologies here, the method can be applied to PV modules and systems

or other technologies.

We calculate the cost-riskiness metrics for metals used in the absorber layers of both

commercial and emerging PV cell technologies. The commercialized technologies include

crystalline silicon (c-Si) (both single- and multi-crystalline), gallium arsenide (GaAs), III-

V multijunction (MJ) solar cells, and three thin-film technologies, namely hydrogenated

amorphous silicon (a-Si:H), cadmium telluride (CdTe), and copper indium gallium diselenide

(CIGS). The emerging PV cell technologies that we analyze include copper zinc tin sulfide

(CZTS), colloidal perovskites and quantum dot photovoltaics (QDPV).2

Figure 4-4 shows the weighted price plotted against weighted price volatility for each PV

technology. We find that the thin film technologies CdTe and CIGS have relatively high

price volatilities mainly because of their reliance on byproduct metals. GaAs, CIGS, III-V

MJ, c-Si have higher weighted prices, because they use byproduct metals with high prices or

the material intensity is high (for c-Si). Note that the weighted price is in units of dollar

per GW generated. Since power depends on conversion efficiency, as technologies get more

efficient, material usage per GW and the weighted price can go down. CZTS, perovskites

and QD cells cells have lower weighted prices and price volatilities because of their use of

abundant metals; however, they have not been fully commercialized.

Note that these are preliminary results to demonstrate the method and they will be

refined further. In future work we will revisit the assumption that the purity level of a metal

as it is used in PV and the price and production for that particular purity level are consistent.

4.4 Conclusion

In this paper we focused on a particular definition of metals criticality, namely the risks that

metals can cause to technologies. We asked what signals we can get from metal price behavior

that indicate the risks of using these materials in a technology. To answer this question, we

developed an approach for analyzing cost riskiness based on the low- and high-frequency
2There are other emerging PV cell technologies that we exclude from the analysis. Organic photovoltaics

use carbon in their absorber layer. Since carbon is not a metal and not included in our dataset, we exclude
this technology. Dye-sensitized solar cells use ruthenium, which is a minor platinum group metal (PGM). We
exclude this technology since we do not have data on individual PGMs.
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Table 4.2: Average price and price volatility for the metals used in the absorber layers of
various PV technologies. Technology scores are the weighted sums of individual metal scores as
explained in Section 4.2.

Technologies Material intensity𝑎 Price𝑏 Mass fraction Price volatility𝑏

and materials (t/GWp) (2012$/t)
sc-Si (single crystal)

Si 1455.625 1819 100% 0.121
mc-Si (multicrystalline)

Si 2015.481 1819 100% 0.121
GaAs

Ga 22.528 747067 49% 0.154
As 23.920 1416 51% 0.173

III-V MJ 𝑑

Ga 0.029 747067 1% 0.154
As 0.042 1416 1% 0.173
In 0.047 473925 1% 0.452
Ge 4.797 1584214 98% 0.177

a-Si:H
Si 57.532 1819 100% 0.121

CdTe
Cd 29.443 5864 48% 0.585
Te 31.392 84518 52% 0.277

CIGS
Cu 8.222 3742 16% 0.178
In 14.856 473925 28% 0.452
Ga 9.022 747067 17% 0.154
Se 20.434 31251 39% 0.364

CZTS
Cu 20.933 3742 40% 0.178
Zn 11.127 1876 21% 0.197
Sn 19.807 15272 38% 0.187

Perovskite𝑒

Pb 2.413 1438 100% 0.181
QD

Pb 12.711 1438 100% 0.181
𝑎 Material intensities were obtained from [3], which assumed record-efficiency or representative device
structures, current record lab-cell efficiencies, and 100% materials utilization and manufacturing
yield. These are optimistic assumptions; actual materials utilization has been estimated to range
from 15-70% for a-Si:H, 60-80% for CIGS, and 90-99% for CdTe [3].
𝑏 Price and price volatility values reported here are the median of the values obtained by using
20-year sliding windows over time.
𝑐 Weighted scores for technologies are the weighted sums of individual metal scores.
𝑑 This technology utilizes mirrors or lenses to concentrate light on a small area and increase efficiency.
To obtain the specified material intensity, a concentration ratio of 500 is assumed for III-V MJs [3].
𝑒 Perovskites also use carbon in their absorber layer. Since carbon is not a metal and not included in
our dataset, we excluded carbon. Similarly, sulfur in CZTS and QD was excluded from our analysis.
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Figure 4-4: Weighted price versus weighted price volatility scores for PV technologies. For
numerical results and weights given to individual metals, see Table 4.2.

changes in historical metals prices. This approach can serve as a first-pass assessment of

metals criticality from the perspective of technology costs (such as PV costs).

We found that we already observe signals of riskiness for certain metals. We highlighted

the differences between major metals and byproducts in terms of their price trends and the

fluctuations around these trends. Our analysis showed that on average byproducts have

higher price volatilities and higher average prices than major metals.

We then developed a method for evaluating the cost riskiness that metals bring to

technologies and demonstrated this method on different PV technologies. We found that

technologies such as CdTe and CIGS, which rely on byproduct metals with particularly high

price volatility as well as high prices, may face higher risks, whereas other technologies such

as perovskites perform well in terms of these cost-riskiness measures.

Although we focused on PV here, the approach can be applied to any technology and

can allow making comparisons across technologies. We can use the insights gained to inform

the development of and investment in technologies.
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Appendix A

Supporting Information for Chapter 2

A.1 Derivation of Eq. (2.10)

The change in the technology’s cost is given by

∆𝐶(r) =
∑︁
𝑖

∆𝑐𝑖(r). (A.1)

Assuming cost components can be written in the form of Eq. (2.9), we have

∆𝑐𝑖(r) = 𝑐𝑖0 ∆

⎛⎝∏︁
𝑗

𝑔𝑖𝑗(𝑟𝑗)

⎞⎠ . (A.2)

We wish to express the finite difference of a product of variables in a more convenient form.

For infinitesimal changes, the product rule says

𝑑(𝑥1𝑥2𝑥3 . . .) = (𝑑𝑥1)𝑥2𝑥3 . . . + 𝑥1(𝑑𝑥2)𝑥3 . . . + · · · . (A.3)

A similar rule can be derived for ∆. The derivation is simpler if we first derive a rule for
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applying ∆ to an exponential. The change in 𝑒𝑥 can written in terms of ∆𝑥 as

∆𝑒𝑥 = 𝑒𝑥2 − 𝑒𝑥1

= 𝑒𝑥̄−
1
2
Δ𝑥 − 𝑒𝑥̄+

1
2
Δ𝑥

= 𝑒𝑥̄
(︁
𝑒+

1
2
Δ𝑥 − 𝑒−

1
2
Δ𝑥
)︁

= 𝑒𝑥̄ · 2 sinh

(︂
1

2
∆𝑥

)︂
(A.4)

where for the second line we defined 𝑥̄ ≡ 1
2(𝑥1 + 𝑥2). In the limit 𝑥 → 0, we have sinh𝑥 → 𝑥,

and we recover the rule 𝑑(𝑒𝑥) = 𝑒𝑥 𝑑𝑥. Using Eq. A.4, the change in a product of variables

can be written as

∆
∏︁
𝑖

𝑥𝑖 = ∆𝑒
∑︀

𝑖 ln𝑥𝑖

= 𝑒
∑︀

𝑖 ln𝑥𝑖 · 2 sinh

(︃
1

2

∑︁
𝑖

∆ ln𝑥𝑖

)︃
(A.5)

where
∑︀

𝑖 ln𝑥𝑖 denotes the arithmetic average of
∑︀

𝑖 ln𝑥𝑖 in the two time periods. The

exponential factor can be written more simply as a geometric average:

𝑒
∑︀

𝑖 ln𝑥𝑖 = 𝑒
1
2(

∑︀
𝑖 ln𝑥1

𝑖+
∑︀

𝑖 ln𝑥2
𝑖 )

= 𝑒
∑︀

𝑖 ln
√

𝑥1
𝑖 𝑥

2
𝑖

=
∏︁
𝑖

√︁
𝑥1𝑖𝑥

2
𝑖 . (A.6)

Writing the geometric average of 𝑥 in the two time periods as 𝑥̃𝑖 ≡
√︁

𝑥1𝑖𝑥
2
𝑖 , we can write

∆

(︃∏︁
𝑖

𝑥𝑖

)︃
=

(︃∏︁
𝑖

𝑥̃𝑖

)︃
· 2 sinh

(︃
1

2

∑︁
𝑖

∆ ln𝑥𝑖

)︃
. (A.7)

Eq. (A.7) defines a product rule for the ∆ operator.

Returning to Eq. (A.2) and using the rule just derived we find

∆𝑐𝑖 = 𝑐𝑖0

⎛⎝∏︁
𝑗

𝑔𝑖𝑗

⎞⎠ · 2 sinh

⎛⎝1

2

∑︁
𝑗

∆ ln 𝑔𝑖𝑗

⎞⎠ (A.8)
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where 𝑔𝑖𝑗 ≡
√︁
𝑔𝑖𝑗(𝑟1𝑗 ) · 𝑔𝑖𝑗(𝑟2𝑗 ) is the geometric average value of 𝑔𝑖𝑗(𝑟𝑡𝑗) from the two time

periods. Since 𝑐𝑖0 is a constant that does not vary between the two periods, the product

𝑐𝑖0
∏︀

𝛼 𝑔𝑖𝛼 is the geometric average of the 𝑖th cost component, 𝑐𝑖 ≡
√︀
𝑐𝑖(r1) · 𝑐𝑖(r2). Thus,

we can write Eq. (A.8) more simply as

∆𝑐𝑖 = 𝑐𝑖 · 2 sinh

⎛⎝1

2

∑︁
𝑗

∆ ln 𝑔𝑖𝑗

⎞⎠ . (A.9)

Given Eq. (A.1) the total cost change is therefore

∆𝐶 =
∑︁
𝑖

𝑐𝑖 · 2 sinh

⎛⎝1

2

∑︁
𝑗

∆ ln 𝑔𝑖𝑗(𝑟𝑗)

⎞⎠ . (A.10)

This formula gives an exact relationship between ∆𝐶 and the ∆𝑔𝑖𝑗 . However we cannot

use it to decompose ∆𝐶 into contributions from each variable 𝑟𝑗 , because the sum over

variables 𝑗 is trapped inside the argument of the sinh. When
∑︀

𝑗 ∆ ln 𝑔𝑖𝑗 is small, one can

make the approximation sinh𝑥 ≈ 𝑥, and Eq. (A.10) becomes

(∆𝐶)approx ≈
∑︁
𝑖

𝑐𝑖
∑︁
𝑗

∆ ln 𝑔𝑖𝑗(𝑟𝑗)

≈
∑︁
𝑗

(︃∑︁
𝑖

𝑐𝑖 ∆ ln 𝑔𝑖𝑗(𝑟𝑗)

)︃
. (A.11)

Since this derivation assumes that
∑︀

𝑗 ∆ ln 𝑔𝑖𝑗 is small, ideally one would use it to estimate

changes over periods of time that are short enough that variable changes small. Estimates of

cost change attributions over longer time periods can then be formed by chaining together

changes over shorter periods.

A.2 Sensitivity analysis for low-level mechanisms

In this section we estimate the sensitivity of our cost change results to uncertainty in the

input variables of Table 2.1. We vary each variable in each of the three time periods by

±20%, for a total of eight cases, and recompute the list of cost change contribution in both

periods. We take the minimum and maximum of the changes in each variable out of these
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Figure A-1: Sensitivity analysis for silicon usage, 𝑣. We vary silicon usage in 1980, 2001, and
2012 by 20%, for a total of eight cases, and recompute the list of cost change contributions
of low-level mechanisms in both periods. The error bars show the minimum and maximum
value of the low-level mechanisms out of these eight cases.

eight cases to produce error bars.1

Figure A-1 shows how the percent contributions change when silicon usage 𝑣 is varied.

Since contributions must sum to 100% changing 𝑣 affects the relative contributions of both 𝑣

and all other variables to a greater or lesser extent. Figures A-2-A-9 show the same analysis

for other variables and the scaling factor, 𝑏. Fig. A-10 shows the contributions when all

variables are varied by ±20%, except for yield, which is varied by ±3% of its value in all

years and module efficiency which is varied by ±5% of its value in 2001 and 2012 to ensure

the 2012 is always higher than the 2001 efficiency. We conclude that the results are sensitive

to module efficiency, while not very sensitive to changes in other variables and the scaling

factor, 𝑏. We find that a smaller change in efficiency during a period is associated with

larger changes in non-silicon materials and 𝑝0, and in some scenarios with more modest

assumptions about efficiency improvement, we find that the relative contributions of efficiency

and non-silicon materials switch places Fig. A-3. In these scenarios, both efficiency and non-

silicon materials continue to play significant roles in cost reduction. Furthermore, conversion

efficiency estimates may be fairly reliable because of standard testing procedures.

We perform an additional sensitivity analysis on the silicon price in 1980, which has a

wide range of values across different sources. Figure A-11 shows sensitivity analysis results

when the silicon price in 1980 is varied. Various sources report a silicon price higher than our

central value of 66 2015$/kg, which would result in a larger contribution of a falling silicon

1An exception is yield, which is varied by ±3% of its value in all years to ensure that it does not exceed
100%. To prevent efficiency from decreasing over time in our sensitivity tests, we limit the variation of
efficiency such that module efficiency is varied by ±5% of its value in 2001 and 2012.
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Figure A-2: Sensitivity analysis for silicon price, 𝑝𝑠. We vary silicon price in 1980, 2001, and
2012 by 20%, for a total of eight cases, and recompute the list of cost change contributions
of low-level mechanisms in both periods. The error bars show the minimum and maximum
value of the low-level mechanisms out of these eight cases.
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Figure A-3: Sensitivity analysis for module efficiency, 𝜂. Note that module efficiency in
1980 (8%) is varied by ± 20% of its value (resulting in lower and upper bounds of 6.4% and
9.6%), while module efficiency in 2001 and 2012 by ± 5% of its value to prevent efficiency
from decreasing over time in our sensitivity tests (resulting in lower and upper bounds of
12.35% and 13.65% for 2001, and 14.25% and 15.75% for 2012.) We recompute the list of
cost change contributions of low-level mechanisms in both periods for a total of eight cases.
The error bars show the minimum and maximum value of the low-level mechanisms out of
these eight cases.
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Figure A-4: Sensitivity analysis for yield, 𝑦. We vary yield in 1980, 2001, and 2012 by 3%
of its value, for a total of eight cases, and recompute the list of cost change contributions
of low-level mechanisms in both periods. The error bars show the minimum and maximum
value of the low-level mechanism out of these eight cases. Note that yield is varied by ±3%
of its value in all years to ensure that it does not exceed 100%.
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Figure A-5: Sensitivity analysis for wafer area, 𝐴. We vary wafer area in 1980, 2001, and
2012 by 20%, for a total of eight cases, and recompute the list of cost change contributions
of low-level mechanisms in both periods. The error bars show the minimum and maximum
value of the low-level mechanisms out of these eight cases.
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Figure A-6: Sensitivity analysis for plant size, 𝐾. We vary plant size in 1980, 2001, and
2012 by 20%, for a total of eight cases, and recompute the list of cost change contributions
of low-level mechanisms in both periods. The error bars show the minimum and maximum
value of the low-level mechanisms out of these eight cases.
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Figure A-7: Sensitivity analysis for share of materials costs, 𝜃. We vary the share of materials
costs in 1980, 2001, and 2012 by 20%, for a total of eight cases, and recompute the list of
cost change contributions of low-level mechanisms in both periods. The error bars show the
minimum and maximum value of the low-level mechanisms out of these eight cases.
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Figure A-8: Sensitivity analysis for module price, 𝐶. We vary module price in 1980, 2001,
and 2012 by 20%, for a total of eight cases, and recompute the list of cost change contributions
of low-level mechanisms in both periods. The error bars show the minimum and maximum
value of the low-level mechanisms out of these eight cases.
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Figure A-9: Sensitivity analysis for scaling factor, 𝑏. We vary the scaling factor in 1980,
2001, and 2012 by 20%, for a total of eight cases, and recompute the list of cost change
contributions of low-level mechanisms in both periods. The error bars show the minimum
and maximum value of the low-level mechanisms out of these eight cases.
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Figure A-10: Contributions to cost reduction with error bars representing scenarios in which
all variables are varied relative to the central scenario by ±20%, except for yield, which is
varied by ±3% of its value, and efficiency, which is varied by ±5% of its value in 2001 and
2012 to prevent efficiency from decreasing over time.
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Figure A-11: Percentage contribution of low-level mechanisms to module cost change when
silicon price in 1980 is varied from the central scenario assumption of 66 2015$/kg.

price to module cost change. At the same time, the contribution of non-Si materials costs

would be lower. The rest of the list would stay mostly unchanged. Thus total materials costs

(silicon and non-silicon) are always significant, while the relative importance of silicon and

non-silicon costs can change depending on value used for the 1980 silicon price.

A.3 Sensitivity analysis for high-level mechanisms

In the main text we propose a primary assignment for each variable. Here we show the

high-level results would change for different assignments of low-level variables to high-level

mechanisms. Table A.1 shows the alternate assignments that result in the lowest and highest
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Low-level Mechanisms
High-level Mechanisms

Primary Assignment Case F Case ♦

∆ Efficiency R&D R&D R&D

∆ Non-Si materials costs 0.5 R&D, 0.5 EOS R&D EOS

∆ Wafer area R&D R&D 0.5 R&D, 0.5 LBD

∆ Silicon usage R&D R&D 0.5 R&D, 0.5 LBD

∆ Plant size EOS EOS EOS

∆ Yield LBD LBD LBD

∆ Silicon price other (1980-2001) other (1980-2001) other (1980-2001)

EOS (2001-2012) EOS (2001-2012) EOS (2001-2012)

∆ p0 other other other

Table A.1: Assignment of low-level mechanisms to high-level mechanisms. The primary
assignments lead to the bars given in Fig. 2-4. Alternative assignments (F and ♦ cases)
reflect assignments with the lowest and highest values of R&D, EOS and LBD, and correspond
to the star and diamond cases in Fig. A-12.

values of R&D, EOS and LBD. Fig. A-12 shows the results of these assignments.

Figure A-13 shows the percentage contribution of all high-level mechanisms when low-level

variables are given an alternate assignment one-at-a-time. Wafer area and silicon usage

were originally assigned to R&D. Here we assign 50% of these variables to LBD and 50%

remains assigned to R&D. Non-Si materials costs were originally assigned equally to R&D

and EOS. Here we consider a 100% assignment to R&D and a 100% assignment to EOS. We

find that in 1980-2001 and 1980-2012 R&D remains the most important mechanism. LBD

gains importance to the extent that wafer area and silicon usage were LBD-driven. EOS can

potentially become almost equal to R&D in the second period.

Figures A-14 - A-16 explore high-level contributions when multiple low-level variables

may be reassigned as shown in Tables A.2-A.4. Figure A-17 shows the results from all

combinations of reassignments. To allow extreme cases to be observed more easily, Figure

A-14 shows only combinations of reassignments that result in a minimum or maximum

contribution for R&D. Figures A-15 and A-16 do the same for LBD and EOS, respectively.

R&D never switches places with any other mechanisms in the first period. It can switch

places with EOS in the second period. LBD can switch places with EOS in the first period.

It does not switch places with any mechanism in the second period.
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Figure A-12: Percentage contribution of the high-level mechanisms to module cost decline
in 1980-2001 (left), 2001-2012 (middle), and 1980-2012 (right). R&D = Research and devel-
opment, LBD = Learning-by-doing, EOS = Economies of scale, Other = other mechanisms
such as spillovers. We categorize the changes that require a lab setting or a nonroutine
production activity (e.g. experimental production line) as being caused by R&D [100, 101].
We consider an improvement to have been made by LBD if it was achieved as a result of
repeated routine manufacturing activity and if it was incremental in nature [100]. Changes
that result from increases to the scale of the module manufacturing plant we categorize as
EOS. Assignments of low-level mechanisms are given in Table A.1. Bars show the results
under the primary assignment, while the F and ♦ cases show the results under alternative
assignments.
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Figure A-13: Possible percentage contribution of high-level mechanisms in each period.
Lines with markers link high-level contributions under alternate assignments of low-level
variables to high-level mechanisms. Reassignments are made one-at-a-time. Non-Si materials
costs (𝑐) were originally assigned equally to R&D and EOS, and we consider two possible
reassignments, to R&D only and to EOS only. Wafer area (𝐴) and silicon usage (𝑣) were
originally assigned to R&D, and here we also consider a case where they are assigned to
LBD and R&D equally.
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Low-level mechanisms Original (1) (2)

∆ Non-Si materials costs 0.5 R&D
0.5 EOS

R&D EOS

∆ Wafer area R&D R&D 0.5 R&D
0.5 LBD

∆ Silicon usage R&D R&D 0.5 R&D
0.5 LBD

Table A.2: Alternate assignments of three low-level mechanisms to high-level mechanisms
to achieve the lowest and highest possible contributions of R&D. Note that other low-
level mechanisms remain in their primary high-level mechanisms. The contributions of the
high-level mechanisms in each case are shown in Figure A-14
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Figure A-14: Possible percentage contribution of high-level mechanisms under the highest
and lowest cases for R&D. Horizontal bars show the contribution of the primary mechanisms.
Lines with markers link results under alternate assignments. The lowest case for R&D is
obtained when both wafer area (𝐴) and silicon usage (𝑣) are moved to LBD from their
original assignment to R&D; and non-Si materials costs (𝑐) are assigned to EOS in place of
their original assignment to 50% R&D and 50% EOS. The highest case for R&D is obtained
when both wafer area (𝐴) and silicon usage (𝑣) remain in R&D, and non-Si materials costs
(𝑐) are assigned to R&D only.

Low-level mechanisms Original (1) (2) (3) (4) (5)

∆ Non-Si materials costs 0.5 R&D
0.5 EOS

0.5 R&D
0.5 EOS

R&D EOS R&D EOS

∆ Wafer area R&D 0.5 R&D
0.5 LBD

0.5 R&D
0.5 LBD

0.5 R&D
0.5 LBD

R&D R&D

∆ Silicon usage R&D 0.5 R&D
0.5 LBD

0.5 R&D
0.5 LBD

0.5 R&D
0.5 LBD

R&D R&D

Table A.3: Alternate assignments of three low-level mechanisms to high-level mechanisms
to achieve the lowest and highest possible contributions of LBD. Other low-level mechanisms
remain in their primary assignments. High-level contributions for each assignment are shown
in Figure A-15.

87



1980-2001

% contribution
to module cost change

0 20 40 60 80

Other

EOS

LBD

R&D

2001-2012

% contribution
to module cost change

0 20 40 60 80

Overall (1980-2012)

% contribution
to module cost change

0 20 40 60 80

Figure A-15: Possible percentage contribution of high-level mechanisms under highest and
lowest cases for LBD. Horizontal bars show the contribution of the primary mechanisms.
Lines with markers link results under alternate assignments. The lowest case for LBD is
obtained when both wafer area (𝐴) and silicon usage (𝑣) remain in their original assignment
to R&D. The highest case for LBD is obtained when both wafer area (𝐴) and silicon usage
(𝑣) are moved to LBD from their original assignment to R&D.

Low-level mechanisms Original (1) (2) (3) (4) (5) (6) (7) (8)

∆ Non-Si materials costs 0.5 R&D
0.5 EOS

EOS EOS EOS EOS R&D R&D R&D R&D

∆ Wafer area R&D R&D 0.5 R&D
0.5 LBD

R&D 0.5 R&D
0.5 LBD

R&D 0.5 R&D
0.5 LBD

R&D 0.5 R&D
0.5 LBD

∆ Silicon usage R&D R&D 0.5 R&D
0.5 LBD

0.5 R&D
0.5 LBD

R&D R&D 0.5 R&D
0.5 LBD

0.5 R&D
0.5 LBD

R&D

Table A.4: Alternate assignments of three low-level mechanisms to high-level mechanisms
to achieve the lowest and highest possible contributions of EOS. Other low-level mechanisms
remain in their primary assignments. High-level contributions for each assignment are shown
in Figure A-16.
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Figure A-16: Possible percentage contribution of high-level mechanisms under highest and
lowest cases for EOS. Horizontal bars show the contribution of the primary mechanisms.
Lines with markers link results under alternate assignments. The lowest case for EOS is
obtained when non-Si materials costs (𝑐) are assigned to R&D rather than their original
assignment of 50% R&D and 50% EOS. The highest case for EOS is obtained when non-Si
materials costs (𝑐) are assigned to EOS only.

88



1980-2001

% contribution
to module cost change

0 20 40 60 80

Other

EOS

LBD

R&D

2001-2012

% contribution
to module cost change

0 20 40 60 80

Overall (1980-2012)

% contribution
to module cost change

0 20 40 60 80

Figure A-17: Possible percentage contributions of high-level mechanisms in each period.
Contributions here are obtained by reassigning multiple variables at once from primary
mechanisms to secondary mechanisms, based on all cases shown in Tables A.2-A.4, and
Figures A-14-A-16. Horizontal bars show the contribution under the primary assignment
used in the main text. Lines with markers link results under alternate assignments.
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Appendix B

Supporting Information for Chapter 3

B.1 Metals Analyzed for Historical Growth Rates

We analyze the growth rates in the historical production of 31 metals and 1 metal group:

Ag, Al, As, Au, Be, Bi, Cd, Co, Cr, Cu, Ga, Ge, Hg, In, Mg, Mn, Mo, Nb, Ni, platinum

group metals, Pb, Re, Sb, Se, Si, Sn, Sr, Ta, Te, V, W, Zn. Metals are chosen on the basis of

available data from the U.S. Geological Survey. Elements whose production are reported

in gross weight (e.g. oxides) are not included in this analysis (B, Fe, Li, Ti, Zr, rare earth

elements). Other elements are not included due to lack of world production data (Cs, Hf,

Th, Tl), although USGS provides other information for these elements.

B.2 Purity of metals tracked by US Geological Survey

Metals are produced and traded at a variety of purity levels based on market standards.

For many byproducts the raw material has already been partially refined to higher levels of

purity. See Table B.1.

B.3 Analysis of MG-Si

Purity grade reported by the US Geological Survey (USGS) varies. (See Table B.1.) Byprod-

uct metals such as Te are generally tracked at higher levels of purity than primary metals

such as Si, since only the refined byproduct is globally traded. Because of this, we carry out

an additional analysis on metallurgical grade Si (MG-Si), a higher purity form of Si that is
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Metal Range of purity in production data
In 99.97% – 99.99%
Ga 99.99%- – 99.999999%
Se 90%+
Cd 99.95% – 99.99%
Te 99.99%
Si 55% – 99.99%+
MG-Si 98 – 99%

Table B.1: Purity of metals tracked by the US Geological Survey. Source: [150, 151, 152,
153, 98]

the precursor to most (97%) Si used in solar cells [128, 129, 130], to see whether this similarly

partially-refined material with smaller production scale is able to support deployment of

Si-based PV. This analysis also limits the raw Si resource, since currently metallurgical

grade Si is produced more selectively from silica deposits with relatively low starting level of

impurities [131].

We obtain data for MG-Si from the USGS, which publishes world production of MG-Si

starting in 1990. (Fig. B-1.) Beginning in 2005, the production data for MG-Si began

including production from China, leading to a significant jump upward in the data series. As

in the case of tellurium, due to this change in the method of reporting we do not use data

prior to 2005. The most recent data year is 2012, and has production noticeably higher than

the rest of the series. We note that recent commodity summaries [154, 155, 98] have often

revised the most recent year’s production as new data becomes available, which may explain

the jump in 2012. Because it is not clear that the method of reporting is the same for this

year we have removed it. From 2005 to 2011, the average growth rate in MG-Si is 2.7% per

year. Below we also report the results if we do not make these exclusions and instead use all

data from 1990 to 2012.

Most production (around 80%) is used to produce silicones, aluminum alloys, and

chemicals, while about 20% is used to produce polycrystalline Si [54]. Of the amount that

goes toward polycrystalline Si, around 90-93% is used by the solar industry [156, 98], with

the remainder going to the semiconductor industry. Thus we estimate that about 82% of the

2012 production represents non-PV end uses of MG-Si.

Required growth rates for MG-Si are shown in Fig. B-2. Under a medium material

intensity, when non-PV end uses of MG-Si grow at 2.7%, required growth rates exceed the

historical rates when providing above 100% of electricity generation. Even if we take the
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Figure B-1: Historical production of MG-Si (gross weight), 1990-2012. Black points show
the actual production data obtained from USGS mineral yearbooks from 1994 to 2012. Lines
are obtained by fitting a line to the natural logarithm of the production data (using the
least squares method) for each 18-year period in 1990-2012. The slope of the each fitted line
represents the annual growth rate for that 18-year period. The method of reporting MG-Si
production data changed in 2008, resulting in an arbitrary jump from 2004 to 2005. The
most recent value (2012) is also artificially high. See text for discussion. Only the 2005-2011
period is used here to estimate the average annual growth rate (blue fitted line).

MG-Si data at face value and include years before 2005 and the year 2012 for measuring the

MG-Si growth rate, the median growth rate over all 18 year periods is 6.8% per year. In this

case, required growth rates still exceed the historical rates only when providing above 100%

of electricity generation.

B.4 Historical Year-To-Year Growth Rates

See Figure B-3.

B.5 Required Growth Rates for Silver

See Figure B-4 for estimates of the required growth rates for silver. The current material

intensity for silver used in c-Si technology is estimated at 57 metric tons/GW [41]. This is

used for the high material intensity case in Figure B-4. The medium intensity case of 47

tons/GW is calculated based on an efficiency improvement in the c-Si technology from 14.8%

to 18% in 2030 [40]. The low intensity case is estimated by using a contingency scenario from

the literature [157], in which silver is almost completely eliminated from the c-Si technology.

By using this paper’s prediction of a tenfold decrease in silver intensity per cell area and

considering an efficiency improvement of about 40% compared to today [40], the low intensity
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Figure B-2: Required growth rates for MG-Si to reach a range of annual PV installation
levels in 2030. Non-PV end uses of MG-Si are assumed to grow at the historical growth rate
for MG-Si between 2005 and 2011 (𝑛𝑀𝐺−𝑆𝑖 = 2.7%). The bands with different colors show
the required growth rates for different levels of material intensities given in Table 3.2. See
caption of Fig. 3-4 for additional detail.
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Figure B-3: Year-to-year growth rates in metals production have no apparent trend up or
down over time. The solid midline is the median of the growth rates of 32 metals for each
year. The blue dotted lines show the 5th and 95th percentiles. The dashed purple lines show
the minimum and the maximum growth rates observed.
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case is estimated at 4 tons/GW.
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Figure B-4: Required growth rates for silver for a range of material intensity estimates and
annual c-Si deployment levels in 2030. The lower and upper ends of each band are obtained
by assuming that the non-PV end-uses grow at rates equal to the 1st and 3rd quartiles,
respectively, of the historical growth rate distribution of that metal over each 18-year period
between 1972-2012.
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Appendix C

Supporting Information for Chapter 4

Metals'that'are'included'and'that'are'not'included'in'the'study'
Metals'marked'blue'are'included'in'the'study,'and'others'are'not'included'in'the'
study.'Metals'in'italics'are'in'the'USGS'database'but'not'covered'by'our'study'due'to'
various'reasons:'barium,'boron,'cesium,'hafnium,'titanium'(no'world'production'
reported)'and'sodium,'potassium,'iron'and'zirconium'(production'reported'in'gross'
weight,'metal'content'is'not'clear).'We'also'include'selenium,'a'nonmetal,'due'to'its'
use'in'PV,'as'well'as'the'17'rare'earth'elements'(lanthanides,'yttrium,'scandium).'In'
total'we'cover'38'of'the'62'naturally'occurring'metals/metalloids,'and'56'elements'
out'of'the'118'elements'in'the'periodic'table.'

Alkali'
metals'

Alkaline'
earth'
metals' Transition'metals'

Post6
transition'
metals' Metalloids'

Lithium' Beryllium' Titanium+ Rhodium*' Aluminum' Boron+
Sodium++ Magnesium' Vanadium' Palladium*' Gallium' Silicon'
Potassium+ Calcium' Chromium' Silver' Indium' Germanium'
Rubidium' Strontium' Manganese' Cadmium' Tin' Arsenic'
Cesium+ Barium+ Iron+ Hafnium+ Thallium' Antimony'
Francium' Radium' Cobalt' Tantalum' Lead' Tellurium'

'' ''

Nickel' Tungsten' Bismuth' Polonium'
Copper' Rhenium'

' 'Zinc' Osmium*'
' 'Zirconium+ Iridium*'
' 'Niobium' Platinum*'
' 'Molybdenum' Gold'
' 'Technetium' Mercury'
' 'Ruthenium*' 9'elements'that'

don't'occur'
naturally'

' '*included'in''platinum'group'
metals''

' ''
Note:'The'category'of'metals'that'are'not'included'in'our'study'and'not'included'in'
the'USGS'database'is'very'small:'Rubidium'(low'production,'2[4'ton/yr),'francium,'
radium,'technetium,'polonium'(all'extremely'rare,'radioactive)'and'9'other'metals'
that'don't'occur'naturally.''

Other'elements'that'are'not'included'in'our'study'are:'nonmetals'(11'
elements'out'of'12,'since'selenium'is'included),'noble'gases'(6'elements),'actinides'
(15'radioactive'elements)'and'6'new'elements'with'unknown'chemical'properties.'
Element'groups'are'obtained'from'Los'Alamos'National'Laboratory'website,'
http://periodic.lanl.gov/metal.shtml'
'
'
'
'
'
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