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A Few Conventions/Concepts

Euler’s Formula

𝑒!" = (cos𝜃) + 𝑗(sin𝜃)

𝑗 = −1

Convolution

𝑦(𝑡) = ∫#$
$ ℎ(𝑢)𝑥(𝑡 − 𝑢)𝑑𝑢 = ℎ ∗ 𝑥

Autocorrelation

𝑟%%(𝜏) = 𝐸[𝑥∗(𝑡)𝑥(𝑡 + 𝜏)]

Wiener-Khinchin theorem

The Autocorrelation function and the Power spectral density function make a Fourier Transform pair for 
a wide-sense-stationary random process (even though the Fourier Transform of the process itself
does not exist).

Complex exponentials are Eigen functions of linear, time-invariant systems (of the 
convolution operator). This is why systems engineers like them so much!

𝖧𝖿 = 𝜆𝖿



Fourier Transforms
𝐻(𝑓) = ∫#$

$ ℎ(𝑡)𝑒#!'()*𝑑𝑡ℎ(𝑡) = ∫#$
$ 𝐻(𝑓)𝑒!'()*𝑑𝑓

𝑒#(*! ⇔ 𝑒#()!

cos(𝜋𝑡) ⇔
1
2
𝛿(𝑓 +

1
2
) +

1
2
𝛿(𝑓 −

1
2
)

sin(𝜋𝑡) ⇔
𝑗
2
𝛿(𝑓 +

1
2
) −

𝑗
2
𝛿(𝑓 −

1
2
)

𝑠𝑖𝑛𝑐(𝑡) =
sin𝜋𝑡
𝜋𝑡

⇔ Π(𝑓)

𝑒!'()"* ⇔ 𝛿(𝑓 − 𝑓+)



Fourier transform properties
Convolution

ℎ(𝑡) ∗ 𝑥(𝑡) ⇔ 𝐻(𝑓)𝑋(𝑓)

Shifts

ℎ(𝑡 − 𝑡+) ⇔ 𝑒#!'(*")𝐻(𝑓)
𝑒!'()"*ℎ(𝑡) ⇔ 𝐻(𝑓 − 𝑓+)

Similarity

ℎ(𝑎𝑡) ⇔
1
|𝑎|

𝐻(
𝑓
𝑎
)

Linearity

𝑎𝑔(𝑡) + 𝑏ℎ(𝑡) ⇔ 𝑎𝐺(𝑓) + 𝑏𝐻(𝑓)

ℎ(𝑡)𝑥(𝑡) ⇔ 𝐻(𝑓) ∗ 𝑋(𝑓)



Incoherent Scatter Radars (ISRs)
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Pulse Doppler Radar

Electromagnetic Wave
Range

Doppler shift
Beam width

Pulse length

Time delay for the pulse echo to return -> range
Frequency shift of the echo -> velocity component



Traveling Waves
The velocity of a point on the 
wave can be found by setting 𝜔𝑡
− 𝑘𝑥 = constant. Taking the
time derivative we obtain the 
phase velocity,

𝑢, =
-%
-* =

.
/

The functional relationship 
between 𝜔 and 𝑘 is called a 
dispersion relation.   It appears 
ubiquitously in the study of 
wave phenomena.

The simplest dispersion relation 
for an EM wave describes its 
propagation through free space,

𝜔 = 𝑐𝑘

where 𝑐~3×100𝗆/𝗌. We will 
encounter more complicated 
dispersion relations soon!

Traveling wave, 1D:          𝑦(𝑥, 𝑡) = 𝐴cos(𝜔𝑡 − 𝑘𝑥)
Angular velocity (radians/s):           𝜔 = 2𝜋𝑓 = 2𝜋/𝑇
Wave number (spatial frequency):              𝑘 = 2𝜋/𝜆
Phase velocity (𝑐 in a vacuum):                    𝑢, = 𝜔/𝑘

Temporal variation at point in space: Three snapshots in time:



Transverse Electromagnetic (TEM) Waves
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Polarization:  Orientation of the Electric Field Vector

𝐒 = 𝐄×𝐇W/m'

Power flow:

Radars transmit TEM waves and measure the scattered radiation from a target



Range

R

𝑅 =
𝑐Δ𝑡
2

The pulse length 𝜏 is most often expressed in 
units of time, and corresponds to a distance 𝑐𝜏, 
where 𝑐~3×10!m/s. 𝜏

Range 𝑅 to the target is measured by transmitting a pulse of electromagnetic waves, and 
measuring the time Δ𝑡 between transmission and reception, 

Range resolution for a simple on-off pulse (“uncoded pulse”) is controlled by 𝜏.   Shorter  𝜏
yields higher range resolution.  But a shorter pulse also carry less total energy, and so the 
reflected signal is more difficult to discriminate from background noise.

Range resolution depends on how well we 
can resolve Δ𝑡.   For the case of a simple
on-off pulse, the optimal approach is to 
match the sampling period and receiver anti-
aliasing filter to the pulse length
(the so-called “matched filter” approach).



Measuring Velocity
Assume a transmitted signal:             cos(2𝜋𝑓1𝑡)

After return from target:         cos 2𝜋𝑓1 𝑡 − '2
3

R Now let us allow range R to vary with time.   Let’s  assume 
the target moves at a constant velocity, with positive away
from the radar and negative toward the radar:                       

𝑅 = 𝑅! + 𝑣!𝑡
Substituting we obtain:    

cos 2𝜋 𝑓1 −𝑓1
2𝑣1
𝑐

⏟

𝑡 −
4𝜋𝑓1𝑅
𝑐
⏟

𝑓5 constant

The change in frequency by a moving target is
proportional to the component of the velocity vector
along the radar line of sight:

(Titan)

𝑓5 = −
2𝑓1
𝑐
𝑣1 = −

2𝑣1
𝜆Frequency resolution is driven, in part, by how long we can 

make measurements (e.g. pulse length or number of pulses).  
The longer the better?



Cross-range resolution (beam width)

R

The cross-range resolution is usually
defined by the angular width of the 
main lobe of the antenna's power pattern.  
For a dish antenna this is approximately
equal to the ratio of the wavelength
to the physical diameter, 

𝛽 = ""
#

(radians)

Millstone Hill ISR has a 46-m dish operating at a frequency of 440 MHz, or 𝜆 = 0.68 m,  
giving a beam width of 𝛽 ≃ 0.85∘ .

𝜏
(se

c)

𝛽
(rad)

A radar “pixel”
(resolution element)



Doppler Radar Summary: 
“Coherent” hard targets

A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.

What happens when we have multiple targets in the radar volume, moving at different velocities?

Two key concepts:

Time              Distance

Frequency            Velocity

𝑓! = −
2𝑓"
𝑐 𝑣"

𝑅 =
𝑐Δ𝑡
2 R ~100,000

oscillations

~10-14  Watts

Solid reflecting target, 
single dominant velocity



Doppler Radar Summary:
Distributed “Incoherent” Targets

A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.

What happens when we have multiple targets in the radar volume, moving at different velocities?

e- e-

e-

R1

R2

Distributed targets,
different velocities

superposition of  
reflections from 
all targets (electrons)
in the volume.

Two key concepts:

Time              Distance

Frequency            Velocity

𝑓! = −
2𝑓"
𝑐 𝑣"

𝑅 =
𝑐Δ𝑡
2



Concept of a “Doppler Spectrum”

Velocity (m/s)

Po
w

er
 (d

B)

If there is a distribution of targets with different velocities (e.g., bird, flapping wings, wind) 
then there is no single Doppler shift but, rather, a Doppler spectrum.

Superposition of targets moving with different velocities within the radar volume

Two key concepts:

Time              Distance

Frequency            Velocity

𝑓! = −
2𝑓"
𝑐 𝑣"

𝑅 =
𝑐Δ𝑡
2

𝑝(𝑅, 𝑣)𝑝(𝑅, 𝑓))

𝑝(𝑣)

Processing:



Distributed “beam filling” Target
A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.

For a beam-filling target (like water droplets in a 
tornado), the radar can be used to construct 
insightful images of velocity relative to the radar.

Two key concepts:

Time              Distance

Frequency            Velocity

𝑓! = −
2𝑓"
𝑐 𝑣"

𝑅 =
𝑐Δ𝑡
2

𝑣(𝑅, 𝜃)𝑓6(𝑅, 𝑡)

R

𝜃

𝑝(𝑅, 𝑓6, 𝑡)
Processing:



Trackman radar:   “continuous wave” (CW)
radar:  precise Doppler but no range 
information.

Can identify targets and actions based on 
Doppler signatures!

Ve
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𝑝(𝑣, 𝑡)𝑝(𝑓), 𝑡)

Micro-Doppler Analysis

Processing:



Wave Interference and Bragg Scatter
Consider two waves with the same
frequency but different phase. 

𝜆6sin𝜃

𝑛𝜆+ = 2𝜆6sin𝜃

Consider a wave along the interface between a dielectric 
and a conducting (reflective) medium, as depicted below.  
This is representative of an air-ocean boundary.

Suppose waves are observed at angle 𝜃 using a radar 
with wavelength 𝜆1.  The condition for maximum 
constructive  interference is

If 𝜃 = 90∘ (or if these waves are propagating isotropically), 
then  the Bragg condition is met for 𝑛𝜆+ = 2𝜆6



Doppler spectrum of ocean waves

Important points:  
The target is distributed over the entire radar beam width. 
The scattering is from free electrons in the conducting sea water.
The Doppler spectrum has peaks due to Bragg scatter from waves in the medium.
The frequency of the peaks tells us the velocity and direction of the waves.
The height of the peaks tells us something about the amplitude and density of the waves.
The width of the peaks tells us something about the spread in velocity of the waves

Backscatter from the ocean at low aspect 
angle shows peaks in the  Doppler 
spectrum from the subset of waves 
matching the Bragg condition for the radar  
(spacing ≃ half the radar wavelength)

Waves moving
toward the radar

Waves moving
away from 

the radar

Noise floor



Doppler spectrum of the ionosphere
Let's put this all together for the ionosphere.   
The two predominant longitudinal modes in a thermal plasma:   

Ion-acoustic mode:

Langmuir mode:



Computer simulation of the ionosphere

Particle-in-cell (PIC) simulation:

Simple rules yield 
complex behavior
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Ion-acoustic (“Ion Line”)



𝗐𝖺𝗏𝖾𝗇𝗎𝗆𝖻𝖾𝗋𝑘(𝟣/𝗆)

ISR measures a cut through this surface 
at a particular wave number
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AMISR (450 MHz), 
Millstone (440 MHz)

EISCAT UHF (930 MHz)

Sondrestrom (1.3 GHz)Ion-acoustic “lines” 
are broadened by 
Landau damping

𝗐𝖺𝗏𝖾𝗇𝗎𝗆𝖻𝖾𝗋𝑘(𝟣/𝗆)

Ti/mi

Te/Ti

area ~ Ne

Vi

Waves moving 
away from 
the radar

Waves moving 
toward 

the radar



Doppler Radar: 
“Incoherent” Distributed Target

A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.

What happens when we have multiple targets in the radar volume, moving at different velocities?

e-

Two key concepts:

Distant             Time

Velocity            Frequency

e-

e-

𝑓! = −
2𝑓"
𝑐 𝑣"

𝑅 =
𝑐Δ𝑡
2 R

“Incoherent” distributed target

?



Constructive/destructive volume scatter

10 electrons / square wavelength

Return as a function of look direction
(dB)

Incoherent averaging



Incoherent Averaging
Normalized ISR spectrum for different integration times at 1290 MHz

We are seeking to estimate the
power spectrum of a Gaussian
random process.  This requires
that we sample and average many
independent “realizations” of the
process.

𝜌# ∼
$
%
1 + $

&'(

)

𝜌# =Normalized Mean Square Error
𝐾 =number of samples
𝑆𝑁𝑅 =per-pulse Signal-to-Noise Ratio

1 sample

30 samples

600 samples



Components of a Pulsed Doppler Radar

Physics model

Plasma density (Ne)
Ion temperature (Ti)
Electron temperature (Te)
Bulk velocity (Vi)

+

+

+

__

_

cos(𝜔"𝑡)𝑠(𝑡)

𝑠*(𝑡) = 𝑠(𝑡)cos(𝜔"𝑡)

𝑠!(𝑡) = 𝑎(𝑡)cos(𝜔"𝑡 + 𝜙(𝑡))

𝑠!(𝑡") = 𝑎"𝑒#$# = 𝐼" + 𝑗𝑄"

cos(𝜔"𝑡)



A Simple Radar Pulse

Waves, modulated
by “on-off” action of 

pulse envelope

How many cycles are in a typical pulse?  
PFISR frequency:  449 MHz
Typical long-pulse length: 480 µs 215,520 cycles!

cos(𝜔"𝑡)

𝑠(𝑡) = 𝐴Π ⁄𝑡 𝜏
X

𝑠#(𝑡) = 𝑠(𝑡)cos(𝜔"𝑡)

=



Measuring Velocity
Assume a transmitted signal:             𝑠(𝑡)cos(2𝜋𝑓1𝑡)

After return from target:         𝑎(𝑡)cos 2𝜋𝑓1 𝑡 − '2(*)
3

Let’s assume target moves with constant velocity with
respect to the radar during the measurement,                      

𝑅 = 𝑅! + 𝑣!𝑡
Substituting we obtain:    

𝑎(𝑡)cos 𝜔1𝑡 + 𝜙(𝑡)

𝑓5 = −
2𝑓1
𝑐
𝑣1𝑎(𝑡)cos 2𝜋𝑓1𝑡 − 2𝜋𝑓5𝑡 −

4𝜋𝑓1𝑅1
𝑐⏟ ⏟

𝜙(𝑡)𝜔!

𝑓&~ 50 kHz= 0.0001𝑓'

2) How do we remove 𝑓' , and just sample 𝑎(𝑡)cos[𝜙(𝑡)]?

R

Conducting sphere, 
constant velocity, 

Coherent echo

𝜔5 = 2𝜋𝑓5 = −
𝑑𝜙
𝑑𝑡

𝑓' ∼ 500 MHz, 

1) How do we discriminate positive from negative  𝑓&?

Receive

Receive

Transmit

Two issues:



Analytic Signal Model

𝑠(𝑡) = 𝑎(𝑡)𝑒(()"*+,(*))

𝑟𝑒#( = (𝑟cos𝜃) + 𝑗(𝑟sin𝜃)

From Euler's identity

Setting  𝑟 = 𝑎(𝑡) and 𝜃 = 𝜔'𝑡 + 𝜙(𝑡),  we obtain a 
general complex signal model for radar applications.

AM PM
Carrier

𝑠(𝑡) = 𝑎(𝑡)𝑒(()"-)#)*
Or by letting 𝜔) = −𝑑𝜙/𝑑𝑡 → 𝜙(𝑡) = −𝜔)𝑡

𝑗 = −1

𝑟cos(𝜃) = ℜ{𝑟𝑒#(}

𝑟sin(𝜃) = ℑ{𝑟𝑒#(}

“real part”

“imaginary part”

𝜃

FM

−𝜃

Now through Euler’s identity :

𝑟𝑒#(

𝑟cos𝜃

𝑟sin𝜃

ℜ{𝑠(𝑡)} = 𝑎(𝑡)cos(𝜔'𝑡 + 𝜙(𝑡))

ℑ{𝑠(𝑡)} = 𝑎(𝑡)sin(𝜔'𝑡 + 𝜙(𝑡))



I and Q Demodulation
Consider radar transmission of a simple RF pulse.  The reflected signal from the target will be the original pulse 
with some time varying amplitude and phase applied to it:

𝑠$(𝑡) = 𝑎(𝑡)cos(𝜔!𝑡 + 𝜙(𝑡))
We compute the analytic signal by “mixing” with cosine and sine. 
Mixing with cos(𝜔%𝑡) gives the “in-phase” (I) channel:

𝑠$(𝑡)cos(𝜔!𝑡) = 𝑎(𝑡)cos(𝜔!𝑡 + 𝜙(𝑡))[cos(𝜔!𝑡)]

= 𝑎(𝑡)
1
2
cos[2𝜔!𝑡 + 𝜙(𝑡)]

⏟
+ cos[𝜙(𝑡)]

Mixing with sin(𝜔%𝑡) gives the “quadrature” (Q) channel:

𝑠$(𝑡)[sin(𝜔!𝑡)] = 𝑎(𝑡)cos(𝜔!𝑡 + 𝜙(𝑡))[sin(𝜔!𝑡)]
= 𝑎(𝑡)

1
2
sin[2𝜔!𝑡 + 𝜙(𝑡)]

⏟
+ sin[𝜙(𝑡)]

If we include a gain of 2, we retain the original signal energy.  Using 
Euler’s identity we obtain the analytic baseband signal:

𝑠'(𝑡) = 𝑎(𝑡)𝑒()(+) = 𝑎(𝑡)cos𝜙(𝑡) + 𝑗𝑎(𝑡)sin𝜙(𝑡) = 𝐼 + 𝑗𝑄

I/Q demodulation produces a time-series of complex voltage samples (𝐼-, 𝑄-)  from which we can 
construct a discrete representation of 𝑠'(𝑡).  The Doppler frequency shift is the time rate of change of the 
phase,𝜔. = −𝑑𝜙/𝑑𝑡.

filter out

filter out

a 



I/Q Demodulation: Frequency Domain

fo-fo

fo-fD-(fo-fD)

fD

Transmitted signal: Frequency domain

Reflected signal from moving target
0

2fo-fD-fDfD-(2fo-fD)

We thus need to mix with a second oscillator at same frequency but 90∘ out of phase.   
For a cosine reference, the quadrature function is sine.   The two components are called “in phase” (I)
and “quadrature” (Q).    Together I and Q represent discrete samples of the baseband analytic signal,  

To resolve both positive and negative Doppler shifts, we need:

Mixed (multiplied) with oscillator  cos(2𝜋𝑓1𝑡)

FT (for a single scatterer)

1
2 cos 2𝜋(2𝑓' − 𝑓&)𝑡 +

1
2 cos[2𝜋𝑓&𝑡] ⟺

cos(2𝜋𝑓&𝑡) ⟺

cos(2𝜋(𝑓& − 𝑓')𝑡) ⟺

-fo fo

LPF*

*Low Pass Filter
**Fast Fourier Transform

𝐴𝛿(𝑓 − 𝑓')𝑠((𝑡) = 𝐴𝑒)*+,:- = 𝐼(𝑡) + 𝑗𝑄(𝑡)

narrow-band
signal



Correlation and the ISR Spectrum
How do we compute the power spectrum from our complex voltages ?
One approach is to compute Fourier transform of the range-resolved signal: 

The discrete  representation of 𝑅*(𝑟, 𝜏) is constructed through appropriate scaling and 
multiplication of the complex voltage samples 𝑠(𝑟+ , 𝑡").   

Soon we will begin to explore methods for constructing the ACF.

𝑅6(𝑟, 𝜏) =
⟨𝑠(𝑟, 𝑡)𝑠(𝑟, 𝑡 + 𝜏)⟩

⟨ 𝑠(𝑟, 𝑡) '⟩

where the angle brackets denote the ensemble average, or the expected value.  
The power spectral density is given by the Fourier transform of the 𝑅*

𝑅6(𝑟, 𝜏) ⟺ 𝑆(𝑟, 𝑓) '

Based on the stochastic nature of the target, and the way ISR  samples the echos, 
we will take a different approach.   We first compute the auto-correlation function (ACF),

𝑠(𝑟, 𝑡) = 𝐼(𝑟, 𝑡) + 𝑄(𝑟, 𝑡) ⟺ 𝑆(𝑟, 𝑓)
from which the power spectrum may be represent as 𝑆(𝑟, 𝑓) '

(Wiener-Khinchin theorem)

𝑆(𝑓; 𝑟) !

𝑓



Incoherent Scatter Radar (ISR)
Ion-acoustic

Langmuir

Ti/mi

Te/Ti
area ~ Ne
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Meteor Radar Example

Inter-pulse period (IPP)

Meteor Echo I & Q

Vo
lta

ge

Power Spectrum

Coherent target (meteor 
ionization trail), with ~constant 
velocity.

Find velocity (hence, neutral 
wind velocity along radar line of 
sight) by sampling I and Q from 
many pulses, taking the Fourier 
Transform (FFT), and forming 
|𝑆(𝑓)|'

Velocity and reflected power 
are found from the peak in the 
power spectrum.



Does this strategy work for ISR?
Doppler width at 450 MHz:     10 kHz
de-correlation time (zero crossing):  ~1/10kHz = 0.1 ms
Inter-pulse period (IPP) to reach 450 km:   2R/c = 3ms

Stated alternately, the Doppler frequency shift of the plasma is much higher than the 
maximum unambiguous Doppler shift measurable for the pulse-repetition frequency.

Plasma has de-correlated by the time we send the next pulse.

ISR spectrum               Autocorrelation function  (ACF)

Increasing Te



Autocorrelation function and power spectrum

Ti/mi

Te/Ti

Vi

Ion temperature (Ti) to ion 
mass (mi) ratio from the width 
of the spectra

Electron to ion temperature 
ratio (Te/Ti) from “peak-to-
valley” ratio

Electron (= ion) density 
from total area (corrected 
for temperatures)

Line-of-sight ion velocity 
(Vi) from bulk Doppler 
shift

area ~ Ne

zero lag (=signal average power)

1st lag

2nd lag

3rd lag

Our goal is to sample lags with 
sufficient fidelity to provide 
meaningful estimates of plasma 
parameters



Time

R
an
ge

zero lag

Inter-pulse Period (IPP)

Computing the ACF (and, hence, spectrum)

• A pulse propagates at speed of
light, represented here by the 
slope of the lines.
• Target is continuous, so each 

sample collects scattering from 
volume defined by pulse length.

pulse 1 pulse 2



Computing the ACF (and, hence, spectrum)

Time

R
an
ge

1st lag



Computing the ACF (and, hence, spectrum)

Time

R
an
ge

1st lag



Computing the ACF (and, hence, spectrum)

Time

R
an
ge

2nd lag



Computing the ACF (and, hence, spectrum)

Time

R
an
ge

2nd lag



Computing the ACF (and, hence, spectrum)

Time

R
an
ge

2nd lag



Computing the ACF (and, hence, spectrum)
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Correlated volumes (signal)

Uncorrelated (contributes to noise)

Uncorrelated (contributes to noise)



Ambiguity function

480 microsec pulse
30 microsec sampling
Anti-aliasing filter



Radar Waveforms
Pulse at single frequency

Linear Frequency-
Modulated (LFM)

Waveform
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Pulse with changing frequency
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Phase-coded
Waveform

(Alternating codes
Barker Codes)

Pulse at single frequency, but variable phase



Radar Waveforms

RF pulse at a single frequency

RF Pulse with changing frequency

RF Pulse, single frequency, changing phase

𝑠(𝑡) = 𝐴(𝑡)cos 2𝜋𝑓1𝑡 + 𝜙(𝑡)

……

Unmodulated RF signal

𝑠(𝑡) = 𝐴W𝑒XYZ[.\

𝑠(𝑡) = 𝐴(𝑡)𝑒XYZ[.\𝑒X](\)

𝑠(𝑡) = 𝐴(𝑡)𝑒XYZ[.\

𝑠(𝑡) = 𝐴(𝑡)𝑒XYZ([.^_[(\)\

𝑒X` = 1
𝑒XZ = −1
𝑒XZ/Y = 𝑗
𝑒aXZ/Y = −𝑗



Example Radar Waveform Set
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Dish Versus Phased-array

-FOV:  Elevation angles > 30 deg
-Integration constrained by antenna 
motion
-Power concentrated at Klystron
-Significant mechanical complexity

-FOV:  +/- 25 degrees from boresight
-Integration over all positions 
simultaneously
-Power distributed
-No moving parts
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Three-dimensional ionospheric imaging

100

110

120 km

Semeter et al., JASTP 2009
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