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Abstract

The extent and timing of cost-reducing improvements in low-carbon energy systems are important sources of uncertainty in

future levels of greenhouse-gas emissions. Models that assess the costs of climate change mitigation policy, and energy policy in

general, rely heavily on learning curves to include technology dynamics. Historically, no energy technology has changed more

dramatically than photovoltaics (PV), the cost of which has declined by a factor of nearly 100 since the 1950s. Which changes

were most important in accounting for the cost reductions that have occurred over the past three decades? Are these results

consistent with the notion that learning from experience drove technical change? In this paper, empirical data are assembled

to populate a simple model identifying the most important factors affecting the cost of PV. The results indicate that learning

from experience, the theoretical mechanism used to explain learning curves, only weakly explains change in the most impor-

tant factors—plant size, module efficiency, and the cost of silicon. Ways in which the consideration of a broader set of influences,

such as technical barriers, industry structure, and characteristics of demand, might be used to inform energy technology policy

are discussed.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The cost of photovoltaics (PV) has declined by a
factor of nearly 100 since the 1950s, more than any other
energy technology in that period (Wolf, 1974; McDo-
nald and Schrattenholzer, 2001; Maycock, 2002).
Markets for PV are expanding rapidly, recently growing
at over 40% per year (Maycock, 2005). Future scenarios
that include stabilization of greenhouse-gas (GHG)
concentrations assume widespread diffusion of PV. In
a review of 34 emissions scenarios, Nakicenovic and
Riahi (2002) found a median of 22 terawatts (TW) of PV
deployed in 2100 for those scenarios that include GHG
stabilization. At present however, PV remains a niche
electricity source and in the overwhelming majority of
situations does not compete economically with conven-
e front matter r 2005 Elsevier Ltd. All rights reserved.
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tional sources, such as coal and gas, or even with other
renewable sources, such as wind and biomass. The
extent to which the technology improves over the next
few decades will determine whether PV reaches terawatt
scale and makes a meaningful contribution to reducing
GHG emissions or remains limited to niche applica-
tions.

The learning curve is an important tool for modeling
technical change and informing policy decisions related
to energy technology. For example, it provides a method
for evaluating the cost effectiveness of public policies to
support new technologies (Duke and Kammen, 1999)
and for weighing public technology investment against
environmental damage costs (van der Zwaan and Rabl,
2004). Energy supply models now also use learning
curves to endogenate improvements in technology. Prior
to the 1990s, technological change was typically inclu-
ded either as an exogenous increase in energy con-
version efficiency or ignored (Azar and Dowlatabadi,
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1Cost is often normalized by an indicator of performance, e.g. $/W.

Alternative performance measures are also sometimes used such as

accident and defect rates.
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1999). Studies in the 1990s began to use the learning
curve to treat technology dynamically (Williams and
Tarzian, 1993; Grübler et al., 1999) and since then it has
become a powerful and widely used model for projecting
technological change. Recent work however has cau-
tioned that uncertainties in key parameters may be
significant (Wene, 2000), making application of the
learning curve to evaluate public policies inappropriate
in some cases (Neij et al., 2003). This paper examines
some of these concerns. After a review of the advantages
and limitations of the learning curve model, the
applicability of learning curves to PV is then assessed
by constructing a bottom-up cost model and comparing
its results to the assumptions behind the learning curve.

1.1. The learning curve model

Characterizations of technological change have iden-
tified patterns in the ways that technologies are
invented, improve, and diffuse into society (Schumpeter,
1947). Studies have described the complex nature of the
innovation process in which uncertainty is inherent
(Freeman, 1994), knowledge flows across sectors are
important (Mowery and Rosenberg, 1998), and lags can
be long (Rosenberg, 1994). Perhaps because of char-
acteristics such as these, theoretical work on innovation
provides only a limited set of methods with which to
predict changes in technology. The learning curve model
offers an exception.

The learning curve originates from observations that
workers in manufacturing plants become more efficient
as they produce more units (Wright, 1936; Alchian,
1963; Rapping, 1965). Drawing on the concept of
learning in psychological theory, Arrow (1962) forma-
lized a model explaining technical change as a function
of learning derived from the accumulation of experi-
ences in production. In its original conception, the
learning curve referred to the changes in the productiv-
ity of labor which were enabled by the experience of
cumulative production within a manufacturing plant. It
has since been refined, for example, Bahk and Gort
(1993) make the distinction between ‘‘labor learning’’,
‘‘capital learning’’, and ‘‘organizational learning’’.
Others developed the experience curve to provide a
more general formulation of the concept, including not
just labor but all manufacturing costs (Conley, 1970)
and aggregating entire industries rather than single
plants (Dutton and Thomas, 1984). Though different in
scope, each of these concepts is based on Arrow’s
explanation that ‘‘learning-by-doing’’ provides oppor-
tunities for cost reductions and quality improvements.
As a result, these concepts are often, and perhaps
misleadingly, grouped under the general category of
learning curves. An important implication of the
experience curve is that increasing accumulated experi-
ence in the early stages of a technology is a dominant
strategy both for maximizing the profitability of firms
and the societal benefits of technology-related public
policy (BCG, 1972).

The learning curve model operationalizes the expla-
natory variable experience using a cumulative measure
of production or use. Change in cost typically provides a
measure of learning and technological improvement,
and represents the dependent variable.1 Learning curve
studies have experimented with a variety of functional
forms to describe the relationship between cumulative
capacity and cost (Yelle, 1979). The log-linear function
is most common perhaps for its simplicity and generally
high goodness-of-fit to observed data. The central
parameter in the learning curve model is the exponent
defining the slope of a power function, which appears as
a linear function when plotted on a log–log scale. This
parameter is known as the learning coefficient (b) and
can be used to calculate the progress ratio (PR) and
learning ratio (LR) as shown below where C is unit cost
and q represents cumulative output:

Ct ¼ C0
qt

q0

� ��b

, (1)

PR ¼ 2�b, (2)

LR ¼ ð1� PRÞ. (3)

Several studies have criticized the learning curve
model, especially in its more general form as the
experience curve. Dutton and Thomas (1984) surveyed
108 learning curve studies and showed a wide variation
in learning rates leading them to question the explana-
tory power of experience. Argote and Epple (1990)
explored this variation further and proposed four
alternative hypotheses for the observed technical im-
provements: economies of scale, knowledge spillovers,
and two opposing factors, organizational forgetting and
employee turnover. Despite such critiques, the applica-
tion of the learning curve model has persisted without
major modifications as a basis for predicting technical
change, informing public policy, and guiding firm
strategy. Below, the advantages and limitations of using
the more general version of the learning curve, the
experience curve, for such applications are outlined.

The experience curve provides an appealing model for
several reasons. First, availability of the two empirical
time series required to build an experience curve—cost
and production data—facilitates testing of the model.
As a result, a rather large body of empirical studies has
emerged to support the model. Compare the simplicity
of obtaining cost and production data with the difficulty
of quantifying related concepts such as knowledge flows
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Fig. 1. Experience curves for PV modules and sensitivity of learning rate to underlying data. Data: Maycock (2002) and Strategies-Unlimited (2003).
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and inventive output. Still, data quality and uncertainty
are infrequently explicitly assessed and as shown below
can have a large impact on results. Second, earlier
studies of the origin of technical improvements, such as
in the aircraft industry (Alchian, 1963) and shipbuilding
(Rapping, 1965), provide narratives consistent with the
theory that firms learn from past experience. Third,
studies cite the generally high goodness-of-fit of power
functions to empirical data over several years, or even
decades, as validation of the model. Fourth, the
dynamic aspect of the model—the rate of improvement
adjusts to changes in the growth of production—makes
the model superior to forecasts that treat change purely
as a function of time.2 Finally, the reduction of the
complex process of innovation to a single parameter, the
learning rate, facilitates its inclusion in energy supply
and computable general equilibrium models.

The combination of a rich body of empirical literature
and the more recent applications of learning curves in
predictive models has revealed weaknesses that echo
earlier critiques. First, the timing of future cost
reductions is highly sensitive not only to changes in
the market growth rate but also to small changes in the
learning rate. Although, an experience curve R2 value of
40:95 is considered a strong validation of the experi-
ence curve model, variation in the underlying data can
lead to uncertainty about the timing of cost reductions
on the scale of decades. Fig. 1 shows experience curves
based on the two most comprehensive world surveys of
PV prices (Maycock, 2002; Strategies-Unlimited, 2003).
The Maycock survey produces a learning rate of 0.26
while the Strategies Unlimited data give 0.17.3 What
2An example of the opposite, a non-dynamic forecast, is autono-

mous energy efficiency improvement (AEEI) in which technologies

improve at rates exogenously specified by the modeler (Grubb et al.,

2002).
3Note that the largest differences between the price surveys are in the

early stages of commercialization when using experience curves may be

least appropriate.
may appear as a minor difference has a large effect. For
example, assuming a steady industry growth rate of 15%
per year, consider how long it will take for PV costs to
reach a threshold of $0.30/W, an estimate for competi-
tiveness with conventional alternatives. Just the differ-
ence in the choice of data set used produces a crossover
point of 2039 for the 0.26 learning rate and 2067 for the
0.17 rate, a difference of 28 years. McDonald and
Schrattenholzer (2001) show that the range of learning
rates for energy technologies in general is even larger.
Neij et al. (2003) find that calculations of the cost
effectiveness of public policies are very sensitive to such
variation. Wene (2000) observes this sensitivity as well
and recommends an ongoing process of policy evalua-
tion that continuously incorporates recent data.

Second, the experience curve model gives no way to
predict discontinuities in the learning rate. In the case of
PV, the experience curve switched to a lower trajectory
around 1980. As a result, experience curve-based fore-
casts of PV in the 1970s predicted faster technological
progress than actually occurred (Schaeffer et al., 2004).
Discontinuities present special difficulties at early stages
in the life of a technology. Early on, only a few data
points define the experience curve, while at such times
decisions about public support may be most critical.

Third, studies that address uncertainty typically
calculate uncertainties in the learning rate using the
historical level of variance in the relationship between
cost and cumulative capacity. This approach ignores
uncertainties and limitations in the progress of the
specific technical factors that are important in driving
cost reductions (Wene, 2000). For example, constraints
on individual factors, such as theoretical efficiency
limits, might affect our confidence in the likelihood of
future cost reductions.

Fourth, due to their application in planning and
forecasting, emphasis has shifted away from learning
curves based on employee productivity and plant-level
analysis, to experience curves aggregating industries and
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5Inverters and other components have similar progress ratios to

modules and have exhibited cost decreases by factors of 5 and 10

respectively.
6Crystalline silicon makes up close to 100% of the market for
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including all components of operating cost. While the
statistical relationships generally remain strong, the
conceptual story begins to look stretched as one must
make assumptions about the extent to which experience
is shared across firms. In the strictest interpretation of
the learning-by-doing model applied to entire industries,
one must assume that each firm benefits from the
collective experience of all. The model assumes homo-
genous knowledge spillovers among firms.

Fifth, the assumption that experience, as represented
by cumulative capacity, is the only determinant of cost
reductions ignores the effect of knowledge acquired
from other sources, such as from R&D or from other
industries. Earlier, Sheshinski (1967) wrestled with the
separation of the impact of two competing factors,
investment and output. Others have addressed this
limitation by incorporating additional factors such as
workforce training (Adler and Clark, 1991), R&D
(Buonanno et al., 2003; Miketa and Schrattenholzer,
2004), and the interactions between R&D and diffusion
(Watanabe et al., 2000). The amount of data required
for parameter estimation has so far limited widespread
application of these more sophisticated models.

Finally, experience curves ignore changes in quality

beyond the single dimension being analyzed (Thomp-
son, 2001).4 The dependent variable is limited to cost
normalized by a single measure of performance—
for example, hours of labor/aircraft, $/W, or b/mega-
byte. Measures of performance like these ignore
changes in quality such as aircraft speed, reliability of
power generation, and the compactness of computer
memory.

1.2. Approach

This study seeks to understand the drivers behind
technical change in PV by disaggregating historic cost
reductions into observable technical factors. The me-
chanisms linking factors such as cumulative capacity
and R&D to technological outcomes, while certainly
important, are at present not well understood. Many of
the problems mentioned above arise because the
experience curve model relies on assumptions about
weakly understood phenomena. Rather than making
assumptions about the roles that factors like experience,
learning, R&D, and spillovers play in reducing costs, a
set of observable technical factors are identified whose
impact on cost can be directly calculated.

This study includes the period from nascent commer-
cialization, 1975, to 2001. During this 26-year period,
there was a factor of 20 cost reduction in the cost of PV
modules. Only PV modules are examined and balance-
of-system components such as inverters, storage, and
4Payson (1998) provides an alternative framework that incorporates

both changes in quality and cost improvements.
supporting structures are excluded.5 The focus here is on
explaining change in the capital cost of PV modules,
rather than on the cost of electricity produced, mainly
due to data quality considerations and to be able to
exclude influential but exogenous factors such as interest
rates. The study is limited to PV modules manufactured
from mono-crystalline and poly-crystalline silicon wa-
fers because crystalline silicon has been the overwhel-
mingly dominant technology for PV over this period.
Crystalline silicon PV comprised over 90% of produc-
tion over this period and its share increased in the
second half of the period.6 While photovoltaic electricity
has been produced from a wide variety of other
materials, such as cadmium-telluride and copper-in-
dium-diselenide, during the study period these compet-
ing technologies remained in the development stage and
were not commercially relevant. The price data used in
the study are weighted averages of the two types of
silicon crystals. The study uses worldwide data rather
than country-level data because over this time period the
market for PV became global. Some of the change often
attributed to within-country costs is due to the
globalization of the industry, rather than learning from
that country’s experience. Junginger et al. (2005)
articulated the need for such an international view and
as a result developed a global experience curve for wind
power. This study adopts a similarly global view. The
scope of this study thus addresses the concerns raised by
Schaeffer et al. (2004) regarding the importance of data
quality, system boundaries, and sufficient historical time
period for assessing experience in energy technologies.
Finally, the technological characteristics of PV provide
two simplifying aspects that help restrict the influence of
potentially confounding factors in the study. First, there
has been no significant change in per unit scale in PV
panels. PV panels have been sized on the order of one
square meter per panel for three decades. Compare this
to wind turbines in which the size of individual units has
increased by almost two orders of magnitude over
the same period (Madsen et al., 2003; Junginger
et al., 2005).Second, there are essentially no opera-
tion and maintenance costs associated with PV, other
than regular cleaning and inverter replacement. This
limits the role of ‘‘learning-by-using’’, which would
normally be an important additional factor to consider
(Rosenberg, 1982).

The analysis began by identifying factors that
changed over time and had some impact on PV costs.
Using empirical data, the annual level of these seven
applications of 41kW, a definition of the market that includes

household-scale and larger power generation and excludes consumer

electronics.
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factors over the study period, 1975–2001, was compiled
and a model to quantify the impact of the change in
each factor on module cost developed.
8‘Large-scale’ means4100MW per plant per year. Other PV scaling

factors include the following: b ¼ �0:07 (Bruton and Woodock, 1997),

b ¼ �0:09 (Rohatgi, 2003), b ¼ �0:12 (Frantzis et al., 2000), b ¼

�0:18 (Maycock, 1997), b ¼ �0:20 (Ghannam et al., 1997). It is not

surprising that the chosen value lies at the upper end of this range

because it is being applied historically, when smaller plant sizes

probably were yielding more economies of scale than they would at the
2. Cost model methodology

This cost model simulates the effect of changes in each
of seven factors on manufacturing cost in each year, t, as
follows.

2.1. Cost

Average module cost (C) in $=Wpeak is the dependent
variable in the model.7 The time series for cost uses an
average of the two most comprehensive world surveys of
PV prices (Maycock, 2002; Strategies-Unlimited, 2003).
Using prices as a proxy for costs is a widespread practice
whose validity is discussed below. The model uses
module cost, rather than cost of energy produced, to
avoid the large uncertainties associated with making
assumptions about capacity factors, lifetimes, and
financing mechanisms.

2.2. Module efficiency

Improvements in the energy efficiency
(Z ¼Wout=W in) of modules sold have nearly doubled
the rated power output of each square meter (m2)
of PV material produced (Christensen, 1985; Maycock,
1994, 2002; Grubb and Vigotti, 1997). The model
simulates the impact of efficiency changes on module
cost using

DCtðZÞ ¼ Ct�1
Zt�1

Zt

� 1

� �
. (4)

This simple formulation applies the annual change in
efficiency to the previous year’s cost, Ct�1, to calculate
the change in cost due to efficiency, DCtðZÞ. As an
example, a doubling in efficiency would, ceteris paribus,
reduce $/W cost by 50%.

2.3. Plant size

Growth in the expected future demand for PV has led
to an increase in the average annual output of PV
manufacturing plants of more than two orders of
magnitude (Maycock and Stirewalt, 1985; Maycock,
1994, 2002; Ghannam et al., 1997; Mitchell et al., 2002).
Growing demand has enabled manufacturers to build
larger facilities, which exploit economies of scale by
absorbing indivisible costs. The effect of increasing plant
size (SZ) is estimated using Eq. (5). A scaling factor for
7All monetary values presented in this study are in US dollars at

constant 2002 prices.
operating costs is borrowed from the semi-conductor
industry (b ¼ �0:18) (Gruber, 1996), the industry whose
production processes are most similar to those of PV.
This value is within the range of assumptions used in
studies that calculate future cost savings for large-scale
PV:8

DCtðSZÞ ¼ Ct�1
SZt

SZt�1

� �b

� 1

 !
. (5)

2.4. Yield

Improved cell and module processing techniques
have increased yield, the proportion of functioning
units available at the end of the manufacturing process
(YD) (Little and Nowlan, 1997; Sarti and Einhaus,
2002; Rohatgi, 2003).9 Because post-wafer yield mea-
sures the final stages of the production process, firms
incur the entire cost of modules they discard for
mechanical or electrical reasons. The trend toward
thinner wafers increased the brittleness of cells. This
more delicate material increased the possibility of
breakage, offsetting some of the gains in yield delivered
by automation:

DCtðYDÞ ¼ Ct�1
YDt�1

YDt

� 1

� �
. (6)

2.5. Poly-crystalline share

Wafers cut from silicon ingots comprised of multiple
crystals (poly-crystalline) rather than individual crystals
(mono-crystalline) have accounted for an increasing
share of world production (Costello and Rappaport,
1980; Maycock, 1994, 2002, 2003; Menanteau, 2000;
JPEA, 2002; Goetzberger et al., 2003). Based on
comparisons of mono- and poly-crystalline prices (May-
cock, 1994, 1997; Bruton and Woodock, 1997; Sarti and
Einhaus, 2002), it is assumed that poly-crystalline
modules cost 90% that of mono-crystalline modules
ðPF ¼ 0:9Þ. Eq. (7) calculates the cost of poly-crystalline
modules (PC) based on average prices of all types of
modules. The effect of the growing market share for
poly-crystalline modules (PS) on average module cost is
levels of 100–500MW/year in these studies.
9Yield improvements in the manufacturing of wafers are captured in

Section 2.7.
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Fig. 2. Materials costs for PV modules. Data: Christensen (1985) and

Maycock (2002).

Table 1

Summary of model results, 1975–2001

Factor Change Effect on module

cost ($/W)

Module efficiency 6.3%! 13.5% �17:97
Plant size 76 kW/yr! 14MW/yr �13:54
Si cost 300 $/kg! 25 $/kg �7:74
Si consumption 30 g/W! 18 g/W �1:06
Yield 87%! 92% �0:87
Wafer size 45 cm2 ! 180 cm2 �0:67

Poly-crystal 0%! 50% �0:38

Sum of factors �42:24
Actual change �70:36

Residual �28:13

11Other factors such as labor, automation, and other material inputs

G.F. Nemet / Energy Policy 34 (2006) 3218–3232 3223
obtained in Eq. (8):

PCt ¼ PF
Ct

1� ð1� PFÞPSt

, ð7Þ

DCtðPSÞ ¼ ðPSt � PSt�1ÞðPCt�1 � Ct�1Þ. ð8Þ

2.6. Silicon cost

The basic material input for producing PV wafers is
solar-grade silicon feedstock, the cost of which (SC) has
fallen by nearly a factor of 12 over the study period
(Ghosh, 1979; Costello and Rappaport, 1980; Bruton,
2002; Swanson, 2004) (Fig. 2). Changes in the other
major materials—glass, ethyl-vinyl acetate (EVA),
aluminum, and framing materials—are ignored because
they are orders of magnitude less costly than silicon.10

The annual effect of the change due to silicon cost is
estimated by calculating the cost of the silicon necessary
to produce a watt of PV module, while holding the
amount of silicon used (SU) per watt constant:

DCtðSCÞ ¼ ðSCtSUt�1Þ � ðSCt�1SUt�1Þ. (9)

2.7. Silicon consumption

The amount of silicon used per watt of PV module has
fallen by a factor of 1.5 over the period (Maycock, 2002;
Woditsch and Koch, 2002; Swanson, 2004). Manufac-
turers have accomplished this change by reducing the
thickness of silicon wafers from 500 to 250mm and by
reducing kerf losses, from the sawing of each wafer,
from 250 to 190mm. The amount of silicon saved each
year is calculated and is combined with data on silicon
cost to estimate the effect on module cost:

DCtðSUÞ ¼ ðSCt�1SUtÞ � ðSCt�1SUt�1Þ. (10)

2.8. Wafer size

Improved crystal growing methods have increased the
cross-sectional area of each wafer (WS) by a factor of
10Note that in Fig. 2 a log scale is necessary to show the changes in

the other materials.
four (Christensen, 1985; Symko-Davies et al., 2000;
Rohatgi, 2003; Swanson, 2004). Larger wafers facilitate
savings in the cell and module assembly processes where
there are costs that are fixed per wafer, e.g. forming
electrical junctions and testing. Using studies that
disaggregate costs, the model assumes that post-wafer
processing accounts for 40% of the cost of producing a
module in all periods ðWP ¼ 0:4Þ (Moore, 1982; Bruton
and Woodock, 1997; Maycock, 2002) and that fixed per
wafer costs are 10% of cell and module assembly costs
ðWF ¼ 0:1Þ:

DCtðWSÞ ¼ Ct�1
WSt�1

WSt

� 1

� �
WPWF. (11)
2.9. Full model

The total change in module cost each year is the sum
of the changes in each of the seven factors described
above (F):11

DCt ¼
X

DCF ;t. (12)

3. Model results: plant size, efficiency, and silicon cost

Three factors were most important in explaining cost
declines from 1975 to 2001: plant size, cell efficiency, and
to a lesser extent, the cost of silicon (Table 1). The other
four factors each account for less than 2% of the cost
decline. However, these seven factors together explain
less than 60% of the change in cost over the period.
Such a large residual requires understanding the reasons
for this residual before drawing conclusions about the
were also considered. However, they are excluded from the model

because these changes are either very small or are captured as changes

in other factors that were included in the model.
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Fig. 3. Module lifetime. Data: Moore (1982), Christensen (1985) and

Wohlgemuth (2003).
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model results. Analysis of the residual shows that the
model predicts the actual change in prices much better
after 1980 than it does before 1980.

The following sections present results obtained by
partitioning the model into two time periods: Period 1:
1975–79; and Period 2: 1980–2001. These periods were
chosen for three reasons. First, by 1980, terrestrial
applications had become dominant over space-based
applications. The emergence of niche markets for
navigation, telecommunications, and remote residences
signaled the start of a viable commercial market.
Second, global public R&D spending on PV reached
its peak, $370m, in 1980 (IEA, 2004). The subsequent
decline in R&D reflected a less active government role in
technology development as the experiences of the 1970s
oil crises faded. Third, in 1980, governments such as
Japan began subsidizing commercial applications, in-
dicative of the shift from research-oriented to diffusion-
oriented policies.

3.1. Period 1: 1975– 79

In the first 4 years of this study, cost declined by a
factor of three. Of the factors identified in the model,
efficiency, cost of silicon, and plant size accounted for
the most change in cost. Two other factors, yield and
silicon consumption, were of less importance but played
a role. Wafer size and poly-crystalline share did not
change and thus had no effect. These seven factors
however fail to explain most of the change in cost over
this period, as 59% of the change is unexplained. In the
rest of this section, other factors are discussed that may
help explain some of this large residual. Understanding
the early period of commercialization is important
because many technologies tend to attract widespread
interest, as they emerge from the laboratory and find
their first commercial applications. As a result, policy
and investment decisions must be made at this early
stage when the factors discussed below may be at work.

As a starting point for identifying alternative ex-
planations in this period, it is important to note that
there was a dramatic change in the market for PV over
these 4 years. During this period, terrestrial applications
overtook space-based satellite applications as the
dominant end use. In 1974, the market share of
terrestrial applications was 4%—satellites accounted
for the remaining 96% (Moore, 1982). By 1979, the
terrestrial market share had grown to 64%. The
following sections address the large residual with four
possible explanations, each of which is associated with
this shift in end use.

3.1.1. Shift to lower quality reduces cost

One reason for the unexplained change in cost is that
the shift from space to terrestrial applications led to a
reduction in the quality of modules. The shift away from
space applications rendered certain characteristics non-
essential, allowing manufacturers to switch to less costly
processes.

First, spatial and weight constraints on rockets
required high-efficiency panels to maximize watts
delivered per m2. The relaxation of this requirement
for terrestrial applications enabled manufacturers to
employ two important cost-saving processes (Moore,
1982). Modules could use the entire area of the silicon
wafer—even the portions near the edges which tend to
suffer from defects and high electrical resistivity. Also,
the final assembly process could use a chemical polish to
enhance light transmission through the glass cover,
rather than the more expensive ground optical finish
that was required for satellites.

Second, reliability targets fell. Satellite programs,
such as Vanguard and Skylab, needed satellite PV
modules that would operate reliably without mainte-
nance, perhaps for 20 years. Terrestrial applications, on
the other hand, could still be useful with much shorter
lifetimes. Combining lifetime data (Christensen, 1985;
Wohlgemuth, 2003) with the shares of satellite and
terrestrial applications shows a decline in average
industry module lifetime during the late 1970s (Fig. 3).
The transition from 20-year reliability targets in the
early and mid-1970s to 5 years in 1980s allowed the use
of cheaper materials and less robust assembly processes
that would have enabled less costly manufacturing.
3.1.2. Change in demand elasticity decreases margins

Another, and possibly complementary, explanation is
that the shift from satellites to terrestrial applications
affected prices because of a difference in the demand
elasticity of the two types of customers. Price data from
the period provide some supporting evidence. In
1974–79, the price per watt of PV modules for satellite
use was 2.5 times higher than the price for terrestrial
modules (Moore, 1982). The impact of this price
difference on average PV prices is calculated by taking
into account the change in market share mentioned
above. The combination of these price and market shifts
accounts for $22 of the $28 price decline not explained
by the model in this period. Satellite customers, with
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Fig. 4. Industry concentration (Herfindahl–Hirschman Index). Data: Wolf (1974), Roessner (1982) and Maycock (1984, 1994, 2002, 2005).
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their hundreds of millions of dollars of related invest-
ments, almost certainly had a higher willingness to pay
for PV panels than early terrestrial applications such as
telecom repeater sites or buoys for marine navigation.
The difference in quality must account for some of the
price difference. But the difference in willingness to pay
may also have led to higher differences between cost and
price for satellite than for terrestrial applications.
3.1.3. Increasing competition

Market share data indicate an increase in competition
during this period. A decline in industry concentration
typically produces an increase in competitiveness, a
decline in market power, and lower profit margins.
There were only two US firms shipping terrestrial PV
from 1970 to 1975 (Wolf, 1974; Maycock and Stirewalt,
1985). In 1978, about 20 firms were selling modules and
the top three firms made up 77% of the industry
(Roessner, 1982). By 1983, there were dozens of firms in
the industry with the largest three firms accounting for
only 50% of the megawatts sold (Maycock, 1984).

The Herfindahl–Hirschman Index (HHI) provides a
way of measuring industry concentration. The HHI is
calculated by summing the squares of the market shares
of all firms in an industry. The maximum possible HHI
is 10,000.12 The data show a trend to a less concentrated
US market during Period 1, 1975–79 (Fig. 4). Concen-
tration in the global market remained stable in the
1990s, the period for which comprehensive worldwide
data are available. The increase in international trade in
PV over the last three decades indicates that the relevant
scale of analysis shifted from a national market in the
earlier years to an international market today. Thus the
most relevant measure of concentration would involve
not only the trends in the curves themselves but also a
12The US Department of Justice uses HHI to assess competitiveness

in anti-trust decisions and considers industries with values below 1000

‘‘unconcentrated’’, 1000–1800 ‘‘moderately concentrated’’, and values

above 1800 ‘‘highly concentrated’’ (DOJ, 1997).
shift from the upper domestic curve to the lower global
curve.
3.1.4. Standardization

A final explanation for the change in cost is that
changes in production methods occurred due to an
increase in the number of customers and the types of
products they demanded. There was a shift away from a
near-monopsony market in the early-1970s when a
single customer, the US space program, accounted for
almost all sales. In the terrestrial market, in contrast, the
US government accounted for only one-third of
terrestrial PV purchases in 1976 (Costello and Rappa-
port, 1980). With the rise of the terrestrial industry, a
larger set of customers emerged over the course of the
decade. One result from this change in the structure of
demand was the shift away from producing customized
modules, such as the 20 kW panels on Skylab, to
producing increasingly standard products at much
higher volumes.
3.2. Period 2: 1980– 2001

In the second period, from 1980 to 2001, PV cost
declined by a factor of 7. In contrast to Period 1, the
model explains the change in the second period well—
just over 5% of the change is unexplained by the model
(Table 2). The higher explanatory power of the cost
model indicates that the factors mentioned above to
explain the residual in Period 1—quality, demand
elasticity, competition, and standardization—were
either stable or were dynamic but offsetting in Period
2. Two factors stand out as important in Period 2: plant
size accounts for 43% of the change in PV cost and
efficiency accounts for 30% of the change. The declining
cost of silicon accounts for 12%. Yield, silicon
consumption, wafer size, and poly-crystalline share each
have impacts of 3% or less.
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Table 2

Summary of model results for time period 2: 1980–2001

Factor Change Effect on module

cost ($/W)

Plant size 125 kW/yr! 14MW/yr �9:22
Module efficiency 8.0%! 13.5% �6:50
Si cost 131 $/kg! 25 $/kg �2:67
Wafer size 45 cm2 ! 180 cm2 �0:67

Si consumption 28 g/W! 18 g/W �0:62
Yield 88%! 92% �0:43
Poly-crystal 0%! 50% �0:38

Sum of factors �20:48
Actual change �21:62

Residual �1:13
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3.3. Sensitivity analysis

The model is most sensitive to uncertainty in three
areas: the change in plant size, the scaling factor, and the
change in efficiency.13 Fig. 5 shows that despite the
model’s sensitivity to uncertainty in these three areas,
the relative importance of the three main factors does
not change. Even with the relatively large uncertainty
resulting from the choice of the scaling factor, the two
orders of magnitude increase in plant size makes it the
dominant driver of change in cost. So taking into
account the full range of uncertainty in each parameter
and conservatively assuming a uniform distribution
across the estimates obtained, it can still be concluded
that (a) module efficiency and plant size were the most
important contributors to cost reduction, (b) cost of
silicon was moderately important, and (c) the other
factors were of minor importance. This finding on the
importance of economies of scale fits with other studies
estimating the contribution of economies of scale to cost
reduction in wind power such as Madsen et al. (2003),
who estimated that scale accounted for 60% of
reductions in turbine costs.
4. Roles of experience and learning

Experience curves are based on the theory that
experience creates opportunities for firms to reduce
costs and that as a result costs decline in logarithmic
13Uncertainty is calculated based on the full range of estimates

obtained. The sensitivity of the model is estimated using opposite ends

of ranges to simulate the extremes of large changes and small changes

in each factor from 1975 to 2001. For example, in the case of efficiency,

a small change is calculated using the upper bound in 1975 and the

lower bound in 2001. Similarly, a large change consists of the time

series using the lower bound in 1975 and the upper bound in 2001.
proportion to increases in cumulative capacity. Indeed,
in the case of PV, cumulative capacity is a strong
predictor of cost.14However, the mechanistic basis for
this apparently strong statistical relationship is rather
weak. In this section, the influence of increasing
cumulative capacity in driving change in the most
important cost-reducing factors is assessed. The results
indicate that the most important factors are only weakly
explained by cumulative capacity (Table 3). Overall, the
‘‘learning’’ and ‘‘experience’’ aspects of cumulative
production do not appear to have been major factors
in enabling firms to reduce the cost of PV, which is the
assumption underlying the experience curve model.

4.1. Experience and plant size

Growth in expected future demand and the ability to
manage investment risk were the main drivers of the
change in plant size over the period. Whether experience
plays a role in enabling the shift to large facilities
depends on whether new manufacturing problems
emerge at larger scales and whether experience helps in
overcoming these problems. Examples from three PV
firms indicate that limited manufacturing experience did
not preclude rapid increases in production. Mitsubishi
Electric expanded from essentially zero production in
1997 to 12MW in 2000 and plans to expand to 230MW
in 2006 (Jaeger-Waldau, 2004). While the firm had
decades of experience in research and satellite PV
applications, its cumulative production was minimal.
It only began substantial manufacturing activity with
the opening of its Iida plant and its entry into the
Japanese residential PV market in 1998. Similarly, Q-
Cells, a German firm, only began producing cells in 2001
with a 12MW line and increased production to 50MW
in only 2 years (Maycock, 2005). Sharp is considering
construction of a 500MW/year plant in 2006, which
would amount to a 10-fold expansion in the firm’s
capacity in only 5 years. In the rapid expansions of the
past 5 years, the ability to raise capital and to take on
the risk of large investments that enable construction of
large manufacturing facilities appear to have played
much bigger roles than learning by experience in
enabling cost reductions. These results support the
finding by Dutton and Thomas (1984) that ‘‘sometimes
much of what is attributed to experience is due to scale’’.

4.2. Experience and module efficiency

Learning-by-doing is only one of several reasons
behind the doubling in commercial module efficiency.
Data on the highest laboratory cell efficiencies over time
show that of the 16 advances in efficiency since 1980
14logðCumCapacityÞ as a predictor of logðCÞ has an R2 value of

0.985.



ARTICLE IN PRESS

Fig. 5. Sensitivity of model results to uncertainty in data and parameters, 1980–2001.

Table 3

Role of learning-by-doing (lbd) in each factor, 1980–2001

Factor Cost impact

(%)

Main drivers of change in each

factor

Plant size 43 Demand and risk management

Efficiency 30 R&D, some lbd for lab-to-market

Silicon cost 12 Spillover benefit from IT industry

Wafer size 3 Strong lbd

Si use 3 Lbd and technology spillover

Yield 2 Strong lbd

Poly share 2 New process, lbd possible

Other factors 5 Not examined
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(Surek, 2003),15 only six were accomplished by firms
that manufacture commercial cells. Most of the im-
provements were accomplished by universities, none of
which would have learned from experience with large-
scale production. That government and university R&D
programs produced 10 of the 16 breakthroughs in cell
efficiency while producing a trivial amount of the
industry’s cumulative capacity suggests that the effect
of learning-by-doing on improving module efficiency is
weak. Further, the rapid rise in laboratory cell efficiency
from 1983 to 1990 (Fig. 6) immediately followed the
unprecedented $1.5b investment in worldwide PV R&D
in the previous 5 years (IEA, 2004). Experience may help
firms generate ideas for incremental efficiency improve-
ments. It may also play a role in facilitating the
transition from producing efficient cells of a few watts
in a laboratory to producing large modules that can
operate reliably under ambient conditions. Still, if the
underlying driver of changes in commercial efficiency is
incorporating laboratory improvements into commer-
cial manufacturing, then competing hypotheses such as
15‘Advances’ are defined as new production of cells that resulted in a

cell efficiency higher than any previous laboratory result.
R&D offer more compelling explanations of efficiency
improvements than learning-by-doing.
4.3. Silicon cost

Reductions in the cost of purified silicon were a
spillover benefit from manufacturing improvements in
the microprocessor industry. During the study period,
the PV industry accounted for less than 15% of the
world market (Menanteau, 2000) for purified silicon.
Since the PV industry, until recently, has never purified
its own silicon, but instead has purchased silicon from
producers whose main customers are in the much larger
microprocessor industry where purity standards are
higher, experience in the PV industry was irrelevant to
silicon cost reductions.
4.4. Other factors

Learning-by-doing and experience play more impor-
tant roles in the following factors. However, these
factors together only account for 10% of the overall
change in cost.

Yield: Experience would have led to lower defect rates
and the utilization of the entire wafer area.

Wafer size: Experience was probably important in
enabling growing larger crystals and forming longer
conductors from cell edges to electrical junctions.

Silicon consumption: Experience helped improve saw-
ing techniques so that less crystal was lost as saw dust
and thinner cells could be produced. The development
of wire saws, a spillover technology from the radial tire
industry, is less clearly related to experience.

Poly-crystalline share: Casting of rectangular multi-
crystalline ingots was a new technology that only
partially derives from experience with the Czochralski
process for growing individual crystals.
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Fig. 6. Crystalline PV efficiency: highest laboratory cells vs. average commercial modules. Data: Christensen (1985), Maycock (1994, 2002), Grubb

and Vigotti (1997), Menanteau (2000) and Green et al. (2001).
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5. Conclusions

Learning derived from experience is only one of
several explanations for the cost reductions in PV. Its
role in enabling changes in the two most important
factors identified in this study—plant size and module
efficiency—is small compared to those of expected
future demand, risk management, R&D, and knowledge
spillovers. This weak relationship suggests careful
consideration of the conditions under which we can
rely on experience curves to predict technical change.
Further, the importance of market dynamics identified
in Period 1 advises extra caution when applying
experience curves to technologies at early stages, such
as might currently be considered for fuel cells, as well as
carbon capture and sequestration. Below, the impor-
tance of firms’ profit margins is discussed as an
additional area to consider. The ways in which a
bottom-up model such as this one might be used as a
complement to experience curves to enhance our
understanding of future technical improvements are
also described. As an example, this model is applied in a
simple scenario exercise to gauge the plausibility of
future cost targets.
5.1. Addressing market dynamics

The model results for Period 1, 1975–79, indicate that
prices are not a reliable proxy for costs. Sensitivity
analysis confirms that our price-based experience curve
is sensitive to changes in margin. A plausible scenario
based on historical data is that margins fell from
30–50% in the early years to near zero at the end of
the study period. Such a shift would reduce the learning
ratio by 0.03–0.05 and extend the crossover year by 8–15
years.16
16Using assumptions of 15% annual new capacity growth and a

target module price of $0.30/W.
Empirical data in this case study do not support three
assumptions that are commonly made when applying
the experience curve model using prices rather than
costs: that margins are constant over time, that margins
are close to zero with only minor perturbations, and that
margins are often negative due to forward pricing.
Indeed, earlier work pointed out that firms’ recognition
of the value of market domination, particularly during
incipient commercialization, leads to unstable pricing
behavior (BCG, 1972). An implication of the variation
in the price–cost margin is that industry structure affects
the learning rate. In the case of an industry such as PV
that becomes more competitive over time, a price-based
experience curve over-estimates the rate of technical
progress.

One solution would be for future work to obtain real
cost data where possible. However, comparisons of
competing technologies are best made on the basis of
prices, not costs, since prices reflect what a consumer
faces in deciding whether and which technology to
adopt. A more general approach would be to incorpo-
rate market dynamics into predictions of technological
change. Industry concentration, market power, and
changes in elasticity of demand affect prices. The HHI
analysis above shows that concentration is not stable
over time, especially if international trade is taken into
account. The assumptions of perfect competition and
that prices equal marginal cost are too strong in the
early stages of the product life cycle when the
technology is improving rapidly, industry structure is
unstable, and new types of customers are entering the
market.

5.2. Technical factors and uncertainty

These results indicate that the confidence with which
we use experience curves to predict technological change
might be enhanced with analysis of the underlying
technical and market dynamics. This type of approach is
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suggested by other studies that recommend multiple,
complementary methods to inform policy decisions
related to energy technology (Neij et al., 2003; Taylor
et al., 2003). The combination of disaggregated technical
factors and experience curves could inform policy
decisions in three ways.

The explicit analysis of technical factors helps identify
future barriers that could lead to discontinuities in the
slope of the experience curve.17 Assuming that some of
these barriers may be surmountable, it may also help
identify critical R&D areas. Identifying barriers might
also allow us to predict, or at least gauge the probability
of, discontinuities in the experience curve.

Additionally, the unraveling of technical factors
provides an avenue for the investigation of how
influences other than cumulative capacity, such as
R&D and knowledge spillovers, contribute to technolo-
gical change. For example, in the case of PV, firm-level
analysis of the drivers behind the doubling in commer-
cial efficiency over the period may enhance our under-
standing of the roles of R&D, cumulative capacity, and
the interaction of the two. This approach would
complement econometric investigations of the roles of
these factors, such as that of Watanabe et al. (2003).

Finally, a model such as this one allows us to
work backwards so that one can identify the level of
technical improvement in each factor required for a
given cost improvement. For example, if reducing the
cost of PV by an additional factor of 10 became a goal,
one could ask how large manufacturing plants would
need to be to provide adequate economies of scale. With
the resulting estimate for plant size, one could then
assess whether individual plants are likely to ever reach
that scale and the extent to which economies of scale
would still exist for facilities that large. This type of
analysis provides a basis for assessing how likely it is
that such an improvement might occur which could
help estimate uncertainty in the pace of future cost
reductions.
5.3. Scenarios of target costs

One might also use such a model to test the
plausibility of long-term targets for PV cost reduction.
Here two cost targets are examined using the following
assumptions:
�

1

jun

stra

gen
efficiency improves from 13.5% in 2001 to 25% in
2030 (SEIA, 2004);

�
 wafer thickness declines by 25% per decade, its

historical rate;
7For example, the theoretical limit on the efficiency of single-

ction silicon-based PV modules of approximately Z ¼ 0:29 con-

ins the cost reductions we can expect in the future from this

eration of PV technology.
�
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a d
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scaling factor is �0:13, the mid-range of studies of
large-scale PV;

�
 a net increase of one additional manufacturing plant

per year; and

�
 no changes to the price of silicon or yield.
We first test the industry’s roadmap goal of $1.00/W
modules in 2050 (SEIA, 2004). Using the assumptions
above, the model indicates that meeting such a goal
would imply an industry growth rate of 11% for the
next 45 years. At that point, 1.3 TW of PV modules
would have been installed at a cost of $1.5 trillion. In
2050, each of 71 PV plants would be manufacturing 1.9
GW of modules annually.18 In this scenario, 51% of the
cost reduction comes from scale and 48% comes from
efficiency improvements. These results are roughly
similar to projections for large-scale PV discussed by
Schaeffer et al. (2004) (46% and 31% respectively).

Others claim that $1.00/W modules would be
prohibitively expensive once PV accounts for more than
5–10% of electricity generation. At such scale, the costs
of electricity transmission and storage required to
provide reliable service to an increasingly urbanizing
world population would be so large that the cost of PV
modules will have to be a minor component of the cost
of PV-intensive energy systems. Under this line of
reasoning, modules that cost $0.10/W in 2050 might be a
goal. The model suggests that this goal is not possible
given the assumptions above and an additional con-
straint that installed PV cannot exceed 30 TW in 2050.19

In an extremely high-growth scenario in which PV
capacity does grow to 30 TW in 2050, this model
predicts that module costs would only fall to $0.63/W.
Projected efficiency improvements, thinner wafers, and
economies of scale are insufficient to bring the cost of
crystalline PV to $0.10/W. If such a cost target is indeed
required, then other types of cost reductions, such as
switching to other materials like thin films and organics,
will be necessary. Such a change would probably
represent a shift to a new technological paradigm (Dosi,
1982) and might be best understood using a technolo-
gical generations model (Irwin and Klenow, 1994),
rather than a single learning curve.

A similar scenario using experience curves provides a
different outcome. A simple extension of the historical
(1975–2001) learning rate, 0.23, using an assumption of
11% growth, would deliver $1.00/W modules in 2027
and $0.10/W in 2086 (Fig. 7). However, choosing which
time period to use for calculating the learning rate
expected in the future substantially affects the outcome.
8A recent National Renewable Energy Laboratory study providing

etailed analysis of a 2.1–3.6GW PV plant describes such a plant as

sible (Keshner and Arya, 2004).
930TW is a high end estimate for total world energy demand in

0.
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For example, a more conservative learning rate, 0.10,
that might be projected using more recent trends would
delay $1.00/W modules from 2027 until 2076. The
experience curve does not necessarily produce a faster or
slower result than the technical factors model. It does
however produce radically different outcomes as a result
of apparently inconsequential choices, such as the
period over which the learning rate is calculated.

Finally, future work on PV might be expanded to
consider not only capital cost but the cost of PV
electricity produced. In assessing experience in wind
power, Dannemand Andersen (2004) concluded that the
cost of electricity is a more comprehensive measure of
technological improvement than capital cost because
technological competitiveness is ultimately based on
decisions concerning electricity cost. Such an approach
requires additional data that may be much more difficult
to obtain. It also requires including factors such as
interest rates whose level is exogenously determined but
which are influential as they have varied by a factor of
Fig. 7. Scenarios comparing cost model, experience curves, and $1.00/

W target price.

Fig. 8. US electricity prices and levelized cost of electricity produced from PV

Strategies-Unlimited, 2003), lifetime (see Fig. 3), interest rates (Census, 2005
three over this study period. Using data on module and
balance of system prices, system lifetimes, capacity
factors, and interest rates, an experience curve for PV
electricity is plotted in Fig. 8 and is compared to its
primary technological competitor, retail electricity rates.
Further work might consider what additional dynamics
might need to be included to explain change in the cost
of electricity curve, for example, the role of learning-by-
doing among system installers.
5.4. Summary

Over the coming decades, investments on the order of
a trillion dollars will have to be made if PV is to
contribute to energy supply at terawatt scale. The
magnitude of such a project demands more sophisti-
cated models for estimating the pace and likelihood of
future improvements. The evidence presented here
indicates that a much broader set of influences than
experience alone contributed to the rapid cost reduc-
tions in the past. Future models will need to take into
account other factors such as R&D, knowledge spil-
lovers, and market dynamics to more realistically inform
decisions about large investments in future energy
technologies.
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