Introduction to Radar
Signal Processing

Josh Semeter
Boston University

BOSTON
UNIVERSITY



Incoherent Scatter Radar (ISR
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Dish Versus Phased-array

-FOV: Entire sky -FOV: +/- 15 degrees from boresight
-Integration at each position before -Integration over all positions
moving simultaneously

-Power concentrated at Klystron -Power distributed

-Significant mechanical complexity -No moving parts
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Range

Range R to the target is measured by transmitting a pulse of electromagnetic waves, and
measuring the time Af between transmission and reception,
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The pulse length 7 is most often expressed in
units of time, and corresponds to a distance c7,
where ¢ = 3 X 10® mis.

Range resolution depends on how well we
can resolve At. For the case of a simple
on-off pulse, the optimal approach is to

match the sampling period to the pulse length
(the so-called “matched filter” approach).

Range resolution for a simple on-off pulse (“uncoded pulse”) is controlled by 7. Shorter 7

yields higher range resolution. But a shorter pulse also carry less total energy, and so the
reflected signal is more difficult to discriminate from background noise.



Cross-range resolution (beam width)

Sidelobes

Boresight

The cross-range resolution is usually
defined by the angular width of the

main lobe of the antenna's power pattern.
For a dish antenna this is approximately
equal to the ration of the wavelength

to the physical diameter,

A radar “pixel”
(resolution element)

p i (radians)
= — radlans
d

Millstone Hill ISR has a 46-m dish operating at a frequency of 440 MHz, or A = 0.68 m,
giving a beam width of f# ~ 0.85° .



Concept of a “Doppler Spectrum”

Superposition of targets moving with different velocities within the radar volume
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Processing: p(R, fD) p(R, V)

If there is a distribution of targets withdifferent velocities (e.g., bird, flapping wings,wind)
then there is no single Doppler shift but, rather, a Doppler spectrum.



Distributed “beam filling” Target

A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.

Two key concepts:
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Processing:

p(RafD’ t) fD(Ra t)

For a beam-filling target (like water droplets in a
tornado), the radar can be used to construct

V(R, 0)

insightful images of velocity relative to the radar.



Trackman radar: “continuous wave” (CW)
radar: precise Doppler but no range
information.

Can identify targets and actions based on
Doppler signatures!

Processing:

p(fD’ t) p(V, t)

Velocity (m/s
o



Wave interference and Bragg Scatter

Consider two waves with the same Consider a wave along the interface between a dielectric
frequency but different phase. and a conducting (reflective) medium, as depicted below.
This is representative of an air-ocean boundary.
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Suppose waves are observed at angle € using a radar
/\/\/\/\ with wavelength 4,. The condition for maximum
constructive interference is
Destructive -
(180° out of phase) niy = 2Agsin6

If @ = 90° (or if these waves are propagating isotropically),
then the Bragg condition is met for nd, = 24,



Doppler spectrum of ocean waves
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Important points:

The target is distributed over the entire radar beam width.

The scattering is from free electrons in the conducting sea water.

The Doppler spectrum has peaks due to Bragg scatter from waves in the medium.

The frequency of the peaks tells us the velocity and direction of the waves.

The height of the peaks tells us something about the amplitude and density of the waves.
The width of the peaks tells us something about the spread in velocity of the waves



Doppler spectrum of the ionosphere

Let's put this all together for the ionosphere. The two predominant longitudinal modes in a
thermal plasma:

lon-acoustic mode:
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Computer simulation of the ionosphere

Simple rules yield
. An [m_3] att =0 ms
complex behavior e

Particle-in-cell (PIC) simulation:
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ISR measures a cut through this surface
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er (dB)

Standard parameters found by fitting the measured
lon-acoustic power spectrum (ion-acoustic line)
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area ~ Ne P
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Doppler Radar Summary:
Distributed “Incoherent” Targets

Two key concepts:
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superposition of
reflections from

all targets (electrons)
in the volume.

A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.

What happens when we have multiple targets in the radar volume, moving at different velocities?



Incoherent Averaging

Normalized ISR spectrum for different integration times at 1290 MHz _ _
1 | i | | — We are seeking to estimate the

h l 1 sample power spectrum of a Gaussian
random process. This requires
that we sample and average many
independent “realizations” of the
process.
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p, = Mean Square Error
K = number of samples
SNR = per-pulse Signal-to-Noise Ratio
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Measuring Velocity

Conducting sphere,
constant velocity,
Coherent echo
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Assume a transmitted signal: s(t)cos(2xf 1)

2R(1)
After return from target: a(t)cos 2xnf, | t —
c

Let’s assume target moves with constant velocity with
respect to the radar during the measurement,

R=R,+ vt

Substituting we obtain:

Anf,R 2
;U:] P

a(t)cos |2xft — 2xfpt — = ——v,
— c
o (o)
dg
a(t)cos [a)at + ¢(t)] wp = 27xfp = — —

fo ~500MHz,  f,~50kHz = 0.0001f,

Two issues:

1) How do we discriminate positive from negative f5,?

2) How do we remove f, , and just sample a(¢) and ¢(¢)?




Analytic Signal Model

From Euler's identity
Imaginary axis

re’? = (r cos 0) + j(r sin 6) j=1/-1 N

. rel?
rcos(0) = R{re’?} “real part” .
rsin(@) = S{re/’} “imaginary part’ 2 L
: : 1 r 'rsind
Setting r = a(t) and 0 = w_t + ¢(t), we obtain a general Tl |
complex signal model for radio and radar applications. I}
s(t) = a(t)e/ @t +oD) L reos@l o Realaxis
> t A R SN Gl % :
PM R :
AM Carrier —2j + :
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s(f) = a(t)e/ P!
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Now through Euler’s identity : —
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| and Q Demodulation

Consider radar transmission of a simple RF pulse. The reflected signal from the target will be the original pulse
with some time varying amplitude and phase applied to it:

sp(t) = a(H)cos(w, t + ¢(1))
Reference Signal

From Synchronizer We compute the analytic signal by “mixing” with cosine and sine.
‘ Mixing with cos(w,?) gives the “in-phase” (I) channel:
Q <— Detector |« sp(t)cos(w, t) = a(t)cos(w, t + ¢p(t))[cos(w, 1)]
. 1
Reference Signal Received — —
Shifted 90° in Phase ~ —— Signal a(?) 2 cos2w,t + )] + cos[(D)]
F
(IF) filter out
| «— Detector |« Mixing with sin(@,f) gives the “quadrature” (Q) channel:
sp®[sin(w, )] = a(t)cos(w, t + ¢(1))[sin(w,1)]
L[ . :
| a = a(t)z sin[2w,t + ¢(1)] + Sm[qﬁ(t)])
Q filter out
O If we include a gain of 2, we retain the original signal energy. Using
I Euler’s identity we obtain the analytic baseband signal:
sp(t) = a(®)e’” D = a(f)cos p(t) + ja(t)sin p(t) = I + jO

1/Q demodulation produces a time-series of complex voltage samples (/,, O,) from which we can construct

a discrete representation of sz(f). The Doppler frequency shift is the time rate of change of the phase,
wp, = — deldt.



I/Q Demodulation: Frequency Domain

Transmitted signal: Frequency domain

cos(2zf ) <<

0 fo
Reflected signal from moving target ﬂ narrow-band
| signal
cosQa(f, ~fp)) = . "
'(ITo'fD)- ! fo‘fD
Mixed (multiplied) with oscillator cos(27xf, 1) ‘ LPFIL*
— cos 2722f, - f)i] +—= cos Rafof] < | :
-(2fo-fp) £, oo f, 2fofp
" . . *Low Pass Filter
To resolve both positive and negative Doppler shifts, we need: **East Fourier Transform
eI2TIDt — cos(27 fpt) + jsin(27 fpt)
fp

We thus need to mix with a second oscillator at same frequency but 90° out of phase (Lecture 3).
For a cosine reference, the quadrature function is sine. The two components are called “in phase” (/)
and “quadrature” (Q). Together [ and Q represent discrete samples of the baseband analytic signal,

sp(t) = Ae?™t = (1) +jO(1) AS(f—fp)  (for a single scatterer)



Components of a Pulsed Doppler Radar

cos(w, 1)

s(1)

waveform
generator

cos(w,t) sinia)ot)

l

—>(X)——| (amplifier)

l sp(f) = s(f)cos(w,f)

transmitter

antenna

—_—
circulator @4—@ >

SR(t) = a(t)cos(w t + gb(t))

1/Q
demodulator

—I

low-noise
amplifier (LNA)

sp(t,) = anej¢n =

correlation
receiver

Physics model ) <

"Plasma density (N,)

lon temperature (T)
Electron temperature (T,)

_Bulk velocity (V))



Meteor Radar Example

e Coherent target (meteor ionization trail), with slowly changing velocity

¢ Find trail velocity (hence, neutral wind velocity along radar line of sight) by
computing | and Q from many pulses, and taking the Fourier Transform (FFT).

¢ Velocity and reflected power are found from the peak in the power spectrum

Meteor Echo | & Q

TIME [s]

Doppler Spectra
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Does this strategy work for ISR?

1) The Poker Flat ISR operates at 450 MHz. The echo from the ionosphere is
produced by reflection from ion sound waves. A typical phase speed for these
waves is 3 km/s. What is the Doppler frequency shift in Hz caused by reflection off
these waves? This represents the approximate width of the Doppler spectrum.

2) The Nyquist theorem states that we must sample a signal at a rate of at least
twice its highest frequency to fully recover it. For problem 1, this so-called
“Nyquist rate” is about 20 kHz, meaning we need samples of | and Q from the
target at a rate of 20kHz. What is the maximum target range at which we can
obtain independent samples of | and Q at this rate? How does this compare

with the altitude of the ionosphere?



Does this strategy work for ISR?

Doppler width at 450 MHz: 10 kHz
de-correlation time (zero crossing): ~1/10kHz = 0.1 ms
Inter-pulse period (IPP) to reach 500 km: 2R/c = 3ms

Plasma has de-correlated by the time we send the next pulse.

Stated alternately, the Doppler frequency shift of the plasma is much higher than the
maximum unambiguous Doppler shift measurable for the pulse-repetition frequency.

ISR spectrum = Autocorrelation function (ACF)
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Autocorrelation function and power spectrum

4 Te/Ti lon temperature (Ti) to ion
) yarea~ Ne mass (mi) ratio from the width
of the spectra

Electron to ion temperature
ratio (Te/Ti) from “peak-to-
valley” ratio

1 Ti/mi

POWER DENSITY

V! Electron (= ion) density
from total area (corrected

for temperatures)

- f,

O
U IFFT Line-of-sight ion velocity

_ (Vi) from bulk Doppler
zero lag (=signal average power) shift

Our goal is to sample lags with
sufficient fidelity to provide
meaningful estimates of plasma
parameters
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Computing the ACF (and, hence, spectrum)

|a

Range

® A pulse propagates at speed of
light, represented here by the
slope of the lines.

Target is continuous, so each
sample collects scattering from
volume defined by pulse length.

Time

—7,—> ol

|
7, =Length of RF pulse

Inter-pulse Period (IPP)

7. =Sample Period (typically ~ 1/10 pulse length)



Computing the ACF (and, hence, spectrum)
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—>
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7, =Length of RF pulse
7. =Sample Period (typically ~ 1/10 pulse length)



Computing the ACF (and, hence, spectrum)
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7, =Length of RF pulse
7. =Sample Period (typically ~ 1/10 pulse length)



Computing the ACF (and, hence, spectrum)
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7, =Length of RF pulse
7. =Sample Period (typically ~ 1/10 pulse length)



Computing the ACF (and, hence, spectrum)
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2nd lag \\
N\ \.
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7, =Length of RF pulse
7. =Sample Period (typically ~ 1/10 pulse length)



Computing the ACF (and, hence, spectrum)
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7, =Length of RF pulse
7. =Sample Period (typically ~ 1/10 pulse length)



Computing the ACF (and, hence, spectrum)

Range

A

2nd AA\‘v
“~§5\

Uncorrelated (contributes to noise)

Correlated volumes (signal)

Uncorrelated (contributes to noise)

. : . . \ . >
Time
7, -
S

7, =Length of RF pulse
7. =Sample Period (typically ~ 1/10 pulse length)



Autocorrelation function and power spectrum

4 Te/Ti lon temperature (Ti) to ion
) yarea~ Ne mass (mi) ratio from the width
of the spectra

Electron to ion temperature
ratio (Te/Ti) from “peak-to-
valley” ratio

1 Ti/mi

POWER DENSITY

V! Electron (= ion) density
from total area (corrected

for temperatures)

- f,

O
U IFFT Line-of-sight ion velocity

_ (Vi) from bulk Doppler
zero lag (=signal average power) shift

Our goal is to sample lags with
sufficient fidelity to provide
meaningful estimates of plasma
parameters
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Incoherent Scatter Radar (ISR)
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Radar Waveforms (cont’d.)
s(t) = A(9)cos 2xf,t + P(@)]

Unmodulated RF signal

RF pulse at a single frequency

SRR

RF Pulse with changing frequency

—RANIE

s(f) = A e/*Wo!

s(t) = A(t)el*!

s(t) = A(t)e/ ot A1

RF Pulse, single frequency, changing phase

Rivlig

s(t) = A(t)eﬂﬂfofejqﬁ(t)




Pulse Compression

Range resolution is controlled by the length of the transmitted pulse. The optimal detection
strategy involves correlating the received signal with a replica of the signal we transmitted
(called “Matched Filtering”). In the script given, the two vectors of 1’s represent identical
uncoded radar pulses. Running the script plots the so-called “range ambiguity function” for
the pulse, which is computed by correlating the pulse with itself. The origin represents the
target location, but there is also received power at ranges other than 0, hence there is “range
ambiguity” associated with any single detection. Try the following:

a) First let’s try a shorter pulse. Replace pulse2 with the following

pulse2 = [0,0,0,0,1,1,1,1,1,0,0,0,0]

This represents a pulse that is 40% shorter. Rerun the script. What effects do you see
compared to the original pulse?

b) We'd like to retain the full energy of the pulse, so instead let’s try flipping the
sign of one of the elements of pulse 2. Try randomly changing a few 1’s to -1's
What effects do you see compared to the original pulse?



Pulse Compression

c) Let’s instead change some signs in a strategic fashion. Replace pulse2 with the
following coded version of the pulse,

pulse2 =[1,1,1,1,1,-1,-1,1,1,-1,1,-1,1]

Each element represents a “bit” or “baud” whose signe we can control. This code
is called a “13-baud Barker code.” The sign changes can be implemented in
hardware by flipping the phase of the transmitted signal 180 degrees for these
bauds. Rerun the script now. What have we achieved with this code?

d) The range ambiguity is generally defined as the “full-width at half-maximum”
(FWHM) of the main peak of the matched filter output. Compare the range
ambiguity of the uncoded and coded pulses based on this definition. The ratio of
these quantities is referred to as the “pulse compression ratio”. What costs have
we paid for the improved in range resolution from pulse coding?



