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Dish Versus Phased-array

-FOV:  Entire sky

-Integration at each position before 
 moving

-Power concentrated at Klystron

-Significant mechanical complexity

-FOV:  +/- 15 degrees from boresight 
-Integration over all positions 

 simultaneously

-Power distributed

-No moving parts 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Uncoded 480us pulse

5-min integration

13-baud Barker coded pulse

15-s integration



Range

R

R =
cΔt
2

R =
cΔt
2

The pulse length  is most often expressed in  
units of time, and corresponds to a distance , 
where .

τ
cτ

c = 3 × 108 m/s τ

Range  to the target is measured by transmitting a pulse of electromagnetic waves, and 
measuring the time  between transmission and reception, 

R
Δt

Δt = 2R/c

Range resolution for a simple on-off pulse (“uncoded pulse”) is controlled by .   Shorter   
yields higher range resolution.  But a shorter pulse also carry less total energy, and so the 
reflected signal is more difficult to discriminate from background noise.

τ τ

Range resolution depends on how well we  
can resolve .   For the case of a simple 
on-off pulse, the optimal approach is to  
match the sampling  period to the pulse length

(the so-called “matched filter” approach).

Δt



Cross-range resolution (beam width)

R =
cΔt
2

Δt = 2R/c

R

The cross-range resolution is usually 
defined by the angular width of the  
main lobe of the antenna's power pattern.  

For a dish antenna this is approximately

equal to the ration of the wavelength 
to the physical diameter, 


                       (radians)
β =
λo

d

Millstone Hill ISR has a 46-m dish operating at a frequency of 440 MHz, or  m,   
giving a beam width of  .

λ = 0.68
β ≃ 0.85∘

   
(se

c)

τ

   (rad)

β

A radar “pixel” 
(resolution element)



Concept of a “Doppler Spectrum”
ENG SC700 Radar Remote Sensing J. Semeter, Boston University

Some Other Doppler Spectra

S. Bachman, MS Thesis

NEXRAD WSR-88D

Incoherent Scatter Radar
--random thermal motion of plasma results in Doppler spectrum

..more on that in the next 2 lectures.

Tennis ball, birds, aircraft engine
--examples of solid objects that give Doppler spectrum
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If there is a distribution of targets withdifferent velocities (e.g., bird, flapping wings,wind)  
then there is no single Doppler shift but, rather, a Doppler spectrum.

Superposition of targets moving with different velocities within the radar volume

Two key concepts:


Time              Distance


Frequency            Velocity


fD = −
2fo
c

vo

R =
cΔt
2

p(R, v)p(R, fD)

p(v)

Processing:



Distributed “beam filling” Target
A Doppler radar measures backscattered power as a function range and velocity.

Velocity is manifested as a Doppler frequency shift in the received signal.


For a beam-filling target (like water droplets in a 
tornado), the radar can be used to construct 
insightful images of velocity relative to the radar.

Two key concepts:


Time              Distance


Frequency            Velocity


fD = −
2fo
c

vo

R =
cΔt
2

v(R, θ)fD(R, t)

 R

θ

p(R, fD, t)
Processing:



Pitched ball

Trackman radar:   “continuous wave” (CW) 
 radar:  precise Doppler but no range  
information. 

Can identify targets and actions based on  
Doppler signatures!
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Micro-Doppler Analysis

Processing:



Wave interference and Bragg Scatter
Consider two waves with the same 
frequency but different phase. 

Properties of Waves
Constructive vs. Destructive Addition

S

Constructive
(in phase)

Destructive
(180� out of phase)

S

Partially Constructive
(somewhat out of phase)

S

S

Non-coherent signals
(noise)

λs sin θ

nλ0 = 2λs sin θ

Consider a wave along the interface between a dielectric 
and a conducting (reflective) medium, as depicted below.  
This is representative of an air-ocean boundary. 

 
 
 
 
 

 
Suppose waves are observed at angle   using a radar 
with wavelength .  The condition for maximum 
constructive  interference is

θ
λo

If  (or if these waves are propagating isotropically), 
then  the Bragg condition is met for         

θ = 90∘

nλ0 = 2λs



Doppler spectrum of ocean waves

Important points:   
The target is distributed over the entire radar beam width. 

The scattering is from free electrons in the conducting sea water.

The Doppler spectrum has peaks due to Bragg scatter from waves in the medium.

The frequency of the peaks tells us the velocity and direction of the waves.

The height of the peaks tells us something about the amplitude and density of the waves. 
The width of the peaks tells us something about the spread in velocity of the waves


Backscatter from the ocean at low aspect 
angle shows peaks in the  Doppler 
spectrum from the subset of waves 
matching the Bragg condition for the radar   
(spacing  half the radar wavelength)≃

Waves moving

toward the radar

Waves moving

away from  

the radar

Noise floor



Doppler spectrum of the ionosphere
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Figure 2·4: Longitudinal modes of a plasma. Blue lines relate to ion
acoustic waves and red ones to Langmuir waves.

plasma particles start to interact more strongly with the growing wave, e.g., by heating.

This can sometimes be described in terms of the so-called quasi-linear saturation within

the Vlasov theory.

A way of categorizing plasma instabilities is to divide them between macroscopic (con-

figurational) and microscopic (kinetic) instabilities. The division is the same as within

plasma theory in general. A macroinstability is something that can be described by

macroscopic equations in the configuration space. Examples of a macroinstability are the

Rayleigh-Taylor, Farley-Buneman and Kelvin-Helmholtz instabilities. On the other hand,

a microinstability takes place in the (x,v)-space and depends on the actual shape of the

distribution function. A consequence of a microinstability is a greatly enhanced level of

fluctuations in the plasma associated with the unstable mode. These fluctuations are called

microturbulence. Microturbulence can lead to enhanced radiation from the plasma and to

enhanced scattering of particles, resulting in anomalous transport coe⇤cients, e.g., anoma-

lous electric and thermal conductivities. Examples of microinstability are the beam-driven,

ion acoustic and electrostatic ion cyclotron instabilities.
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can account for the simultaneous enhancement in the two ion lines, and the simultaneous55

ion and plasma line enhancement.56

This purpose of this paper is to provide a unified theoretical model of modes expected in57

the ISR spectrum in the presence of field-aligned electron beams. The work is motivated58

by the phenomenological studies summarized above, in addition to recent theoretical59

results–in particular, those of Yoon et al. [2003], and references therein, which suggest60

that Langmuir harmonics should arise as a natural consequence of the same conditions61

producing NEIALs. Although these e�ects have been treated in considerable detail in the62

plasma physics literature, their implications for the field of ionospheric radio science (and63

ISR in particular) have not yet been discussed. The conditions to detect all the modes64

present within the IS spectrum within the same ISR is also presented in this work.65

2. Plasma in Thermal Equilibrium

There exist two natural electrostatic longitudinal modes in a plasma in thermal equilib-66

rium: the ion acoustic mode, which is the main mode detected by ISRs, and the Langmuir67

mode [Boyd and Sanderson, 2003]. Using a linear approach to solve the Vlasov-Poisson68

system of equations, the dispersion relation of these modes is obtained. The real part of69

the ion acoustic dispersion relation reads70

⇥s = Csk, (1)

and the imaginary part (assuming ⇥si � ⇥s, k2�2
De � 1 and Ti/Te � 1) can be written71

as72
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where Cs =
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kB(Te + 3Ti)/mi is the ion-acoustic speed. The dependence of this mode

on ionospheric state parameters is observed in Eq. 2. The Langmuir mode is detected by

ISR under certain conditions, and the real part of its dispersion relation is expressed as
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The forward model used to estimate ionospheric parameters in ISR assumes that these74

are the dominating modes in the ISR spectrum. However, an injected beam of particles,75

in particular electrons, can destabilize the plasma, altering the dispersion relations and76

amplitudes of these modes.77

3. Current Model of the Langmuir Decay Process for NEIAL Formation

The model presented by Forme et al. [1993] to explain NEIALs is a two step process.

First, a beam-plasma instability enhances Langmuir Waves (LW). Second, if the enhance-

ment of LW is high enough then the enhanced LW can decay, enhancing Ion Acoustic

Waves (IAWs) and counter-propagating LWs. The plasma-beam process involves three

species: thermal electrons, thermal ions, and an electron beam with a bulk velocity of

vb. By assuming small perturbations and small damping/growth (vthe, vthi, vb ⇤ ⇤/k),

linearization of Vlasov-poison system can be used to find the dispersion relation of the
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Let's put this all together for the ionosphere.   The two predominant longitudinal modes in a 
thermal plasma:   

Ion-acoustic mode:

 

Langmuir mode:

 



Computer simulation of the ionosphere

40

2.4 The Particle-in-Cell Method

The simulator uses a particle-in-cell (PIC) method for both the ions and electrons. This

accurately models all dynamics, including thermal e�ects, at the cost of substantial com-

puter time. The idea of the PIC method, described in detail in books by Birdsall and

Langdon (1985), Hockney and Eastwood (1988) or Tajima (1988), is simple: The code

simulates the motion of plasmas particles in continuous phase space, whereas moments of

the distribution such as densities and currents are computed on discrete points (or cells)

from the position and velocity of the particles. The macro-force acting on the particles is

calculated from the field equations. The name “Particle-in-Cell” comes from the way of

assigning macro-quantities to the simulation particles.

In general PIC codes solve the equation of motion of particles with the Newton-Lorentz

force

dxi

d t
= vi and

dvi

d t
=

qi

mi
(E(xi) + vi ⇥B(xi)) for i = 1, . . . , N (2.49)

and the Maxwell’s equations (Equations 2.4 and 2.7) together with the prescribed rule of

calculation of � and J

� = �(x1,v1, . . . ,xN ,vN ), (2.50)

J = J(x1,v1, . . . ,xN ,vN ). (2.51)

� and J are the charge and current density of the medium at certain iteration. A

simplified scheme of the PIC simulation is given in Figure 2·8.

PIC codes usually are classified depending on dimensionality of the code and on the

set of Maxwell’s equations used. The codes solving a whole set of Maxwell’s equations are

called electromagnetic codes; electrostatic ones solve just the Poisson equation.

Specifically the code used in this work can perform two and three dimensional simu-
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When the plasma is warm, which means that the thermal velocity of the particles is

important, it can be described as previously with a force-balance motion equation but this

time with a term that accounts for the thermal velocity of the particles, a pressure term

(�pTj⌅nj). Thus, the equation becomes

mjnj
⌅v
⌅t

= qjnj(E + v⇤B)� �pTj⌅nj , (2.2)

where �p is a proportionality constant and Tj the temperature of the species j.

Even though the main modes present in a warm plasma can be obtained with Equation

2.2, part of the physics of those modes is lost in the over simplification of the motion

equation. When the temperature of a plasma is finite and the thermal velocity of the

particles is comparable to the phase velocity of the propagating wave, the interaction of

the particles and the wave becomes important. Some of the typical interactions are Landau

damping and microinstabilities. Those phenomena can be explained only through a motion

equation that takes into account the space-velocity distribution of the particles forming the

plasma. This equation is the Boltzman equation, which becomes Vlasov equation (Equation

2.3) in absence of collisions.

Landau damping and microinstabilities are important in determining the shape of the

incoherent scatter radar spectrum at high latitudes, therefore a kinetic approach, which

uses a Vlasov equation as motion equation, has to be used. The system of equations formed

by Equations 2.3 to 2.9, which includes the Vlasov equation plus Maxwell’s equations, has

to be solved self-consistently to obtain the wave modes propagating along the plasma.

⌅fj(t,x,v)
⌅t

+ v · ⌅fj(t,x,v)
⌅x

+
qj

mj
(E + v⇤B) · ⌅fj(t,x,v)

⌅v
= 0 (2.3)

⌅⇤E =
�⌅B
⌅t

(2.4)

⌅⇤B = µ0J +
1
c2

⌅E
⌅t

(2.5)
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⇥ · E =
⇤

�0
(2.6)

⇥ · B = 0 (2.7)

Coupling is complete via charge and current densities.

⇤ =
�

j

qj nj =
�

j

qj

⇥
fj d3v (2.8)

J =
�

j

qj nj vj =
�

j

qj

⇥
fj v d3v, (2.9)

where fj(x,v) represents the space-velocity distribution function of the species j, �0 and

µ0 are the permitivity and permeability of the air respectively, and c is the speed of light.

The complexity of this system of equations is evident and the quasi-linear approach is

used to obtain an approximated solution. The traditional development of the quasi-linear

theory of waves in plasmas follows a well established procedure (Krall, 1974; Nicholson,

1983): First, electromagnetic fields, and in the case of warm plasmas the space-velocity

distribution of the particles, are linearized; then the linear Vlasov equation is subjected

to a Fourier/Laplace analysis in space/time, yielding fluctuating particles distributions

which are used to settle the current density (J) and electric field (E) relation. Usually

the conductivity tensor (�) is obtained from this relation; Fourier analyzed in both space

and time, Faraday’s and Ampere’s equations are combined to yield a dispersion equation.

The solution of this dispersion equation relates frequency ⌅ and wavevector k and thereby

determines the normal modes of the plasma; thus the final step is to insert the conductivity

tensor (which brings the plasma properties) into the dispersion relation (which states waves

main features) to obtain the plasma waves. This is the path that is followed in this section.

Following this path, the linearization of the fields and space-velocity distribution func-

tion comes first and is used together with a Fourier/Laplace space/time transform of the
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Particle-in-cell (PIC) simulation:

Simple rules yield  
complex behavior

96

(a)

(b)

(c) (d)

Figure 4·5: Simulated incoherent scatter spectrum (for periodic boundary
conditions), obtained integrating 120 angular independent spectra,(a) as a
function of the frequency and the wavenumber. (b) As a function of fre-
quency for the wavenumber k ⇥54 m�1(or radar frequency of ⇥ 1300 MHz),
which is similar to the wavenumber of Sondrestrom. (c) and (d) are close
ups of the negative and positive Langmuir modes, respectively.
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Figure 2·5: The top figure shows an Incoherent Scattering Spectrum,
including the three lines. The middle figure shows a zoom to the ion acoustic
line, which is the focus of this research. The bottom figure shows the
autocorrelation function �(⇥) of the ion acoustic line. f+ is the Doppler
frequency associated with the ion acoustic phase velocity.

                                                  

𝗐𝖺𝗏𝖾𝗇𝗎𝗆𝖻𝖾𝗋 k (𝟣/𝗆)

ISR measures a cut through this surface 
77

Figure 3·6: Simulated ISR spectra for many scatter wave numbers with
105 macroparticles (top plot). Simulated and theoretical ISR spectrum for
three di�erent scatter wave numbers with 105 macroparticles (bottom plot).

96

(a)

(b)

(c) (d)

Figure 4·5: Simulated incoherent scatter spectrum (for periodic boundary
conditions), obtained integrating 120 angular independent spectra,(a) as a
function of the frequency and the wavenumber. (b) As a function of fre-
quency for the wavenumber k ⇥54 m�1(or radar frequency of ⇥ 1300 MHz),
which is similar to the wavenumber of Sondrestrom. (c) and (d) are close
ups of the negative and positive Langmuir modes, respectively.
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Figure 2·5: The top figure shows an Incoherent Scattering Spectrum,
including the three lines. The middle figure shows a zoom to the ion acoustic
line, which is the focus of this research. The bottom figure shows the
autocorrelation function �(⇥) of the ion acoustic line. f+ is the Doppler
frequency associated with the ion acoustic phase velocity.

                                                              

Standard parameters found by fitting the measured 
Ion-acoustic power spectrum (ion-acoustic line)

Ti/mi

Te/Ti

Vi

Ion temperature (Ti) to ion 
mass (mi) ratio from the 
width of the spectra

Electron to ion 
temperature ratio (Te/Ti) 
from “peak_to_valley” ratio

Electron (= ion) density 
from total area (corrected 
for temperatures)

Line-of-sight ion velocity 
(Vi) from the Doppler shift

area ~ Ne

…recall the ocean wave Doppler spectrum



Doppler Radar Summary: 
Distributed “Incoherent” Targets

A Doppler radar measures backscattered power as a function range and velocity.

Velocity is manifested as a Doppler frequency shift in the received signal.


What happens when we have multiple targets in the radar volume, moving at different velocities?


e- e-

e-

R1

R2

Distributed targets, 
different velocities

superposition of   
reflections from  
all targets (electrons) 
in the volume.

Two key concepts:


Time              Distance


Frequency            Velocity


fD = −
2fo
c

vo

R =
cΔt
2



Incoherent Averaging

69

Figure 3·2: Simulated IS spectra for di�erent number of independent spec-
tra integrated at an operation frequency of 1289 MHz. Top plot shows an
average of one spectrum. The middle plot shows an average of 30 inde-
pendent spectra. The bottom plot shows an average of 600 independent
spectra.

Normalized ISR spectrum for different integration times at 1290 MHz
We are seeking to estimate the

power spectrum of a Gaussian

random process.  This requires

that we sample and average many

independent “realizations” of the

process.


        


Mean Square Error

number of samples


per-pulse Signal-to-Noise Ratio

ρe ∼
1
K (1 +

1
SNR )

2

ρe =
K =
SNR =

1 sample

30 samples

600 samples



Measuring Velocity
Assume a transmitted signal:             


After return from target:         


s(t)cos(2πfot)

a(t)cos [2πfo (t −
2R(t)

c )]
Let’s assume target moves with constant velocity with 
respect to the radar during the measurement,                      

R = Ro + vot

Substituting we obtain:    


a(t)cos [ωot + ϕ(t)]

fD = −
2fo
c

vo
a(t)cos [2πfot − 2πfDt −
4πfoRo

c ]
⏟ 



ϕ(t)ωo

~ 50 kHz  fD = 0.0001fo

2) How do we remove  , and just sample  and ?fo a(t) ϕ(t)

R

Conducting sphere,  
constant velocity, 


Coherent echo

ωD = 2πfD = −
dϕ
dt

  MHz, fo ∼ 500

1) How do we discriminate positive from negative  ?fD

Receive

Receive

Transmit

Two issues:



where r is the magnitude of z, and is the phase of z. We notice that
z can be represented in three ways:

(9.15)

The relationship between the rectangular form and the polar form
is shown in Fig. 9.6, where the x axis represents the real part and the
y axis represents the imaginary part of a complex number. Given x and
y, we can get r and as

(9.16a)

On the other hand, if we know r and we can obtain x and y as

(9.16b)

Thus, z may be written as

(9.17)

Addition and subtraction of complex numbers are better performed
in rectangular form; multiplication and division are better done in polar
form. Given the complex numbers

the following operations are important.
Addition:

(9.18a)z1 ! z2 " (x1 ! x2) ! j( y1 ! y2)

z2 " x2 ! jy2 " r2 lf2

z " x ! jy " r lf,  z1 " x1 ! jy1 " r1 lf1

z " x ! jy " r lf " r ( cos f ! j sin f)

x " r cos f,  y " r sin f

f,

r " 2x 
2

! y 
2
,  f "  tan 

#1
 
y
x

f

 z " re 
j f
   

 
Exponential form

 z " r lf   Polar form

 z " x ! jy   Rectangular form

f

9.3 Phasors 377

Charles Proteus Steinmetz (1865–1923), a German-Austrian
mathematician and engineer, introduced the phasor method (covered in
this chapter) in ac circuit analysis. He is also noted for his work on the
theory of hysteresis.

Steinmetz was born in Breslau, Germany, and lost his mother at the
age of one. As a youth, he was forced to leave Germany because of
his political activities just as he was about to complete his doctoral dis-
sertation in mathematics at the University of Breslau. He migrated to
Switzerland and later to the United States, where he was employed by
General Electric in 1893. That same year, he published a paper in
which complex numbers were used to analyze ac circuits for the first
time. This led to one of his many textbooks, Theory and Calculation
of ac Phenomena, published by McGraw-Hill in 1897. In 1901, he
became the president of the American Institute of Electrical Engineers,
which later became the IEEE.
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Analytic Signal Model

s(t) = a(t)ej(ωot+ϕ(t))

rejθ = (r cos θ) + j(r sin θ)

cos(θ) = sin(θ + π/2)

From Euler's identity

Setting   and ,  we obtain a general  
complex signal model for radio and radar applications.

r = a(t) θ = ωot + ϕ(t)

θ = ωt = 2πft

AM
PM

Carrier

s(t) = a(t)ej(ωo−ωd)t

Or by letting  ωd = − dϕ/dt → ϕ(t) = − ωdt

j = −1

ejx = cos(x) + j sin(x)
r cos(θ) = ℜ{rejθ}

r sin(θ) = ℑ{rejθ}

“real part”

“imaginary part”

where r is the magnitude of z, and is the phase of z. We notice that
z can be represented in three ways:

(9.15)
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θ

FM

−θ

ℜ{s(t)} = a(t)cos(ωot + ϕ(t))
Now through Euler’s identity :

rejθ

r cos θ

r sin θ

ℑ{s(t)} = a(t)sin(ωot + ϕ(t))



I and Q Demodulation
Consider radar transmission of a simple RF pulse.  The reflected signal from the target will be the original pulse 
with some time varying amplitude and phase applied to it:

sR(t) = a(t)cos(ωot + ϕ(t))
We compute the analytic signal by “mixing” with cosine and sine. 
Mixing with  gives the “in-phase” (I) channel:cos(ω0t)

sR(t)cos(ωot) = a(t)cos(ωot + ϕ(t))[cos(ωot)]

= a(t)
1
2 (cos[2ωot + ϕ(t)] + cos[ϕ(t)])

Mixing with   gives the “quadrature” (Q) channel:sin(ω0t)
sR(t)[sin(ωot)] = a(t)cos(ωot + ϕ(t))[sin(ωot)]

= a(t)
1
2 (sin[2ωot + ϕ(t)] + sin[ϕ(t)])

If we include a gain of 2, we retain the original signal energy.  Using  
Euler’s identity we obtain the analytic baseband signal:

sB(t) = a(t)ejϕ(t) = a(t)cos ϕ(t) + ja(t)sin ϕ(t) = I + jQ

I/Q demodulation produces a time-series of complex voltage samples ( , )  from which we can construct 
a discrete representation of .  The Doppler frequency shift is the time rate of change of the phase,

.

In Qn
sB(t)

ωD = − dϕ/dt

filter out

filter out

 a 



I/Q Demodulation: Frequency Domain

fo-fo

fo-fD-(fo-fD)

fD

Transmitted signal:	 	 	 	 Frequency domain

Reflected signal from moving target
0

2fo-fD-fDfD-(2fo-fD)

We thus need to mix with a second oscillator at same frequency but  out of phase (Lecture 3).    
For a cosine reference, the quadrature function is sine.   The two components are called “in phase” (I)  
and “quadrature” (Q).    Together I and Q represent discrete samples of the baseband analytic signal,  

90∘

To resolve both positive and negative Doppler shifts, we need:


Mixed (multiplied) with oscillator  cos(2πfot)

FFT**

f = c/� (1)

! = 2⇡f (2)

k = 2⇡/� (3)

! = ck (4)

cos(2⇡(fo + fD)t) (5)

cos(2⇡(fo + fD)t) (6)

e
j2⇡fDt = cos(2⇡fDt) + j sin(2⇡fDt) (7)

k = 2⇡/�

dionosphere = ⌃mA
T
⇣
A⌃mA

T + ⌃e

⌘�1
(measurements) (8)

H(!) =
1000

j! + 200
(9)

d
2
vc

dt2
+ 7

dvc

dt
+ 10vc = 60 (10)

K =
✓
1

2
⇢u

2
◆
û

S =
E ⇥ B

µ0

f(t) =
Z +1

�1
F (!)ej!tdt () F (!) =

Z +1

�1
f(t)e�j!t

dt

f(0) =
Z +1

�1
�(t)f(t)dt

f(t� T ) = f(t) ⇤ �(t� T )

1

(for a single scatterer)

cos(2πfot)

1
2

cos [2π(2fo − fD)t] +
1
2

cos[2πfDt] ⟺

cos[2ωot + ϕ(t)] + cos[ϕ(t)]

cos(2πfot) ⟺

cos(2π( fo − fD)t) ⟺

-fo fo

LPF*

  *Low Pass Filter

**Fast Fourier Transform

Aδ( f − fD)sB(t) = Ae2πfDt = I(t) + jQ(t)

narrow-band  
signal



Components of a Pulsed Doppler Radar

Physics model

Plasma density (Ne)

Ion temperature (Ti)

Electron temperature (Te)

Bulk velocity (Vi)

+

+

+

__

_

cos(ωot)s(t)

sT(t) = s(t)cos(ωot)

sR(t) = a(t)cos(ωot + ϕ(t))

sB(tn) = anejϕn = In + jQn

cos(ωot) sin(ωot)



Meteor Radar Example

• Coherent target (meteor ionization trail), with slowly changing velocity

• Find trail velocity (hence, neutral wind velocity along radar line of sight) by 

computing I and Q from many pulses, and taking the Fourier Transform (FFT).

• Velocity and reflected power are found from the peak in the power spectrum

Meteor Echo I & Q

Meteor Echo Power

Time (s)

Vo
lta

ge
S

N
R

 (d
B

)



Does this strategy work for ISR?

1) The Poker Flat ISR operates at 450 MHz.   The echo from the ionosphere is 
produced by reflection from ion sound waves.  A typical phase speed for these 
waves is 3 km/s.   What is the Doppler frequency shift in Hz caused by reflection off 
these waves?   This represents the approximate width of the Doppler spectrum. 

2) The Nyquist theorem states that we must sample a signal at a rate of at least 
twice its highest frequency to fully recover it.   For problem 1, this so-called 
“Nyquist rate” is about 20 kHz, meaning we need samples of I and Q from the 
target at a rate of 20kHz.   What is the maximum target range at which we can 
obtain independent samples of I and Q at this rate?       How does this compare 
with the altitude of the ionosphere?     



Does this strategy work for ISR?
Doppler width at 450 MHz:     10 kHz

de-correlation time (zero crossing):  ~1/10kHz = 0.1 ms

Inter-pulse period (IPP) to reach 500 km:   2R/c = 3ms

Stated alternately, the Doppler frequency shift of the plasma is much higher than the 
maximum unambiguous Doppler shift measurable for the pulse-repetition frequency.

Plasma has de-correlated by the time we send the next pulse.

ISR spectrum               Autocorrelation function  (ACF)

Increasing Te



Autocorrelation function and power spectrum

31

Figure 2·5: The top figure shows an Incoherent Scattering Spectrum,
including the three lines. The middle figure shows a zoom to the ion acoustic
line, which is the focus of this research. The bottom figure shows the
autocorrelation function �(⇥) of the ion acoustic line. f+ is the Doppler
frequency associated with the ion acoustic phase velocity.

                                                              

Ti/mi

Te/Ti

Vi

Ion temperature (Ti) to ion 
mass (mi) ratio from the width 
of the spectra

Electron to ion temperature 
ratio (Te/Ti) from “peak-to-
valley” ratio

Electron (= ion) density 
from total area (corrected 
for temperatures)

Line-of-sight ion velocity 
(Vi) from bulk Doppler 
shift

area ~ Ne
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Figure 2·5: The top figure shows an Incoherent Scattering Spectrum,
including the three lines. The middle figure shows a zoom to the ion acoustic
line, which is the focus of this research. The bottom figure shows the
autocorrelation function �(⇥) of the ion acoustic line. f+ is the Doppler
frequency associated with the ion acoustic phase velocity.

zero lag (=signal average power)

1st lag

2nd lag

3rd lag

Our goal is to sample lags with 
sufficient fidelity to provide 
meaningful estimates of plasma 
parameters

• The purpose of a monostatic radar 
is to measure the range profile of the 
signal autocorrelation function (acf)

• The acf is sampled at certain 
intervals of delay. • Convention: lags 
are numbered as 0, 1, 2, .... • Zero lag 
is equal to signal power. • The range 
and lag resolutions of the 
measurement are

determined by the radar modulation 
and sampling rate.
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Computing the ACF (and, hence, spectrum)

• A pulse propagates at speed of 
light, represented here by the 
slope of the lines.

• Target is continuous, so each  
sample collects scattering from  
volume defined by pulse length.
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Computing the ACF (and, hence, spectrum)
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Computing the ACF (and, hence, spectrum)
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Computing the ACF (and, hence, spectrum)
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Computing the ACF (and, hence, spectrum)
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Computing the ACF (and, hence, spectrum)
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Computing the ACF (and, hence, spectrum)
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Autocorrelation function and power spectrum

31

Figure 2·5: The top figure shows an Incoherent Scattering Spectrum,
including the three lines. The middle figure shows a zoom to the ion acoustic
line, which is the focus of this research. The bottom figure shows the
autocorrelation function �(⇥) of the ion acoustic line. f+ is the Doppler
frequency associated with the ion acoustic phase velocity.
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including the three lines. The middle figure shows a zoom to the ion acoustic
line, which is the focus of this research. The bottom figure shows the
autocorrelation function �(⇥) of the ion acoustic line. f+ is the Doppler
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is to measure the range profile of the 
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intervals of delay. • Convention: lags 
are numbered as 0, 1, 2, .... • Zero lag 
is equal to signal power. • The range 
and lag resolutions of the 
measurement are

determined by the radar modulation 
and sampling rate.
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Figure 3·2: Simulated IS spectra for di�erent number of independent spec-
tra integrated at an operation frequency of 1289 MHz. Top plot shows an
average of one spectrum. The middle plot shows an average of 30 inde-
pendent spectra. The bottom plot shows an average of 600 independent
spectra.
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can account for the simultaneous enhancement in the two ion lines, and the simultaneous55

ion and plasma line enhancement.56

This purpose of this paper is to provide a unified theoretical model of modes expected in57

the ISR spectrum in the presence of field-aligned electron beams. The work is motivated58

by the phenomenological studies summarized above, in addition to recent theoretical59

results–in particular, those of Yoon et al. [2003], and references therein, which suggest60

that Langmuir harmonics should arise as a natural consequence of the same conditions61

producing NEIALs. Although these e�ects have been treated in considerable detail in the62

plasma physics literature, their implications for the field of ionospheric radio science (and63

ISR in particular) have not yet been discussed. The conditions to detect all the modes64

present within the IS spectrum within the same ISR is also presented in this work.65

2. Plasma in Thermal Equilibrium

There exist two natural electrostatic longitudinal modes in a plasma in thermal equilib-66

rium: the ion acoustic mode, which is the main mode detected by ISRs, and the Langmuir67

mode [Boyd and Sanderson, 2003]. Using a linear approach to solve the Vlasov-Poisson68

system of equations, the dispersion relation of these modes is obtained. The real part of69

the ion acoustic dispersion relation reads70

⇥s = Csk, (1)

and the imaginary part (assuming ⇥si � ⇥s, k2�2
De � 1 and Ti/Te � 1) can be written71

as72
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kB(Te + 3Ti)/mi is the ion-acoustic speed. The dependence of this mode

on ionospheric state parameters is observed in Eq. 2. The Langmuir mode is detected by

ISR under certain conditions, and the real part of its dispersion relation is expressed as
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The forward model used to estimate ionospheric parameters in ISR assumes that these74

are the dominating modes in the ISR spectrum. However, an injected beam of particles,75

in particular electrons, can destabilize the plasma, altering the dispersion relations and76

amplitudes of these modes.77

3. Current Model of the Langmuir Decay Process for NEIAL Formation

The model presented by Forme et al. [1993] to explain NEIALs is a two step process.

First, a beam-plasma instability enhances Langmuir Waves (LW). Second, if the enhance-

ment of LW is high enough then the enhanced LW can decay, enhancing Ion Acoustic

Waves (IAWs) and counter-propagating LWs. The plasma-beam process involves three

species: thermal electrons, thermal ions, and an electron beam with a bulk velocity of

vb. By assuming small perturbations and small damping/growth (vthe, vthi, vb ⇤ ⇤/k),

linearization of Vlasov-poison system can be used to find the dispersion relation of the
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ment of LW is high enough then the enhanced LW can decay, enhancing Ion Acoustic
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Radar Waveforms (cont’d.)

RF pulse at a single frequency

RF Pulse with changing frequency

RF Pulse, single frequency, changing phase

s(t) = A(t)cos [2πfot + ϕ(t)]

Radar Waveforms (cont’d.)

Pulse at single frequency

Pulse with changing frequency

Pulse at single frequency, but variable phase

cos(θ) = sin(θ + π/2)

Radar Waveforms (cont’d.)

Pulse at single frequency

Pulse with changing frequency

Pulse at single frequency, but variable phase

cos(θ) = sin(θ + π/2)

Radar Waveforms (cont’d.)

Pulse at single frequency

Pulse with changing frequency

Pulse at single frequency, but variable phase

cos(θ) = sin(θ + π/2)

……

Unmodulated RF signal

s(t) = A(t)cos(2π( f0 + f(t))t + ϕ(t))

s(t) = Aoej2πfot

s(t) = A(t)cos [2π( fo + Δf(t))t]

ϕ(t) = constant

s(t) = A(t)cos [2π (fo + f(t)) t + ϕ(t)]

A(t) = constant

s(t) = A(t)ej2πfotejϕ(t)

s(t) = A(t)ej2πfot

s(t) = A(t)ej2π( fo+Δf(t)t

ej0 = 1
ejπ = − 1
ejπ/2 = j
e−jπ/2 = − j



Pulse Compression
Range resolution is controlled by the length of the transmitted pulse.  The optimal detection 
strategy involves correlating the received signal with a replica of the signal we transmitted 
(called “Matched Filtering”).   In the script given, the two vectors of 1’s represent identical 
uncoded radar pulses.   Running the script plots the so-called “range ambiguity function” for 
the pulse, which is computed by correlating the pulse with itself.   The origin represents the 
target location, but there is also received power at ranges other than 0, hence there is “range 
ambiguity” associated with any single detection.  Try the following:


a) First let’s try a shorter pulse.  Replace pulse2 with the following 

pulse2 = [0,0,0,0,1,1,1,1,1,0,0,0,0]

This represents a pulse that is 40% shorter.  Rerun the script.  What effects do you see 
compared to the original pulse?

b) We’d like to retain the full energy of the pulse, so instead let’s try flipping the 
sign of one of the elements of pulse 2.   Try randomly changing a few 1’s to -1’s 

What effects do you see compared to the original pulse? 


  



Pulse Compression

d) The range ambiguity is generally defined as the “full-width at half-maximum” 
(FWHM) of the main peak of the matched filter output.  Compare the range 
ambiguity of the uncoded and coded pulses based on this definition.    The ratio of 
these quantities is referred to as the “pulse compression ratio”.   What costs have 
we paid for the improved in range resolution from pulse coding?

c) Let’s instead change some signs in a strategic fashion.   Replace pulse2 with the 
following coded version of the pulse,

pulse2 = [1,1,1,1,1,-1,-1,1,1,-1,1,-1,1]

Each element represents a “bit” or “baud” whose signe we can control.    This code 
is called a “13-baud Barker code.”  The sign changes can be implemented in 
hardware by flipping the phase of the transmitted signal 180 degrees for these 
bauds.  Rerun the script now.  What have we achieved with this code?  


