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We propose a comprehensive theory of dark matter that explains the recent proliferation of un-

expected observations in high-energy astrophysics. Cosmic ray spectra from ATIC and PAMELA

require a WIMP with mass Mχ ∼ 500 − 800 GeV that annihilates into leptons at a level well above

that expected from a thermal relic. Signals from WMAP and EGRET reinforce this interpretation.

Limits on p̄ and π0-γ’s constrain the hadronic channels allowed for dark matter. Taken together, we

argue these facts imply the presence of a new force in the dark sector, with a Compton wavelength

m−1

φ
>
∼ 1 GeV−1. The long range allows a Sommerfeld enhancement to boost the annihilation cross

section as required, without altering the weak-scale annihilation cross section during dark matter

freeze-out in the early universe. If the dark matter annihilates into the new force carrier φ, its low

mass can make hadronic modes kinematically inaccessible, forcing decays dominantly into leptons.

If the force carrier is a non-Abelian gauge boson, the dark matter is part of a multiplet of states, and

splittings between these states are naturally generated with size αmφ ∼ MeV, leading to the eX-

citing dark matter (XDM) scenario previously proposed to explain the positron annihilation in the

galactic center observed by the INTEGRAL satellite; the light boson invoked by XDM to mediate

a large inelastic scattering cross section is identified with the φ here. Somewhat smaller splittings

would also be expected, providing a natural source for the parameters of the inelastic dark matter

(iDM) explanation for the DAMA annual modulation signal. Since the Sommerfeld enhancement

is most significant at low velocities, early dark matter halos at redshift ∼ 10 potentially produce

observable effects on the ionization history of the universe. Because of the enhanced cross section,

detection of substructure is more probable than with a conventional WIMP. Moreover, the low veloc-

ity dispersion of dwarf galaxies and Milky Way subhalos can increase the substructure annihilation

signal by an additional order of magnitude or more.

PACS numbers: 95.35.+d

I. PAMELA/ATIC AND NEW DARK FORCES

Thermal WIMPs remain one of the most attractive candidates for dark matter. In addition to appearing generically

in theories of weak-scale physics beyond the standard model, they naturally give the appropriate relic abundance. Such

particles also are very promising in terms of direct and indirect detection, because they must have some connection

to standard model particles.

Indirect detection is particularly attractive in this respect. If dark matter annihilates to some set of standard model

states, cosmic ray detectors such as PAMELA, ATIC and Fermi/GLAST have the prospect of detecting it. This is

appealing, because it directly ties the observable to the processes that determine the relic abundance.

For a weak-scale thermal particle, the relic abundance in the case of s-wave annihilation is approximately set by

Ωh2 ≃ 0.1 ×
( 〈σv〉freeze

3 × 10−26 cm3s−1

)−1

. (1)

For perturbative annihilations, s-wave dominates in the late universe, so this provides an approximate upper limit on

the signal that can be observed in the present day. Such a low cross section makes indirect detection, whereby the

annihilation products of dark matter are detected in cosmic ray detectors, a daunting task.

http://arXiv.org/abs/0810.0713v3
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However, recent experiments have confirmed the longstanding suspicion that there are more positrons and electrons

at 10s-100s of GeV than can be explained by supernova shocks and interactions of cosmic ray protons with the ISM.

The experiments are

• PAMELA

The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics has reported results [1] indicating

a sharp upturn in the positron fraction (e+/(e+ + e−)) from 10 − 100 GeV, counter to what is expected from

high-energy cosmic rays interacting with the interstellar medium (ISM). This result confirms excesses seen in

previous experiments, such as HEAT [2, 3] and AMS-01 [4]. One possible explanation for this is dark matter

annihilation into e+e− [5, 6, 7], but this requires a large cross section [8].

• ATIC

The Advanced Thin Ionization Calorimeter is a balloon-borne cosmic ray detector which studies electrons

and positrons (as well as other cosmic rays) up to ∼ TeV energies, but cannot distinguish positrons and

electrons. The primary astrophysical sources of high-energy electrons are expected to be supernovae: electrons

are accelerated to relativistic speeds in supernova remnants and then diffuse outward. The ATIC-2 experiment

reported a 4− 6σ excess (over a simple power law) in its e+ + e− data [9] at energies of ∼ 300− 800 GeV, with

a sharp cutoff in the 600 − 800 GeV range. Dark matter would seem a natural candidate for this as well, with

its mass scale determining the cutoff.

• WMAP

Studies of the WMAP microwave emission from the galactic center show a hard component not spatially corre-

lated with any known galactic emission mechanism. This “WMAP haze” [10, 11] can be explained as synchrotron

radiation from electrons and positrons produced from dark matter annihilation in the galactic center [12].

• EGRET

Gamma-ray measurements in the galactic center (inner 5◦) provide hints of an excess at 10−50 GeV [13]. Strong

et al. reanalyzed EGRET data and found a harder spectrum at these energies than previously derived, using

the improved EGRET sensitivity estimates of [14]. Despite poor spatial resolution, Strong et al. found an

excess in this energy range above the expected π0 gamma-ray emission from cosmic ray protons interacting with

the interstellar medium (see Fig. 8 of [13]). Such γ’s could naturally arise from inverse-Compton scattering of

high-energy electrons and positrons off of starlight and the cosmic microwave background (CMB).

Taken together, these make a compelling case for excessive electronic production in the galaxy. While individual

astrophysical explanations may exist for each signal (pulsar wind nebulae for PAMELA and ATIC [15, 16, 17], for

instance, supernovae for the WMAP haze [63]), the data cry out for a unified explanation. Dark matter annihilations

provide an appealing candidate.

In addition to the above, there are two other anomalies that are worth mentioning. The INTEGRAL 511 keV

signal indicates ∼ 3 × 1042e+/s annihilating in the galactic center, far more than expected from supernovae. The

spectrum suggests that these positrons are injected with relatively low energies (E<∼ few MeV), and so form a distinct

population from those above. eXciting dark matter (XDM) [18] can naturally explain such low energy positrons with

∼ 1 MeV excited states of the dark matter, while still producing the high-energy positrons via annihilation [19, 20].

Lastly, there is the DAMA/LIBRA indication of an annual modulation consistent with that expected from dark matter

induced nuclear scattering [21]. Such a signal is difficult to reconcile with null results of other experiments, but can

be reconciled with ∼ 100 keV excited states in the “inelastic dark matter” (iDM) scenario [22, 23, 24]. Although we

are motivated by the specific signals above (PAMELA/ATIC as well as the haze and EGRET), the picture we are

led to for explaining them naturally incorporates the necessary ingredients to explain the INTEGRAL and DAMA

signals as well.

Focusing on only the high-energy positrons and electrons, there are a number of challenges to any model of dark

matter. These are:

• A large cross section

Studies of PAMELA and ATIC signals seem to require a cross section much larger than what is allowed by
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thermal relic abundance. Boost factors of O(100) or more above what would be expected for a thermal WIMP

are required to explain these excesses [25, 26].

• A large cross section into leptons

Typical annihilations via Z bosons produce very few hard leptons. Annihilations into W bosons produce hard

leptons, but many more soft leptons through the hadronic shower. Higgs bosons and heavy quarks produce even

softer spectra of leptons, all of which seem to give poor fits to the data. At the same time, absent a leptophilic

gauge boson, it is a challenge to construct means by which dark matter would annihilate directly to leptons.

• A low cross section into hadrons

Even if a suitably high annihilation rate into leptons can be achieved, the annihilation rate into hadronic modes

must be low. Limits from diffuse galactic gamma rays [27], as well as gamma rays from the center of the

galaxy constrain the production of π0’s arising from the dark matter annihilation. PAMELA measurements of

antiprotons tightly constrain hadronic annihilations as well [26]. Consequently, although quark and gauge boson

annihilation channels may occur at some level, the dominant source of leptons must arise through some other

channel.

The combination of these issues makes the observed high-energy anomalies – especially ATIC and PAMELA –

difficult to explain with thermal dark matter annihilation. However, we shall see that the inclusion of a new force in

the dark sector simultaneously addresses all of these concerns.

New Forces in the Dark Sector

A new interaction for the dark sector can arise naturally in a variety of theories of physics beyond the standard

model, and is thus well motivated from a theoretical point of view. Although there are strong limits on the self-

interaction scattering cross section from structure formation [28, 29], the presence of some new force-carrying boson

should be expected, with only the mass scale in question. A light boson could arise naturally if its mass scale is

generated radiatively [30], or if it were a pseudo-goldstone boson.

One of the important modifications that can arise with a new light boson is an enhancement of the annihilation

cross section via a mechanism first described by Sommerfeld [31]. The presence of a new force carrier can distort the

wave function of the incoming particles away from the plane-wave approximation, yielding significant enhancements

(or suppressions) to annihilation cross sections [64]. Equivalently, ladder diagrams involving multiple exchanges of

the force carrier must be resummed (Fig. 1). As we shall describe, the Sommerfeld enhancement can only arise if the

gauge boson has a mass mφ
<∼ αMDM ∼ few GeV. Thus, with the mass scale of ∼ 800 GeV selected by ATIC, and

the large cross sections needed by both ATIC and PAMELA, the mass scale for a new force carrier is automatically

selected. Interactions involving W and Z bosons are insufficient at this mass scale.

Once this new force carrier φ is included, the possibility of a new annihilation channel χχ→ φφ opens up, which can

easily be the dominant annihilation channel. Absent couplings to the standard model, some of these particles could

naturally be stable for kinematical reasons; even small interactions with the standard model can then lead them to

decay only into standard model states. If they decay dominantly into leptons, then a hard spectrum of positrons arises

very naturally. Motivated by the setup of XDM, Cholis, Goodenough and Weiner [19] first invoked this mechanism of

annihilations into light bosons to provide a simple explanation for the excesses of cosmic ray positrons seen by HEAT

without excessive antiprotons or photons. Simple kinematics can forbid a decay into heavier hadronic states, and as

we shall see, scalars lighter than ∼ 250 MeV and vectors lighter than ∼ GeV both provide a mode by which the dark

matter can dominantly annihilate into very hard leptons, with few or no π0’s or antiprotons.

In the following sections, we shall make these points more concretely and delineate which ranges of parameters most

easily explain the data; but the essential point is very simple: if the dark matter is O(800 GeV) and interacts with

itself via a force carrier with mass mφ ∼ GeV, annihilation cross sections can be considerably enhanced at present

times via a Sommerfeld enhancement, far exceeding the thermal freeze-out cross section. If that boson has a small

mixing with the standard model, its mass scale can make it kinematically incapable of decaying via a hadronic shower,

preferring muons, electrons and, in some cases, charged pions, and avoiding constraints from π0’s and antiprotons.
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If the force-carriers are non-Abelian gauge bosons, we shall see that other anomalies may be incorporated naturally

in this framework, explaining the INTEGRAL 511 keV line via the mechanism of “eXciting dark matter” (XDM),

and the DAMA annual modulation signal via the mechanism of “inelastic dark matter” (iDM). We shall see that the

excited states needed for both of these mechanisms [O(1 MeV) for XDM and O(100 keV) for iDM] arise naturally with

the relevant mass splitting generated radiatively at the correct scale.

II. SOMMERFELD ENHANCEMENTS FROM NEW FORCES

A new force in the dark sector can give rise to the large annihilation cross sections required to explain recent data,

through the “Sommerfeld enhancement” that increases the cross section at low velocities [65]. A simple classical

analogy can be used to illustrate the effect. Consider a point particle impinging on a star of radius R. Neglecting

gravity, the cross section for the particle to hit and be absorbed by the star is σ0 = πR2. However, because of gravity,

a point coming from a larger impact parameter than R will be sucked into the star. The cross section is actually

σ = πb2max, where bmax is the largest the impact parameter can be so that the distance of closest approach of the

orbit is R. If the velocity of the particle at infinity is v, we can determine bmax trivially using conservation of energy

and angular momentum, and we find that

σ = σ0

(

1 +
v2
esc

v2

)

(2)

where v2
esc = 2GNM/R is the escape velocity from the surface of the star. For v ≪ vesc, there is a large enhancement

of the cross section due to gravity; even though the correction vanishes as gravity shuts off (GN → 0), the expansion

parameter is 2GNM/(Rv2) which can become large at small velocity.

The Sommerfeld enhancement is a quantum counterpart to this classical phenomenon. It arises whenever a particle

has an attractive force carrier with a Compton wavelength longer than (αMDM )−1, i.e. dark matter bound states

are present in the spectrum of the theory. (We generically refer to α ∼ coupling2/4π, assuming such couplings are

comparable to those in the standard model, with 10−3<∼ α<∼ 10−1.)

Let us study this enhancement more quantitatively. We begin with the simplest case of interest, namely, a particle

interacting via a Yukawa potential. We assume a dark matter particle χ coupling to a mediator φ with coupling

strength λ. For s-wave annihilation in the nonrelativistic limit, the reduced two-body wavefunction obeys the radial

Schrödinger equation,

1

mχ
ψ′′(r) − V (r)ψ(r) = −mχv

2ψ(r), (3)

where the s-wave wavefunction Ψ(r) is related to ψ(r) as Ψ(r) = ψ(r)/r, v is the velocity of each particle in the

center-of-mass frame (here we use units where h̄ = c = 1), and for scalar φ the potential takes the usual Yukawa form,

V (r) = − λ2

4πr
e−mφr. (4)

The interaction in the absence of the potential is pointlike. As reviewed in the appendix, the Sommerfeld enhancement

in the scattering cross section due to the potential is given by

S =

∣

∣

∣

∣

∣

dψk

dr (0)

k

∣

∣

∣

∣

∣

2

(5)

where we solve the Schrödinger equation with boundary conditions ψ(0) = 0, ψ(r) → sin(kr + δ) as r → ∞. In the

recent dark matter literature, a different but completely equivalent expression is used, with

S = |ψ(∞)/ψ(0)|2 (6)

where we solve the Schrödinger equation with the outgoing boundary condition ψ′(∞) = imχvψ(∞) [32].
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Defining the dimensionless parameters

α = λ2/4π, ǫv =
v

α
, ǫφ =

mφ

αmχ
, (7)

and rescaling the radial coordinate with r′ = αmχr, we can rewrite Eq. 3 as,

ψ′′(r′) +

(

ǫ2v +
1

r′
e−ǫφr

′

)

ψ(r′) = 0. (8)

In the limit where the φ mass goes to zero (ǫφ → 0), the effective potential is just the Coulomb potential and Eq.

8 can be solved analytically, yielding an enhancement factor of,

S ≡ |ψ(∞)/ψ(0)|2 =
π/ǫv

1 − e−π/ǫv
. (9)

For nonzeromφ and hence nonzero ǫφ, there are two important qualitative differences. The first is that the Sommerfeld

enhancement saturates at low velocity–the attractive force has a finite range, and this limits how big the enhancement

can get. At low velocities, once the deBroglie wavelength of the particle (Mv)−1 gets larger than the range of the

interaction m−1
φ , or equivalently once ǫv drops beneath ǫφ, the Sommerfeld enhancement saturates at S ∼ 1

ǫφ
. The

second effect is that for specific values of ǫφ, the Yukawa potential develops threshold bound states, and these give rise

to resonant enhancements of the Sommerfeld enhancement. We describe some of the parametrics for these effects in

the appendix, but for reliable numbers Eq. 8 must be solved numerically, and plots for the enhancement as a function

of ǫφ and ǫv are given there. As we will see in the following, we will be interested in a range of mφ ∼ 100 MeV - GeV;

with reasonable values of α, this corresponds to ǫφ in the range ∼ 10−2 − 10−1, yielding Sommerfeld enhancements

ranging up to a factor ∼ 103−104. At low velocities, the finite range of the Yukawa interaction causes the Sommerfeld

enhancement to saturate, so the enhancement factor cannot greatly exceed this value even at arbitrarily low velocities.

The nonzero mass of the φ thus prevents the catastrophic overproduction of gammas in the early universe pointed

out by [33].

Having obtained the enhancement S as a function of ǫv and ǫφ, we must integrate over the velocity distribution

of the dark matter in Earth’s neighborhood, to obtain the total enhancement to the annihilation cross section for

a particular choice of φ mass and coupling λ. We assume a Maxwell-Boltzmann distribution for the one-particle

velocity, truncated at the escape velocity:

f(v) =

{

Nv2e−v
2/2σ2

v ≤ vesc
0 v > vesc.

(10)

The truncation does not significantly affect the results, as the enhancement factor drops rapidly with increasing

velocity. The one-particle rms velocity is taken to be 150 km/s in the baseline case, following simulations by Governato

et al. [34]. Fig. 1 shows the total enhancement as a function of mφ/mχ and the coupling λ for this case.

One can inquire as to whether dark matter annihilations in the early universe experience the same Sommerfeld

enhancement as dark matter annihilations in the galactic halo at the present time. This is important, because we are

relying on this effect precisely to provide us with an annihilation cross section in the present day much larger than

that in the early universe. However, it turns out that particles leave thermal equilibrium long before the Sommerfeld

enhancement turns on. This is because the Sommerfeld enhancement occurs when the expansion parameter α/v = 1/ǫv
is large. In the early universe, the dark matter typically decouples at TCMB ∼ mχ/20, or v ∼ 0.3c. Since we are

taking α<∼ 0.1 generally, the Sommerfeld enhancement has not turned on yet. More precisely, in the early-universe

regime ǫv ≫ ǫφ, so we can use Eq. 9 for the massless limit. Where ǫv ≫ 1, Eq. 9 yields S ≈ 1 + π/2ǫv: thus the

enhancement should be small and independent of mφ. Fig. 2 shows this explicitly. We are left with the perturbative

annihilation cross section σ ∼ α2/m2
χ which gives us the usual successful thermal relic abundance.

At some later time, as the dark matter velocities redshift to lower values, the Sommerfeld enhancement turns on

and the annihilations begin to scale as a−5/2 (before kinetic decoupling) or a−2 (after decoupling). From decoupling

until matter-radiation equality, where the Hubble scale begins to evolve differently, or until the Sommerfeld effect is

saturated, dark matter annihilation will produce a uniform amount of energy per comoving volume per Hubble time.
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FIG. 1: Contours for the Sommerfeld enhancement factor S as a function of the mass ratio mφ/mχ and the coupling constant

λ, σ = 150 km/s.

This uniform spread of energy injected could have potentially interesting signals for observations of the early universe.

An obvious example would be a possible effect on the polarization of the CMB, as described in [35, 36, 37]. Because

at the time of matter-radiation equality, the dark matter may have slowed to velocities of v ∼ 10−6c or slower, the

large cross sections could yield a promising signal for upcoming CMB polarization observations, including Planck.

However, we emphasize that saturation of the cross section at low v avoids the runaway annihilations discussed by

[33].

III. MODELS OF THE SOMMERFELD FORCE AND NEW ANNIHILATION CHANNELS

What sorts of forces could give rise to a large Sommerfeld enhancement of the dark matter annihilation? As we

have already discussed, we must have a light force carrier. On the other hand, a massless particle is disfavored by the

agreement between big bang nucleosynthesis calculations and primordial light element measurements [38], as well as

constraints from WMAP on new relativistic degrees of freedom [39]. Thus, we must have massive degrees of freedom,

which are naturally light, while still coupling significantly to the dark matter. There are three basic candidates.

• The simplest possibility is coupling to a light scalar field, which does give rise to an attractive interaction.

However, given that we need an O(1) coupling to the DM fields, this will typically make it unnatural for the

scalar to stay as light as is needed to maximize the Sommerfeld enhancement, unless the dark matter sector

is very supersymmetric. This can be a challenge given that we are expecting the dark matter to have a mass

O(TeV). Consequently, the natural scale for a scalar which couples to it would also be O(TeV), although this

conclusion can be evaded with some simple model-building.

• The scalar could be naturally light if it is a pseudoscalar π with a goldstone-like derivative coupling to matter

1/FJµ∂
µπ. This does lead to a long-range spin-dependent potential of the form V (~r) = 1

r3 (~S1 · ~S2−3~S1 · r̂ ~S2 · r̂),
but the numerator vanishes when averaged over angles, so there is no long-range interaction in the s-wave and

hence no Sommerfeld enhancement.
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FIG. 2: Contours for the Sommerfeld enhancement factor S as a function of the mass ratio mφ/mχ and the coupling constant

λ, at a temperature TCMB = mχ/20 (the enhancement is integrated over a Boltzmann distribution with σ = 0.3c).

• Finally, we can have a coupling to spin-1 gauge fields arising from some dark gauge symmetry Gdark. Since

the gauge fields must have a mass O(GeV) or less, one might worry that this simply begs the question, as the

usual explanation of such a light gauge boson requires the existence of a scalar with a mass of O(GeV) or less.

However, because that scalar need not couple directly to the dark matter, it is sufficiently sequestered that its

small mass is technically natural. Indeed, the most straightforward embedding of this scenario within SUSY

[30] naturally predicts the breaking scale for Gdark near ∼ GeV. Alternatively, no fundamental scalar is needed,

with the vector boson possibly generated by the condensate of a strongly coupled theory.

At this juncture it is worth discussing an important point. As we have emphasized, to produce a Sommerfeld

enhancement, we need an attractive interaction. Scalars (like gravitons) universally mediate attractive forces, but

gauge fields can give attraction or repulsion, so do we generically get a Sommerfeld enhancement? For the case of

the Majorana fermion (or real scalar) in particular, the dark matter does not carry any charge, and there does not

appear to be any long-range force to speak of, so the question of the enhancement is more interesting. As we discuss

in a little more detail in the appendix, the point is that the gauge symmetry is broken. The breaking dominates

the properties of the asymptotic states. For instance, the dark matter must be part of a multiplet with at least

two states, since a spin-1 particle cannot have a coupling to a single neutral state. The gauge symmetry breaking

leads to a mass splitting between the states, which dominates the long-distance behavior of the theory, determining

which state is the lightest, and therefore able to survive to the present time and serve as initial states for collisions

leading to annihilation. However, if the mass splitting between the states is small enough compared to the kinetic

energy of the collision, the gauge-partner DM states will necessarily be active in the collision, and eventually at

distances smaller than the gauge boson masses, the gauge breaking is a negligible effect. Since the asymptotic states

are in general roughly equal linear combinations of positive and negative charge gauge eigenstates, the remnant of

asymptotic gauge breaking at short distances is that the incoming scattering states are linear combinations of gauge

eigenstates, so the two-body wavefunction will be a linear combination of attractive and repulsive channels. While

two-body wavefunction in the repulsive channel is indeed suppressed at the origin, the attractive part is enhanced.

Therefore there is still a Sommerfeld enhancement, suppressed at most by an O(1) factor reflecting the attractive

component of the two-body state. (This is of course completely consistent with the Sommerfeld enhancements seen



8

a)

χ

χ

φ

φ

φ
...

mφ ∼ GeV

b)

χ

χ

φ

φ

FIG. 3: The annihilation diagrams χχ → φφ both with (a) and without (b) the Sommerfeld enhancements.

for ordinary WIMP annihilations, mediated by W/Z/γ exchange).

Because of the presence of a new light state, the annihilation χχ → φφ can, and naturally will, be significant. In

order not to spoil the success of nucleosynthesis, we cannot have very light new states in this sector, with a mass <∼ 10

MeV, in thermal equilibrium with the standard model; the simplest picture is therefore that all the light states in the

dark sector have a mass ∼ GeV. Without any special symmetries, there is no reason for any of these particles to be

exactly stable, and the lightest ones can therefore only decay back to standard model states, indeed many SM states

are also likely kinematically inaccessible, thus favoring ones that produce high energy positrons and electrons. This

mechanism was first utilized in [19] to generate a large positron signal with smaller π0 and p̄ signals. Consequently, an

important question is the tendency of φ to decay to leptons. This is a simple matter of how φ couples to the standard

model. (A more detailed discussion of this can be found in [30].)

A scalar φ can couple with a dilaton-like coupling φFµνFµν , which will produce photons and hadrons (via gluons).

Such a possibility will generally fail to produce a hard e+e− spectrum. A more promising approach would be to mix

φ with the standard model Higgs with a term κφ2h†h. Should φ acquire a vev 〈φ〉 ∼ mφ, then we yield a small mixing

with the standard model Higgs, and the φ will decay into the heaviest fermion pair available. For mφ
<∼ 200 MeV

it will decay directly to e+e−, while for 200 MeV<∼ mφ
<∼ 250 MeV, φ will decay dominantly to muons. Above that

hadronic states appear, and pion modes will dominate. Both e+e− and µ+µ− give good fits to the PAMELA data,

while e+e− gives a better fit to PAMELA+ATIC.

A pseudoscalar, while not yielding a Sommerfeld enhancement, could naturally be present in this new sector. Such

a particle would typically couple to the heaviest particle available, or through the axion analog of the dilaton coupling

above. Consequently, the decays of a pseudoscalar would be similar to those of the scalar.

A vector boson will naturally mix with electromagnetism via the operator F ′
µνF

µν . This possibility was considered

some time ago in [40]. Such an operator will cause a vector φµ to couple directly to charge. Thus, for mφ
<∼ 2mµ it

will decay to e+e−, while for 2mµ
<∼mφ

<∼ 2mπ it will decay equally to e+e− and µ+µ−. Above 2mπ, it will decay

40% e+e−, 40%µ+µ− and 20%π+π−. At these masses, no direct decays into π0’s will occur because they are neutral

and the hadrons are the appropriate degrees of freedom. At higher masses, where quarks and QCD are the appropriate

degrees of freedom, the φ will decay to quarks, producing a wider range of hadronic states, including π0’s, and, at

suitably high masses mφ
>∼ 2 GeV, antiprotons as well [66]. In addition to XDM [18], some other important examples

of theories under which dark matter interacts with new forces include WIMPless models [41], mirror dark matter [42]

and secluded dark matter [43].

Note that, while these interactions between the sectors can be small, they are all large enough to keep the dark

and standard model sectors in thermal equilibrium down to temperatures far beneath the dark matter mass, and (as

mentioned in the previous section), we can naturally get the correct thermal relic abundance with a weak-scale dark

matter mass and perturbative annihilation cross sections. Kinetic equilibrium in these models is naturally maintained

down to the temperature TCMB ∼ mφ [44].
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IV. A NON-ABELIAN Gdark: INTEGRAL, DIRECT DETECTION, AND DAMA

Up to this point we have focused on a situation where there is a single force-carrying boson φ, whether vector or

scalar. Already, this can have significant phenomenological consequences. In mixing with the standard model Higgs

boson, there is a nuclear recoil cross section mediated by φ. With technically natural parameters as described in [18],

the rate is unobservable, although in a two-Higgs doublet model the cross section is within reach of future experiments

[45].

In contrast, an 800 GeV WIMP which interacts via a particle that couples to charge is strongly constrained. Because

the φ boson is light and couples to the electromagnetic vector current, there are strong limits. The cross section per

nucleon for such a particle is [43]

σ0 =
16πZ2αSMαDarkǫ

2µ2
ne

A2m4
φ

(11)

=

(

Z

32

)2(
73

A

)2
( ǫ

10−3

)2 ( αDark

137−1

)( µne

938 MeV

)

(

1 GeV

mφ

)4

× 1.8 × 10−37 cm2,

where αDark is the coupling of the φ to the dark matter, ǫ describes the kinetic mixing, µne is the reduced mass

of the DM-nucleon system and αSM is the standard model electromagnetic coupling constant. With the parameters

above, such a scattering cross section is excluded by the present CDMS [46] and XENON [47] bounds by 6 orders

of magnitude. However, this limit can be evaded by splitting the two Majorana components of the Dirac fermion

[22] or by splitting the scalar and pseudoscalar components of a complex scalar [48, 49]. Since the vector coupling

is off-diagonal between these states, the nuclear recoil can only occur if there is sufficient kinetic energy to do so. If

the splitting δ > v2µ/2 (where µ is the reduced mass of the WIMP-nucleus system) no scattering will occur. Such

a splitting can easily arise for a U(1) symmetry by a U(1) breaking operator such as 1
M ψcψh∗h∗ which generates a

small Majorana mass and splits the two components (see [23] for a discussion).

Remarkably, for δ ∼ 100 keV one can reconcile the DAMA annual modulation signature with the null results of

other experiments [22, 23, 24], in the “inelastic dark matter” scenario. We find that the ingredients for such a scenario

occur here quite naturally. However, the splitting here must be O(100 keV) and the origin of this scale is unknown, a

point we shall address shortly.

Exciting Dark Matter from a Non-Abelian Symmetry

One of the strongest motivations for a ∼ GeV mass φ particle prior to the present ATIC and PAMELA data was

in the context of eXciting dark matter [18]. In this scenario, dark matter excitations could occur in the center of the

galaxy via inelastic scattering χχ→ χχ∗. If δ = mχ∗ −mχ
>∼ 2me, the decay χ∗ → χe+e− can generate the excess of

511 keV x-rays seen from the galactic center by the INTEGRAL [50, 51] satellite. However, a large (nearly geometric)

cross section is needed to produce the large numbers of positrons observed in the galactic center, necessitating a boson

with mass of the order of the momentum transfer, i.e., mφ
<∼Mχv ∼ GeV, precisely the same scale as we require for

the Sommerfeld enhancement. But where does the scale δ ∼ MeV come from? Remarkably, it arises radiatively at

precisely the appropriate scale[67].

We need the dark matter to have an excited state, and we will further assume the dark matter transforms under

a non-Abelian gauge symmetry. Although an excited state can be present with simply a U(1), this only mediates

the process χχ → χ∗χ∗. If this requires energy greater than 4me it is very hard to generate enough positrons to

explain the INTEGRAL signal. If we assume the dark matter is a Majorana fermion, then it must transform as a

real representation of the gauge symmetry. For a non-Abelian symmetry, the smallest such representation will be

three-dimensional [such as a triplet of SU(2)]. This will allow a scattering χ1χ1 → χ2χ3. If m3 is split from m2 ∼ m1

by an amount δ ∼ MeV, we have arrived at the setup for the XDM explanation of the INTEGRAL signal.

Because the gauge symmetry is Higgsed, we should expect a splitting between different states in the dark matter

multiplet. This could arise already at tree-level, if the dark matter has direct couplings to the Higgs fields breaking

the gauge symmetry; these could naturally be as large as the dark gauge breaking scale ∼ GeV itself, which would

be highly undesirable, since we need these splittings to be not much larger than the DM kinetic energies in order to
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get a Sommerfeld enhancement to begin with. However, such direct couplings to the Higgs could be absent or very

small (indeed most of the Yukawa couplings in the standard model are very small). We will assume that such a direct

coupling is absent or negligible. The gauge breaking in the gauge boson masses then leads, at one loop, to splittings

between different dark matter states, analogous to the familiar splitting between charged and neutral components of

a Higgsino or Dirac neutrino. These splittings arise from infrared effects, and so are completely calculable, with sizes

generically O(αmZ) in the standard model or O(αmφ) ∼ MeV in the case at hand. Thus we find that the MeV

splittings needed for XDM arise automatically once the mass scale of the φ has been set to O(GeV ).

We would like χ2 and χ1 to stay similar in mass, which can occur if the breaking pattern approximately preserves

a custodial symmetry. However, if they are too degenerate, we are forced to take ǫ < 10−5 in order to escape direct-

detection constraints. On the other hand, we do not want too large of a splitting between χ2 and χ1, as this would

suppress the rate of positron production for INTEGRAL. Thus, we are compelled to consider δ21 ∼ 100 − 200 keV,

which puts us precisely in the range relevant for the inelastic dark matter explanation of DAMA. (See Fig. 4.)

All of these issues require detailed model-building, which we defer to future work; however, existence proofs are

easy to construct. The Lagrangian is of the form

L = LSM + LDark + Lmix. (12)

As a familiar example, imagine that GDark = SU(2)×U(1), with gauge bosons wµI and bµ which we collectively refer

to as aµi, and the dark matter multiplet χ transforming as a triplet under SU(2) and neutral under the U(1); it could

be either a scalar or fermion. We also assume that some set of Higgses completely break the symmetry. Working in

unitary gauge, the tree-level dark sector Lagrangian is

LDark = LGauge Kin. +
1

2
m2
ija

µ
i aµj + · · · (13)

where the m2
ij makes all the dark spin-1 fields massive, and · · · refers to other fields such as the physical Higgses

that could be present. At one loop, this broken gauge symmetry will induce splittings between the 3 real DM states

all of O(αDarkmDark) as just discussed above. The leading interaction between the two sectors is via kinetic mixing

between the new U(1) and the photon (which is inherited from such a mixing with hypercharge):

Lmix =
1

2
ǫbµνF

µν (14)

We put an ǫ in front of this coupling because it is natural for this coupling to be small; it can be induced at one loop by

integrating out some heavy states (of any mass between the GeV and Planck scales) charged under both this new U(1)

and hypercharge. This can easily make ǫ ∼ 10−4 − 10−3. Even without a U(1), a similar mixing could be achieved

with an “S-parameter” type operator Tr[(Φ/M)pGµν ]Fµν , where Φ is a dark Higgs field with quantum numbers such

that (Φ/M)p transforms as an adjoint under GDark; it is reasonable to imagine that the scale M suppressing this

operator is near the weak scale.

Going back to PAMELA/ATIC, the non-Abelian self-couplings of the vector bosons can have an interesting effect

on the annihilation process. For large enough αDark, the gauge bosons radiate other soft and collinear gauge bosons

leading to a “shower”; this can happen when αDark log2(Mχ/mφ)
>∼ 1. While for quite perturbative values of αDark

this is not an important effect, it could be interesting for larger values, and would lead to a greater multiplicity of

softer e+e− pairs in the final state.

Before closing this section, it is important to point out that it is not merely a numerical accident that the excited

states relevant for INTEGRAL and DAMA can actually be excited in the DM-DM collisions and DM collisions

with direct-detection nuclei, but is rather a parametric consequence of maximizing the Sommerfeld enhancement for

the annihilation cross section needed to explain ATIC/PAMELA. As we already emphasized in our discussion of

Sommerfeld enhancement with vector states, vector boson couplings necessarily connect different dark matter mass

eigenstates, and therefore there is no enhancement for the annihilation cross section needed to explain ATIC/PAMELA

if the mass splittings are much larger than the kinetic energy available in the collision. But this parametrically implies

that dark matter collisions should also have the kinetic energy needed to create the excited states, as necessary for

the INTEGRAL signal. It is also interesting to note that the condition needed for the large geometric capture cross
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FIG. 4: Spectrum of exciting dark matter.

section, mφ
<∼Mv, also tells us that the Sommerfeld enhancement is as large as can be at these velocities, and has not

yet been saturated by the finite range of the force carrier. Furthermore, since the mass of the heavy nuclei in direct

detection experiments is comparable to the dark matter masses, the WIMP-nucleus kinetic energy is also naturally

comparable to the excited state splittings. In this sense, even absent the direct experimental hints, signals like those

of INTEGRAL and inelastic scattering for direct detection of dark matter are parametric predictions of our picture.

V. SUBSTRUCTURE AND THE SOMMERFELD ENHANCEMENT

As we have seen, the Sommerfeld enhancement leads to a cross section that scales at low energies as σv ∼ 1/v.

This results in a relatively higher contribution to the dark matter annihilation from low velocity particles. While

the largest part of our halo is composed of dark matter particles with an approximately thermal distribution, there

are subhalos with comparable or higher densities. Because these structures generally have lower velocity dispersions

than the approximately thermal bulk of the halo, the Sommerfeld-enhanced cross sections can make these components

especially important.

Subhalos of the Milky Way halo are of particular interest, and N-body simulations predict that many should be

present. There is still some debate as to what effect substructures can have on indirect detection prospects. However,

some of these subhalos will have velocity dispersions of order 10 km/s [52], and a simple examination of Fig. 5 shows

that dramatic increases of up to two orders of magnitude in the Sommerfeld enhancement can occur for these lower

velocities!

Although in our model there are no direct π0 gammas, there are still significant hopes for detection of dwarf galaxies

through dark matter annihilation. If the DM is also charged under SU(2) × U(1) there may be a subdominant

component of annihilations into W+W− for instance, much larger than the s-wave limited thermal cross section,

which could yield significant photon signals from the hadronic shower[68] . The copious high energy positrons and

electrons, produced even more abundantly than expected for a nonthermal WIMP generating the ATIC or PAMELA

signal, can produce inverse Compton scattering signals off of the CMB. Even a loop suppressed annihilation into γγ

may be detectable with this enhancement.

This presumes that the local annihilation does not have significant enhancement from a low-velocity component,

however. If the local annihilation rate is also enhanced by substructure, then our expectations of the enhancement

for dwarf galaxies would not be as large. As a concrete example, we can consider the possibility of a “dark disk.”

Recently, it has been argued that the old stars in the thick Milky Way disk should have an associated dark matter

component, with dynamics which mirror those stars, and a density comparable to the local density [53]. Because of

the low velocity dispersion (of order 10 km/s), our estimates of what is a reasonable Sommerfeld boost may be off by

an order of magnitude.

As a consequence of this and other substructure, the Sommerfeld boost of Fig. 1 should be taken as a lower bound,

with contributions from substructure likely increasing the cross section significantly further. We will not attempt to

quantify these effects here beyond noting the possible increases of an order of magnitude or more suggested by Fig.
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FIG. 5: Contours for the Sommerfeld enhancement factor S as a function of the mass ratio mφ/mχ and the coupling constant

λ, σ = 10 km/s.

5. However, understanding them may be essential for understanding the size and spectrum if this enhancement of the

cross section is responsible for the signals we observe.

VI. OUTLOOK: IMPLICATIONS FOR PAMELA, PLANCK, FERMI/GLAST, AND THE LHC

If the excesses in positrons and electrons seen by PAMELA and ATIC are arising from dark matter, there are

important implications for a wide variety of experiments. It appears at this point that a simple modification of a

standard candidate such as a neutralino in the minimal supersymmetric standard model (MSSM) is insufficient. The

need for dominantly leptonic annihilation modes with large cross sections significantly changes our intuition for what

we might see, where, and at what level. There are a few clear consequences looking forward.

• The positron fraction seen by PAMELA should continue to rise up to the highest energies available to them

(∼ 270 GeV), and the electron + positron signal should deviate from a simple power law, as seen by ATIC.

• If the PAMELA/ATIC signal came from a local source, we would not expect additional anomalous electronic

activity elsewhere in the galaxy. Dark matter, on the other hand, should produce a significant signal in the

center of the galaxy as well, yielding significant signals in the microwave range through synchrotron radiation

and in gamma rays through inverse-Compton scattering. The former may already have been seen at WMAP

[10, 12] and the latter at EGRET [13, 14]. Additional data from Planck and Fermi/GLAST will make these

signals robust [54].

• We have argued that the most natural way to generate such a large signal is through the presence of a new, light

state, which decays dominantly to leptons. It is likely these states could naturally be produced at the LHC in

some cascade, leading to highly boosted pairs of leptons as a generic signature of this scenario [30].

• Although the cross section is not Sommerfeld enhanced during freeze-out, it can keep pace with the expansion

rate over large periods of the cosmic history, between kinetic decoupling and matter-radiation equality. This
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can have significant implications for a variety of early-universe phenomena as well as the cosmic gamma-ray

background [54].

• The Sommerfeld enhancement is increasingly important at low velocity. Because substructure in the halo

typically has velocity dispersions an order of magnitude smaller than the bulk of the halo, annihilations can be

an order of magnitude higher, or more. With the already high local cross sections, this makes the prospects

for detecting substructure even higher. With the mass range in question, continuum photons would be possibly

visible at GLAST, while monochromatic photons [which could be generated in some models [30] would be

accessible to air Cerenkov telescopes, such as HESS (see [55] for a discussion, and [56] for HESS limits on DM

annihilation in the Canis Major overdensity)].

We have argued that dark matter physics is far richer than usually thought, involving a multiplet of states and a

new sector of dark forces. We have been led to propose this picture not by a flight of fancy but rather directly from

experimental data. Even so, one can justifiably ask whether such extravagances are warranted. After all, experimental

anomalies come and go, and it is entirely possible that the suite of hints that motivate our proposal are incorrect, or

that they have more conventional explanations. However, we are very encouraged by the fact that the theory we have

presented fits into a very reasonable picture of particle physics, is supported by overlapping pieces of experimental

evidence, and that features of the theory motivated by one set of experimental anomalies automatically provide the

ingredients to explain the others. Our focus in this paper has been on outlining this unified picture for dark matter;

new experimental results coming soon should be able to tell us whether these ideas are even qualitatively on the right

track. Needless to say it will then be important to find a specific and simple version of this theory, with a small

number of parameters, to more quantitatively confront future data.
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APPENDIX A: A QUICK REVIEW OF SOMMERFELD ENHANCEMENT

The Sommerfeld enhancement is an elementary effect in nonrelativistic quantum mechanics; in this appendix we

will review it in a simple way and discuss some of the parametrics for how the enhancement works for various kinds

of interactions.

Consider a nonrelativistic particle moving around some origin. There is an interaction Hamiltonian Hann =

Uannδ
3(~r) localized to the origin, which e.g. annihilates our particle or converts to another state in some way.

Imagine that the particle is moving in the z direction so that its wavefunction is

ψ
(0)
k (~x) = eikz (A1)

then the rate for this process is proportional to |ψ(0)(0)|2. But now suppose we also have a central potential V (r)

attracting or repelling the particle to the origin. We could of course treat V perturbatively, but again at small

velocities the potential may not be a small perturbation and can significantly distort the wave-function, which can be

determined by solving the Schrödinger equation

− 1

2M
∇2ψk + V (r)ψk =

k2

2M
ψk (A2)
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with the boundary condition enforcing that the perturbation can only produce outgoing spherical waves as r → ∞:

ψ → eikz + f(θ)
eikr

r
as r → ∞ (A3)

Now, since the annihilation is taking place locally near r = 0, the only effect of the perturbation V is to change the

value of the modulus of the wave-function at the origin relative to its unperturbed value. Then, we can write

σ = σ0Sk (A4)

where the Sommerfeld enhancement factor S is simply

Sk =
|ψk(0)|2

|ψ(0)
k (0)|2

= |ψk(0)|2 (A5)

where we are using the normalization of the wavefunction ψk as given by the asymptotic form of Eq. A3.

Finding a solution of the Schrödinger equation with these asymptotics is a completely elementary and standard

part of scattering theory in nonrelativistic QM, which we quickly review for the sake of completeness. Any solution

of the Schrödinger equation with rotational invariance around the z axis can be expanded as

ψk =
∑

l

AlPl(cos θ)Rkl(r) (A6)

where Rkl(r) are the continuum radial functions associated with angular momentum l satisfying

− 1

2M

1

r2
d

dr

(

r2
d

dr
Rkl

)

+

(

l(l + 1)

r2
+ V (r)

)

Rkl =
k2

2M
Rkl (A7)

The Rkl(r) are real, and at infinity look like a spherical plane wave which we can choose to normalize as

Rkl(r) →
1

r
sin(kr − 1

2
lπ + δl(r)) (A8)

where δl(r) ≪ kr as r → ∞. The phase shift δl(r) is determined by the requirement that Rkl(r) is regular as r → 0.

Indeed, if the potential V (r) does not blow up faster than 1/r near r → 0, then we can ignore it relative to the kinetic

terms, and we have that Rkl(r) ∼ rl as r → 0; all but the l = 0 terms vanish at the origin. We now have to choose

the coefficients Al in order to ensure that the asymptotics of Eq. A3 are satisfied. Using the asymptotic expansion of

eikz

eikz → 1

2ikr

∑

l

(2l + 1)Pl(cos θ)
[

eikr − (−1)le−ikr
]

(A9)

determines the expansion to be

ψk =
1

k

∑

l

il(2l + 1)eiδlPl(cos θ)Rkl(r) (A10)

It is now very simple to determine ψk(0), since as we just commented, Rkl(r = 0) vanishes for every term other than

l = 0. Thus, we have

Sk =

∣

∣

∣

∣

Rk,l=0(0)

k

∣

∣

∣

∣

2

(A11)

We can furthermore make the standard substitution Rk,l=0 = χk/r, then the Schrödinger equation for χ turns into a

one-dimensional problem

− 1

2M

d2

dr2
χk + V (r)χk =

k2

2M
χk (A12)
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which we normalize at infinity with the condition

χk(r) → sin(kr + δ) (A13)

and since Rk,l=0 goes to a constant as r → 0, we have to have that χ→ 0 as r → 0, or

χk(r) → r
dχk
dr

(0) as r → 0 (A14)

Effectively, we can imagine launching χ from χ = 0 at r = 0 with different velocities dχk

dr (0), and these will evolve to

some waveform as r → ∞, but the correct χ′(0) is determined by the requirement that the waveform at infinity have

unit amplitude.

Summarizing, then, the Sommerfeld enhancement is

Sk =

∣

∣

∣

∣

∣

dχk

dr (0)

k

∣

∣

∣

∣

∣

2

(A15)

where χk satisfies the 1D Schrödinger equation A12 with boundary conditions Eqs.A13, A14. As a sanity check, let us

see how this works with vanishing potential. The solution that vanishes as r → 0 is χk(r) = A sin(kr), and matching

the asymptotics forces A = 1. Then χ′
k(0) = k and Sk = 1.

In the recent literature on the subject, a different expression for the Sommerfeld enhancement is used, arising from

the use of the optical theorem. We are instructed to solve the same 1D Schrödinger equation (Eq. A12), this time

with no special boundary conditions at χ = 0, but with boundary conditions so that χ ∝ e+ikr as r → ∞. Then, the

Sommerfeld enhancement is said to be

Sk =
|χk(∞)|2
|χk(0)|2 (A16)

It is very easy to show that that these two forms for Sk agree exactly. To see this, let us begin by denoting χ1(r) to

be the solution to the Schrödinger equation (Eq. A12) with the boundary condition χ1(r) → sin(kr + δ) as r → ∞
(Eq. A13). As shown above, χ1(0) = 0. Let χ2(r) be the linearly independent solution with the boundary condition

χ2(r) → cos(kr + δ) as r → ∞, and define A ≡ χ2(0). Now Eq. A12 has a conserved Wronskian

W = χ1(r)χ
′
2(r) − χ2(r)χ

′
1(r). (A17)

It is easy to verify directly from the differential equation that W ′(r) = 0; this is true (Abel’s theorem) because there

are no χ′ terms in the differential equation. But comparing the values of the conserved Wronskian at zero and ∞,

W (∞) = −k(sin2(kr + δ) + cos2(kr + δ)) = −k = W (0) = −Aχ′
1(0). (A18)

So then |χ′
1(0)| = k/|A|, and our new expression for the Sommerfeld enhancement, Eq. A15, is just Sk = 1/|A|2. Now,

our second form Sk = |χ(∞)|2, where χ(r) satisfies the boundary conditions χ′(r) → ikχ(r) as r → ∞, and χ(0) = 1.

By the asymptotic behavior at large r, we can identify χ(r) as the linear combination χ(r) = C(χ2(r)+ iχ1(r)), where

C is some complex constant. But then χ(0) = CA = 1, and Sk = |C|2, so as previously we obtain Sk = 1/|A|2. Thus

the two formulae for the Sommerfeld enhancement are equivalent.

1. Attractive Coulomb Potential

Let us see how this works in some simple examples. We are solving the Schrödinger equation for a particle of mass

M and asymptotic velocity v, with potential

V (r) = − α

2r
(A19)

which we solve with the boundary conditions of Eqs. A13,A14.
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We simplify the analysis by working with the natural dimensionless variables, with the unit of length normalized

to the Bohr radius, i.e. we take

r = α−1M−1x (A20)

Then the Schrödinger equation becomes

− χ′′ − 1

x
χ = ǫ2χ (A21)

where we have defined the parameter

ǫv ≡ v

α
(A22)

Of course we can solve this exactly in terms of hypergeometric functions to find the result obtained by Sommerfeld

Sk =

∣

∣

∣

∣

π
ǫv

1 − e−
π
ǫv

∣

∣

∣

∣

(A23)

Note that as ǫv → ∞, Sk → 1 as expected; there is no enhancement at large velocity. For the attractive Yukawa at

small velocities we have the enhancement

Sk → πα

v
(A24)

while for the repulsive case, there is instead the expected exponential suppression from the need to tunnel through

the Coulomb barrier

Sk ∼ e−
π|α|

v (A25)

To get some simple insight into what is going on, let us re-derive these results approximately. For x much smaller

than 1/ǫ2v, we can ignore the kinetic term. In the WKB approximation, the waves are of the form x1/4ei
√
x, so the

amplitudes grow like x1/4. In order to match to a unit norm wave near x ∼ 1/ǫ2v, we have to scale the wavefunction

at small x by a factor ∼ ǫ
1/2
v , so that near the origin

χ ∼ xǫ1/2v ∼ αMrǫ1/2v (A26)

from which we can read off the derivative at the origin dχ
dr (0) = ǫ

1/2
v αM , and with k = Mv we can determine

Sk ∼ |ǫ
1/2
v αM

Mv
|2 =

α

v
(A27)

which is correct parametrically. We can also arrive at this result from the second form for Sk. The computation is

even more direct here. We have waveforms growing as x1/4 towards x ∼ 1
ǫ2v

. In the region near x ∼ 1/ǫv, we must

transition to a purely outgoing wave. This is a transmission/reflection problem, and ingoing and outgoing waves from

the left will have comparable amplitude. When we continue these back to the origin, we will then have an amplitude

reduced by a factor ∼ ǫ
1/2
v . Then,

Sk ∼
(

1

ǫ
1/2
v

)2

∼ α

v
(A28)

2. Attractive Well and Resonance Scattering

Let us do another example, where

V = −V0θ(L − r), V0 ≡ κ2

2M
(A29)
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The solution inside is χ(r) = A sin kinr, where k2
in = κ2 + k2, while outside we write it as sin(k(r − L) + δ. Then,

matching across the boundary at r = L gives

A sin kinL = sin δ, kinA cos kinL = k cos δ (A30)

Squaring these equations and adding them we can determine

A2 =
1

sin2 kinL+
k2

in

k2 cos2 kinL
(A31)

and so

Sk =
A2k2

in

k2
=

1
k2

k2

in

sin2 kinL+ cos2 kinL
(A32)

Now for k2/2M ≪ V0, we have kin = κ+k2/(2κ)+ · · · . Clearly, if cosκL is not close to zero, there is no enhancement.

However, if cosκL = 0, then we have a large enhancement

Sk → κ2

k2
(A33)

This has a very simple physical interpretation in terms of resonance with a zero-energy bound state. Our well has a

number of bound states, and typically the binding energies are of order V0. We see that if cosκL is not close to zero,

we have to have A ∼ k/kin be small. However, if accidentally cosκL = 0, then there is a zero-energy bound state:

the wavefunction can match on to ψ = 1 for r > L smoothly, giving a zero-energy bound state. The enhancement is

of the form

S ∼ V0

E − Ebound
∼ κ2

k2
(A34)

Note this formally diverges as v → 0, but is actually cut off by the finite width of the state as familiar from Breit-

Wigner.

3. Attractive Yukawa Potential

Now let us examine

V (r) = − α

2r
e−mφr. (A35)

Working again in Bohr units, we have

V (x) = − 1

x
e−ǫφx (A36)

where

ǫφ ≡ mφ

αM
. (A37)

Now, if ǫφ ≪ ǫ2v, the Yukawa term is always irrelevant and we revert to our previous Coulomb analysis.

However, if ǫφ ≫ ǫ2v, our analysis changes; we will use the second expression for the Sommerfeld enhancement for

simplicity. The potential turns off exponentially around x ∼ 1/ǫφ. Now, the effective momentum is

k2
eff =

1

x
e−ǫφx + ǫ2v (A38)

and the quantity
∣

∣

∣

∣

k′eff
k2
eff

∣

∣

∣

∣

(A39)
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determines the length scale the potential is varying over relative to the wavelength; so long as it is small, the WKB

approximation is good, and we have a waveform growing as k
−1/2
eff ei

R

x dx′keff(x
′). Note that for 1 ≪ x ≪ 1/ǫφ, the

WKB approximation is manifestly good. Let us now take the arbitrarily low velocity limit, where ǫv → 0. Then in

the neighborhood of x ∼ 1/ǫφ we have k2
eff ∼ ǫφe

−ǫφx, and
∣

∣

∣

∣

k′eff
k2
eff

∣

∣

∣

∣

∼ √
ǫφe

1

2
ǫφx ∼ ǫφ

keff
(A40)

so the WKB approximation breaks down when keff ∼ ǫφ, where the WKB amplitude is ∼ ǫ
−1/2
φ . The potential then

varies more sharply than the wavelength, and we have a reflection/transmission problem, with an O(1) fraction of the

amplitude escaping to infinity. The enhancement is then

S ∼ 1

ǫφ
∼ αM

mφ
(A41)

We did this analysis for ǫv → 0, but clearly it will hold for larger ǫv, till ǫv ∼ ǫφ, at which point it matches smoothly

to the 1
ǫv

enhancement we get for the Coulomb problem. The crossover with ǫv ∼ ǫφ is equivalent to Mv ∼ mφ, when

the deBroglie wavelength of the particle is comparable to the range of the interaction. This is intuitive–as the particle

velocity drops and the deBroglie wavelength becomes larger than the range of the attractive force, the enhancement

saturates. Of course if ǫφ is close to the values that make the Yukawa potential have zero-energy bound states, then

the enhancement is much larger; we can get an additional enhancement ∼ ǫφ/ǫ
2
v up to the point where it gets cut off

by finite width effects.

In this simple theory it is of course also straightforward to solve for the Sommerfeld enhancement numerically. We

show the enhancement as a function of ǫφ and ǫv in Figs. 6 and 7.
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FIG. 6: Contour plot of S as a function of ǫφ and ǫv. The lower right triangle corresponds to the zero-mass limit, whereas the

upper left triangle is the resonance region.

4. Two-particle annihilation

Let us finally consider our real case of interest, involving two-particle annihilation. To keep things simple, let us

imagine that the two particles are not identical, for instance they could be Majorana fermions with opposite spins; we
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FIG. 7: As in Fig. 6, showing the resonance region in more detail.

can restrict to this case because none of the interactions we consider depend on spin, and the annihilation channels

we imagine can all proceed from this spin configuration. Let us imagine that there are a number of states χA of

(nearly) equal mass, with the label A running from A = 1, · · · , N . The two-particle Hilbert space is labeled by

states |~x,A; ~y,B〉 and a general wavefunction is 〈ψ|~x,A; ~y,B〉 ≡ ψAB(~x, ~y). There is some short-range annihilation

Hamiltonian Uδ3(~x1 − ~x2) into decay products |final〉; where U is an operator

〈final|U |AB〉 ≡Mann
AB (A42)

Now, suppose there is also a long-range interaction between the two particles with a potential. The general Schrödinger

equation is of the form

− 1

2M

(

∇2
x + ∇2

y

)

ψAB(x, y) + VABCD(x− y)ψCD(x, y) = EψAB(x, y) (A43)

As usual we factor out the center-of-mass motion by writing ψAB(~x, ~y) = ei
~P ·(~x+~y)φAB(~x− ~y), and we have

− 1

M
∇2
rφAB(~r) + VABCD(~r)φCD(~r) = ECMφAB(~r) (A44)

where ECM is the energy in the center-of-mass frame.

We have an initial state with some definite A∗, B∗, and we take as an unperturbed solution

φ(A∗B∗)(0)AB = δA∗

A δB
∗

B eikz (A45)

The annihilation cross section without the interaction V is proportional to

σ(0)
ann ∝ |Mann

A∗B∗ |2 (A46)

However with the new interaction, the annihilation cross section is

σann ∝ |φ(A∗B∗)
CD (0)MCD|2 (A47)
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So we can write

σann = σ(0)
ann × SA

∗B∗

k (A48)

where

SA
∗B∗

k =
|φA∗B∗

CD (0)Mann
CD |2

|φA∗B∗

CD (∞)Mann
CD |2 (A49)

Just as above, in reducing the problem to an S-wave computation, we can replace φA
∗B∗

CD (0) with (χ′(r = 0))A
∗B∗

CD in

the obvious way.

Of course one contribution to VABCD comes from the small mass splittings between the states. If we write the

(almost equal) common mass term for the DM states as (M + ∆MA)χAχA, the ∆M ’s show up in the potential as

V splitABCD = (∆MA + ∆MB)δACδBD (A50)

For the Sommerfeld enhancement, we also need some long-range attractive interaction. As we have discussed, vectors

are possibly the most promising candidate. The leading coupling to spin-1 particles aµi is

gχ̄Aσ̄
µχBT

i
ABaiµ (A51)

and ignoring the mass of the gauge boson this gives us a 1/r contribution to the effective potential

V gaugeABCD(~r) = −α1

r
T iACT

i
BD (A52)

while taking the vector masses into account gives both Yukawa exponential factors and a more complicated tensor

structure. In total,

VABCD = V splitABCD + V gaugeABCD (A53)

Now, it is obvious that in our basis, the T iAB should be antisymmetric

T iAB = −T iBA (A54)

since the gauge symmetry must be a subgroup of the SO(N) global symmetry preserved by the large common mass

term MχAχA, and the SO(N) generators are antisymmetric. Thus, the coupling to vectors in this basis is necessarily

off-diagonal. Let us look at a simple example, where N = 2 and we have a single Abelian gauge field. The φAB span a

4-dimensional Hilbert space, with |11〉, |12〉, |21〉, |22〉 as a basis. Since the gauge boson exchange necessarily changes

1 ↔ 2, VABCD is block diagonal, operating in two separate Hilbert spaces, spanned by (|11〉, |22〉) and (|12〉, |21〉).
Since we are ultimately interested in scattering with 11 initial states, let us look at the first one, where we have

V =

(

2∆M −α
r

−α
r 0

)

, in the basis |11〉 =

(

0

1

)

, |22〉 =

(

1

0

)

. (A55)

Clearly, if ∆M is enormous, we will not have any interesting Sommerfeld enhancement in (11) scattering, since in this

case there is no long-range interaction between 11 at all, so let us assume that ∆M is smaller than the kinetic energy

of the collision. Now it is clear that as r → ∞, the mass splitting dominates the potential, and obviously particle 1 is

the lightest state. However, at smaller distances, the gauge exchange term dominates. This is not diagonal in the same

basis, and has “attractive” and “repulsive” eigenstates with energies ±α/r. Note that the asymptotic |11〉 state is an

equal linear combination of the attractive and repulsive channels. While the repulsive channels suffer a Sommerfeld

suppression, the attractive channel is Sommerfeld enhanced. Note that as long as ∆M is parametrically smaller than

the kinetic energy, its only role in this discussion was to split the two asymptotic states, and therefore determine what

the natural initial states are. Note also that if ∆M is large but not infinite, the mixing with 2 generates an attractive

potential between 11 of the form Veff (r) = −α2/(∆Mr). It would be interesting to understand these limits of the

multistate Sommerfeld effect in parametric detail; we defer this to future work.



21

It is very easy to see that our conclusion about the presence of a Sommerfeld effect is general for any gauge

interaction. We think of V gauge(AB)(CD) as a matrix in the Hilbert space spanned by (AB). Note that since the T i

are antisymmetric, they are also traceless, and as a consequence, the matrix V gauge(AB)(CD) is also traceless and so has

both positive and negative eigenvalues, reflecting the obvious fact that gauge exchange gives us both attractive and

repulsive potentials. Let us go to a basis in (AB) space where V gauge is diagonal, and denote eigenvectors with negative

(attractive) eigenvalues as fattractiveAB and repulsive ones as f repulsiveAB . We can think of the initial wavefunction in AB

space δA
∗B∗

AB as a state in (AB) space and expand it in terms of these eigenvectors as

δ
(A∗B∗)
AB = CA

∗B∗

att fattractiveAB + CA
∗B∗

rep f repulsiveAB (A56)

we can determine the coefficients by dotting left-hand side and right-hand side into the eigenvectors, so that

δ
(A∗B∗)
AB = fattractiveA∗B∗ fattractiveAB + f repulsiveA∗B∗ f repulsiveAB (A57)

Then, since the repulsive components are exponentially suppressed at the origin while the attractive components are

enhanced, we get a Sommerfeld enhancement as long as fA∗B∗ 6= 0. In particular, for scattering the same species, this

is true so long as fA∗A∗ 6= 0. Said more colloquially, these Majorana states are linear combinations of “positive” and

“negative” charged states; so long as they have any component which would mutually attract, there is a Sommerfeld

enhancement from that component alone.
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