/ \ ’1_.»’ , - -
/ * » f o
. rﬂ/’ — -
/ S ; - A" -
/ 2 "/" - -~
Fs : 1 e =
’, o ! i T = -
& ""‘ } - o e
/ xﬁ“” » § a— "
¥ = ,4-"”’ 'ﬂ." o-./
/ - & \ s e -
\ - ~ — - ;
f s I - .
o~ - / gl ..-4""‘"“
- ' G -
- R .-""Hf’“"
e ! SR e
e a2 . r/ﬁl:\‘\_ - -
. — ; . 3 e
i N‘ - ../T X R - >
' A _ - W Pl K>
*_.v-"&”-’- 1 2 - =i :
- = -
S e 8 : ! -
- 4
et — fﬁ#

Searching for Dark Photons
at TRIUMF o™

& the DarkLight collaboration

Leveraging Canadian facilities to advance fundamental science
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TRIUMEF Is located on the traditional, ancestral, and
unceded territory of the x*maBk“ayam (Musqueam
people, who for millennia have passed on their
culture, history, and traditions from one generation
to the next on its site.
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I’'m going to use DarkLight, a small experiment at TRIUMF, as

the basis for a range of topics:
What is the experiment and why are we doing it” @

Specific technology choices for our experiment \
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What's TRIUMF and why are we doing the experiment here” (IV

Considerations of detector technology for subatomic
experiments more broadly

How TRIUMEF fits into detector development

Let’s discuss!
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Dark photon?

Dark matter

- New particle particles
Not dark matter itself

—1aS MasSS

Known particles of the - Couples to SM and x
Standard Model (SM)
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What'’s the “other particle”?”

High energy, high A" mass: High interaction rate:
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# of occurrences

Resonance” searches

e+

M* = (P,- + P,.)*

For any given event, no way
to tell if we made y or A

But with enough data,
statistics can show
something interesting!

Mass (et, e)
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Abbreviated “LINAC"

Electron gun
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The e-linac as an experiment site

E-linac designed to produce a Electrons arrive in bunches only
100 kW e- beam 1.5 ns apart
.- .- .- - -
+ Enough power to run a N S S
restaurant!

At 10 kW, each bunch contains
We’ll operate at 10 kW > 2 million electrons

— Challenge 1: backgrounds.
Additional activity in detectors
will come from extra e-
interacting in target

Modest energy g
Accelerated
e- energy Is
30 (50) MeV

— Challenge 2: radiation.
Scattered e- and radiated
photons can damage sensors
and electronics

Only e, vy, n
are relevant

10
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What are the resulting experiment requirements?

Track resolution

Accurate momentum means
good mass resolution = high
sensitivity to signals

Data rate handling

Must be able to identity
Interesting tracks in data: keep
rate of background hits low

Experiment has to be small
to fit in available space

Timing resolution

Detectors determining read-out
must have ot < 500 ps to tell
bunches apart

Use radiation-hard detectors or
shield them very well

Small collaboration with
limited funds!

11
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Triggers: plastic
scintillators and SiPMs
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Fast trigger detector
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Two hits on each side
define a track, with x

coordinate proportional
Trigger sends read-out to momentum

signal to GEMs o \(r
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Particle passing througm :

GEMSs generates hit in )
each layer .

Magnetic spectrometer Target
selects interesting
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Irgger hardware Split plane up into eight slices

3 mm fast plastic scintillator

Higher momentum
) read out via 6 SIPMs,

summed on read out board

Timing resolution ~ 300 ps

— Comparison point:
1.5 ns bunch spacing

“Central” momentum

Recharging time ~ 50 ns

— Comparison point:
~ 1 ys average time
between hits

Lower momentum

DU U L

15
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Read out signal is time
over threshold only: no
signal shape

4x each of these units
per spectrometer arm

e

\ |

Plastic scintillator
+ light guides

Entire detector system will sit
Inside shielding box to protect
SiPMs from radiation .

Fans and compressed
air to keep SiPMs cool
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Trigger data acquisition

TDCs and coincidence trigger logic
being implemented on single
Cyclone V FPGA

Time In each potential scintillator pair
iIndividually lbased on difference in track
path lengths

Trigger signal sent when hits observed in
each arm compatible with same bunch
Crossing

!
'!
i
:
i
a
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Technology choice for DarkLight:
Gas Electron Multipliers (GEMS)
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Charged particle
tracking detectors

Technology choice for DarkLight:

Gas Electron Multipliers (GEMS)

DarkLight uses two triple-
GEMs per spectrometer arm

Why GEMs?

Good spatial resolution:
o0~0.1 mm on hit locations
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Charged particle
tracking detectors

Technology choice for DarkLight:

Gas Electron Multipliers (GEMS)

DarkLight uses two triple-
GEMs per spectrometer arm

Why GEMs?

Good spatial resolution:
o0~0.1 mm on hit locations

Can sustain high hit rates
Low material density

Affordable/available
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GEM support and DAQ

APV + gas, HY,
frontend L\
chip
GEM
Strips Multi-purpose  VME

digitiser controller

GEMSs radiation tolerant, but
electronics are sensitive

House power supplies and VME
crate in shielded hut in e-linac hall
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Projected sensitivity

107°

(g, — 2)-preferred

10~ Limited reach

30 MeV ARIEL e-linac with \ | near anomalies

different target boson
masses (13 vs 17 MeV)

S \hdlis

Primary benefit of experiment at 30
MeV is understanding detector and
environment, plus auxiliary studies
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Projected sensitivity

107°

Better reach into
uncovered parameter
space with an increase (g, — 2)-preferred
IN beam energy

Collaboration is pursuing funding for an
upgrade path to ~50 MeV

10~ 7
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Ongoing work: energy upgrade

—— Beam pipe for recirculation 100 Quadrupole magnets
@ Septum magnet 0 0 Dipole magnets
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—— Beam pipe for recirculation 100 Quadrupole magnets
@ Septum magnet 0 0 Dipole magnets
) Point of beam re-routing back DarkLight experiment

iINnto accelerating cryomodule location
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Work in progress!! 3
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< TRIUMF

TRIUMF is:
A national laboratory

Owned and operated by 21 Canadian member universities

Part of an international network of lalbbs and partner institutions

Directly

contributing
hardware to
projects at
Snolab, CERN,
KEK, Gran
Sasso, ...
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< TRIUMF

Accelerator physics = Nuclear physics
Physical sciences Particle physics
Life sciences — [ heoretical physics

\- Science technology
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TRIUMF accelerator complex

30/50 MeV linear electron accelerator

Il é

Cyclotron vault — elevation 253
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TRIUMF makes impacts through a
“focus project” strategy
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Particle physics at TRIUME

TRIUMF makes impacts through a
“focus project” strategy

Critical mass, meaningful
leadership, and investment

from start to finish:

Detector design/construction,
operation, data analysis

Current focus projects: ATLAS,
T2K/Hyper-K, ALPHA(-9),

TUCAN, SuperCDMS

Future-looking: DarkLight,

N

-X0O, PIONEER, HAICU

88085505992,
\\ \\‘j sS22
L o5
PIONEER
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The Science Technology department

| . Dat
Physics Detectors Electronics
technology acquisition

Simulation, Analog and digital
conceptual design, electronics, board
detector R&D design, etc

Firmware, software,
ongoing experiment
support

Building detectors!
Testing, construction,
& implementation

SciTech delivers systems from idea to finished product

26
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So what else could improve the experiment?

INn a context like this conference, we can ask
fun hypotheticals:

What instrumentation changes would improve our

performance, while working within our constraints?

Greater SIPM radiation hardness

Shorter integration time, faster
read-out for GEMs

... Additional tracking layers,
maylbe”

27
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Answers can look very different for others ...

What’s important to DarkLight boils down to:
good timing resolution, affordable, robust

Other experiments can have very
different priorities

Dark matter direct detection: extremely low noise
& low radioactivity

Precision particle physics experiments: excellent energy resolution

Developments should look in all directions

28
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Keeping up with detector developments
needs both academic R&D and

Power consumption is increasing
environmental and logistical concern

High granularity and fine timing increase
readout channel numbers and required
precision

Planning process highlighted personnel &gk
training, , common S
design tools as key to future success '

TRIUMF & similar institutions provide
training in addition to service
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*N31-04, N31-05,
N11-022, NO/-01,
NO1-045
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Wide range of projects - just a few recent related examples here

Gas detectors

ATLAS New
Small Wheels

See talks
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Detector development at TRIUME

Wide range of projects - just a few recent related examples here

Gas detectors

ATLAS New
Small Wheels

See talks
NS and
4 m N posters! ()

TRIUMF provides key support for Canadian and international experiments
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Future detector R&D Initiatives

Silicon sensors: leverage existing infrastructure at
TRIUMF and across Canada (ITk, nEXO)

- Digital SiPMs/SPADs, photonic communication (¥)

- Rad-hard tracking detectors for next-gen colliders

- Forming Canadian Collaboration for Integrated
Detector Development: detection + electronics (%)

Ultimate TRIUMF goal is a new Detector Center:

- Build on existing institutional knowledge and
provide training for continuity of key expertise

- Focus on integrated detector technology,
iIntroducing climate applications WS-SPAD-|

. - Check out the 5 year plan for more “N16-01, 48
N28-04



https://www.triumf.ca/current-events/triumf%E2%80%99s-five-year-request-for-support-2025-2030-realizing-canada%E2%80%99s-full-potential
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The tuture of DarkLight

Start installation in the spring

Data taking soon after!

Still working towards
energy upgrade

Pursuing additional
measurements: low Q?
Moller scattering, eventually
proton form factors ...

Potential to grow a low
energy electron
scattering program?
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The future of collider physics

DarkLight indicative of continuing presence of small experiments,
but many topics necessitate very large projects

—High Energy — High Intensity Accelerator —
Successful HL- Need for range of scales Advance power and
LHC program and costs: DL + similar scale efficiency
Higgs factory next Flavour physics, (gradient
top priority DM, precision High power targets
Future multi-TeV EIC lexample of S’[ronger magnets
facilities growing scale of

nuclear facilities Theory, modelling
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The future of particle physics instrumentation

Historically, R&D has often happened within collaborations
to match specific needs - usually evolutionary

Longer-term, cross-project R&D efforts can identify &
support common needs

Entirely new technologies likely to need very long-term,
more blue-sky research

We will need a balance of all three

Will need: big ideas, facllities, training,

iIndustry collaboration

You are the people who will make this happen!
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Conclusions

Subatomic physics experiments have wide range of
@ iInstrumentation requirements

As a global community, we must keep pushing all R&D
axes to serve future needs

DarkLight is a modest scale experiment
searching for dark photons here in Vancouver

TRIUMF supports DarkLight as both host

A ’ b and detector development platform
( ‘ v Come see us at the lab!! Public tours on

Tuesdays (https://www.triumf.ca/public-tours) or
come talk to me if you have any questions
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Thanks for listening!

Questions?




Sackup
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SIPMs history at TRIUMF and relevant talks

- T2K Fine Grained Detectors completed in 2009. 8,448 Hamamatsu MPPCs

- Contributed to SiPM readout for PET-MR (UBC+Manitoba), 2011-2016

- TREK experiment

- High timing resolution spectrometer for muon spin rotation experiments. SensL. 2013-now
- ALPHAQg barrel veto. SensL. with custom electronics. 2017-2020

- nEXO, SIPM (FBK++Hamamatsu) in liquid Xenon - 2015-now. Two talks, K. Raymond (SFU, N31-04)
and S. Bron (TRIUMF, N31-05) and a poster (N11-022) at the conferencel!

- DarkLight
- Single Photon Air Analyser for early forest fire detection. 2021-now

- High rate (>100MHz) neutron detector for General Fusion. Broadcom SiPM, 2022-now. See a talk
(NO7-01 by Alison Radich) and a poster (NO1-045) here.

- Beyond SiPMs to integrated detectors: see talks N28-04 and N16-01
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Muon g-2

“Spin” of a muon in a magnetic field very
precisely predicted

Measured value is significantly different

Phys. Rev. Lett. 126, 141801 (2021)
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Muon g-2 update

Phys. Rev. Lett. 131, 161802

A +— BNL
=l | FNAL Run-1
% 1 : FNAL Run-2/3
& FNAL Run-1 + Run-2/3
ot Exp. Average
20.0 20.5 21.0 21.5 22.0 225

a,%10° - 1165900

SM results in tension with lattice QCD: next steps
are in the hands of theory community
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The X17 anomaly

Decay of excited 8Be
through characteristic

energy levels n

p

O

Q

i

Phys. Rev. D 95, 035017 (2017)

jBe* <j§ <;>

ATOMKI PAIR
SPECTROMETER
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IPCC (relative unit)

The X17 anomaly

Decay of excited 8Be
through characteristic

Phys. Rev. D 95, 035017 (2017)
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Phys. Rev. Lett. 116, 042501 (2016) 1
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IPCC (relative unit)

The X17 anomaly

Decay of excited 8Be
through characteristic
energy levels n

p O

E’hys. Rev. Lett. 116, 042501 (2016)
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m,c’=15.6 MeV
2-16.6 MeV

. my¢’=17.6 MeV
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Phys. Rev. D 95, 035017 (2017)

SO
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SPECTROMETER

SBe*

G

—

Ar/

Invariant mass and opening angle of
e+e- pair show resonant signal

Not-yet-understood detector effect?
Unexpected SM cause”? Possibly!

( For SM arXiv:2201.09764)
see: arXiv:2102.01127
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IPCC (relative unit)

Phys. Rev. D 95, 035017 (2017)

The X17 anomaly @ (>

SBe*

through characteristic =
energy levels n

p O

. (D X
Decay of excited 8Be @ a,

ATOMKI PAIR
SPECTROMETER

Phys. Rev. Lett. 116, 042501 (2016)
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k/
o . Invariant mass and opening angle of
= E = e+e- pair show resonant signal
w g =
SR - ol Not-yet-understood detector effect?

m,C
2—
m,C

m,C

Unexpected SM cause”? Possibly!

( For SM arXiv:2201.09764)
see: arXiv:2102.01127

Or, compatible with new boson with
mass ~ 17 MeV "
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Phys. Rev. D 95, 035017 (2017)

The X17 anomaly arxiv:2005.01515v3 (2020)
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GEM detalls

- Top and bottom have chromium coated Kapton windows

- GEM foils are copper on Kapton, operating at 400 V across each folil, to readout at
ground. Holes are ~50 pm

- Total active area 25 x 40 cm, 400 pum strip pitch, ~13k readout channels.

3mmI

/J‘ \'\.\.\.\\

Top gas foil window

ﬂﬂl

O-Rings = L' ! []I'E:"f m >~ GEM foils
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Solid state sensors needs grid
ECFA detector R&D roadmap
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‘ Must happen or main physics goals cannot be met & Important to meet several physics goals

Desirable to enhance physics reach @ R&D needs being met
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Photon detectors needs grid
ECFA detector R&D roadmap
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Electronics needs grid

ECFA detector R&D roadmap
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Evolutionary R&D within
collaborations

Cross-project R&D benefitting
multiple experiments

Long-term, high risk R&D projects
with revolutionary potential

A balanced portfolio supporting
all of the above




Scilech projects

TWIST (Completed)
PIENU (Completed)
MUSR (Running)
DEAP-3600 (Running)
IRIS (Running)
ALPHA (Completed)
ALPHA-II (Running)
ALPHA-G (Running)
T2K (Running)
TREK (Completed)
MVM (Completed)

Tunneling Electron Microscope
(uUBC)

ARIEL

TIGRESS

GRIFFIN

uSR 3T (Devel)
SuperCDMS

ATLAS LAr electronics
ATLAS-ITK
UCN/nEDM

Moller

Ac-225 Processing
Capabilities

Flash Radiotherapy

DarkSide-20K

nEXO (Snolab, Ontario,
Canada)

HYPER-K (Kamiokande,

Japan)
IWCD

SiP
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Key sources

- Rare & precision report https://arxiv.org/pdf/2209.14111.pdf

- Energy frontier report: https://arxiv.org/pdf/2211.11084.pdf

- Accelerator frontier report: https://arxiv.org/pdf/2209.14136.pdf

- Instrumentation frontier report: https://arxiv.org/pdf/2210.04765.pdf

- ECFA detector R&D roadmap: https://cds.cern.ch/record/
2/84893%In=en

- Canadian subatomic physics long range plan: https://
subatomicphysics.ca/
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