Introduction to Incoherent Scatter Radar: Part 4 - Plasma Lines

Anthea Coster

MIT Haystack Observatory

With credit and thanks to Anja Strømme, Craig Heinselmann, Phil Erickson, Bill Rideout, Josh Semeter, Juha Vierinen

And my advisor: William E. Gordon

Incoherent Scatter Radar

- Radar
- Scatter
- Incoherent Plasma Line

Collective behavior

 There are a number of wave modes existing inherently in the ionospheric plasma

Ion acoustic waves

Langmuir waves (plasma frequency)

Debye Spheres (Debye length)

Landau Damping

Incoherent scattering: the short story

Plasma Frequency ~

$$\omega_p^2 = \frac{n_0 e^2}{m\epsilon_0}$$

Plasma Frequency ~

$$\omega_p^2 = \frac{n_0 e^2}{m\epsilon_0}$$

The electron gas oscillates at a natural plasma oscillation frequency

Electrons

Langmuir (or plasma) waves

IS Spectrum: Plasma Line

