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Abstract-We show how to use a spreadsheet to calculate numerical solutions of the one-dimensional 
time-dependent heat-conduction equation. We find the spreadsheet to be a practical tool for numerical 
calculations, because the algorithms can be implemented simply and quickly without complicated pro- 
gramming, and the spreadsheet utilities can be used not only for graphics, printing, and file manage- 
ment, but also for advanced mathematical operations. 

We implement the explicit and the Crank-Nicholson forms of the finite-difference approximations 
and discuss the geological applications of both methods. We also show how to adjust these two algor- 
ithms to a nonhomogeneous lithosphere in which the thermal properties (thermal conductivity, density, 
and radioactive heat generation) change from the upper crust to the lower crust and to the mantle. 

The solution is presented in a way that can fit any spreadsheet (Lotus-123, Quattro-Pro, Excel). In 
addition, a Quattro-Pro program with macros that calculate and display the thermal evolution of the 
lithosphere after a thermal perturbation is enclosed in an appendix. Copyright ~0 1996 Elsevier Science 
Ltd 

Ke.p Worcis: Heat conduction, Finite-difference methods, Explicit, Crank-Nicholson. Spreadsheet, Ther- 
mal modeling, Basin analysis. 

INTRODUCTION 

The thermal regime of the lithosphere is one of the 
main factors which govern its geodynamic develop- 
ment and influence magmatic processes, tectonic 
movements, and vertical oscillations which control 
sedimentation and erosion. In the last few years 
thermal modeling has become an essential tool for 
quantitative basin analysis (e.g. Beaumont, Keen, 
and Boutillier. 1982; Royden, Sclater, and Von 
Herzen, 1980; England and Thompson, 1984; Day, 
1987; Peacock, 1987; Sandiford, 1989; De Yoreo, 
Lux, and Guidotti, 1991). On the other hand. to ge- 
ologists who are not familiar with partial differential 
equations, the thermal calculations might look 
mathematically complicated, especially because most 
natural problems can be solved only by numerical 
methods which require computer programming. In 
this paper we present an implementation of two nu- 
merical algorithms in spreadsheet programs. 
Spreadsheets are used widely by the scientific com- 
munity. We will show that in addition to the advan- 
tages associated with the spreadsheet utilities 
(advanced mathematical functions, graphics, print- 
ing, simultaneous use of a few files...), the spread- 
sheet is especially suitable for this purpose. The 
spreadsheet approach is also a good one for teach- 
ing purposes. 

The numerical algorithms which we implement 
solve the finite-difference approximation to the 

one-dimensional time-dependent heat-conduction 
equation: 

aT 2 

-= 
at 

k a T I W=) 
PC,, a=2 pCp (1) 

where T is temperature, k is thermal conductivity, 
f is time, H(z) is internal heat production rate per 
unit volume, 2 is depth, c,, is specific heat per unit 

mass (at constant p), and p is density. 
This equation is subject to the initial condition 

T(t = 0, z) = ,flz), and boundary conditions at 
2 = 0 and = = L (0 < 2 IL). It is based on the 
assumptions that conduction is the only heat trans- 
fer mechanism, that conduction is vertical only, and 
that k is constant. These assumptions are made fre- 
quently for many geological applications, though 
there are geological circumstances in which advec- 
tion also should be considered, and there are situ- 
ations in which two- or three-dimensional solutions 
are essential. In addition, it should be noted that 
Equation (I) takes into account the radioactive heat 
generation which is important for a continental 
crust, and thus its analytical solution often is rela- 
tively complicated. The numerical methods, how- 
ever. have several advantages over the analytical 
solution, which make them a powerful tool for geo- 
logical applications. They are computationally 
simple, and do not become complicated when the 
initial conditions have a complex form. This allows 
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the user to perturb the temperature distribution at 
any time, and then calculate how the disturbance 
decays with time. It is possible also to deal with 
depth changes of the thermal conductivity, density, 
and radioactive heat generation. 

At first, we present the algorithms for a homo- 
geneous lithosphere with constant thermal properties, 
and then we show how to adjust the algorithms to a 
more realistic situation in which the thermal conduc- 
tivity, density, and heat generation change from 
upper crust to the lower crust and to the mantle. 

FINITE-DIFFERENCE SOLUTIONS 

There are several schemes available to express the 
time-dependent heat-conduction equation in finite- 
difference form. We present the explicit method and 
the Crank-Nicholson algorithm which is a modifi- 
cation of the so-called fully implicit method. As it 
would neither be possible nor appropriate to present, 
within the context of this paper, a thorough review of 

z=N&t 

these numerical methods, we briefly present only the 
main principles. For more details and background 
the reader is referred to Carslaw and Jaeger (1959) 
Ozisik (1980) Smith (1985) and many other text- 
books about heat-conduction and about numerical 
solutions for partial differential equations. 

The explicit method 

Let us construct a finite-difference net of space 
and time with intervals of 6.z and 6t as illustrated in 
Figure 1. In this net the space and time coordinates 
are denoted by: 

z = j6z ,j =0,1,2 ,... N 
t=n& n=012 , 1 . . . . 

and the temperature T(z,t) is represented by: 
T(j6z,n&) = T r. 

The explicit method provides a relatively straight- 
forward expression for the calculation of the 
unknowns T ‘+’ T ;+’ T ;+’ 0 7 . ,... T F’ (the geotherm 
at the n+l time-step) from the values 
T t, T ‘,‘, T ;, . T k of the previous time-step n. 

A 

EXPLICIT 

B 

FULLY EXPLICIT 

CRANK-NICHOLSON 

. . 261 
+(2-2r)T,+rT,,+cJf, 

Figure I. Discretisation of time-space continuum for finite-difference approximation scheme. A, 
Explicit method-approximation of temperature at any point depends on temperature at three pre- 
viously calculated points. B, Fully implicit method-new calculated point depends on three points, two 
of them still unknown. C, Crank-Nicholson method-each calculated point depends on five neighbor- 

ing points, two of them still unknown. 



Solutions for the one-dimensional heat-conduction equation II49 

T :I+’ = rT y_, +(l -2r)Ty+rTy+, +sIHi (2) 
PC” 

where r = $$ and H, = k :+‘H(z)dz. 
1: 

In the graphical presentation of our time-space 

net it is easy to see that each point is calculated 

by using its three previous neighbors (left neigh- 

bors in Fig. 1 A), whereas the leftmost column 

(n = 0, i.e. I = 0) includes the initial values. In 

this way the entire net can be calculated from left 

to right, except for the uppermost and lowermost 

rows which have no neighbors on the top or bot- 

tom. These rows, however, actually are given when 

the boundary conditions are specified by constant 

temperatures (Fig. 2A), and are calculated accord- 

ing to Equations (3) and (4), respectively, when 
the boundary conditions are given as heat flows 

(Fig. 2B). 

” 
T;I+’ = 2r(T; -gqo)+(l -2r)Ti+gHo (3) 

P 

T q’ = 2r(TI;_, +$q~)+(l -2r)TL++HN 
P 

(4) 

where q0 = heat flow at z = 0, and qN = heat flow 

at z = N& (both positive upward). 

For geological problems, in which the upper 

boundary (2 = 0) is the surface, Equation (3) is not 

applicable because there is no reason to assume a 

constant surface heat flow during the transient stage 

of the problem, and usually a constant temperature 

is assumed. However, we use Equation (3) to 

A 

l t 

develop the solution for a nonhomogeneous litho- 
sphere as will be shown in a later section. 

The explicit method is easy to calculate, but its 
serious disadvantage is that r is restricted to the 
range [O,OS]. Otherwise, the numerical calculation 
becomes unstable resulting from an amplification of 
errors (Ozisik, 1980; Smith, 1985). As a result, the 
time-step 6t is necessarily small because the calcu- 
lation is valid only for the condition 

and 2 must be small enough to attain reasonable res- 
olution of the space (depth). For example, in geologi- 
cal problems we often use p = 3300 kg.me3, 

CP = 1200 W.s.kg-‘.“C?, k = 3 W.m-‘.‘C-‘, and 
thus obtain 6t < 0.02 year.m-2&2. Now, if the 
depth resolution is I km (6~ = 1000 m) we get 
6t < 0.02 Ma, implying that for a long time period 
such as 100 Ma we need at least 5000 time-steps. In 
practice, however, this can be achieved readily with 
modern computers, and the numerous steps intro- 
duce small errors. This makes the explicit algorithm a 
practical tool for geological applications as will be 
shown later. 

The implicit method and the Crank-Nicholson algor- 

ithm 

The fully implicit method expresses the relations 
between T ;1+’ and its neighbors from the left Ty, 

bottom T :;“‘, and top T :‘_‘I’ (Fig. 1B) 

T”+’ St 
I 

_ T” = ,.T”+’ _ 2&t-“+’ 
I /--I / +rT’.‘+‘+-H,. /f’ PCp ’ 

(5) 

Obviously, T 7” cannot be calculated directly 
from Equation (5) because at the n + 1 time-step 

m Pre-defined points, initial or boundary values 

. Previously calculated point 

0 Currently calculated point 

+t 

Figure 2. Explicit calculation--table is calculated successively from left to right. A, Boundary con- 
ditions are given as constant temperatures. B. Boundary conditions are given as constant heat flows. 
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T j’_‘: and T 7:; are still unknown. The only solution 

is to solve the whole column simultaneously; that is, 

N + 1 algebraic equations in each time-step. This 

method is more complicated than the explicit 

method, but it has the advantage of being valid for 

all values of r. Nevertheless, 6t is still restricted 

because of the truncation error, which is of the 

order of 6t + 6z2 in both the explicit and the fully 

implicit methods. The Crank-Nicholson algorithm 

improves upon the fully implicit method bv redu- 

cing the truncation error to O(6t2) 
thus allows an enlargement of ht. 
some additional computations as 

Equation (6) and Figure IC 

+ O(&*) and 

This involves 

expressed in 

-rT j’_‘: + (2 + 2r)T y” - rT 7:: 

=rTy_, +(2-2r)Ty+rTy+, +$Hj. (6) 
P 

When the boundary conditions are given as heat 

flows, the temperature of the uppermost and lower- 

most points are calculated using Equations (7) and 

(8) respectively 

(2 + 2r)T {” - 2rT ‘,“I = (2 - 2r)T z + 2rT 7 

(2 + 2r)T 2’ - 2rT ;;‘-‘, = (2 - 2r)T ‘;v + 2rT ‘&, 

(8) 

Two frequently used methods for solving simul- 

taneous algebraic equations include the direct 

methods, such as the Gauss elimination or Gauss- 

Jordan elimination algorithms, and iterative 

methods such as the Jacobi or Gauss-Seidel algor- 

ithms (Ozisik, 1980; Smith, 1985; Cheny and 

Kincaid, 1980; Press and others, 1986). The banded 

structure of our system of equations makes the 
Gaussian elimination procedure efficient and easy to 

implement in a spreadsheet as will be discussed 

next. 

A 

I 0 0 0 0 0 0 0 

-r (2+2r) -r 0 0 0 0 0 

0 -r (2+2r) --r 0 0 0 0 

; ; I i 

0 0 0 0 . . -r (2+2r) -r 0 

0 0 0 0 0 --* (2+2r) -r 

.O 0 0 0 . 0 0 0 I 

IMPLEMENTING THE ALGORITHMS IN A 

SPREADSHEET 

The explicit method 

The graphic formulation of the algorithm (Fig. 2) 
immediately shows how it can be implemented in a 
spreadsheet. The net is represented physically by a 
table whose first (leftmost) column is the initial 
geotherm at t = 0, and its nth column is the nth 
time-step, that is, the geotherm at t = n&. Each 
table cell contains the formula given by Equation 
(2) and the table is calculated successively from left 
to right. The boundaries, the top and bottom rows, 
contain the constants To (surface temperature) and 
TN (asthenosphere temperature) respectively. 
Alternatively, in situations of heat flow boundaries 
they contain the formulae given by Equations (3) 
and (4). 

The main problem of this implementation is the 
size of the required table. For instance, in the pre- 
viously mentioned example at least 5000 columns 
are needed. However, considering the fact that each 
time-step is based only on one previous step, the 
whole net can be represented by two spreadsheet 
columns only, if each time-step includes copying of 
the new column to the position of the last column. 
On the other hand, copying is a relatively time-con- 
suming operation and therefore, we suggest keeping 
a table with 20-30 columns according to the avail- 
able memory, and in this way reduce the number of 
the copy operations to once every 20-30 steps. In 
addition, all columns which are saved for the final 
presentation of the solution must be saved as values 
and not as formulae, which also has the advantage 
of reducing memory and time resources. 

A fully programmed example in a Quattro-Pro 
file is enclosed in Appendix. A macro called 
“EVOLUTION” evaluates the thermal evolution of 
the lithosphere after a thermal perturbation. A 
sequence of geotherms is calculated and displayed 
for to, tl, tz,... t, according to a time list, presented 
by the user. 

The Crank-Nicholson algorithm 

The matrix form of Equation (6) is: 

D 
rr;l 

r?;;' -t(2 - 2r)T;' + rT; +~HI 

TT;' ~(2 - 2r)?n; + rT2;; +gHz 

(9) 
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The first and bottom rows of A and D include 

constant boundary temperatures TO and TN, in all 
time-steps, that is: 

T;;+’ = T;; = T;;-’ = . . = T; x TO 

and 

T ;I” = T; = T’$ = . . = To, = TN. 

Alternatively, when boundary conditions are 
given by constant heat flow the top and bottom 
cells should be changed according to Equations (7) 
and (8) respectively. 

At first sight, Equation (9) seems to be solved 
readily by the spreadsheet matrix operations: 

However, this is inefficient because it does not 
take advantage of the tridiagonal form of matrix A 

that may be large. In such instances a simple algor- 
ithm is available (see for example Cheny and 
Kincaid, 1980). 

Let 

-a0 bo 0 do 
L’o al bl 4 

cl a2 b2 d2 

. . 

I 

a.:, b,._, dh’_, 

-0 CN-l aN d/v 

(10) 

For notation we use a’s for the main diagonal, 
b’s for the super diagonal, c’s for the sub diagonal 
and ds for the coefficients of the column matrix D. 

Initially, a forward elimination phase is applied to 

the array. In step 1 we subtract co/a0 times row 1 
from row 2, thus creating a zero in co position. 
Note that only the entries d, and a, are altered 
while bl is unchanged. In step 2 the process is 
repeated, using the new row 2 as the operating row. 
In general, the Q’S and 8s are altered in the follow- 
ing way: 

and 

. 

(11) 

At the end of the forward elimination phase the 
form of the array is as follows: 

00 * bo 

0: bl 

3 * bz 

0 d; 

dl” 

uN-] bN-i dj-, * 
0 

* 
ON 4 

Now, a back substitution phase solves for T,,, 
T,, _ I,.._ To as follows: 

TN =$ 
aN 

TN-I = 
d;_, - bN-1 TN 

* 
‘N-l 

TN-~ = 
d;-, - bN-? T/v 

* 
aN-2 

etc. (12) 

The implementation of this algorithm in a spread- 

sheet is trivial and requires only seven columns. The 
original coefficients a’s, b’s, c’s, and ds are stored in 
four data columns. The new coefficients 0”s and 
6’s are calculated by two more columns, containing 
the formula given by Equation (11). The solution 
vector T ;’ is calculated by one last column, contain- 
ing the formula given by Equation (12). 

In summary, each time-step of the Crank- 
Nicholson algorithm requires seven columns, in ad- 
dition to the previous calculation of the column vec- 
tor D. Although this is more complicated than the 
single column required for each explicit step, the 
number of steps is reduced significantly. The effi- 
ciency and geological applicability of these two al- 
gorithms are discussed next. 

SOLUTION FOR A NONHOMOGENEOUS MEDWM 

The finite-difference equations, which we used in 
both the explicit and Crank-Nicholson methods, 
solve the one-dimensional heat-conduction equation 
(Eq. 1) which is only valid in domains that have 
constant thermal conductivity k. However, in rea- 
lity, k depends on temperature and pressure as well 
as on rock type, and therefore varies with depth. 
The solution for a nonhomogeneous medium is 
based on the division of the medium into several 
intervals, each with a separate value of the constant 
k. To be more general, we will develop the solution 
for a medium in which not only the thermal con- 
ductivity changes, but also the density and the heat 
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kl9 PI7 

H,(z), C, 

T;‘=r,-,T,I,+(l-zr,)r;+~~,T~+(, +“d jc (ff,,+J%,) 
’ =r 

Crank-Nicholson: 

‘,-I T;; + (2 + 25 ) 27’ - ‘i+, T;: = ‘J-t T,:, + (2 - 2’i 1 T; + rJ+l TJ:, + cp, :“b, )=, (4, +% 

r,, = k$t (k, +kzMt k,6r 

f@,+P,)cp ‘J = (p, +pz)c,6z’ ‘J+l = ;@,+p&,ih 

Figure 3. Finite-difference formulas for grid point at boundary between two regions with different prop- 
erties. Each region is uniform; cP changes little. 

generation function. The changes occur at points of 
the net, as indicated in Figure 3. For simplicity, we 
assume a constant cP for the whole lithosphere 
because c,, does not change greatly. 

The explicit method 

The idea is to express the transition point j both 
as the base of the upper interval and as the top of 
the lower interval. Equation (3) is used for the top 
of the lower interval by replacing the subscripts 0 
and 1 to j and j + 1 respectively, and Equation (4) 
is used for the bottom of the upper interval by 
replacing the subscripts N and N - 1 to j and j - 1 
respectively. The two equations use different p, k 
and H(z) as described in Figure 3, but share the 
same qi, which is the heat flow from the lower inter- 
val into the upper interval. In this way we obtain 
two Equations (3’) and (4’) with two unknowns qi 
and Ty+‘: 

T ‘?+’ = 2rz(T y+, / -;q,)+(l -2r2)T;+-&H2, 

and 

(3’) 

T:‘+’ = 2r,(T:‘_, -2qi)+(l -2r1)T$‘+~H,i. 
PlCp 

(4’) 

Solving these two equations, the explicit solution 
for the transition point T y+’ is: 

T ;+’ = rj-I T ;-, + (1 - 2rj)T I’ + ri+, T ;+, 

St 

+ (PI + P2)Cp 
(HI, + H2,), (2’) 

where 

k,St (k, + k#t 
‘j-1 = 

; (PI + P2)Cp6Z2 

, rj = 
(PI + P2)C/h2 ’ 

k2St 
rj+l = 1 

2 (PI + P2)C$Z2 

Note that Equation (2’) has the same form as 
Equation (2) but with different coefficients that 
express the properties of the two different intervals. 

Now, proper implementation simply requires that 
we use the appropriate coefficients in the correct 
positions of our space-time table. That is: rl in 
rows of the upper interval, r2 in rows of the lower 
interval, and Equation (2’) with its three different 
coefficients ri_ 1, ri and ri + I in the transition row. 
In addition, we should use two different functions, 
HI and Hz, for the distribution of the heat gener- 
ation. Note that when more than two intervals exist 
the same procedure can be followed for each inter- 
val and each transition row. 

The Crank-Nicholson method 

The Crank-Nicholson solution for the transition 
points is obtained in a similar way, using the heat 
flow qi to transform Equations (7) and (8) into (7’) 
and (8’): 
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and 

(2+2r,)Ti ,I+’ _ 2,., T;-+; = (2-2r,)Tj’+2r,Ty_, 

+4r,fi-qi+gHj,. 
k, 

From these two equations we can deduce 
Equation (6’) which has the same form as Equation 

(6): 

-r,_,TIl_f; +(2+2rj)Ty+’ -r,+~Tyz, 

=rf-,Ty_, +(2_2r,)Ty+r,+,Ty+, 

+ tp, :;2,, (HI, + Hz,). 
P 

Again, implementation of this solution requires 
that we use the appropriate coefficients in the cor- 
rect positions of matrix A and column vector D, 

that is r, and rz for the rows of the upper and lower 
intervals, respectively, and r,-,, r, and ritI for the 
transitional rows. In addition, densities and heat 
generation functions in D also should be used prop- 
erly. 

GEOLOGICAL APPLICATIONS 

Mathematically, the Crank-Nicholson algorithm 
has the advantage of yielding stable results for any 
positive value of r. In practice, however, stability 
problems occur with large values of r. The math- 
ematical stability implies that eventually, when n 
tends to infinity, all errors tend to zero. However, 
during that interval unwanted finite oscillations may 
be introduced into the calculations if large values of 
r are used. Such oscillations die away with increas- 
ing n, and usually occur in the c-neighborhood of 
points of discontinuity in the initial conditions or 
between initial conditions and boundary conditions 
(Smith, 1985). These oscillations limit our ability to 
use the Crank-Nicholson algorithm, because in 
many geological applications discontinuous func- 
tions are needed to describe thermal perturbations, 
and sometimes the unwanted oscillations die away 
too slowly even on a geological time-scale. 

For example, the thermal perturbation caused by 
a magmatic intrusion is described in Figure 4 by a 
discontinuous function. Various values of r were 
tested in order to evaluate the amplitude and dur- 
ation of the unwanted oscillations. The results show 
that oscillations are developed near the discontinu- 
ity points in all cases of r larger than 1.5. The dur- 
ation of these oscillations is about 0.5 Ma for 
r = 1.5; 2-3 Ma for r = 2.5; about 12 Ma for 

r = 5; and about 45 Ma for r = 10. It also should 
be noted that for r = 10, small oscillations (lo- 
15°C) develop not only near the discontinuity 
points, but also near the zero point where the curve 
is continuous mathematically. This is explained by 
the fact that the numerical representation of the 
curve near the zero point is not “smooth enough”, 
that is, the depth intervals are too large. This can 
be seen better in Figure 5 where continuous initial 
functions are used to simulate heating of the litho- 
sphere, and nevertheless, oscillations are developed 
where the function is too curved. Moreover, 
Figure SB indicates that for the same initial func- 
tion if r is increased to 10, these oscillations are 
moderately strong (100-I 50°C). Figure 5C indicates 
that sometimes the oscillations are not so strong, 
but decay slowly (more than 150 Ma). 

Therefore, we conclude that it is unwise to use 
large values of r with the Crank-Nicholson algor- 
ithm, because they may cause unexpected stability 
problems. Thus, if an unconditional computer pro- 
gram is wanted, either the explicit algorithm with 
r < 0.5 or the Crank-Nicholson algorithm with 
r < 1 should be used. However, such small r values 
make the Crank-Nicholson algorithm expensive in 
computer time. Nevertheless, if only large-scale 
results are investigated, that is, after the unwanted 
oscillations die away, or if continuous functions 
are used as initial values, the Crank-Nicholson 
algorithm may be used with relatively large r values 
(5-10) to save computer time. Another practical 
solution we suggest is to begin with the explicit 
algorithm in order to smooth the curve, and then to 
change to the Crank-Nicholson algorithm using 
relatively large r values (Fig. 6). Changing r in the 
middle of the computation process, or switching 
from explicit to CrankkNicholson files, is achieved 
easily with a spreadsheet that enables much flexi- 
bility and a simultaneous use of several opened files. 

(1) 

(2) 

(3) 

(4) 

SUMMARY AND CONCLUSIONS 

We have shown how to implement the expli- 
cit and the Crank-Nicholson algorithms in a 
spreadsheet program. 
The explicit algorithm is implemented exactly 
as it is described in textbooks as a space-time 
net, and is straightforward to work with. A 
fully programmed example of an explicit file 
is enclosed in Appendix 1. 
The Crank-Nicholson algorithm is described 
in a matrix form and is implemented by the 
Gaussian elimination procedure, taking ad- 
vantage of the tridiagonal structure of the 
matrix. 
The mathematical advantage of the Crank- 
Nicholson algorithm, that is. the stability for 
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Figure 4. Dissipation of heat, following thermal perturbation caused by magmatic intrusion, calculated 
by Crank-Nicholson algorithm. Finite oscillations develop near discontinuity points in all situations of 
r 2 1.5. Amplitudes and duration of unwanted oscillations increase when larger values of r are used. 
Note that for r = 10 (Fig. 4E) small oscillations are developed not only near discontinuous points but 
also at depth of 2 km, where numerical presentation “breaks” the continuous curve. Phenomenon is 

emphasized in Figure 5. 
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TEMPERATURE (“C) 

TEMPERATURE (“C) 

1 

TEMPERATURE (“C) 

Figure 5. Dissipation of heat, following thermal pertur- 
bation modeled by continuous initial functions, calculated 
by Crank-Nicholson algorithm. Oscillations are developed 
near surface when r > 5, because numerical presentation 
of curves is not “smooth” enough. These oscillations 
might be strong (IOO-150°C) as seen in Figure 5B, or long 

(more than 150 Ma), as seen in Figure 5C. 

all positive r values, is limited practically only 
to r < 10 and to smooth and continuous in- 
itial functions. Otherwise, unwanted oscil- 
lations may occur. Therefore, we recommend 
the routine use of the explicit algorithm 
which was found to be suitable for these geo- 
logical applications, and the saving of the 
Crank-Nicholson algorithm for special situ- 

TEMPERATURE (“C) 

500 1000 

25 

Crank-Nicholson 

100 

125 \ 

Figure 6. Combination of explicit and Crank-Nicholson 
algorithms in order to calculate heat dissipation after same 
initial perturbation as in Figure 4. At first, explicit algor- 
ithm was used to smooth the discontinuous initial func- 
tion. Then, Crank-Nicholson algorithm was used for 
another 1.5 Ma with r = 2.5 and did not produce 
unwanted oscillations. Note that in Figure 4C when 
Crank-Nicholson algorithm was used with same r value 
and initial function, it produced oscillations that lasted 

more than 3 Ma. 

(5) 

ations in which it can be used with large r 
values. 
Another practical approach is to begin with 
the explicit method until the geotherm is 
smoothed and then change to the Crank- 
Nicholson algorithm and proceed with larger 
time-steps. 

The macro code is available by anonymous FTP 
from the server at IAMG.ORG. 
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APPENDIX 1 

Upper part of spreadsheet contains constants and variables. Note that km and Ma are used for space and time units not 
m and s. Variables are described in macros listing (Appendix 2). Space-time table is heart of computation and its for- 
mulae are described in text. Initial geotherm and heat generation function H(z) should be specified by user. In order to 
use this spreadsheet, user should fill the TimeTable with time values fr,t2,fs,... as required, and then run main macro 
“Evolution”. Desired geotherms at times tr,fa,rs,... will be presented in Evolution Table. 

Constants Macro variables 

T&C 
T.= 1300°C 
C=30 km 
,_=I26 km 

p.=2.8*10” kg km’ 

~~3.3 *lO”kg km’ 
k=2500Wk”’ ‘C’ 
1;=3400 w km ’ “CT’ 
cp3.7.10” W My kg”C’ 

61=0.07 My 
&=2 km 
r.=O.42 
r,=O.48 

TableWidth 110 TOW 
TableCountcr L ( time 
ClUllter LastTime 

I TabIeNum I 

I I 

macros 
(see appendix la, 

TO T” 
0 II 0 0 0 0 0 0 

1 
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APPENDIX 2 

Descrintion of variables: 
TableWidth: The width of the snace-time table determined bv the user according to the available memory 
TableNum: The number of tables required for the calculation of the current geotherm. 
TableCounter: Counts the number of space-time tables, which were calculated until now. 
Counter: Counts the number of geotherms that should be saved in the EvolutionTable for final 

presentation. 
Time: 
LastTime: 
Row: 

The time of the currently calculated geotherm. 
The time of the last calculated geotherm. 
A temporary counter used for some macros for the row number. 

Evolution is the main macro. It goes over the TimeTable, calculates the geotherm for each 
time value and save it for final presentation. 

Evolution {initialize} 
{let counter,O} 
{goto}TimeTable- 

loop {if @cellpointer(“type”)=“b”} {branch end} 
{let LastTime,Time} 

/ End of TimeTable / 

{let time,@cellpointer(“contents”)} / Get the next value in the TimeTable / 

(geotherm) / Calculate geotherm using the space-time table/ 
{ SaveGeotherm} / Save the calculated geothenn in the EvolutionTable ! 
{goto}TimeTable- 
{let counter, counter+ 1) 
{down counter} 
{branch loop} 

end (beep l)(beep Z)(beep 3Hbeep 4)(escI 
{graph} / End of macro. Present graph. Series are the columns of the EvolutionTable / 

Initialize copies the initial condition F(x), specified by the user, into the first column To, of 
the space-time table. 

Initialize {/ CompCalc,Manual} / Do not calculate spreadsheet after each change / 
{let TableCounter, 1) 
{let time,O} 
{let @cellindex(“address”,To,O,O),O} / First row of To represents the time step n; / 
{let @cellindex(“address”,To,O, 1x0) / The second row is n6t. both are initially 0. / 
{let row,3} 

(gotoIF(x)_ 
LoopInit {if @cellpointer(“type”)=“b”}{branch EndInit} / Copy the initial condition F(x) to T, /’ 

{let @cellindex(“address”,To,O,row),@cellpointer(”contents”)} 
{down} 
{let row,row+l } 
{branch LoopInit} 

EndInit {talc}{/ CompCalc;Background} 



1158 Z. Gvirtzman and Z. Garfunkel 

Geotherm calculates the current geotherm at t=Time. The number of the required space- 
time tables is calculated according to the number of the required time-steps. In each 
iteration of the macro the last column Tn of the table is copied to the first column To. 

Geotherm {let TableNum,@int((time/del~-~ableWidth)+l)-Table~ounter} 
again {if TableNum<=O} { branch finish} 

{ SaveLast} I Copy T, into To I 
{let TableCounter,TableCounter+ 1 } 
{let TableNum,TableNum-1 } 
{branch again} 

finish 

SaveLast copies the last column into the first. 

SaveLast {/ CompCalc;Manual} 
{ goto}To-{ right TableWidth} 
{let row,O} 

SL-loop {if @cellpointer(“type”)=“b”) { branch SLend} 
{let @cellindex(“address”,To,O,row),@cellpointer(”contents”)} 
{down} 
{let row,row+l} 
{branch SL-loop} 

SL-end {talc} { / CompCalc;Background} 

Savegeotherm finds the appropriate column in the space-time table for t=Time and save it in 
the EvolutionTable. 

SaveGeotherm 

LoopSave 

{/ CompCalc;Manual} 
{goto}To- 
{right @mod(timeDelta-t,TableWidth)} 
{let row,O} 
{if @cellpointer(“type”)=“b”} {branch EndSave} 
{let @cellindex(“address”,EvolutionTable,Co~ter,row),~cell~inter(”~nten~“)} 
{let @cellindex(“address”,T(t),O,row),@cell~inter(”~nten~“)} 
{down} 
{let row,row+l} 
{branch LoopSave} 

{talc} { / CompCalc;Background} { esc } 
{let @cellindex(“address”,EvolutionTable,Co~ter,0),upli~} 


