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The Need for Statistical Descriptions of ISR Signals

If I knew the positions of every single electron in the scattering
volume, I would know the received voltage exactly:

Exact expression for scattered electric field
as a superposition of Thompson scatterers:

Es = − re

r
E0

N0∆V
∑

p=1

e jk·rp

ISR theory predicts statistical aspects of the scattered signal:

Scattered Power:
〈

|Es |2
〉

Autocorrelation Function: 〈Es(t)E
∗
s (t − τ)〉

These statistical properties are functions of macroscopic properties of the
plasma: Ne , Te , Ti , ulos.
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Random Variables

A random variable is a variable whose numerical value
depends on the outcome of a probabilistic phenomenon.
Probability Density Function:

P (x1 < X < x2) =

∫ x2

x1

pX (x) dx

Expected Values:

E {g (X )} =

∫ ∞

−∞
g(x)pX (x) dx

Mean:

Mean {X} = E {X} = X̄

Variance:

Var {X} = E
{

(X − E {X})2
}

= E
{

X 2
}

− (E {X})2
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Collections of Random Variables

Multiple RVs must be described by joint-PDFs:

P (x0 < X < x1 ∪ y0 < Y < y1) =

∫ x1

x0

∫ y1

y0

pXY (x , y) dydx

If X and Y are independent:

pXY (x , y) = pX (x)pY (y) pX |Y (x |y) = pX (x)

Relationships between RVs are defined through covariances:

Cov {X ,Y } = E {(X − E{X}) (Y − E{Y })}

Uncorrelated RVs have Cov{X ,Y } = 0
Independent RVs are uncorrelated, but uncorrelated RVs are not
necessarily independent.
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Random Vectors

Column vector of random variables

X =











X0

X1

...
XN−1











Covariance matrix of a random vector

KX = Cov {X} = E{
(

X− X̄
) (

X− X̄
)T}

=











Var {X0} Cov {X0,X1} · · · Cov {X0,XN−1}
Cov {X1,X0} Var {X1} · · · Cov {X1,XN−1}

...
...

. . .
...

Cov {XN−1,X0} Cov {XN−1,X1} · · · Var {XN−1}











Cross-covariance of two random vectors

KXY = Cov {X,Y} = E{
(

X− X̄
) (

Y − Ȳ
)T}
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Gaussian Distribution

A Gaussian random variable X has the following probability density
function (Normal Distribution):

p (x) =
1√
2πσ

exp

{

−x − µ

2σ2

}

E{X} = µ Var{X} = σ2

E
{

(X − µ)4
}

= 3σ4

A jointly-Gaussian vector of random variables
X = [X0,X1,X2, · · · ,XN−1]

T has the joint pdf:

p (x) =
1

(2π)
N
2 |K |

1
2

exp

{

−1

2
[x− µ]T K−1 [x− µ]

}

E {X} = µ

Cov {X} = E
{

[X− µ] [X− µ]T
}

= K
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Central Limit Theorem

Given a set of finite-variance, independent and identically
distributed RV, [X0,X1, · · · ,XK−1], the distribution function of the
average:

X̂ =
1

K

K−1
∑

n=0

Xn

will asymptotically approach a Gaussian distribution as K increases.

E
{

X̂
}

= E {Xn} Var
{

X̂
}

=
1

K
Var {Xn}

This is an amazingly useful theorem:

Only the mean and variances of the intermediate quantities need to
be calculated to predict the distribution of the final averaged result.

Distribution functions of intermediate quantities do not need to be
calculated in detail since the final averaged result will just be
Gaussian.
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Properties of Jointly Gaussian Random Variables

Linear combinations:

Z = αX + βY + γ E{Z} = αE{X} + βE{Y }+ γ

Var{Z} = α2Var{X} + β2Var{Y }+ 2αβCov{X ,Y }

Matrix generalization:
Y = AX+ b E{Y} = AE {X}+ b Cov{Y} = ACov{X}AT

Special cases for zero mean random variables:

Odd moments are zero:
E {V1} = E {V1V2V3} = E {V1V2V3V4V5} = · · · = 0

Fourth moment theorem: E {V1V2V3V4} =
E {V1V2}E {V3V4}+ E {V1V3}E {V2V4}+ E {V1V4}E {V2V3}
General even moment theorem (Isserlis’ Theorem)
E {V1V2 · · ·V2n−1V2n} =

∑∏

E {ViVj}
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Complex-valued Random Variables

A complex-valued random variable X can be described by

Mean:X̄ = E {X}
Covariance:KX = E

{(

X − X̄
) (

X − X̄
)∗}

Pseudo-Covariance:JX = E
{(

X − X̄
) (

X − X̄
)}

A vector of complex-valued random variables X can be described by

Mean:X̄ = E {X}

Covariance:KX = E
{

(

X− X̄
) (

X− X̄
)H

}

Pseudo-Covariance:JX = E
{

(

X− X̄
) (

X− X̄
)T

}

Where (·)H means Hermitian transpose (i.e. with a complex conjugate)
and (·)T means ordinary transpose.
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Relationship to Real Random Variables

A vector of N complex-valued random variables can be written as
two vectors of real-valued random variables representing the real and
imaginary parts.

X = XR + jXI

The covariance and cross-covariance matrices of these real vectors are
related to the covariance and pseudo-covariance of the complex vector by

Cov {XR} =
1

2
ℜKX +

1

2
ℜJX

Cov {XI ,XR} =
1

2
ℑKX +

1

2
ℑJX

Cov {XR ,XI} = −1

2
ℑKX +

1

2
ℑJX

Cov {XI} =
1

2
ℜKX − 1

2
ℜJX

R. H. Varney (SRI) Radar Statistics July, 2020 10 / 13



Special Properties of ISR Voltages

ISR Voltages will always be:

Gaussian

Zero Mean: (E {V } = 0)

Finite power: (E {VV ∗} < ∞)

Random Phase:

Zero Pseudo-variance (E {VV } = 0)
Cov {ℜV ,ℑV } = 0

Collections of ISR voltages will always
have zero pseudo-covariance with each
other.
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With these properties, the complex-valued covariances between ISR
voltages tells us everything we could want to know.
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Describing ISR Voltages

ISR signals are complex valued, zero mean, and random phase.

V = VR + jVI E {VR} = E {VI} = 0

E {VV ∗} = σ2 E {VRVI} = 0 Cov

{(

VR

VI

)}

=
1

2

(

σ2 0
0 σ2

)

When we talk about correlations between ISR signals

E {V1V
∗
1 } = σ2

1 E {V2V
∗
2 } = σ2

2

E {V1V
∗
2 } = ρ = ρR + jρI

What we really mean is

V1 = V1R + jV1I V2 = V2R + jV2I

Cov























V1R

V1I

V2R

V2I























=
1

2









σ2
1 0 ρR −ρI
0 σ2

1 ρI ρR
ρR ρI σ2

2 0
−ρI ρR 0 σ2

2








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Probability for ISR Summary

The theory of ISR is a probabilistic theory for the statistical properties
of the received voltages.

ISR voltages are Gaussian, zero mean, random phase, complex-valued
random variables.

All the information we want is in the variances (power) and
covariances between voltages.
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