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The Need for Statistical Descriptions of ISR Signals

If | knew the positions of every single electron in the scattering

volume, | would know the received voltage exactly:

Exact expression for scattered electric field
as a superposition of Thompson scatterers:
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ISR theory predicts statistical aspects of the scattered signal:
Scattered Power: <|E5|2> Autocorrelation Function: (E(t)E;(t — 7))
These statistical properties are functions of macroscopic properties of the

plasma: Ne, Te, T;, uos.
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Random Variables

A random variable is a variable whose numerical value
depends on the outcome of a probabilistic phenomenon.
Probability Density Function:

X2

P(x1 <X <x)= / px(x) dx
X1
Expected Values:

Elg X)}/ X)px (x) dx

Mean:
Mean{X} = E{X} =X
Variance:
Var {X} = E {(X - E{X})2} E{X2) — (E{X})?
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Collections of Random Variables

Multiple RVs must be described by joint-PDFs:
Xt
P(x0<X<x1Uyo<Y<y1):/ / pr(X,y) dydx
X0 Yo

If X and Y are independent:

pxy(x,y) = px(X)py(y)  px)v(xly) = px(x)
Relationships between RVs are defined through covariances:
Cov{X,Y}=E{(X - E{X}) (Y - E{Y})}

Uncorrelated RVs have Cov{X,Y} =0
Independent RVs are uncorrelated, but uncorrelated RVs are not
necessarily independent.
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Random Vectors

Column vector of random variables

Covariance matrix of a random vector

Kx = Cov {X} = E{(X - X) (X - X)"}

Var {Xo} Cov {Xo,Xl} -+ Cov {X()uXN—]_}
Cov {Xl,Xo} Var {Xl} <o+ Cov {X17XN—1}
COV {XN—LXO} COV {XN—LXI} e Var {XN—l}

Cross-covariance of two random vectors
Kxy = Cov {X,Y} = E{(X=X) (Y =¥)"}
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Gaussian Distribution

A Gaussian random variable X has the following probability density
function (Normal Distribution):

1 X — [
X) = ———expq —
px)=—7— p{ 52 }
E{X}=p  Var{X}=o0?
E {(X - u)“} = 30"
A jointly-Gaussian vector of random variables
X = [Xo, X1, X2, --- , Xn—_1]" has the joint pdf:

x:;ex —lx— TK1x—
6= pren] gk Kl
E{X}=n

Cov {x} = E{IX— ] X~ )"} = K
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Central Limit Theorem

Given a set of finite-variance, independent and identically
distributed RV, [Xp, X1, -, Xk_1], the distribution function of the
average:

BN

-1
Xn
0

1

X==
K
n

will asymptotically approach a Gaussian distribution as K increases.

E {X} — E{X,} Var{)A(} - %Var{Xn}

This is an amazingly useful theorem:
@ Only the mean and variances of the intermediate quantities need to
be calculated to predict the distribution of the final averaged result.
@ Distribution functions of intermediate quantities do not need to be
calculated in detail since the final averaged result will just be

Gaussian.
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Properties of Jointly Gaussian Random Variables

@ Linear combinations:

Z=aX+BY +v E{Z}=aE{X}+BE{Y}+~
Var{Z} = a?Var{X} + 3?Var{Y} + 2aBCov{X, Y}

@ Matrix generalization:
Y=AX+b E{Y}=AE{X}+b Cov{Y}=ACov{X}AT
Special cases for zero mean random variables:
o Odd moments are zero:
E{Vi} = E{ViWVLV3} = E{ViWVL V3V, V5} =--- =0

@ Fourth moment theorem: E{V1V,V3V,} =
E{V1V2}E{V3V4}—|- E{V1V3}E{V2V4} + E{V1V4}E{V2V3}

@ General even moment theorem (Isserlis’ Theorem)
E{ViVo--- Vo, 1 Vo,} =X TTE{ViV}}
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Complex-valued Random Variables

A complex-valued random variable X can be described by

Mean:X = E {X}
Covariance:Kx = E {(X — X) (X — X)*}
Pseudo-Covariance:Jx = E {(X — X) (X — X)}
A vector of complex-valued random variables X can be described by
Mean:X = E {X}
Covariance:Kx = E { (X =X) (X - )_()H}
Pseudo-Covariance: Jxy = E { (X — )_() (X — )_() T}

Where (-)H means Hermitian transpose (i.e. with a complex conjugate)

and (-)7 means ordinary transpose.
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Relationship to Real Random Variables

A vector of N complex-valued random variables can be written as
two vectors of real-valued random variables representing the real and
imaginary parts.

X =Xr+JX

The covariance and cross-covariance matrices of these real vectors are
related to the covariance and pseudo-covariance of the complex vector by

1 1
Cov {XR} = E%KX + 5%./)(
1 1
Cov {X/,XR} = §%KX + E%JX
1 1
Cov {XR,X/} = _E%KX + E%JX

1 1
Cov {X/} = E%KX — E%JX
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Special Properties of ISR Voltages

ISR Voltages will always be: 200
@ Gaussian
@ Zero Mean: (E{V} =0) % 100
@ Finite power: (E {VV*} < c0) % 0
@ Random Phase: g—lOO

@ Zero Pseudo-variance (E {VV} =0)

@ Cov{RV,3V} =0 -200 .

-200 0 200
Real Voltage

Collections of ISR voltages will always
have zero pseudo-covariance with each
other.

With these properties, the complex-valued covariances between ISR
voltages tells us everything we could want to know.
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Describing ISR Voltages

ISR signals are complex valued, zero mean, and random phase.

V=Vg+,Vi E{Vg}=E{V;} =0
V 1/(6° 0
* _ 2 _ R I
E{VW*} =0 E{VgV,} =0 Cov{(vl>}—2<0 U2>
When we talk about correlations between ISR signals

E{ViV{} =02 E{WLV5} =03

E{ViV3} =p=pr+jpi
What we really mean is

Vi = Vir + Vi Vo = Vor + jVo

Vir o7 0 pr —pi

Vi 11 0 o2 p pr
Cov -

Var 2l pr p1 o3 O

Vo —p1 pr 0 03
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Probability for ISR Summary

@ The theory of ISR is a probabilistic theory for the statistical properties
of the received voltages.

@ ISR voltages are Gaussian, zero mean, random phase, complex-valued
random variables.

@ All the information we want is in the variances (power) and
covariances between voltages.
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