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Incoherent Scatter Radar (ISR)
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Components of a Pulsed Doppler Radar
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Meteor Radar Example
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Inter-pulse period (IPP)

Coherent target (meteor
ionization trail), with ~constant
velocity.

Find velocity (hence, neutral
wind velocity along radar line of
sight) by sampling | and Q from
many pulses, taking the Fourier
Transform (FFT), and forming

Nels

Velocity and reflected power are
found from the peak in the
power spectrum.

Meteor Echo | & Q
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Does this strategy work for ISR?

Doppler width at 450 MHz: 10 kHz
de-correlation time (zero crossing): ~1/10kHz = 0.1 ms
Inter-pulse period (IPP) to reach 500 km: 2R/c = 3ms

Plasma has de-correlated by the time we send the next pulse.

Stated alternately, the Doppler frequency shift of the plasma is much higher than the
maximum unambiguous Doppler shift measurable for the pulse-repetition frequency.

ISR spectrum += Autocorrelation function (ACF)
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Autocorrelation function and power spectrum

= Te/Ti lon temperature (Ti) to ion
{ yarea~ Ne mass (mi) ratio from the width
of the spectra

Electron to ion temperature
ratio (Te/Ti) from “peak-to-
valley” ratio

1 Ti/mi

POWER DENSITY

Electron (= ion) density
from total area (corrected
for temperatures)
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_ (Vi) from bulk Doppler
zero lag (=signal average power) shift

Our goal is to sample lags with
sufficient fidelity to provide
meaningful estimates of plasma
parameters
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Computing the ACF (and, hence, spectrum)
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® A pulse propagates at speed of
light, represented here by the
slope of the lines.

Target is continuous, so each
sample collects scattering from
volume defined by pulse length.

Time

—7,—> ol

|
7, =Length of RF pulse

Inter-pulse Period (IPP)

7. =Sample Period (typically ~ 1/10 pulse length)



Computing the ACF (and, hence, spectrum)
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7. =Sample Period (typically ~ 1/10 pulse length)



Computing the ACF (and, hence, spectrum)
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Computing the ACF (and, hence, spectrum)
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Computing the ACF (and, hence, spectrum)
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Computing the ACF (and, hence, spectrum)
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Computing the ACF (and, hence, spectrum)
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7. =Sample Period (typically ~ 1/10 pulse length)



Lag-product matrix
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