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Components of a Pulsed Doppler Radar
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Essential mathematical operations

Fourier Transform: Expresses a function as a weighted sum of complex exponentials.
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analysis equation: F(w) =% [f(t)] = [ f(He 7 dt

1 +00 .
synthesis equation:  f(7) = F1 [F(a))] = 2—J F(w)e’” dw
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Duality: Comparison of & and % ~! we obtain
F() <= 2wnf(—w)

Convolution: Expresses the action of a linear, time-invariant system on a function.
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Dirac Delta Function o(x)

A generalized function, or distribution, with the properties
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Sampling property: From the above it follows that
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Shift property: Convolution of a function F(x) with
o(x — x,) shifts the entire function by x,. We will
use this property to understand mixing. Specifically:
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Fourier analysis of harmonic functions
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From duality property we can also write,
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Fourier analysis of harmonic functions
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Summary of tools for I/Q demodulation
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Multiplication-convolution:

Frequency shift property:

Harmonic functions:
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I/Q Demodulation: Frequency Domain

Transmitted signal: Frequency domain
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*Low Pass Filter

To resole both positive and negative Doppler shifts, we need: “*East Fourier Transform

eI2TIDt — cos(27 fpt) + jsin(27 fpt)

g
We thus need to mix with a second oscillator at same frequency but 90° out of phase (Lecture 3).

For a cosine reference, the quadrature function is sine. The two components are called “in phase” (/)
and “quadrature” (Q). Together [ and Q represent discrete samples of the baseband analytic signal,

sp(t) = Ae*™ ! = I(t) + jO(1) AS(f—fp)  (for asingle scatterer)



Correlation and the ISR Spectrum

How do we compute the power spectrum from our complex voltages ?
One approach is to compute Fourier transform of the range-resolved signal:

s(r,t) =1(r,t) + O(r,1) < S(r,f) /

[scn|

2
from which the power spectrum may be represent as |S(r, f )|

Based on the stochastic nature of the target, and the way ISR samples the echos,
we will take a different approach. We first compute the auto-correlation function (ACF),

{s(r,)s(r, 1+ 7))

<|S(r,t)|2>

where the angle brackets denote the ensemble average, or the expected value.
The power spectral density is given by the Fourier transform of the R

R(r,7) =

R(r,7) = | S(r, f) | ? (Wiener-Khinchin theorem)

The discrete representation of R (r, 7) is constructed through appropriate scaling and
multiplication of the complex voltage samples s(r, 7).

In the next lecture we will begin to explore methods for constructing the ACF.



