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Pulse Doppler Radar




Incoherent Scatter Radar (ISR
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Traveling Waves

Th locity of int on th
Traveling wave, 1D: y(x, 1) = A cos(wt — kx) © V? ocity ot a pom. on e
] _ wave is found by setting wt — kx
Angular velocity (radians/s): w =2xnf =2xlT _ constant. By taking the
Wave number (spatial frequency): k=2r/A time derivative we obtain the
Phase velocity (c in a vacuum): U, = wlk phase velocity,
dx
Temporal variation at point in space: Three snapshots in time: U, =— =—
(0. 1) 1(x, 0) dt k
” /‘\ ” ~ The functional relationship
' ' e v between w and k is called a
0 T T 3T A 3L
i\‘/ ) < -Al \/ \/ dispersion relation. |t appears
(b)'f( ) veret rat o | \ _H,p @ =0 ybiquitously in the study of
T V(x, T/4) ‘ wave phenomena

-T/\ /\;
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The simplest dispersion relation
for an EM wave describes its
propagation through free space,

\
L (o) =T/
\

(
?

V(x, 772)

\f[//é\\//\ wherec = 3 X 108 m/.S. We wiill

encounter more complicated
12 (©) 1=172 dispersion relations soon!
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Transverse Electromagnetic (TEM)

Radars transmit TEM waves and measure the scattered radiation from a target

A

(mV/m)__\\ \
\
It \
E \ Power flow:

yo  WAM) 0] ML S=ExH W/m?2

Polarization: Orientation of the Electric Field Vector
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Range

Range R to the target is measured by transmitting a pulse of electromagnetic waves, and
measuring the time At between transmission and reception of the pulse,

_cAt
2

The pulse length 7 is most often expressed in
units of time, and corresponds to a distance c7,
where ¢ = 3 X 10® m/s

Range resolution depends on how well we
can resolve At. For the case of a simple
on-off pulse, the optimal approach is to

match the sampling period to the pulse length
(the so-called “matched filter” approach).

Range resolution for a simple on-off pulse (“uncoded pulse”) is controlled by 7. Shorter 7

yields higher range resolution. But a shorter pulse also carry less total energy, and so the
reflected signal is more difficult to discriminate from background noise.



Measuring Velocity

Assume a transmitted signal: cos(2xf 1)

2R
After return from target: cos |2xf, <t + —)
C

Now let us allow range R to vary with time. Let’s assume
the target moves at a constant velocity, with positive away
from the radar and negative toward the radar:

R=R,+ vt

Substituting we obtain:

2v, 2nf,R
Low Frequency High Frequency COS 277: ](‘0 + ]CO t +
C C

AWA ANAL

? . a - —/p constant-

o + N o py - . .

—_—— The shift in frequency caused by a moving target is
X ’\i\/_\/_\/‘_ ...o_:__-o-J_WN X proportional to the component of the velocity vector
along the radar line of sight:
2/
Jo=——"
C

How we determine f, is left for other lectures.



Cross-range resolution (beam width)

Sidelobes

Boresight

The cross-range resolution is usually
defined by the angular width of the

main lobe of the antenna's power pattern.
For a dish antenna this is approximately
equal to the ration of the wavelength

to the physical diameter,

A radar “pixel”

p i (radians)
= — radlans
d

Millstone Hill ISR has a 46-m dish operating at a frequency of 440 MHz, or A = 0.68 m,
giving a beam width of # ~ 0.85° .



Doppler Radar Summary:
“Coherent” hard targets

Two key concepts: Solid reflecting target, x
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A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.

What happens when we have multiple targets in the radar volume, moving at different velocities?



Doppler Radar Summary:
Distributed “Incoherent” Targets

Two key concepts:

~

p
Time <:::> Distance
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Frequency <:Z:>Velocity
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Distributed targets,
different velocities
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superposition of
reflections from

all targets (electrons)
in the volume.

A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.

What happens when we have multiple targets in the radar volume, moving at different velocities?
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Doppler Radar Summary:
“Coherent” hard targets

Two key concepts: Solid reflecting target, x
( \ . . .
: . single dominant velocit )
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A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.

What happens when we have multiple targets in the radar volume, moving at different velocities?



Concept of a “Doppler Spectrum”

Superposition of targets moving with different velocities within the radar volume

Two key concepts:

p
Time <:::> Distance
B cAt
2
Frequency <:::> Velocity
2f,
fD = -,
C
\_ J
AT}

Processing: p(R, fD)
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If there is a distribution of targets withdifferent velocities (e.g., bird, flapping wings,wind)
then there is no single Doppler shift but, rather, a Doppler spectrum.



Distributed “beam filling” Target

A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.

Two key concepts:

~N

p
Time <:::> Distance
B cAt
)
Frequency <:::>Velocity
2f,
fD = ——
C
. J

Processing:

p(RafD’ t) fD(Ra t)

For a beam-filling target (like water droplets in a
tornado), the radar can be used to construct

V(R, 0)

insightful images of velocity relative to the radar.



Trackman radar: “continuous wave” (CW)
radar. precise Doppler but no range
information.

Can identify targets and actions based on
Doppler signatures!

Processing:

p(fD9 t) p(V, t)

Velocity (m/s



Wave Interference and Bragg Scatter

Consider two waves with the same
frequency but different phase.

w2l

Constructive
(in phase)

VW

Destructive
(180° out of phase)

Consider a wave along the interface between a dielectric
and a conducting (reflective) medium, as depicted below.
This is representative of an air-ocean boundary.
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Suppose waves are observed at angle @ using a radar

with wavelength 4,. The condition for maximum
constructive interference is

niy = 2A;sin 0

If @ = 90° (or if these waves are propagating isotropically),
then the Bragg condition is met for nd, = 24



Doppler spectrum of ocean waves

‘” wavelength () " Waves moving
| ( : .,»-"f‘* 65l- Bragg peaks j ) toward,the radar
pgﬁré'?t?\'gfee: sol- Waves movmg l) ) “ )
— away from " 2nd order
55|- the radar J]// spectrum .
2nd order L
& °[ spectum. 2 ‘l V
Wkl
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Important points:

The target is distributed over the entire radar beam width.

The scattering is from free electrons in the conducting sea water.

The Doppler spectrum has peaks due to Bragg scatter from waves in the medium.

The frequency of the peaks tells us the velocity and direction of the waves.

The height of the peaks tells us something about the amplitude and density of the waves.
The width of the peaks tells us something about the spread in velocity of the waves



Doppler spectrum of the ionosphere

Let's put this all together for the ionosphere. The two predominant longitudinal modes in a
thermal plasma:

lon-acoustic mode:
Wg :Csk CS = \/kB(Te—l-ST;)/mz A ©

Langmuir mode: \ /
™ Me : 4 T 1o _ § (pe
. T exp ST W

W

W = — g
3
— 2 A~ 2
Wy, = w}%e + 3 k2 VE R Wpe + §Uthe>\Dek -*]:L — —
4

2
7760;’6 1 Whe 3
Wr; & — | —————€exp| — — = |wg
3 3 27,2
8 k° vy, 2k*vy, . 2




Computer simulation of the ionosphere

Simple rules yield
complex behavior

Anc [rn_3] att =0 ms

Particle-in-cell (PIC) simulation:

dVi i
- :;i(E(xi)+vixB(xi))
—0B
E=——
o o 1 OE
VX B=pd+ 550 3000
v.E=L N
€0 L
<
V:-B=0
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f=
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k =2x/A (1/m)



ISR measures a cut through this surface
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Doppler Radar:
“Incoherent” Distributed Target

Two key concepts:

- ~ Incoherent” distributed target
Distant <:::>Time
A
2
Velocity<:Z:> Frequency
2/,
fD = ——V
C
\_ J

A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.

What happens when we have multiple targets in the radar volume, moving at different velocities?



Incoherent Averaging

Normalized ISR spectrum for different integration times at 1290 MHz _ _
1 | v | | — We are seeking to estimate the

h l 1 sample power spectrum of a Gaussian
random process. This requires
that we sample and average many
independent “realizations” of the
process.

)
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| .

05

p, = Mean Square Error
K = number of samples
SNR = per-pulse Signal-to-Noise Ratio
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Components of a Pulsed Doppler Radar

s(f) cos(w, )
waveform l transn_\i_tter
generator > ®——> (amplifier)

cos(w, 1) sinia)ot)

1/Q
demodulator

l s1(f) = s(f)cos(w,f)

antenna

—_—
circulator @4—@ >

SR(t) = a(t)cos(w, t + qb(t))

—I

low-noise
amplifier (LNA)

1SB(l‘n) = anej¢n =1 +jO,

correlation
receiver

B ———

Physics model

=)

(Plasma density (N,)

lon temperature (T)
Electron temperature (T,)

_Bulk velocity (V)



A Simple Radar Pulse

cos(w,?) I
s7(t) = s(t)cos(w, 1)
X > —
s(t) = A rect(t/t) Waves, modulated
1] by “on-off”’ action of
pulse envelope
_T 0 T
2 2

How many cycles are in a typical pulse?

PFISR frequency: 449 MHz
Typical long-pulse length: 480 us }215’520 cycles!



Measuring Velocity

Conducting sphere,
constant velocity,
Coherent echo

m&g \WWWWWWWWWWW )\ Receive
Approaching == .
/\/\/\/\/\/\/\/\/\ Transmit

@l "\ Receive

<@== Receding

Assume a transmitted signal: s(t)cos(2xf 1)

After return from target: a(t)cos |2xf, (Z +

2R() )

C

Let’s assume target moves with constant velocity with
respect to the radar during the measurement,

R=R,+ vt

Substituting we obtain:

21f,R 2
ﬂfool f fo

a(r)cos |2xf t + 2xfpt + ===y
c
w,t ()
dg
a(t)cos [a)ot + q’)(t)] wp = 2xfp = —

f, ~500 MHz,  f,,~ 50 kHz = 0.0001f,

Two issues:

1) How do we discriminate positive from negative f5,?

2) How do we remove f, , and just sample a(f)cos[¢(7)]?




Analytic Signal Model

From Euler's identity
Imaginary axis

re’? = (r cos 0) + j(r sin ) j=4/-1 N

. rel?
rcos(@) = R{re?} “real part’ .
rsin(@) = 3{,,61‘0} “imaginary part” 2 L
: : 1 r 'rsin@
Setting r = a(t) and 0 = w_t + ¢(t), we obtain a general Tl |
complex signal model for radio and radar applications. 0
s(t) = a(t)e/ @ +o0) ! reos@. o Realaxis
Ly X \ _j | _9 !
PV ~ 7 |
AM Carrier —2j + :
Or by letting w,; = d¢/dt — ¢(t) = w t |

s(f) = a(t)e/@ot@a)

\_Fm
NOte that :Z-Z:: 0+1:2. isisie
AM 530 600 soomd 400170 L.
R{s()} = a(@®)cos(w, t + ¢(1)) o M 8890929496 mul s

S{s(®)} = a(®)sin(w,t + ¢(1))

VOLUME @FD) rm AM Tune — -

LW W




| and Q Demodulation

Consider radar transmission of a simple RF pulse. The reflected signal from the target will be the original pulse

with some time varying amplitude and phase applied to it:
sp(®) = a(t)cos(w, t + (1))

Reference Signal
From Synchronizer We compute the analytic signal by “mixing” with cosine and sine.
‘ Mixing with cosine give the “in-phase” () channel:
Q <— Detector |« sp(t)cos(m, t) = a(t)cos(w, t + ¢(t))cos(w,t)
. 1
Reference Signal Received — —
Shifted 90° in Phase =~ —— Signal a(t) 2 cos[2w,t + ¢0)] + cosl(?)]
IF
(F) filter out
| «— Detector |« Mixing with sine give the “quadrature” (Q) channel:
sp(®)sin(w,t) = a(t)cos(w, t + ¢(1))sin(w, 1)
1 . :
L a = a(t)z —sin[2w,t + ¢(£)] + sin[¢()]
Q filter out
O If we include a gain of 2, we retain the original signal energy. Using
I Euler’s identity we obtain the analytic baseband signal:
sp(t) = a(t)e’” D = a(f)cos p(t) + ja(t)sin p(t) = I + jO

1/Q demodulation produces a time-series of complex voltage samples (,, Q,) from which we can construct a
discrete representation of sz(#). The Doppler frequency shift is the time rate of change of the phase,w,, = d¢/dt



Doppler Detection: Intuitive Approach

Closing on target — positive Doppler shift

Echo 1 Echo2 Echo3 Echod4 Echo5 Echo 6 Echo 7

I | - ] — <+ & Target

. 1 ¢|2 But do we expect an electron

Inter-pulse period (IPP) E)Oe’:\r/]vaeig:]a:)nulas ggQStant velocity

Strobe light at w,

s
Echo 3 Echo 2 \Vé Transmitted
/< Received
®,
Echo 4 Echo 1 ¢1 ¢2
) * Transmitted signal L,
Echo 5 Echo 8
Echo 6 Echo 7

Target’s Doppler frequency shows up
as a pulse-to-pulse shift in phase.



Doppler Detection: Intuitive Approach

Closing on target — positive Doppler shift

Echo 1 Echo2 Echo3 Echod4 Echob Echo6 Echo 7

[ | < <_{ - -« M= Target

I'T
o1 Po
A A But do we expect an electron

Inter-pulse period (IPP) E)Oe’:\r/]vaeig:]a:)nulas gg'r?]Stant velocity

Strobe light at w,

0%t
Echo \e~—~ '
3 Echo 2 é Transmitted
< Received
?,
Echo 4 Echo 1 ¢1 ¢2
) * Transmitted signal .
Echo 5 Echo 8
Echo 6 Echo 7

What is the maximum Doppler shift
that can be unambiguously measured?
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Components of a Pulsed Doppler Radar

s(f) cos(w, )
waveform l transn_\i_tter
generator > ®——> (amplifier)

cos(w, 1) sinia)ot)

1/Q
demodulator

l s1(f) = s(f)cos(w,f)

antenna

—_—
circulator @4—@ >

SR(t) = a(t)cos(w, t + qb(t))

—I

low-noise
amplifier (LNA)

1SB(l‘n) = anej¢n =1 +jO,

correlation
receiver

B ———

Physics model

=)

(Plasma density (N,)

lon temperature (T)
Electron temperature (T,)

_Bulk velocity (V)



Essential mathematical operations

Fourier Transform: Expresses a function as a weighted sum of complex exponentials.

+00
analysis equation: F(w) =% [f(t)] = [ f(He 7 dt

1 +00 .
synthesis equation:  f(7) = F1 [F(a))] = 2—J F(w)e’” dw
7 — 00

) <= Fo)

Duality: Comparison of & and % ~! we obtain
F() <= 2wnf(—w)

Convolution: Expresses the action of a linear, time-invariant system on a function.

+00
J(@) * g(1) = [ J(0)g(t —7)dr

JO*gt) = Flw)G(o)
J)g() = Flw)*G(w)



Dirac Delta Function o(x)

A generalized function, or distribution, with the properties

_ +00
5(x) = {+°°’ ¥=0 J 5()dx = 1

0, x#0

Sampling property: From the above it follows that

+0co
ft,) = J FO5(t — 1,)dt
— o N——
argument is zero at ¢ = ¢,

Shift property: Convolution of a function F(x) with
o(x — x,) shifts the entire function by x,. We will
use this property to understand mixing. Specifically:

+00
Flw)*o(w — wy) = [ F(Q)o(w — wy — £2)d<2

= F(w — wy)

i x(f) = 8(1)

0 [ —»

o(f) may be expressed as
the limit of many functions

\(x=0.1




Fourier analysis of harmonic functions

+00
F 80| = J s(Ne 'dt = e~/dt
F :5(t): =1 0= Flw) =1
_ ] +00 . S ——
F |o(t—t,) =[ 5(t —t,)e™'dt
- - —0.0 0 [ —>» 0 o —
F |6t —1)| = e

From duality property we can also write,

Fl] =2rd()| | F || = 2z8(w — ,)

1

f(t) = cos(w,t) = > [

ejwot + e _jwot]

oo . . | . oo .
F(w) =J 5 [efwof+e‘fw"t] e Vdt = 5 J ef%fe‘fmdwj e /Pl g TI® ]t

—0o0

F [cos(a)ot)] =7 [5(0) —w,) + 6w + 600)]




Fourier analysis of harmonic functions

=1 X(w) = 278(w)
, s A

0 [ —» 0 W —»>

cos wyt <= w[d(w + wy) + §(@w — wy)]

x(1) COS wpt I X(w) -

MNANAT = |
VAVAVAY .

Sin awyl s Jjr[d(w + ay) — d(w — axy)]

/@t — cos(w, f) +jsin(w )  d=—» 2w (@ — ay)



Summary of tools for I/Q demodulation

\

I L

Re¢

Multiplication-convolution:

Frequency shift property:

Harmonic functions:

cos(2mf,t)

S(?)

$-
1L

90°

Im

é ~
sin(2mf, )
0

J(Hg(t) = F(o) * G(w)

F(w)* o(w — wy) = Flo — w)

— cos(w, ) = &

— sin(w,t) < jr

L o/®t =

5w + w,) + 5w — w,))

5w+ w,) - 50— ,)]

2n6(w — w,)



I/Q Demodulation: Frequency Domain

Transmitted signal: Frequency domain

cos(2zf ) <<

-f, 0 f,

Reflected signal from moving target narrow-band

cosa(f, +fp)) < / signal
! Efo+fD
Mixed (multiplied) with oscillator cos(2xf f) LPF:L*
1 1 |
- cos 272f, + fp)t] + = - cos 2zft] < , .
2f I A ) oF 4,

*Low Pass Filter

To resole both positive and negative Doppler shifts, we need: “*East Fourier Transform

eI2TIDt — cos(27 fpt) + jsin(27 fpt)

g
We thus need to mix with a second oscillator at same frequency but 90° out of phase (Lecture 3).

For a cosine reference, the quadrature function is sine. The two components are called “in phase” (/)
and “quadrature” (Q). Together [ and Q represent discrete samples of the baseband analytic signal,

sp(t) = Ae*™ ! = I(t) + jO(1) AS(f—fp)  (for asingle scatterer)



Correlation and the ISR Spectrum

How do we compute the power spectrum from our complex voltages ?
One approach is to compute Fourier transform of the range-resolved signal:

s(r,t) =1(r,t) + O(r, 1) < S(r,f) /

S )|

2
from which the power spectrum may be represent as |S(r, f )|

Based on the stochastic nature of the target, and the way ISR samples the echos,
we will take a different approach. We first compute the auto-correlation function (ACF),

{s(r,)s(r, 1+ 7))

<|S(r,t)|2>

where the angle brackets denote the ensemble average, or the expected value.
The power spectral density is given by the Fourier transform of the R

R(r,7) =

R(r,7) = | S(r, f) | ? (Wiener-Khinchin theorem)

The discrete representation of R (r, 7) is constructed through appropriate scaling and
multiplication of the complex voltage samples s(r, 7).

In the next lecture we will begin to explore methods for constructing the ACF.
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Gate function

' <t<
rectangular pulse: f(t) = { (1) \t\T>_Tt <T

T :
. —1 . : 2 T
F(w) = / e I dt = (e77" — ! = et
—T

Jw W
1! 2T R b EEEEEEEEEEE T
S 3
= =,
0o A
0 R S ‘ o
—-T T —7n /T w/T
t w

unit impulse: f(t) = (¢ shifted: f(r) = o6(r —1t))

F(w) = /_OO S(t)e 7t dt = 1 F(w) =



Gate function
rect(t/t) = [1 for—7/2<t<71/2 ,,,:,,,Sm(ﬂ)
{0 otherwise .

x(N Xlw)

_T 0 T I—
2 2
ISR spectrum +~— Autocorrelation function (ACF)
-------------------------- N T =

APU \\NE S — - S— I S— -

05 i | | i i i i i i
0 50 100 150 200 250 300 350 400 450 500
Lag (usec)

-10
Frequency (KHz)

For low Te, the ISR ACF looks like a sinc function. For high Te the ACF becomes more
oscillatory and looks more like a cosine (power concentrated at the Doppler frequency
corresponding to the ion-acoustic wave speed.



Convolution

Convolution: Expresses the action of a linear, time-invariant system on a function.

»+00
JO*g) = | [floglt—7rdr — Fw)G(w)
e
Flw)*G(w) = | Flo)Go-Q)dQ < f(H)g()

%f\vm\/\v fo |




Filters, and the gate function



How it all hangs together.

 Duality:
- Gate function in the time domain represents amplitude modulation

- Gate function in the frequency domain represents filtering

e Limiting cases:
- Gate function approaches delta function as width goes to 0 with constant area

- A constant function in time domain is a special case of harmonic function where
frequency = 0.

- A consjioant function in time domain is a specigt'case of a gate function where

=N , N\ fegeney
.~ A v NS
T fi—(1/7) £t (1/7)

How many cycles are in a typical ISR pulse?

PFISR frequency: 449 MHz :ll> \
Typical long-pulse length: 480 us 215,520 cycles!




A linear system

« Convolution property



Correlation

Correlation: A measure of the degree to which two functions look alike at a given offset.
If the two functions are the same, we call this the autocorrelation function, or ACF.

+00
Re(7) = \ £t + Df(dt = f(2) * f(=7)

—00
We will be working with discrete samples

White noise

Ry(k) = Y fn)(f)n—k)

n=—~oo

The ‘spectrum’ refers to
the power spectrum, which 1200

200

400 600 800 1000

Autocorrelation

is the Fourier transform of
the autocorrelation function

I 1

Rff — ‘ U(w) ‘ 2 ~1000

—500

500 1000

O.—

A g



| and Q Demodulation: Frequency Domain

Transmitted signal Frequency domain
cos(27 f,t) I
-f, 0 f,
Doppler shifted I T
cos(2m(f, + fp)t) X . i
Tl | A

Mixed (multiplied) with carrier cos(27 f,t)

|

il

-2f,-fp

I o

Cosine is even function, so sign of f; (and, hence, direction of motion) is lost.

What we need instead is:

eI2TIDt — cos(2m fpt) + jsin(27 fpt)

2f,+fp

The analytic signal eI/t cannot be measured directly, but the cos and sin components
via mixing with two oscillators with same frequency but orthogonal phases. The components

are called “in phase” (or /) and “in quadrature or Q):

F

Ael?mInt — )+ 7Q(t) <E> A(S(fD) (for single scatterer)



Weiner Kinchine Theorem

* The power spectrum has a time domain representation too.
 ACF

» A point in the power spectrum are a measure of power density at a
given frequency.

* A point in the ACF is a measure of correlation between the incoming
signal and a time-shifted version of it, where time variable is the time
shift.

* In ISR processing, it is most common to compute the ACF from the
time series of | and Q



Components of a Pulsed Doppler Radar
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Doppler power spectrum via FFT
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Incoherent Scatter Radar (ISR)
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Issues to consider

e connection between how fast we sample, and the maximum doppler
velocity that we can observe unambiguously

* This is formalized in something called the Nyquist sampling theorem.

- To reconstruct a sinusoid, we have to sample it at twice the highest frequency
present in our signal.

- For a sinusoid with frequency f, this means we must sample it at at least 7, = 2f.



Dish Versus Phased-array

-FOV: Entire sky -FOV: +/- 15 degrees from boresight
-Integration at each position before -Integration over all positions
moving simultaneously

-Power concentrated at Klystron -Power distributed

-Significant mechanical complexity -No moving parts
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Radar Waveforms (cont’d.)

Pulse at single frequency >
c
S
WW d
L
Time
Pulse with changing frequency
1y Linear Frequency-
o Modulated (LFM)
S Waveform
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Radar Waveforms (cont’d.)
s(t) = A(9)cos 2xf,t + P(@)]

Unmodulated RF signal

RF pulse at a single frequency

SRR

RF Pulse with changing frequency

SRANIE

s(f) = A e/*Ho!

s(t) = A(t)e/*

s(t) = A(t)e/ ot A1

RF Pulse, single frequency, changing phase

Rivlip

s(t) = A(t)eﬂﬂf;fejqﬁ(t)




