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Traveling Waves
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The velocity of a point on the 
wave is found by setting �  
= constant. By taking the 
time derivative we obtain the 
phase velocity, 

            � 
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The functional relationship 
between �  and �  is called a 

dispersion relation.   It appears 
ubiquitously in the study of  
wave phenomena


The simplest dispersion relation 
for an EM wave describes its 
propagation through free space,


                  � 


where � .  We will 
encounter more complicated 
dispersion relations soon!

ω k

ω = ck

c = 3 × 108 𝗆/𝗌

  Traveling wave, 1D:          �  

  Angular velocity (radians/s):           � 

  Wave number (spatial frequency):              � 

  Phase velocity ( �  in a vacuum):                    �             

y(x, t) = A cos(ωt − kx)
ω = 2πf = 2π/T

k = 2π/λ
c up = ω/k

Temporal variation at point in space: Three snapshots in time:



Transverse Electromagnetic (TEM) 
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Polarization:  Orientation of the Electric Field Vector

S = E × H W/m2

Power flow:

Radars transmit TEM waves and measure the scattered radiation from a target
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Range

R

R =
cΔt
2

R =
cΔt
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The pulse length !  is most often expressed in  
units of time, and corresponds to a distance ! , 
where !  

τ
cτ

c = 3 × 108 m/s

τ

Range !  to the target is measured by transmitting a pulse of electromagnetic waves, and 
measuring the time !  between transmission and reception of the pulse,

R
Δt

Δt = 2R/c

Range resolution for a simple on-off pulse (“uncoded pulse”) is controlled by ! .   Shorter  !  
yields higher range resolution.  But a shorter pulse also carry less total energy, and so the 
reflected signal is more difficult to discriminate from background noise.

τ τ

Range resolution depends on how well we  
can resolve ! .   For the case of a simple  
on-off pulse, the optimal approach is to  
match the sampling  period to the pulse length 
(the so-called “matched filter” approach).
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Measuring Velocity

k =
2π
λo

fD = −
k
π

vofD = −
2
λo

vo

Assume a transmitted signal:             � 


After return from target:         � 


cos(2πfot)

cos [2πfo (t +
2R
c )]

R Now let us allow range R to vary with time.   Let’s  assume  
the target moves at a constant velocity, with positive away 
from the radar and negative toward the radar:                       

R = Ro + vot

Substituting we obtain:    

� 
cos 2π fo + fo
2vo

c
⏟

t +
2πfoR

c
−fD constant

fD = − 2fo ( vo

c )
The shift in frequency caused by a moving target is

proportional to  the component of the velocity vector 
along the radar line of sight:

How we determine �  is left for other lectures.fD

(Titan)

fD = −
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vo

fD = − 2fo ( vo

c ) = − 2 ( vo
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Cross-range resolution (beam width)

R =
cΔt
2

Δt = 2R/c

R

The cross-range resolution is usually 
defined by the angular width of the  
main lobe of the antenna's power pattern.   
For a dish antenna this is approximately 
equal to the ration of the wavelength 
to the physical diameter,  

                 !       (radians) β =
λo

d

Millstone Hill ISR has a 46-m dish operating at a frequency of 440 MHz, or !  m,   
giving a beam width of !  .

λ = 0.68
β ≃ 0.85∘
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!    (rad)
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A radar “pixel”



Doppler Radar Summary:  
“Coherent” hard targets

A Doppler radar measures backscattered power as a function range and velocity. 
Velocity is manifested as a Doppler frequency shift in the received signal. 

What happens when we have multiple targets in the radar volume, moving at different velocities? 

Two key concepts: 

Time              Distance 

Frequency            Velocity 

fD = −
2fo
c

vo

R = −
cΔt
2 R ~100,000 

oscillations

~10-14  Watts

Solid reflecting target,  
single dominant velocity



Doppler Radar Summary: 
Distributed “Incoherent” Targets

A Doppler radar measures backscattered power as a function range and velocity. 
Velocity is manifested as a Doppler frequency shift in the received signal. 

What happens when we have multiple targets in the radar volume, moving at different velocities? 

e- e-

e-

R1

R2

Distributed targets, 
different velocities

superposition of   
reflections from  
all targets (electrons) 
in the volume.

Two key concepts: 

Time              Distance 

Frequency            Velocity 

fD = −
2fo
c

vo

R = −
cΔt
2
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Doppler Radar Summary:  
“Coherent” hard targets

A Doppler radar measures backscattered power as a function range and velocity. 
Velocity is manifested as a Doppler frequency shift in the received signal. 

What happens when we have multiple targets in the radar volume, moving at different velocities? 

Two key concepts: 

Time              Distance 

Frequency            Velocity 

fD = −
2fo
c

vo

R = −
cΔt
2 R ~100,000 

oscillations

~10-14  Watts

Solid reflecting target,  
single dominant velocity



Concept of a “Doppler Spectrum”
ENG SC700 Radar Remote Sensing J. Semeter, Boston University

Some Other Doppler Spectra

S. Bachman, MS Thesis

NEXRAD WSR-88D

Incoherent Scatter Radar
--random thermal motion of plasma results in Doppler spectrum

..more on that in the next 2 lectures.

Tennis ball, birds, aircraft engine
--examples of solid objects that give Doppler spectrum

ENG SC700 Radar Remote Sensing J. Semeter, Boston University

Some Other Doppler Spectra

S. Bachman, MS Thesis

NEXRAD WSR-88D

Incoherent Scatter Radar
--random thermal motion of plasma results in Doppler spectrum

..more on that in the next 2 lectures.

Tennis ball, birds, aircraft engine
--examples of solid objects that give Doppler spectrum
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If there is a distribution of targets withdifferent velocities (e.g., bird, flapping wings,wind)  
then there is no single Doppler shift but, rather, a Doppler spectrum.

Superposition of targets moving with different velocities within the radar volume

Two key concepts: 

Time              Distance 

Frequency            Velocity 

fD = −
2fo
c

vo

R = −
cΔt
2

p(v)p(R, fD)

p(v)

Processing:



Distributed “beam filling” Target
A Doppler radar measures backscattered power as a function range and velocity. 
Velocity is manifested as a Doppler frequency shift in the received signal. 

For a beam-filling target (like water droplets in a 
tornado), the radar can be used to construct 
insightful images of velocity relative to the radar.

Two key concepts: 

Time              Distance 

Frequency            Velocity 

fD = −
2fo
c

vo

R = −
cΔt
2

v(R, θ)fD(R, t)

 R

θ

p(R, fD, t)
Processing:



Pitched ball

Trackman radar:   “continuous wave” (CW) 
 radar:  precise Doppler but no range  
information. 

Can identify targets and actions based on  
Doppler signatures!
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Micro-Doppler Analysis

Processing:



Wave Interference and Bragg Scatter
Consider two waves with the same 
frequency but different phase. 

Properties of Waves
Constructive vs. Destructive Addition

S

Constructive
(in phase)

Destructive
(180� out of phase)

S

Partially Constructive
(somewhat out of phase)

S

S

Non-coherent signals
(noise)

�λs sin θ

�nλ0 = 2λs sin θ

Consider a wave along the interface between a dielectric 
and a conducting (reflective) medium, as depicted below.  
This is representative of an air-ocean boundary. 

 
 
 
 
 

 
Suppose waves are observed at angle �   using a radar 
with wavelength � .  The condition for maximum 
constructive  interference is

θ
λo

If �  (or if these waves are propagating isotropically), 
then  the Bragg condition is met for �         

θ = 90∘

nλ0 = 2λs



Doppler spectrum of ocean waves

Important points:   
The target is distributed over the entire radar beam width.  
The scattering is from free electrons in the conducting sea water. 
The Doppler spectrum has peaks due to Bragg scatter from waves in the medium. 
The frequency of the peaks tells us the velocity and direction of the waves. 
The height of the peaks tells us something about the amplitude and density of the waves. 
The width of the peaks tells us something about the spread in velocity of the waves 

Backscatter from the ocean at low aspect 
angle shows peaks in the  Doppler 
spectrum from the subset of waves 
matching the Bragg condition for the radar   
(spacing !  half the radar wavelength)≃

Waves moving 
toward the radar

Waves moving 
away from  

the radar

Noise floor



Doppler spectrum of the ionosphere
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Figure 2·4: Longitudinal modes of a plasma. Blue lines relate to ion
acoustic waves and red ones to Langmuir waves.

plasma particles start to interact more strongly with the growing wave, e.g., by heating.

This can sometimes be described in terms of the so-called quasi-linear saturation within

the Vlasov theory.

A way of categorizing plasma instabilities is to divide them between macroscopic (con-

figurational) and microscopic (kinetic) instabilities. The division is the same as within

plasma theory in general. A macroinstability is something that can be described by

macroscopic equations in the configuration space. Examples of a macroinstability are the

Rayleigh-Taylor, Farley-Buneman and Kelvin-Helmholtz instabilities. On the other hand,

a microinstability takes place in the (x,v)-space and depends on the actual shape of the

distribution function. A consequence of a microinstability is a greatly enhanced level of

fluctuations in the plasma associated with the unstable mode. These fluctuations are called

microturbulence. Microturbulence can lead to enhanced radiation from the plasma and to

enhanced scattering of particles, resulting in anomalous transport coe⇤cients, e.g., anoma-

lous electric and thermal conductivities. Examples of microinstability are the beam-driven,

ion acoustic and electrostatic ion cyclotron instabilities.
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can account for the simultaneous enhancement in the two ion lines, and the simultaneous55

ion and plasma line enhancement.56

This purpose of this paper is to provide a unified theoretical model of modes expected in57

the ISR spectrum in the presence of field-aligned electron beams. The work is motivated58

by the phenomenological studies summarized above, in addition to recent theoretical59

results–in particular, those of Yoon et al. [2003], and references therein, which suggest60

that Langmuir harmonics should arise as a natural consequence of the same conditions61

producing NEIALs. Although these e�ects have been treated in considerable detail in the62

plasma physics literature, their implications for the field of ionospheric radio science (and63

ISR in particular) have not yet been discussed. The conditions to detect all the modes64

present within the IS spectrum within the same ISR is also presented in this work.65

2. Plasma in Thermal Equilibrium

There exist two natural electrostatic longitudinal modes in a plasma in thermal equilib-66

rium: the ion acoustic mode, which is the main mode detected by ISRs, and the Langmuir67

mode [Boyd and Sanderson, 2003]. Using a linear approach to solve the Vlasov-Poisson68

system of equations, the dispersion relation of these modes is obtained. The real part of69

the ion acoustic dispersion relation reads70

⇥s = Csk, (1)

and the imaginary part (assuming ⇥si � ⇥s, k2�2
De � 1 and Ti/Te � 1) can be written71

as72
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where Cs =
⌥

kB(Te + 3Ti)/mi is the ion-acoustic speed. The dependence of this mode

on ionospheric state parameters is observed in Eq. 2. The Langmuir mode is detected by

ISR under certain conditions, and the real part of its dispersion relation is expressed as
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and the imaginary part (assuming ⇤Li ⇤ ⇤L) is73
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The forward model used to estimate ionospheric parameters in ISR assumes that these74

are the dominating modes in the ISR spectrum. However, an injected beam of particles,75

in particular electrons, can destabilize the plasma, altering the dispersion relations and76

amplitudes of these modes.77

3. Current Model of the Langmuir Decay Process for NEIAL Formation

The model presented by Forme et al. [1993] to explain NEIALs is a two step process.

First, a beam-plasma instability enhances Langmuir Waves (LW). Second, if the enhance-

ment of LW is high enough then the enhanced LW can decay, enhancing Ion Acoustic

Waves (IAWs) and counter-propagating LWs. The plasma-beam process involves three

species: thermal electrons, thermal ions, and an electron beam with a bulk velocity of

vb. By assuming small perturbations and small damping/growth (vthe, vthi, vb ⇤ ⇤/k),

linearization of Vlasov-poison system can be used to find the dispersion relation of the
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Let's put this all together for the ionosphere.   The two predominant longitudinal modes in a 
thermal plasma:   

Ion-acoustic mode:

 

Langmuir mode:

 



Computer simulation of the ionosphere
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2.4 The Particle-in-Cell Method

The simulator uses a particle-in-cell (PIC) method for both the ions and electrons. This

accurately models all dynamics, including thermal e�ects, at the cost of substantial com-

puter time. The idea of the PIC method, described in detail in books by Birdsall and

Langdon (1985), Hockney and Eastwood (1988) or Tajima (1988), is simple: The code

simulates the motion of plasmas particles in continuous phase space, whereas moments of

the distribution such as densities and currents are computed on discrete points (or cells)

from the position and velocity of the particles. The macro-force acting on the particles is

calculated from the field equations. The name “Particle-in-Cell” comes from the way of

assigning macro-quantities to the simulation particles.

In general PIC codes solve the equation of motion of particles with the Newton-Lorentz

force

dxi

d t
= vi and

dvi

d t
=

qi

mi
(E(xi) + vi ⇥B(xi)) for i = 1, . . . , N (2.49)

and the Maxwell’s equations (Equations 2.4 and 2.7) together with the prescribed rule of

calculation of � and J

� = �(x1,v1, . . . ,xN ,vN ), (2.50)

J = J(x1,v1, . . . ,xN ,vN ). (2.51)

� and J are the charge and current density of the medium at certain iteration. A

simplified scheme of the PIC simulation is given in Figure 2·8.

PIC codes usually are classified depending on dimensionality of the code and on the

set of Maxwell’s equations used. The codes solving a whole set of Maxwell’s equations are

called electromagnetic codes; electrostatic ones solve just the Poisson equation.

Specifically the code used in this work can perform two and three dimensional simu-
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When the plasma is warm, which means that the thermal velocity of the particles is

important, it can be described as previously with a force-balance motion equation but this

time with a term that accounts for the thermal velocity of the particles, a pressure term

(�pTj⌅nj). Thus, the equation becomes

mjnj
⌅v
⌅t

= qjnj(E + v⇤B)� �pTj⌅nj , (2.2)

where �p is a proportionality constant and Tj the temperature of the species j.

Even though the main modes present in a warm plasma can be obtained with Equation

2.2, part of the physics of those modes is lost in the over simplification of the motion

equation. When the temperature of a plasma is finite and the thermal velocity of the

particles is comparable to the phase velocity of the propagating wave, the interaction of

the particles and the wave becomes important. Some of the typical interactions are Landau

damping and microinstabilities. Those phenomena can be explained only through a motion

equation that takes into account the space-velocity distribution of the particles forming the

plasma. This equation is the Boltzman equation, which becomes Vlasov equation (Equation

2.3) in absence of collisions.

Landau damping and microinstabilities are important in determining the shape of the

incoherent scatter radar spectrum at high latitudes, therefore a kinetic approach, which

uses a Vlasov equation as motion equation, has to be used. The system of equations formed

by Equations 2.3 to 2.9, which includes the Vlasov equation plus Maxwell’s equations, has

to be solved self-consistently to obtain the wave modes propagating along the plasma.

⌅fj(t,x,v)
⌅t

+ v · ⌅fj(t,x,v)
⌅x

+
qj

mj
(E + v⇤B) · ⌅fj(t,x,v)

⌅v
= 0 (2.3)

⌅⇤E =
�⌅B
⌅t

(2.4)

⌅⇤B = µ0J +
1
c2

⌅E
⌅t

(2.5)
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⇥ · E =
⇤

�0
(2.6)

⇥ · B = 0 (2.7)

Coupling is complete via charge and current densities.

⇤ =
�

j

qj nj =
�

j

qj

⇥
fj d3v (2.8)

J =
�

j

qj nj vj =
�

j

qj

⇥
fj v d3v, (2.9)

where fj(x,v) represents the space-velocity distribution function of the species j, �0 and

µ0 are the permitivity and permeability of the air respectively, and c is the speed of light.

The complexity of this system of equations is evident and the quasi-linear approach is

used to obtain an approximated solution. The traditional development of the quasi-linear

theory of waves in plasmas follows a well established procedure (Krall, 1974; Nicholson,

1983): First, electromagnetic fields, and in the case of warm plasmas the space-velocity

distribution of the particles, are linearized; then the linear Vlasov equation is subjected
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the conductivity tensor (�) is obtained from this relation; Fourier analyzed in both space

and time, Faraday’s and Ampere’s equations are combined to yield a dispersion equation.

The solution of this dispersion equation relates frequency ⌅ and wavevector k and thereby

determines the normal modes of the plasma; thus the final step is to insert the conductivity

tensor (which brings the plasma properties) into the dispersion relation (which states waves

main features) to obtain the plasma waves. This is the path that is followed in this section.

Following this path, the linearization of the fields and space-velocity distribution func-

tion comes first and is used together with a Fourier/Laplace space/time transform of the

20

⇥ · E =
⇤

�0
(2.6)

⇥ · B = 0 (2.7)

Coupling is complete via charge and current densities.

⇤ =
�

j

qj nj =
�

j

qj

⇥
fj d3v (2.8)

J =
�

j

qj nj vj =
�

j

qj

⇥
fj v d3v, (2.9)

where fj(x,v) represents the space-velocity distribution function of the species j, �0 and

µ0 are the permitivity and permeability of the air respectively, and c is the speed of light.

The complexity of this system of equations is evident and the quasi-linear approach is

used to obtain an approximated solution. The traditional development of the quasi-linear

theory of waves in plasmas follows a well established procedure (Krall, 1974; Nicholson,

1983): First, electromagnetic fields, and in the case of warm plasmas the space-velocity

distribution of the particles, are linearized; then the linear Vlasov equation is subjected

to a Fourier/Laplace analysis in space/time, yielding fluctuating particles distributions

which are used to settle the current density (J) and electric field (E) relation. Usually

the conductivity tensor (�) is obtained from this relation; Fourier analyzed in both space

and time, Faraday’s and Ampere’s equations are combined to yield a dispersion equation.

The solution of this dispersion equation relates frequency ⌅ and wavevector k and thereby

determines the normal modes of the plasma; thus the final step is to insert the conductivity

tensor (which brings the plasma properties) into the dispersion relation (which states waves

main features) to obtain the plasma waves. This is the path that is followed in this section.

Following this path, the linearization of the fields and space-velocity distribution func-

tion comes first and is used together with a Fourier/Laplace space/time transform of the

Particle-in-cell (PIC) simulation:

Simple rules yield  
complex behavior
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(a)

(b)

(c) (d)

Figure 4·5: Simulated incoherent scatter spectrum (for periodic boundary
conditions), obtained integrating 120 angular independent spectra,(a) as a
function of the frequency and the wavenumber. (b) As a function of fre-
quency for the wavenumber k ⇥54 m�1(or radar frequency of ⇥ 1300 MHz),
which is similar to the wavenumber of Sondrestrom. (c) and (d) are close
ups of the negative and positive Langmuir modes, respectively.

3000 

       0 

-3000 20        40        60       80       100      120
(1/m)k = 2π/λ

f=
2π

/ω
(k

H
z) Langmuir (“Plasma Line”)

Ion-acoustic (“Ion Line”)



31

Figure 2·5: The top figure shows an Incoherent Scattering Spectrum,
including the three lines. The middle figure shows a zoom to the ion acoustic
line, which is the focus of this research. The bottom figure shows the
autocorrelation function �(⇥) of the ion acoustic line. f+ is the Doppler
frequency associated with the ion acoustic phase velocity.

                                                  

!𝗐𝖺𝗏𝖾𝗇𝗎𝗆𝖻𝖾𝗋 k (𝟣/𝗆)

ISR measures a cut through this surface 
77

Figure 3·6: Simulated ISR spectra for many scatter wave numbers with
105 macroparticles (top plot). Simulated and theoretical ISR spectrum for
three di�erent scatter wave numbers with 105 macroparticles (bottom plot).
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Doppler Radar:  
“Incoherent” Distributed Target

A Doppler radar measures backscattered power as a function range and velocity. 
Velocity is manifested as a Doppler frequency shift in the received signal. 

What happens when we have multiple targets in the radar volume, moving at different velocities? 

e-

Two key concepts: 

Distant             Time 

Velocity            Frequency 

e-

e-

fD = −
2fo
c

vo

R = −
cΔt
2 R

“Incoherent” distributed target

?



Incoherent Averaging

69

Figure 3·2: Simulated IS spectra for di�erent number of independent spec-
tra integrated at an operation frequency of 1289 MHz. Top plot shows an
average of one spectrum. The middle plot shows an average of 30 inde-
pendent spectra. The bottom plot shows an average of 600 independent
spectra.

Normalized ISR spectrum for different integration times at 1290 MHz
We are seeking to estimate the 
power spectrum of a Gaussian 
random process.  This requires 
that we sample and average many 
independent “realizations” of the 
process. 

        !  

! Mean Square Error 
! number of samples 
! per-pulse Signal-to-Noise Ratio

ρe ∼
1
K (1 +

1
SNR )

ρe =
K =
SNR =

1 sample

30 samples

600 samples





Radar Signal Processing: 
Part 3

I-Q demodulation: Time-domain perspective 
 
 

Josh Semeter

Boston University



Components of a Pulsed Doppler Radar

Physics model

Plasma density (Ne) 
Ion temperature (Ti) 
Electron temperature (Te) 
Bulk velocity (Vi)

+

+

+

__

_

cos(ωot)s(t)

sT(t) = s(t)cos(ωot)

sR(t) = a(t)cos(ωot + ϕ(t))

sB(tn) = anejϕn = In + jQn

cos(ωot) sin(ωot)



A Simple Radar Pulse

Waves, modulated 
by “on-off” action of  

pulse envelope

How many cycles are in a typical pulse?   
   PFISR frequency:  449 MHz 
   Typical long-pulse length: 480 µs 215,520 cycles!

cos(ωot)
Lecture 10 Slide 3PYKC 10-Feb-08 E2.5 Signals & Linear Systems

Connection between Fourier Transform and Laplace 
Transform

X Compare Fourier Transform:

X With Laplace Transform:

X Setting s = jω in this equation yield:

X Is  it true that:                           ?
X Yes only if x(t) is absolutely integrable, i.e. has finite energy:

L7.2-1 p697

Lecture 10 Slide 4PYKC 10-Feb-08 E2.5 Signals & Linear Systems

Define three useful functions

X A unit rectangular window (also called a unit gate) function rect(x):

X A unit triangle function Δ(x):

X Interpolation function sinc(x):
or

L7.2-1 p687

s(t) = A rect (t/τ)
X

sT(t) = s(t)cos(ωot)

=

sT(t) = A 𝗋𝖾𝖼𝗍 (t/τ) cos(ωot)



Measuring Velocity
Assume a transmitted signal:             � 


After return from target:         � 


s(t)cos(2πfot)

a(t)cos [2πfo (t +
2R(t)

c )]
Let’s assume target moves with constant velocity with 
respect to the radar during the measurement,                      

R = Ro + vot

Substituting we obtain:    

� 
a(t)cos [ωot + ϕ(t)]

fD = −
2fo
c

vo� 
a(t)cos [2πfot + 2πfDt +
2πfoRo

c ]� 
⏟
ωot

� 


� 
ϕ(t)

� ~ 50 kHz�  fD = 0.0001fo

2) How do we remove �  , and just sample � ?fo a(t)cos[ϕ(t)]

R

Conducting sphere,  
constant velocity,  

Coherent echo

ωD = 2πfD =
dϕ
dt

 �  MHz, fo ∼ 500

1) How do we discriminate positive from negative  � ?fD

Receive

Receive

Transmit

Two issues:



where r is the magnitude of z, and is the phase of z. We notice that
z can be represented in three ways:

(9.15)

The relationship between the rectangular form and the polar form
is shown in Fig. 9.6, where the x axis represents the real part and the
y axis represents the imaginary part of a complex number. Given x and
y, we can get r and as

(9.16a)

On the other hand, if we know r and we can obtain x and y as

(9.16b)

Thus, z may be written as

(9.17)

Addition and subtraction of complex numbers are better performed
in rectangular form; multiplication and division are better done in polar
form. Given the complex numbers

the following operations are important.
Addition:

(9.18a)z1 ! z2 " (x1 ! x2) ! j( y1 ! y2)

z2 " x2 ! jy2 " r2 lf2

z " x ! jy " r lf,  z1 " x1 ! jy1 " r1 lf1

z " x ! jy " r lf " r ( cos f ! j sin f)

x " r cos f,  y " r sin f

f,

r " 2x 
2

! y 
2
,  f "  tan 

#1
 
y
x

f

 z " re 
j f
   

 
Exponential form

 z " r lf   Polar form

 z " x ! jy   Rectangular form

f

9.3 Phasors 377

Charles Proteus Steinmetz (1865–1923), a German-Austrian
mathematician and engineer, introduced the phasor method (covered in
this chapter) in ac circuit analysis. He is also noted for his work on the
theory of hysteresis.

Steinmetz was born in Breslau, Germany, and lost his mother at the
age of one. As a youth, he was forced to leave Germany because of
his political activities just as he was about to complete his doctoral dis-
sertation in mathematics at the University of Breslau. He migrated to
Switzerland and later to the United States, where he was employed by
General Electric in 1893. That same year, he published a paper in
which complex numbers were used to analyze ac circuits for the first
time. This led to one of his many textbooks, Theory and Calculation
of ac Phenomena, published by McGraw-Hill in 1897. In 1901, he
became the president of the American Institute of Electrical Engineers,
which later became the IEEE.
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Analytic Signal Model

s(t) = a(t)ej(ωot+ϕ(t))

rejθ = (r cos θ) + j(r sin θ)

cos(θ) = sin(θ + π/2)

From Euler's identity

Setting  �  and � ,  we obtain a general  
complex signal model for radio and radar applications.

r = a(t) θ = ωot + ϕ(t)

θ = ωt = 2πft

AM
PM

Carrier

s(t) = a(t)ej(ωo+ωd)t

Or by letting �  ωd = dϕ/dt → ϕ(t) = ωdt

j = −1

ejx = cos(x) + j sin(x)
r cos(θ) = ℜ{rejθ}

r sin(θ) = ℑ{rejθ}

“real part”

“imaginary part”
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θ

FM

−θ

ℜ{s(t)} = a(t)cos(ωot + ϕ(t))
Note that:

rejθ

r cos θ

r sin θ

ℑ{s(t)} = a(t)sin(ωot + ϕ(t))



I and Q Demodulation
Consider radar transmission of a simple RF pulse.  The reflected signal from the target will be the original pulse 
with some time varying amplitude and phase applied to it:

sR(t) = a(t)cos(ωot + ϕ(t))
We compute the analytic signal by “mixing” with cosine and sine. 
Mixing with cosine give the “in-phase” (I) channel:

sR(t)cos(ωot) = a(t)cos(ωot + ϕ(t))cos(ωot)

= a(t)
1
2 (cos[2ωot + ϕ(t)] + cos[ϕ(t)])

Mixing with sine give the “quadrature” (Q) channel:
sR(t)sin(ωct) = a(t)cos(ωot + ϕ(t))sin(ωot)

= a(t)
1
2 (−sin[2ωot + ϕ(t)] + sin[ϕ(t)])

If we include a gain of 2, we retain the original signal energy.  Using  
Euler’s identity we obtain the analytic baseband signal:

sB(t) = a(t)ejϕ(t) = a(t)cos ϕ(t) + ja(t)sin ϕ(t) = I + jQ

I/Q demodulation produces a time-series of complex voltage samples (� , � )  from which we can construct a 
discrete representation of � .  The Doppler frequency shift is the time rate of change of the phase,� .

In Qn
sB(t) ωD = dϕ/dt

filter out

filter out

 a 



Doppler Detection:  Intuitive Approach
Closing on target – positive Doppler shift

e-

Transmitted 
Received

Target’s Doppler frequency shows up  
as a pulse-to-pulse shift in phase.

f = c/� (1)

! = 2⇡f (2)

k = 2⇡/� (3)

! = ck (4)

cos(2⇡(fo + fD)t) (5)

cos(2⇡(fo + fD)t) (6)

e
j2⇡fDt = cos(2⇡fDt) + j sin(2⇡fDt) (7)

Ae
j2⇡fDt = I(t) + jQ(t) (8)

�(!) (9)

�1 (10)

�2 (11)

We transmit an amplitude-modulated cosine of frequency !c. The received
signal will have some time varying amplitue a(t) and time-varying phase �(t)
applied to this,
prec(t) = a(t)cos(�(t) + !ct)
We compute the analytic signal through Euler’s identity by “mixing”
the signal with cosine and sine

dionosphere = ⌃mA
T
⇣
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But do we expect an electron  
to maintain a constant velocity 
between pulses?Strobe light at  !ωo
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Doppler Detection:  Intuitive Approach
Closing on target – positive Doppler shift

e-

Transmitted 
Received
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What is the maximum Doppler shift 
that can be unambiguously measured?

Strobe light at  !ωo
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Inter-pulse period (IPP)
But do we expect an electron  
to maintain a constant velocity 
between pulses?
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Components of a Pulsed Doppler Radar

Physics model

Plasma density (Ne) 
Ion temperature (Ti) 
Electron temperature (Te) 
Bulk velocity (Vi)

+

+

+

__

_

cos(ωot)s(t)

sT(t) = s(t)cos(ωot)

sR(t) = a(t)cos(ωot + ϕ(t))

sB(tn) = anejϕn = In + jQn

cos(ωot) sin(ωot)



Essential mathematical operations
Fourier Transform:   Expresses a function as a weighted sum of complex exponentials.

Convolution:  Expresses the action of a linear, time-invariant system on a function.

F(ω) = ℱ [f(t)] = ∫
+∞

−∞
f(t)e−jωtdt

f(t) = ℱ−1 [F(ω)] =
1

2π ∫
+∞

−∞
F(ω)ejωtdω

f(t) * g(t) = ∫
+∞

−∞
f(τ)g(t − τ)dτ

f(t) * g(t) ⟺ F(ω)G(ω)

analysis equation:

synthesis equation:

f(t)g(t) ⟺ F(ω) * G(ω)

Duality:  Comparison of �  and �   we obtainℱ ℱ−1

f(t) ⟺ F(ω)

F(t) ⟺ 2πf(−ω)



Dirac Delta Function δ(x)

δ(t) = lim
α→0

1

4πα
e−t2/(4α)

δ(x) = {+∞, x = 0
0, x ≠ 0

x A generalized function, or distribution, with the properties

∫
+∞

−∞
δ(x)dx = 1

Sampling property:   From the above it follows that

f(to) = ∫
+∞

−∞
f(t)δ(t − to)dt

F(ω) * δ(ω − ω0) = ∫
+∞

−∞
F(Ω)δ(ω − ω0 − Ω)dΩ

= F(ω − ω0)

     may be expressed as 
the limit of many functions
δ(t)

argument is zero at t = t0⏟

⏟

Shift property:   Convolution of a function �  with  
�  shifts the entire function by � .   We will  
use this property to understand mixing.  Specifically:

F(x)
δ(x − xo) xo



Fourier analysis of harmonic functions
= e−j0dtℱ [δ(t)] = ∫

+∞

−∞
δ(t)e−jωtdt

ℱ[1] = 2πδ(ω)

=
1

2π
e−jωot

ℱ−1 [δ(ω − ωo)] =
1

2π ∫
+∞

−∞
δ(ω − ωo)e−jωtdω

ℱ [1] = 2πδ(ω)

ℱ [ 1
2π

e−jωot] = δ(ω − ωo)
ℱ [ejωot] = 2πδ(ω − ωo)

= e−jωto

ℱ [δ(t − to)] = ∫
+∞

−∞
δ(t − to)e−jωtdt

From duality property we can also write,

F(ω) = ∫
+∞

−∞

1
2 [ejωot + e−jωot] e−jωtdt

f(t) = cos(ωot) =
1
2 [ejωot + e−jωot]

=
1
2 [∫

+∞

−∞
ejωote−jωtdt + ∫

+∞

−∞
e−jωote−jωtdt]

ℱ [cos(ωot)] = π [δ(ω − ωo) + δ(ω + ωo)]

ℱ [δ(t)] = 1

ℱ [δ(t − to)]

⟺

0 ω →

F(ω) = 1f (t) = 1



Fourier analysis of harmonic functions

ejωot = cos(ωot) + j sin(ωot)



Summary of tools for I/Q demodulation

ejωot ⟺ 2πδ(ω − ωo)

F(ω) * δ(ω − ω0) = F(ω − ω0)

f(t)g(t) ⟺ F(ω) * G(ω)

sin(ωot) ⟺ jπ [δ(ω + ωo) − δ(ω − ωo)]

cos(ωot) ⟺ π [δ(ω + ωo) + δ(ω − ωo)]

Multiplication-convolution: 

Frequency shift property:

Harmonic functions:
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Figure 1.1: Left: quadrature modulator. Right: quadrature demodulator

Let the signal s(t) be bandlimited to the frequency interval [°b/2, b/2] and let
f0 > b/2. In this case SRF (f) is non-zero only over two disjunct intervals [f0 °
b/2, f0 + b/2] and [°f0 ° b/2,°f0 + b/2].

For signals with this property the complex envelope s(t) is uniquely determined
by the RF-signal sRF (t) [4]. Mathematically, the baseband signal s(t) can be recov-
ered by deleting the negative frequency band [°f0°b/2,°f0+b/2] of SRF (f), shifting
the spectrum to the left by f0, multiplying with the factor 2 and transforming it
back to the time domain.

Technically, the recovery of s(t) is done by the QDM (see Fig. 1.1 right). The RF-
signal sRF (t) is given to two mixers and mixed down with the LO signals 2 cos(2ºf0t)
and °2 sin(2ºf0t). The outputs of the mixers are filtered by low pass filters with
a bandwidth larger than b and lower than 2f0 ° b which remove the higher bands
centered at ±2f0.

If the output of a QM is given directly into a QDM (’bypass’), the resulting
output signal of the QDM is identical to the input signal of the QM, see Fig. 1.2,
so the QDM performs the inverse operation to that of the QM, the real valued
RF-signal may be regarded as a carrier of the base band-signal s(t), able to be
transmitted as RF waves over long ranges.

! "

! # ! $

" #

! % "

! & ' # ! $ ! & ' # ! $

! # ! $

Figure 1.2: Bypass of quadrature modulator and demodulator

In real systems, mostly there are several mixing stages with individual local fre-
quencies. Nevertheless, the mathematics remains the same, if all LO-frequencies



I/Q Demodulation: Frequency Domain

fo-fo

fo+fD-fo-fD

fD

Transmitted signal:    Frequency domain

Reflected signal from moving target
0

2fo+fD-fD fD-2fo-fD

We thus need to mix with a second oscillator at same frequency but !  out of phase (Lecture 3).    
For a cosine reference, the quadrature function is sine.   The two components are called “in phase” (I)  
and “quadrature” (Q).    Together I and Q represent discrete samples of the baseband analytic signal,  

90∘

To resole both positive and negative Doppler shifts, we need: 

Mixed (multiplied) with oscillator  !cos(2πfot)

FFT**

f = c/� (1)

! = 2⇡f (2)

k = 2⇡/� (3)

! = ck (4)

cos(2⇡(fo + fD)t) (5)

cos(2⇡(fo + fD)t) (6)

e
j2⇡fDt = cos(2⇡fDt) + j sin(2⇡fDt) (7)

k = 2⇡/�

dionosphere = ⌃mA
T
⇣
A⌃mA

T + ⌃e

⌘�1
(measurements) (8)

H(!) =
1000

j! + 200
(9)

d
2
vc

dt2
+ 7

dvc

dt
+ 10vc = 60 (10)

K =
✓
1

2
⇢u

2
◆
û

S =
E ⇥ B

µ0

f(t) =
Z +1

�1
F (!)ej!tdt () F (!) =

Z +1

�1
f(t)e�j!t

dt

f(0) =
Z +1

�1
�(t)f(t)dt

f(t� T ) = f(t) ⇤ �(t� T )

1

(for a single scatterer)

cos(2πfot)

1
2

cos [2π(2fo + fD)t] +
1
2

cos[2πfDt] ⟺

cos[2ωot + ϕ(t)] + cos[ϕ(t)]

cos(2πfot) ⟺

cos(2π( fo + fD)t) ⟺

fo

-fo fo

LPF*

  *Low Pass Filter 
**Fast Fourier Transform

Aδ( f − fD)sB(t) = Ae2πfDt = I(t) + jQ(t)

narrow-band  
signal



Correlation and the ISR Spectrum
How do we compute the power spectrum from our complex voltages ?
One approach is to compute Fourier transform of the range-resolved signal: 

                        
    

Ruu = u(t) ∘ u(t) = u(t) * u(−t)

The discrete  representation of �  is constructed through appropriate scaling and  
multiplication of the complex voltage samples � .    
 
In the next lecture we will begin to explore methods for constructing the ACF.

Rs(r, τ)
s(rk, tn)

Rs(r, τ) = ⟨s(r, t)s(r, t + τ)⟩
⟨ s(r, t)

2⟩
where the angle brackets denote the ensemble average, or the expected value.   
The power spectral density is given by the Fourier transform of the �Rs

Rs(r, τ) ⟺ S(r, f )
2

Ruu = u(t) ∘ u(t) = u(t) * u(−t)

Based on the stochastic nature of the target, and the way ISR  samples the echos,  
we will take a different approach.   We first compute the auto-correlation function (ACF), 

s(r, t) = I(r, t) + Q(r, t) ⟺ S(r, f )

from which the power spectrum may be represent as � S(r, f )
2

(Wiener-Khinchin theorem)

S(r, f )
2

f
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Gate function
rectangular pulse: f(t) =

{
1 −T ≤ t ≤ T
0 |t| > T

F (ω) =
∫ T

−T
e−jωt dt =

−1
jω

(
e−jωT − ejωT

)
=

2 sinωT

ω

−T T
0

1

t

f
(t

)

−π/T π/T

0

2T

ω

F
(ω

)

unit impulse: f(t) = δ(t)

F (ω) =
∫ ∞

−∞
δ(t)e−jωt dt = 1

The Fourier transform 11–7

F(ω) =

rectangular pulse: f(t) =
{

1 −T ≤ t ≤ T
0 |t| > T

F (ω) =
∫ T

−T
e−jωt dt =

−1
jω

(
e−jωT − ejωT

)
=

2 sinωT

ω

−T T
0

1

t

f
(t

)

−π/T π/T

0

2T

ω

F
(ω

)

unit impulse: f(t) = δ(t)

F (ω) =
∫ ∞

−∞
δ(t)e−jωt dt = 1

The Fourier transform 11–7

shifted:  f(t) = δ(t − to)



Gate function

ISR spectrum               Autocorrelation function  (ACF)

Increasing Te

For low Te, the ISR ACF looks like a sinc function.  For high Te the ACF becomes more 
oscillatory and looks more like a cosine (power concentrated at the Doppler frequency 
corresponding to the ion-acoustic wave speed.



Convolution
Convolution:  Expresses the action of a linear, time-invariant system on a function.

f(t) * g(t) = ∫
+∞

−∞
f(τ)g(t − τ)dτ ⟺ F(ω)G(ω)

F(ω) * G(ω) = ∫
+∞

−∞
F(ω)G(ω − Ω)dΩ ⟺ f(t)g(t)

X
τp

?



Filters, and the gate function



How it all hangs together.
• Duality:


- Gate function in the time domain represents amplitude modulation

- Gate function in the frequency domain represents filtering


• Limiting cases:

- Gate function approaches delta function as width goes to 0 with constant area

- A constant function in time domain is a special case of harmonic function where 

frequency = 0.

- A constant function in time domain is a special case of a gate function where 

width = infinity.

Now consider the coherent gated CW waveform  given by

(5.15)

Clearly  is periodic, where  is the period (recall that  is the
PRF). Using the complex exponential Fourier series we can rewrite  as

(5.16)

where the Fourier series coefficients  are given by

(5.17)

It follows that the FT of  is

(5.18)
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 Figure 5.3. Amplitude spectrum for a single pulse, or a train of 
non-coherent pulses.
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How many cycles are in a typical ISR pulse?   
PFISR frequency:  449 MHz
Typical long-pulse length: 480 µs 215,520 cycles!



A linear system
• Convolution property



Correlation

Rff(τ) = ∫
+∞

−∞
f(t + τ)f̄(t)dt = f(τ) * f̄(−τ)

Correlation:  A measure of the degree to which two functions look alike at a given offset.
If the two functions are the same, we call this the autocorrelation function, or ACF.

We will be working with discrete samples

Rff(k) =
+∞

∑
n=−∞

f(n)(̄ f )(n − k)

Rff ⟺ U(ω)
2

The ‘spectrum’ refers to 
the power spectrum, which 
is the Fourier transform of
the autocorrelation function



I and Q Demodulation: Frequency Domain

fo-fo

fo+fD-fo-fD

fD

Transmitted signal    Frequency domain

Doppler shifted

0

2fo+fD-fD fD-2fo-fD

The analytic signal                 cannot be measured directly, but the cos and sin components  
via mixing with two oscillators with same frequency but orthogonal phases.  The components 
are called “in phase” (or I) and “in quadrature” (or Q):  

Cosine is even function, so sign of fD (and, hence, direction of motion) is lost.   
What we need instead is:

€ 

cos(2pfot)Mixed (multiplied) with carrier 

FFT

f = c/� (1)

! = 2⇡f (2)

k = 2⇡/� (3)

! = ck (4)
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û

S =
E ⇥ B

µ0

f(t) =
Z +1

�1
F (!)ej!tdt () F (!) =

Z +1

�1
f(t)e�j!t

dt

f(0) =
Z +1

�1
�(t)f(t)dt

f(t� T ) = f(t) ⇤ �(t� T )

1

f = c/� (1)

! = 2⇡f (2)

k = 2⇡/� (3)

! = ck (4)

cos(2⇡(fo + fD)t) (5)

cos(2⇡(fo + fD)t) (6)

e
j2⇡fDt = cos(2⇡fDt) + j sin(2⇡fDt) (7)

k = 2⇡/�

dionosphere = ⌃mA
T
⇣
A⌃mA

T + ⌃e

⌘�1
(measurements) (8)

H(!) =
1000

j! + 200
(9)

d
2
vc

dt2
+ 7

dvc

dt
+ 10vc = 60 (10)

K =
✓
1

2
⇢u

2
◆
û
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Weiner Kinchine Theorem
• The power spectrum has a time domain representation too.


• ACF


• A point in the power spectrum are a measure of power density at a 
given frequency.


• A point in the ACF is a measure of correlation between the incoming 
signal and a time-shifted version of it, where time variable is the time 
shift.


• In ISR processing, it is most common to compute the ACF from the 
time series of I and Q



Components of a Pulsed Doppler Radar

Physics model

Plasma density (Ne) 
Ion temperature (Ti) 
Electron temperature (Te) 
Bulk velocity (Vi)

+

+

+

__

_

cos(ωot)s(t)

sT(t) = s(t)cos(ωot)

sR(t) = a(t)cos(ωot + ϕ(t))

sB(tn) = anejϕn = In + jQn

cos(ωot) sin(ωot)



Doppler power spectrum via FFT
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Figure 3·2: Simulated IS spectra for di�erent number of independent spec-
tra integrated at an operation frequency of 1289 MHz. Top plot shows an
average of one spectrum. The middle plot shows an average of 30 inde-
pendent spectra. The bottom plot shows an average of 600 independent
spectra.

Incoherent Scatter Radar (ISR)
Ion-acoustic
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can account for the simultaneous enhancement in the two ion lines, and the simultaneous55

ion and plasma line enhancement.56

This purpose of this paper is to provide a unified theoretical model of modes expected in57

the ISR spectrum in the presence of field-aligned electron beams. The work is motivated58

by the phenomenological studies summarized above, in addition to recent theoretical59

results–in particular, those of Yoon et al. [2003], and references therein, which suggest60

that Langmuir harmonics should arise as a natural consequence of the same conditions61

producing NEIALs. Although these e�ects have been treated in considerable detail in the62

plasma physics literature, their implications for the field of ionospheric radio science (and63

ISR in particular) have not yet been discussed. The conditions to detect all the modes64

present within the IS spectrum within the same ISR is also presented in this work.65

2. Plasma in Thermal Equilibrium

There exist two natural electrostatic longitudinal modes in a plasma in thermal equilib-66

rium: the ion acoustic mode, which is the main mode detected by ISRs, and the Langmuir67

mode [Boyd and Sanderson, 2003]. Using a linear approach to solve the Vlasov-Poisson68

system of equations, the dispersion relation of these modes is obtained. The real part of69

the ion acoustic dispersion relation reads70

⇥s = Csk, (1)

and the imaginary part (assuming ⇥si � ⇥s, k2�2
De � 1 and Ti/Te � 1) can be written71

as72
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where Cs =
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kB(Te + 3Ti)/mi is the ion-acoustic speed. The dependence of this mode

on ionospheric state parameters is observed in Eq. 2. The Langmuir mode is detected by

ISR under certain conditions, and the real part of its dispersion relation is expressed as
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The forward model used to estimate ionospheric parameters in ISR assumes that these74

are the dominating modes in the ISR spectrum. However, an injected beam of particles,75

in particular electrons, can destabilize the plasma, altering the dispersion relations and76

amplitudes of these modes.77

3. Current Model of the Langmuir Decay Process for NEIAL Formation

The model presented by Forme et al. [1993] to explain NEIALs is a two step process.

First, a beam-plasma instability enhances Langmuir Waves (LW). Second, if the enhance-

ment of LW is high enough then the enhanced LW can decay, enhancing Ion Acoustic

Waves (IAWs) and counter-propagating LWs. The plasma-beam process involves three

species: thermal electrons, thermal ions, and an electron beam with a bulk velocity of

vb. By assuming small perturbations and small damping/growth (vthe, vthi, vb ⇤ ⇤/k),

linearization of Vlasov-poison system can be used to find the dispersion relation of the
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ment of LW is high enough then the enhanced LW can decay, enhancing Ion Acoustic

Waves (IAWs) and counter-propagating LWs. The plasma-beam process involves three

species: thermal electrons, thermal ions, and an electron beam with a bulk velocity of

vb. By assuming small perturbations and small damping/growth (vthe, vthi, vb ⇤ ⇤/k),
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Issues to consider
• connection between how fast we sample, and the maximum doppler 

velocity that we can observe unambiguously


• This is formalized in something called the Nyquist sampling theorem.  

- To reconstruct a sinusoid, we have to sample it at twice the highest frequency 

present in our signal.


- For a sinusoid with frequency � , this means we must sample it at at least � .f Ts = 2f



Dish Versus Phased-array

-FOV:  Entire sky 
-Integration at each position before 
 moving 
-Power concentrated at Klystron 
-Significant mechanical complexity

-FOV:  +/- 15 degrees from boresight 
-Integration over all positions  
 simultaneously 
-Power distributed 
-No moving parts 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Radar Waveforms (cont’d.)
Pulse at single frequency

Linear Frequency- 
Modulated (LFM) 

Waveform
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Pulse at single frequency, but variable phase



Radar Waveforms (cont’d.)

RF pulse at a single frequency

RF Pulse with changing frequency

RF Pulse, single frequency, changing phase

s(t) = A(t)cos [2πfot + ϕ(t)]

Radar Waveforms (cont’d.)

Pulse at single frequency

Pulse with changing frequency

Pulse at single frequency, but variable phase

cos(θ) = sin(θ + π/2)

Radar Waveforms (cont’d.)

Pulse at single frequency

Pulse with changing frequency

Pulse at single frequency, but variable phase

cos(θ) = sin(θ + π/2)

Radar Waveforms (cont’d.)

Pulse at single frequency

Pulse with changing frequency

Pulse at single frequency, but variable phase

cos(θ) = sin(θ + π/2)

……

Unmodulated RF signal

s(t) = A(t)cos(2π( f0 + f(t))t + ϕ(t))

s(t) = Aoej2πfot

s(t) = A(t)cos [2π( fo + Δf(t))t]

ϕ(t) = constant

s(t) = A(t)cos [2π (fo + f(t)) t + ϕ(t)]

A(t) = constant

s(t) = A(t)ej2πfotejϕ(t)

s(t) = A(t)ej2πfot

s(t) = A(t)ej2π( fo+Δf(t)t

ej0 = 1
ejπ = − 1
ejπ/2 = j
e−jπ/2 = − j


