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The ionosphere

lonization source: solar radiation
Chapman production function by using a height variable i = h — Insec x:

q(x, h'") = gm.ocos - exp [1 —h - e_h ]

where Y is the solar zenith angle and h = (z — zm,0)/H, where H is the
atmospheric scale height.
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The ionosphere
lonization source: particle precipitation (electrons)

High-energy electron deposit energy at lower altitudes.
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Figure: lonization rate for monoenergetic electrons with energies 2-100 keV
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The ionosphere
lonization source: particle precipitation (protons)
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The ionosphere
Loss mechanisms

We have now dealt with the production rate, but there are also loss terms to deal with:

1. Recombination

2. Transport/Diffusion

While chemical recombination is very important at lower altitudes (D, E, F1 regions),
diffusion plays a larger role at higher altitudes (F2 region) where the densities are very
low.



The ionosphere
Equations of motion

Conductivities matter because the ionosphere is a plasma with an embedded magnetic
field.

V-lo- (E(r,t) + Ur,t) x B)] =0

Parallel equation of motion:

qE=myv —eE=m_v_u

11n1 c ¢n ¢

Perpendicular equation of motion:

q(El+u,.xB) my. u,

1 1n

- e(E L Hu, X B) my, u,,



The ionosphere
Collision frequencies

lon and electrons collide with neutrals as they gyrate. How they move in response to
imposed force fields depends very much on the collision frequency relative to the gyro-

frequency.
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The ionosphere
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Question: Why are T and T, identical at low altitudes? Why is T, so
much higher than either T, or T.?



The ionosphere
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Answer: At lower altitudes, the ions and neutrals have the same
temperature due to a high rate of collisions and the high mass of the
ions. The electrons have a gyrofrequency much higher than the collision

frequency. The electron temperature typically remains higher than the
ion temperature due to its much lower mass.



The ionosphere
Conductivity
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The ionosphere
Conductivities
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The ionosphere
Conductivities
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Question: There is a peak in the Hall and Pedersen conductivities in the
E-region. What ionospheric phenomenon also peaks at this altitude?
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The ionosphere
Conductivities
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Answer: The auroral and equatorial electrojets
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The ionosphere
Debye length

« The Debye length is a measure of the plasma’s ability to shield out electric potentials
that are applied to it

« The Debye length marks the division between different regimes of plasma’s behavior;
i.e. collective plasma motion versus that of individual particle motion.

« Plasma phenomenon that take place over distances greater than the Debye length
must be described in terms of collective behavior of the plasma.

« Plasma will not support large potential variations (i.e. will seek to maintain charge
neutrality) over distances larger than the Debye length.
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The ionosphere
Debye length

e The Debye length increases with
altitude — from a few millimeters in
the F-region up to meters in the
magnetosphere

e The Debye length in the Eand F 400}
regions ranges from 0.1 -1 cm
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The ionosphere

Question: If we want to measure bulk plasma parameters with an
incoherent scatter radar, how will the Debye length affect our choice of
radar frequency?
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The ionosphere
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Answer: While the radar frequency needs to be higher than that of ionospheric
plasma frequencies and irregularities, it should also be chosen with a wavelength
greater than the Debye length. This becomes an issue at higher altitudes.
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