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The Missing Piece: Lag Estimate Errors

Using Least-Squares, we can fit lag estimates to ISR theory to extract
ionospheric parameters, Ng, Te, T;, and vjps:
T _
X(p) = [z~ f(p)]" Ee 7' [z~ f(p)]

o f(p) is the ISR theory

o z = [RL, L), RLL, L, -+, RLL, L) are estimated lag products

0 X, =177
Here's what we already know:

@ Voltage samples are complex zero-mean Gaussian random variables

i1 K—1 /%
o Ly=7%> ko Vi{%J V;+L§J+(e mod 2)

o [2 — Lé as K — oo and Z’g becomes Gaussian dristributed.
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Voltage Sample Statistics

If we write:
V,-_ng = Vi =x1+jx,

then

1

p(x1, %2, X3, Xa) = W exp

with covariance:

I+L J—i—(f mod 2) —

=Vo=x3+ jxa

2yC\ Z €

ij=1

1 0 Pr —Pi
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C =02 !
Pr Pi 1 0
—pi pr 0 1
with _
Ly="Pp, p=pr+jpi
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Exploring Lag Product Statistics

Using Monte Carlo:
@ We can prove that [}; is Gaussian for large K

@ We can calculate the variance of L}

Monte Carlo procedure:

@ Sample p(x1, %2, X3, x4) many times to construct an ensemble of V4
and V»

@ Use ensemble of V; and V5 to calculate an ensemble of
i1 K—1\/x
Ly = K Zk:o Vi'Va
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Monte Carlo: Simulating ]

Distribution of Simulated Lag Estimate for K=1
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Lag Estimate Variance

Knowing the statistical properties of the voltage samples is sufficient
knowledge for determining the variance of Lj:
@ Numerically from Monte Carlo

LS O —jx2) (xs +jxa):
K—-1

o Analytically: with [ = L S F vivo = L
) 1 K-1 ) 1
RL, = e kZ_O(X1X3 + xoxs), SLy= e 2 (x1X4 — x2x3)

the variance of an unbiased estimator R:

Var {F?} — (R?) — (R)?

X»

and covariance of estimators R and @:
cov{R,Q} = (RQ) — (R)(Q)
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Lag Estimate Variance: Analytic Derivation

K—1
N2 1
<(§R/-2) > = <K2 Z (x16X3k + XokXak ) (X1mX3m + szX4m)>

k,m=0
;] Kl
=2 > ((arxsxamxam) + (XLcXkxemXam) +
k,m=0
(XokXakX1mX3m) + (XokXakX2mXam))
and similarly:
o 1 K1
<(%LZ> > =2 D ((arxarXimXam) — (XLkXakX2mX3m)
k,m=0

(XokX3kX1mXam) + (XokX3kX2mX3m))
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Lag Estimate Variance: Analytic Derivation

K-1
Y 1
<§RLZS‘LZ> = <K2 > (s + XewxXak) (XumXam — szX3m)>

k,m=0
K-1
1
=2 > ((akXakXimXam) — (XLiX3kX2mX3m) +
k,m=0

(XokXakX1mXam) — (XokXakXomX3m))
Then, use Isserlis’ Theorem for each of those terms:
(x1x2x3xs) = (x1x2)(X3xa) + (x1x3)(X2Xa) + (x1x4)(x2X3)

where (x;x;) are simply the Cjs from the covariance matrix of the voltage
samples!
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Lag Estimate Variance: Analytic Results

After some algebra, we obtain:

. 1— 2 2
02 = Var {%LZ} = 40" < 7+ Pr>

2K K
0? = Var {SZZ} = 40" <1 2_Kp2 + ij)
Cov {?RZ}, %ZZ} = —40" (%)

And for large K, the PDF of a lag estimate [2 = x1 + jx» approaches:

2
1 -1
p(Xl,XZ) = W exp m Z CI_IXIX_]

ij=1
c— < o7 —40*p,pi/ K)
—4U4Pr,0,'/K 01'2

A. S. Reimer (SRI) Modeling and Fitting July 2020

9/13



Lag Estimate Variance: Monte Carlo vs. Analytic

Variance vs. Number of Samples
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Lag Estimate Variance: Independent Lags

Now for the Least-Squares technique:

X’(p) = [z~ f(p)] E ™" [z f(p)]

If lag estimates are independent, X is a diagonal matrix:

RL;
ko Ci o 0
s 0 0
zZ = \YLl s Ze = . O
o 0 0 0 C
RL,
3L

This assumes that lag estimates are independent!
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Lag Estimate Variance: Non-Independent Lags

In practice, lag estimates are not independent:
@ share a common voltage sample

@ correlated due to range ambiguity

Then X, will contain non-zero off-diagonal terms of the form:

Cov {mg,m} , Cov {s[@,&e[ﬁn} , Cov {mg,c } cov{ i, sim}
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Summary

Knowledge of the statistical properties of the voltage samples is sufficient
for deriving the statistical properties of the lag estimates!

For zero-mean Gaussian voltages:

@ Lag estimates quickly converge to a 2D Gaussian distribution

@ The variance of lag estimates is known analytically
@ Lag estimate variance depends:

@ on statistical properties of the voltage samples: o, p,, p;
@ number of samples: K
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