Data Analysis and Fitting: Lag Estimate Statistics

Ashton S. Reimer

¹Center for Geospace Studies SRI International

July 2020

The Missing Piece: Lag Estimate Errors

Using Least-Squares, we can fit lag estimates to ISR theory to extract ionospheric parameters, N_e , T_e , T_i , and v_{los} :

$$\chi^{2}(\mathbf{p}) = [\mathbf{z} - f(\mathbf{p})]^{T} \mathbf{\Sigma_{e}}^{-1} [\mathbf{z} - f(\mathbf{p})]$$

- $f(\mathbf{p})$ is the ISR theory
- $\mathbf{z} = [\Re \hat{\mathcal{L}}_0^i, \Im \hat{\mathcal{L}}_0^i, \Re \hat{\mathcal{L}}_1^i, \Im \hat{\mathcal{L}}_1^i, \cdots, \Re \hat{\mathcal{L}}_\ell^i, \Im \hat{\mathcal{L}}_\ell^i]^T$ are estimated lag products
- $\Sigma_e = ???$

Here's what we already know:

- Voltage samples are complex zero-mean Gaussian random variables
- $\bullet \ \hat{L}^i_\ell = \tfrac{1}{K} \sum_{k=0}^{K-1} V^*_{i-\left|\frac{\ell}{2}\right|} V_{i+\left\lfloor\frac{\ell}{2}\right\rfloor + (\ell \bmod 2)}$
- $\hat{L}^i_\ell o L^i_\ell$ as $K o \infty$ and \hat{L}^i_ℓ becomes Gaussian dristributed.

Voltage Sample Statistics

If we write:

$$V_{i-\left\lfloor \frac{\ell}{2} \right\rfloor} = V_1 = x_1 + jx_2, \quad V_{i+\left\lfloor \frac{\ell}{2} \right\rfloor + (\ell \bmod 2)} = V_2 = x_3 + jx_4$$

then

$$p(x_1, x_2, x_3, x_4) = \frac{1}{(2\pi)^2 |\mathbf{C}|^{1/2}} \exp\left(\frac{-1}{2|\mathbf{C}|} \sum_{i,j=1}^4 C_{ij} x_i x_j\right)$$

with covariance:

$$\mathbf{C} = \sigma^2 \begin{pmatrix} 1 & 0 & \rho_r & -\rho_i \\ 0 & 1 & \rho_i & \rho_r \\ \rho_r & \rho_i & 1 & 0 \\ -\rho_i & \rho_r & 0 & 1 \end{pmatrix}$$

with

$$L_{\ell}^{i} = P\rho, \quad \rho = \rho_{r} + j\rho_{i}$$

Exploring Lag Product Statistics

Using Monte Carlo:

- ullet We can prove that $\hat{\mathcal{L}}^i_\ell$ is Gaussian for large K
- ullet We can calculate the variance of \hat{L}^i_ℓ

Monte Carlo procedure:

- Sample $p(x_1, x_2, x_3, x_4)$ many times to construct an ensemble of V_1 and V_2
- Use ensemble of V_1 and V_2 to calculate an ensemble of $\hat{L}^i_\ell = \frac{1}{K} \sum_{k=0}^{K-1} V_1^* V_2$

Monte Carlo: Simulating \hat{L}^i_ℓ

Lag Estimate Variance

Knowing the statistical properties of the voltage samples is sufficient knowledge for determining the variance of $\hat{\mathcal{L}}_{\ell}^{i}$:

- Numerically from Monte Carlo
- Analytically: with $\hat{L}_{\ell}^{i} = \frac{1}{K} \sum_{k=0}^{K-1} V_{1}^{*} V_{2} = \frac{1}{K} \sum_{k=0}^{K-1} (x_{1} jx_{2})(x_{3} + jx_{4})$:

$$\Re \hat{\mathcal{L}}_{\ell}^{i} = \frac{1}{K} \sum_{k=0}^{K-1} (x_{1}x_{3} + x_{2}x_{4}), \quad \Im \hat{\mathcal{L}}_{\ell}^{i} = \frac{1}{K} \sum_{k=0}^{K-1} (x_{1}x_{4} - x_{2}x_{3})$$

the variance of an unbiased estimator \hat{R} :

$$\operatorname{Var}\left\{\hat{R}
ight\} = \langle\hat{R}^2
angle - \langle\hat{R}
angle^2$$

and covariance of estimators \hat{R} and \hat{Q} :

$$\operatorname{Cov}\left\{\hat{R},\hat{Q}\right\} = \langle \hat{R}\hat{Q}\rangle - \langle \hat{R}\rangle\langle \hat{Q}\rangle$$

Lag Estimate Variance: Analytic Derivation

$$\left\langle \left(\Re \hat{L}_{\ell}^{i} \right)^{2} \right\rangle = \left\langle \frac{1}{K^{2}} \sum_{k,m=0}^{K-1} (x_{1k} x_{3k} + x_{2k} x_{4k}) (x_{1m} x_{3m} + x_{2m} x_{4m}) \right\rangle$$

$$= \frac{1}{K^{2}} \sum_{k,m=0}^{K-1} (\langle x_{1k} x_{3k} x_{1m} x_{3m} \rangle + \langle x_{1k} x_{3k} x_{2m} x_{4m} \rangle + \langle x_{2k} x_{4k} x_{1m} x_{3m} \rangle + \langle x_{2k} x_{4k} x_{2m} x_{4m} \rangle)$$

and similarly:

$$\left\langle \left(\Im \hat{\mathcal{L}}_{\ell}^{i}\right)^{2}\right\rangle = \frac{1}{K^{2}} \sum_{k,m=0}^{K-1} \left(\left\langle x_{1k} x_{4k} x_{1m} x_{4m} \right\rangle - \left\langle x_{1k} x_{4k} x_{2m} x_{3m} \right\rangle \right.$$
$$\left\langle x_{2k} x_{3k} x_{1m} x_{4m} \right\rangle + \left\langle x_{2k} x_{3k} x_{2m} x_{3m} \right\rangle \right)$$

Lag Estimate Variance: Analytic Derivation

$$\left\langle \Re \hat{\mathcal{L}}_{\ell}^{i} \Im \hat{\mathcal{L}}_{\ell}^{i} \right\rangle = \left\langle \frac{1}{K^{2}} \sum_{k,m=0}^{K-1} (x_{1k} x_{3k} + x_{2k} x_{4k}) (x_{1m} x_{4m} - x_{2m} x_{3m}) \right\rangle$$

$$= \frac{1}{K^{2}} \sum_{k,m=0}^{K-1} (\langle x_{1k} x_{3k} x_{1m} x_{4m} \rangle - \langle x_{1k} x_{3k} x_{2m} x_{3m} \rangle + \langle x_{2k} x_{4k} x_{1m} x_{4m} \rangle - \langle x_{2k} x_{4k} x_{2m} x_{3m} \rangle)$$

Then, use Isserlis' Theorem for each of those terms:

$$\langle x_1 x_2 x_3 x_4 \rangle = \langle x_1 x_2 \rangle \langle x_3 x_4 \rangle + \langle x_1 x_3 \rangle \langle x_2 x_4 \rangle + \langle x_1 x_4 \rangle \langle x_2 x_3 \rangle$$

where $\langle x_i x_j \rangle$ are simply the C_{ij} s from the covariance matrix of the voltage samples!

Lag Estimate Variance: Analytic Results

After some algebra, we obtain:

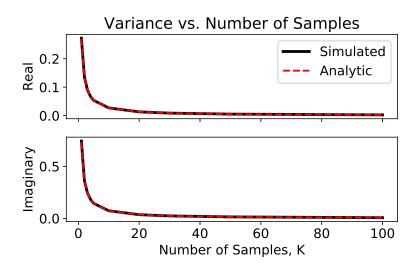
$$\begin{split} \sigma_r^2 &\equiv \operatorname{Var}\left\{\Re \hat{L}_\ell^i\right\} = 4\sigma^4 \left(\frac{1-\rho^2}{2K} + \frac{\rho_r^2}{K}\right) \\ \sigma_i^2 &\equiv \operatorname{Var}\left\{\Im \hat{L}_\ell^i\right\} = 4\sigma^4 \left(\frac{1-\rho^2}{2K} + \frac{\rho_i^2}{K}\right) \\ \operatorname{Cov}\left\{\Re \hat{L}_\ell^i, \Im \hat{L}_\ell^i\right\} &= -4\sigma^4 \left(\frac{\rho_r \rho_i}{K}\right) \end{split}$$

And for large K, the PDF of a lag estimate $\hat{L}^i_{\ell} = x_1 + jx_2$ approaches:

$$p(x_1, x_2) = \frac{1}{2\pi |\mathbf{C}|^{1/2}} \exp\left(\frac{-1}{2|\mathbf{C}|} \sum_{i,j=1}^{2} C_{ij} x_i x_j\right)$$

$$\mathbf{C} = \begin{pmatrix} \sigma_r^2 & -4\sigma^4 \rho_r \rho_i / K \\ -4\sigma^4 \rho_r \rho_i / K & \sigma_i^2 \end{pmatrix}$$

Lag Estimate Variance: Monte Carlo vs. Analytic



Lag Estimate Variance: Independent Lags

Now for the Least-Squares technique:

$$\chi^{2}(\mathbf{p}) = \left[\mathbf{z} - f(\mathbf{p})\right]^{T} \mathbf{\Sigma_{e}}^{-1} \left[\mathbf{z} - f(\mathbf{p})\right]$$

If lag estimates are independent, Σ_e is a diagonal matrix:

$$\mathbf{z} = \begin{pmatrix} \Re \hat{\mathcal{L}}_0^i \\ \Im \hat{\mathcal{L}}_0^i \\ \Re \hat{\mathcal{L}}_1^i \\ \Im \hat{\mathcal{L}}_1^i \\ \vdots \\ \Re \hat{\mathcal{L}}_\ell^i \\ \Im \hat{\mathcal{L}}_\ell^i \end{pmatrix}, \quad \mathbf{\Sigma_e} = \begin{pmatrix} \mathbf{C}_0^i & 0 & \cdots & 0 \\ 0 & \mathbf{C}_1^i & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \mathbf{C}_\ell^i \end{pmatrix}$$

This assumes that lag estimates are independent!

Lag Estimate Variance: Non-Independent Lags

In practice, lag estimates are not independent:

- share a common voltage sample
- correlated due to range ambiguity

Then Σ_e will contain non-zero off-diagonal terms of the form:

$$\textit{Cov}\left\{\Re\hat{L}_{\ell}^{i},\Re\hat{L}_{m}^{k}\right\},\textit{Cov}\left\{\Im\hat{L}_{\ell}^{i},\Re\hat{L}_{m}^{k}\right\},\textit{Cov}\left\{\Re\hat{L}_{\ell}^{i},\Im\hat{L}_{m}^{k}\right\},\textit{Cov}\left\{\Im\hat{L}_{\ell}^{i},\Im\hat{L}_{m}^{k}\right\}$$

Summary

Knowledge of the statistical properties of the voltage samples is sufficient for deriving the statistical properties of the lag estimates!

For zero-mean Gaussian voltages:

- Lag estimates quickly converge to a 2D Gaussian distribution
- The variance of lag estimates is known analytically
- Lag estimate variance depends:
 - on statistical properties of the voltage samples: σ , ρ_r , ρ_i
 - number of samples: K