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Literature Review: 
 

This project focuses on the midsole of athletic shoes. This component is usually made up 
of thermoplastic urethane (TPU), ethyl vinyl acetate (EVA), or both [1]. EVA is the most widely 
used midsole material for shoes [2]. This is because EVA is lightweight, resists compression set, 
forms easily into molds, and is readily available in many different colors [2]. TPU, which makes 
up Adidas’ Boost midsole material, is popular because of its similar properties. However, it 
differs slightly from EVA in that it is slightly heavier, yet more long lasting and resistant to 
abrasion and long-term deformation [3].  

 
These foams do not respond to material deformations in a perfectly linearly elastic way. 

More complex measurements of a foams material properties are required to model the behavior 
of a foam in compression. These properties are: E​0​ (the modulus of the base polymer), φ (a term 
used to describe the matrix geometry of a polymer), and ψ (the volume fraction of polymer in the 
foam). Given these features, one can model the material response a foam has to a given 
load-compression specification[4]. 

 
The summation of these foam types, their material compositions, and their responses to 

compression is the core of athletic shoe design. These factors all combine to produce different 
effects that athletes feel. The most impactful metric of a shoe is its energy return. In order to 
have a high energy return, a shoe must provide a balance between compliance and resilience. It 
must be able to stretch to store energy, and also return that stored energy[5]. However, as all 
athletes do not run in the same manner, it is not necessarily true that the highest possible energy 
returning shoe is ideal for every athlete. Different styles of running, as well as differences in foot 
and leg anatomy make it essential for athletes to find a shoe that compliments their individual 
characteristics [3]. This validates the objective of this project, as we set out to create a model that 
will help deliver an athlete their ideal shoe.  
 
 
 

 
 

 
 
 



Effective Compression: 

 
N(y) = -F 

R​y​ = F 
2 Layers: 
Constitutive Relationships: 

σ​yy​ = E​1​ * ε​1yy 
σ​yy​ = E​2​ * ε​2yy 

 
E​1​ * A​ ​* δ​1​ = -F * h​1 
 δ​1​ = (-F*h​1​)/(A*E​1​) 

 
E​2​ * A * δ​2​ = -F * h​2 
δ​2​ = (-F*h​2​)/(A*E​2​) 

 
Compatibility: 

ε​1yy ​= δ​1​/ h​1 
ε​2yy ​= δ​2​/ h​2 

 
δ = δ​1 ​+ δ​2 

 

 

δ = (-F/A) * (h​1​/E​1​ + h​2​/E​2​) 
 

-F/A = E​eff​ * δ/(h​1​ + h​2​) 
 

E​eff​ = (E​1​E​2​(h​1​+h​2​))/(E​2​h​1​+E​1​h​2​) 
E​eff​/E​1​ = (1+h​1​/h​2​)/(E​1​/E​2​ + h​1​/h​2​) 



 
N Layers: 
 

h​i​  * E​1​E​2∑
N

i=1
 

E​eff​  =   _______________________________ 
 

E​2​h​j ​+ E​1​h​k∑
N

j=1 (odd)
∑
N

k=2 (even)
 

 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 1: Normalized Compression modulus vs. Material height Ratios at various 
ratios between E​1 ​and E​2 

 
Analysis of Graph: 
 
❏ This graph was obtained using the Normalized Compression Modulus found in the 

derivation above. Different ratios between E​1 ​and E​2 ​ were used to highlight the 
relationship between the normalized compression modulus and the height ratio between 
layers.  

❏ From the graph, it is clear that when there is a very low ratio of  E​1​/E​2​, a small change in 
h​1 ​creates a very large change in the effective compression of the composite, and vice 
versa. This means that adding even small layers of a material with a compression 
modulus much lower than the other material causes a large change in the over response of 
a material. On the other hand, adding small layers of a material with a high young’s 
modulus has relatively low impact on the composite material’s response.  

❏ There does not appear to be any suspicious data within this graph. The only concern is 
the manufacturing feasibility of a midsole at the very limits of the height ratios, as it 
would be difficult to mass produce such a thin sheet of material 

 
 
 



Effective Bending: 
 
 

 
 

 
Cross-section of beam 

 
Constitutive: 

σ = Eε 
Geometric: 

ε = Ky 
 

 
ε = Ky = -K(h-Z​c​)  where h is height of the total stack 

σ = Eε = -EK(h-Z​c​) 

E​i​ (h-h​c​) dz = 0 ---> to find position of neutral axis∑
N

i=1
∫
hi

hi−1
 



E​i​ (h​i​2​ - h​i-1​2​)∑
N

i=1
 

Z​c​ = __________________---> position of neutral axis 

2* E​i​ (h​i​ - h​i-1​)∑
N

i=1
 

 
 

Finding equivalent bending modulus with this neutral axis: 
 

E​eff ​* (h​3​/12) = -EK(h-Z​c​) 

E​eff ​* (h​3​/12) = E​i​/3 *[(h​i​-h​c​)​3​ - (h​i-1​-h​c​)​3​]∑
N

i =1
  

E​eff ​* (h​3​/12) = E​i​ - I∑
N

i =1
 

After dividing Z​c ​by Z​n ​(total stack height): 
 

E​eff​/E​1​ = 4 * E​i​ [(Z​i​/Z​n​ - Z​c​/Z​n​)​3​ - (Z​i-1​/Z​n​ - Z​c​/Z​n​)​3​]∑
N

i =1
 

 
  



MATLAB Code: 
clc 
clear 
close all 
%COMPRESSION 
% This script is for the calculation of effective compression modulus B (dimensionless) 
 
% Step 1: defination of variables 
h1_eff = 0:0.01:1;                                      % overall thickness of material 1 
h1_eff = h1_eff'; 
[row, column] = size(h1_eff); 
h2_eff = ones([row, column]) - h1_eff;                  % overall thickness of material 2 
 
E_ratio = [0.01; 0.1; 1; 10; 100];                      % modulus ratio of materials 1/2 
B_bar = zeros(row, length(E_ratio)); 
 
% Step 2: calculation of effective compression modulus B 
for i = 1:5                                             % index for E_ratio 
 
    B_bar(:,i) = 1./(h1_eff + E_ratio(i)*h2_eff);       % dimensionless effective compression modulus B 
 
end 
 
% Step 3: plot results 
% Plot the influence of h1_eff on B_bar 
figure(1) 
for i = 1:5 
    plot(h1_eff, B_bar(:,i), 'LineWidth',1); 
    hold on 
  
end 
hold off 
 
% Figure setup 
xlim([0,1]); 
ylim([0,10]); 
xlabel('Effective h_{1} / h','FontSize',11); 
ylabel('Normalized compression modulus E_{eff} / E_{1}','FontSize',11); 
legend({'E_{ratio} = 0.01','E_{ratio} = 0.1','E_{ratio} = 1','E_{ratio} = 10','E_{ratio} = 100'},'FontSize',11); 
 
 
 
%BENDING 
clc 
clear 
close all 
z_n = 1;                    %stack height 



n = 5;                      %number of layers 
z_vec = 0:(z_n/n):z_n;  
z_num = zeros(n); 
z_den = zeros(n); 
E_ratio = [0.01; 0.1; 1; 10; 100]; 
 
for i = [2:length(z_vec)] 
    if mod(i,2) == 0            %even 
        z_num(i) = E_ratio*((z_vec(i)^2/z_n^2)-(z_vec(i-1)^2/z_n^2)); 
        z_den(i) = E_ratio*((z_vec(i)/z_n)-(z_vec(i-1)/z_n)); 
    else                        %odd 
        z_num(i) = ((z_vec(i)^2/z_n^2)-(z_vec(i-1)^2/z_n^2)); 
        z_den(i) = ((z_vec(i)/z_n)-(z_vec(i-1)/z_n)); 
    end 
end 
z_num 
z_den 
zc = sum(z_num)/(2*sum(z_den)) %location of neutral axis 
 
 
 
 
E = zeros(n,1); 
for i = [2:length(z_vec)] 
    if mod(i,2) == 0                   % for even items 
        E(i) = E_ratio*(((z_vec(i)/z_n)-(zc/z_n))^3-((z_vec(i-1)/z_n)-(zc/z_n))^3); 
    else                                  % for odd items 
        E(i) = (((z_vec(i)/z_n)-(zc/z_n))^3-((z_vec(i-1)/z_n)-(zc/z_n))^3); 
    end 
end 
E 
 
E_eff = 4*sum(E) 
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