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IS radar parameters
IS radar gives us the following plasma parameters:
• Ne (electron density)
• Te, Ti (electron and ion temperatures)
• Vi (ion velocity): either in the beam direction (monostatic 

radar) or along the bisector (receiver not in the same 
location as transmitter). For vector velocity, 3 components 
need to be measured.

• Requires special analysis: ion mass mi, usually taken from a 
model

• Requires special analysis: ion-neutral collision frequency nin
(typically Te/Ti is assumed equal to 1 in that analysis)

• From Vi vector in the F-region, electric field E can be 
calculated

• From Vi vector in the E and F regions, neutral winds u in the 
E-region under some assumptions can be inferred
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What is meant by Incoherent
Scatter radar (IS)?

• Scattering (partial reflection), not total reflection
• Incoherent: the term means that phases of the

scattered waves are randomly distributed. However, 
it turns out that the IS signal is produced by quasi-
coherent waves, so the original name is somewhat
misleading.

• Original idea was that incoherent scattering comes
from the random thermal fluctuations of electrons in 
the ionosphere. 



What is IS radar measuring?

1906 J.J. Thomson showed that 
free electrons are capable of 
scattering electromagnetic
radiation (so called Thomson 
scattering). The electric field of 
the incident wave accelerates the
charged particle, causing it to 
oscillate and emit radiation at the
same frequency as the incident
wave, and thus the wave is 
scattered. 



Thomson scattering

E0c

vph =
!

k
=

s
kB(3Ti + Te)

mi
(1)

vph =
!

k
= !p

s
1

k2
+ 3�D , (2)

where plasma frequency is

!p =

s
nee2

"0me
(3)

and Debye length

�D =

s
"0kBTe

nee2
(4)

and kB is Boltzmann constant.

ne(r) = C
�PR(r2)

Pt

r2

�r

1

2⇡r20
(5)

Power scattered by a single electron to a solid angle d⌦ around direction
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So, for a single electron the cross section is roughly 10-28 m2



Total cross section estimate

Consider an antenna with a 1o beam 
measuring the ionospheric plasma at 
300 km range and using a 300 µs (t)
pulse, which corresponds to a length 
of 45 km (eq. ct/2).
If the electron density is 1012 m-3, the 
total number of electrons scattering 
into a given measurement is 
~8.8x1023. With the electron Thomson 
scatter cross section of 10-28 m2, this 
yields a total cross-section of 88 mm2 

– we need a big radar! 5 km

45 km



Thermal fluctuating electrons
“Incoherent Scattering” 

Original idea to detect properties of ionospheric
electrons requires large transmitter power and a large
receiver antenna due to the weak backscatter expected. 
The width of the spectrum would correspond to 
Maxwellian distribution of electron thermal speeds 
related to sqrt(Te/me) and for a 100 MHz radar this
would be 100 kHz (for EISCAT UHF it would be 1 MHz), 
so very wide.

area ∝ Ne

width ∝ Te/me√



Thermal fluctuating electrons
“Incoherent Scattering” 

The calculations by Gordon (1958) indicated that
even these faint signals should be observable by a 
radar with a 1 MW transmitting power, a 300 m 
antenna and a 100 kHz receiver bandwidth. 



Arecibo radar (Puerto Rico, USA) is 
built with these specifications



In 1958, Bowles reported the first actual observations of 
echoes using a newly constructed high-power transmitter
at Long Branch, Illinois. He found that the total scattered
power was of the magnitude predicted by Gordon, but the
bandwidth was very much smaller and, hence, the
scattered power per unit bandwidth very much greater.

• Power was related to electron density Ne, as expected.
• Width of spectrum was much narrower than expected

and it corresponded rather the thermal velocities of 
ions (sqrt(Ti/mi)) than electrons.  

Thermal fluctuating electrons
“Incoherent Scattering” 



Thermal fluctuating electrons ions
“Incoherent Scattering” 

Thomson scatter is the microscopic
scattering mechanism, but electrons are
not free, since their motions are controlled
by the ions via electrostatic forces.

Incoherent scatter is a very weak scattering process, 
and most of the power that we send, traverses the
ionosphere and goes to the space! The peak powers of 
e.g. the EISCAT radars are typically 1-2 MW, and they
transmit pulses (not continuous waves). Only some
femtowats (10-15 W) are received back.



Ion acoustic waves
• The actual scattering takes place from ion-acoustic

waves that are all the time generated and attenuated
in the plasma. This is a stochastic process and 
therefore the radar radar pulses are sent and 
received hundreds (or thousands) of times so that a 
statistical average is obtained .

• IS radars observe quasi-coherent scatter from
electron density fluctuations that propagate in the
plasma as ion acoustic waves. This gives the IS 
spectrum that can be analyzed for Ne, Te, Ti, mi and 
vi. In addition, the spectrum contains contribution
from Langmuir waves (so called plasma lines, at 
different frequencies than ion acoustic waves).



Bragg condition
It can be shown that the quasi-coherent scatter occurs for wave vectors
that obey k=ki–ks. This means that in the case of backscatter
(transmitter and receiver are in the same location), the wavelength that
gives the quasicoherent backscatter is half of the radar wavelength, 
l=l0/2. For multistatic case, scattering occurs from wavefronts that
propagate along the bisector of the two radar beams. 

Inserting this in eq. (71) gives
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Hence the density fluctuation is composed of waves propagating in all directions.
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Figure 7: The relation of incident and scattered wave vectors and the wave vector of the
permittivity fluctuation.

Figure 8: Scattering from parallel wave fronts.

This can be visualised as follows. It was shown above that scattering is due to the Fourier
component�Ne(ki�ks, t), i.e. at a wave number k = ki�ks. Since ki = ks = k0 = 2⇡/�0,

13
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The wavenumbers for ki and ks are same as for the radar with wavenumber
k0 and radar wavelength �0, i.e.
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From the figure we can see that
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Spectrum of the ion ”lines”
Ion acoustic wave is one type of longitudinal
oscillation of the ions and electrons in a plasma, 
much like acoustic waves traveling in neutral gas. 
The wave dispersion equation is (adiabatic plasma 
assumed, in isothermal case factor 3 disappears):
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How ion acoustic waves produce
incoherent scatter?
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Thermally excited ion-acoustic waves occur over a wide
spectrum of wavelengths propagating in all directions. 
Scattering of radar signal takes place at the moving
wave fronts of ion acoustic waves by Bragg scatter. 
Therefore, the waves experience Doppler shift. Both ion-
acoustic waves propagating towards the radar and away
from the radar give the quasi-coherent backscatter that
is observed by the radar.

Radar angular
frequency w0



Spectrum of the ion ”lines”
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Spectrum of the ion ”lines”

f0 (transmitter frequency)

Upshifted ion line
(waves traveling
toward the radar)

Downshifted ion line
(waves traveling
away from the radar)

Power
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l0/2
vph

l0/2
vph–

l0 is radar wavelength



Landau damping of the ion acoustic waves
When charged particles in a plasma are moving in the same
direction as a wave, but at speeds very slightly less than the wave
velocity, energy will be transferred from the wave to the particles; 
the particles will be accelerated and the wave attenuated. If the
particles are moving at a speed very slightly greater than the wave, 
they will feed energy into the wave and the wave will be enhanced.

Maxwellian velocity distribution of ions

Ion-acoustic wave velocity

More slower than faster
particles versus the
wave phase velocity
Þ Wave loses energy

and is attenuated

(give energy
to waves)

(take energy from waves)



Spectrum of the ion ”lines”
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Landau damping broadens the two lines.



Spectrum of the ion ”lines”

w0 (transmitter frequency)
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(waves traveling
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(waves traveling
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w

Due to Landau damping, the two ion lines merge into a 
double-humped spectrum, the ion spectrum or IS spectrum.



Spectrum of the ion ”lines”

w0 (transmitter frequency)

wia-wia

Upshifted ion line
(waves traveling
toward the radar)

Downshifted ion line
(waves traveling
away from the radar)

Power

w

The Landau damping is affected by the electron to ion
temperature ratio.



Question (about what you learned so far)

Parameters
Freq: 449 MHz
Ne: 1012 m-3

Te: 2*Ti
Comp: 100% O+

nin: 10-6 KHz

Craig Heinselman

Which plasma parameter(s) are changed to produce
these spectra (initial condition is the blue curve)?



Guideline

Parameters
Freq: 449 MHz
Ne: 1012 m-3

Te: 2*Ti
Comp: 100% O+

nin: 10-6 KHz

Craig Heinselman
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Answer

Parameters
Freq: 449 MHz
Ne: 1012 m-3

Te: 2*Ti
Comp: 100% O+

nin: 10-6 KHz

Craig Heinselman

Ti increases: peaks move
away from each other to 
higher frequencies. Since
the valley between the
peaks is not becoming
deeper, Te/Ti must be
constant (so Te is 
increased as well). 

ACFs

Spectra



Spectrum of the plasma lines
Another wave mode that can exist in ionospheric plasma are the
Langmuir waves. The dispersion equation is:
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Note that the frequency of plasma waves (”plasma lines”) is 
proprtional to the square root of ambient electron density.
Electron density of 1012 m-3 (very high) corresponds to 9 MHz. 



Spectrum of the plasma lines
Plasma waves travel at a far greater velocity than the
thermal velocities of the majority of electrons is, so
there is very little attenuation (and the plasma lines
remain very sharp in frequency).

If there is a influx of suprathermal electrons, such as 
photoelectrons, and these are travelling at a slightly
greater speed than the Langmuir waves, then the
plasma waves will be enhanced.



Spectrum of the ion and plasma 
lines

-wia wia

The ion spectrum is measured to get the plasma 
parameters: Ne, Te, Ti and vi. The plasma lines can be used
e.g. to give additional measurement of Ne.



Spectrum of the ion and plasma 
lines

Typical IS pectrum width is only a few kHz, and plasma lines occur at 
frequency of several MHz (exact value depending on electron density).



Power spectrum - ACF
In practice the incoherent scatter spectrum is obtained from the
autocorrelation function (ACF) estimate, which is calculated from
digital samples of the signal. The autocorrelation function and the
power spectral density of a signal make a Fourier transform pair.
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xj = x(tj), linked to times ti and tj , have a joint distribution function Dij(xi, xj).
The mean or expectation value of the stochastic process at t = ti is then

⟨xi⟩ =
∞∫

−∞

xiDi(xi) dxi. (3.49)

The correlation of a signal values at two instants of time is described by the
autocorrelation function, which is defined in its most general form by

Rx(ti, tj) = ⟨x(ti)x(tj)⟩ = ⟨xixj⟩ =
∫ ∞∫

−∞

xixjDij(xi, xj) dxidxj . (3.50)

One can also define the covariance function

Cx(ti, tj) = ⟨(xi − ⟨xi⟩)(xj − ⟨xj⟩)⟩

=
∫ ∞∫

−∞

(xi − ⟨xi⟩)(xj − ⟨xj⟩)Dij(xi, xj) dxidxj . (3.51)

Then it is easily shown that

Cx(ti, tj) = Rx(ti, tj) − ⟨xi⟩⟨xj⟩. (3.52)

This indicates that the autocorrelation function and the covariance function are
identical, if ⟨xi⟩⟨xj⟩ = 0.

Angle brackets are used above to indicate the expectation value, often called
the ensemble average. The latter term comes from the idea that an estimate
of the expectation value of some quantity depending on the stochastic process
is given by an average calculated from several sample functions (realisations).
This means that the signal is observed several times, the quantity is calculated
for each signal separately, and finally the results are averaged. As an example,
Fig. 3.11 shows five realisations of a stochastic process, obtained using a random
number generator in a computer. We see that the value of a sample function
x(k)(t) may be positive or negative at t = ti or t = tj . However, when a great
number of sample functions x(k)(t) are collected, the experimental distributions
of x(k)(ti) and x(k)(tj) will give estimates of the probability densities. Then also
the average of any function calculated from x(k)(ti) and x(k)(tj) gives an estimate
of the expectation value of this specific function. For example, if we have N
realisations x(k)(t), k = 1, 2, . . . , N and N is large enough, then

⟨xi⟩ ≈
1
N

N∑

k=1

x(k)(ti) (3.53)

and

Rx(ti, tj) = ⟨xixj⟩ ≈
1
N

N∑

k=1

x(k)(ti)x(k)(tj). (3.54)

Autocorrelation function Rx, ti and tj are two instants of time, where
x is the random variable and brackets indicate expectation value.
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If the autocorrelation function Rx depends only on the time difference
between ti and tj, which is called a lag or delay t= ti–ti, then

The modulus of Z(⌫) is no more necessarily even and the phase odd, and therefore z(t)
can be a complex signal.

If, instead of exp(�i!0t), the original signal is multiplied by exp(i!0t), shifting takes place
towards higher frequencies.

In radar receivers, cases also arise where frequency conversion is not made to a frequency
band around zero frequency (base band). Even then the principle is the same as above.

Spectrum and autocorrelation function

Assume an experiment producing a random signal x(t) each time it is carried out. Each
outcome of the experiment (realisation) is di↵erent, but the signals have the same statis-
tical properties. An example of five realisations is shown in Fig. 2. The autocorrelation
function is defined by

Rx(ti, tj) = hx(ti)x(tj)i = hxixji, (18)

where the angle brackets indicate ensemble average. If the signal is stationary, the auto-
correlation function depends only on the time di↵erence ⌧ = ti � tj, i.e.

Rx(⌧) = hx(t)x(t� ⌧)i. (19)

Then the autocorrelation function is also obtained as a time average from a single reali-
sation, i.e.

Rx(⌧) = lim
T!1

1

2T

TZ

�T

x(t)x(t� ⌧) dt. (20)

Figure 2: Realisations of a stochastic process with zero mean value.
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ACF for a stochastic process
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Figure 3.11: Realisations of a stochastic process with zero mean value.

If all statistical properties of a stochastic process are independent of time, we
say that the process is stationary. In terms of probability densities this means
that, regardless of the value of τ , the joint distribution of any set of variables
x(ti), i = 1, 2 , . . . , M is the same as the joint distribution of the variables x(ti−τ),
i = 1, 2 , . . . , M . For instance

Dx(ti),x(tj)(x, y) = Dx(ti−τ),x(tj−τ)(x, y) (3.55)

for all values of τ . If, in addition,

g[x(t)] = ⟨g[x(t)]⟩, (3.56)

where g is any function, we say that x(t) is ergodic. Because a time average is
independent of time, this definition implies that an ergodic process is necessarily
stationary. A benefit of an ergodic process is that it allows estimates of quantities
to be determined from a single realisation. In practice it is difficult to prove that
a signal is ergodic; usually it is only assumed that this is true.

If a signal is stationary, its autocorrelation function depends only on the dif-
ference of the arguments ti and tj and, instead of eq. (3.50), we can write

Rx(τ) = ⟨x(t)x(t − τ)⟩. (3.57)

Here the time difference τ is usually called delay or lag.
For each sample signal x(t) we can define the time autocorrelation function

Rx(τ) = lim
T→∞

1
2 T

T∫

−T

x(t)x(t − τ)dt. (3.58)

Tuomo Nygrén

Five realizations of a stochastic process,
which yield statistical properties of the variable.



Tuomo Nygrén

ACF calculated from the samples on the previous page. Note tha IS 
is due to random thermal fluctuations of plasma, and therefore it is 
a stochastic process. 

56 CHAPTER 2. FUNDAMENTALS

DELAY / ν+
-1

AU
TO

C
O

R
R

EL
AT

IO
N

 F
U

N
C

TI
O

N

2 31

Figure 2.18: The autocorrelation function corresponding to the spectrum in
Fig. 2.17.

of the autocorrelation function is clearly visible in this plot.
The above example demonstrates that the total width of the ion line is roughly

twice the Doppler shift of the ion-acoustic waves, i.e. 4v+ cos φ/λ0. Since v+ is of
the order of the thermal speed of ions, the width of the ion lines is determined
by ions rather than electrons. This is the explanation for the narrow incoherent
scatter spectrum observed for the first time by Bowles (1958).

The term ’incoherent scatter’ comes from the assumption that the signal is
scattered from randomly distributed electrons. If this were true, the phases of
the elementary signals from individual electrons were completely random and the
total signal would show no coherence. The coherence of a signal is measured in
terms of its autocorrelation function, the longer the autocorrelation function is, the
higher is the coherence level. The autocorrelation function of a truly incoherent
signal would be a delta function, i.e. its coherence length would be zero. As seen
above, the autocorrelation function of the ’incoherent scatter signal’ is not a delta
function and therefore, strictly speaking, the term is a misnomer. The name was
adopted, because the role of plasma fluctuations was not understood at first, and it
has remained in use for historical reasons. It is fortunate that ’incoherent scatter’
is not incoherent. This very fact allows the determination of some other plasma
parameters in addition to electron density and electron temperature.

The shape of the ion line in the incoherent scatter spectrum is determined by
various plasma parameters. The full theory gives an expression of the line shape
which is used in determining the values of the plasma parameters by the least
squares method.

In order to give a picture of the effect of various plasma parameters on the spec-
trum shape, spectra at various parameter combinations are plotted in Fig. 2.19.
The radar frequency is 931.5 MHz and the ion mass in the three topmost panels
is 30.5 u (mixture of O+

2 and NO+ ions). The top panel shows the effect of ion
temperature with a constant temperature ratio of unity and zero ion-neutral col-
lision frequency. The shoulders of the double-humped spectrum coincide with ν+

time delay/ lag

ACF for a stochastic process

High correlation during this
time (at small lag values)



Spectrum in practice



Range-time diagram for a radar
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Range-time diagram for a radar
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The received signal
at time t covers
range gate Dr =ct/2 
due to finite pulse
length t 
(1 µs = 150 m)Dr
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In addition, reception is not instantenous…

Transmitted pulse



Range-time diagram for a radar
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estimate ACFs from a wide altitude
range with specified range
resolution (= range gates)

Ilkka’s talk



Typical spectra as a function of altitude
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Debye length

(lD/ l0)2 << 1

Þ (k0 lD)2 << 1

l0 < lD , small radar wavelength 

Debye length determines the distance, outside of which the plasma 
behaviour is collective (i.e. we don’t need to look at the beahaviour of 
individual ions and electrons). The radar wavelength should larger
than the Debye length so that IS from ion-acoustic waves could take
place.

vph =
!

k
=

s
kB(3Ti + Te)

mi
(1)

vph =
!

k
= !p

s
1

k2
+ 3�D , (2)

where plasma frequency is

!p =

s
nee2

"0me
(3)

and Debye length

�D =

s
"0kBTe

nee2
(4)

and kB is Boltzmann constant.

1

+

l0 >> lD , radar wavelength is much larger than Debye length 

lD
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Figure 2.13: Left hand panel: Debye length as a function of electron tempera-
ture for different values of electron density. Right hand panel: The frequency of
Langmuir wave (normalised by plasma frequency) as a function of wave length for
different values of Debye length.

be put in the form

v− = λ− · fp

√
1 + 12π2λ2

D/λ2
−, (2.99)

where v− and λ− are the phase velocity and the wave length, respectively, fp =
[nee2/(ε0me)]1/2/(2π) is the plasma frequency and λD = [ε0kBTe/(nee2)]1/2 is the
Debye length. This indicates that the Langmuir wave is dispersive and, further-
more, the phase velocity depends both on electron density and on electron temper-
ature. When λD ≪ λ−, the frequency of the Langmuir wave is ν− = v−/λ− ≈fp.

The left hand panel in Fig. 2.13 shows the Debye length as a function of
electron temperature at various values of electron density. It is seen that, in the
ionosphere with an electron density higher than 1010 m−3 and a temperature lower
than 1000 K, typical values of Debye length lie within the range 1 mm – 1 cm.
Higher values are encountered in the D and topside F regions. The frequency of
the Langmuir wave, normalised by the plasma frequency, is plotted as a function of
wave length in the right hand panel of Fig. 2.13 for different values of Debye length.
These curves indicate the decrease of the frequency towards plasma frequency with
increasing wave length.

The wave length λ of the density fluctuation causing constructive interference
of the scattered radiation must fulfil eq. (2.89). Furthermore, this Fourier compo-
nent must obey the dispersion equations of the possible wave modes so that it is
a propagating wave. Due to the motion of the wave fronts, the frequency of the
scattered radiation is not the same as the frequency of the incident radiation but
it is affected by Doppler shift. Also, the density fluctuation contains Fourier com-
ponents propagating in opposite directions, and therefore the scattering spectrum
contains both upshifted and downshifted lines.

Task: Calculate
(i) Wavelengths that

produce scatter for the
two EISCAT radars, 
which have frequencies: 
UHF: 930 MHz, VHF: 224 
MHz 

(ii) Debye length that
corresponds to the
condition klD<1 for the
two radars and 

(iii) Estimate from the figure, 
for which ne and Te values
the Debye limitation will
be violated for the two
radars



Radar equation for IS
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Assume a monostatic radar so that r = rT = rR and GT = GR = G and
consider received power from a volume element dV located at r. The power is
proportional to the number of electrons in the volume element so that

d3PR(r) = ne(r)σPT · G2(r)
(4πr2)2

· λ2

4π
dV, (2.116)

where σ is the radar cross section per electron. Although eq. (2.115) gives σ = 4πr2
0

in the case of backscattering, this is actually not the correct expression because
the plasma effects discussed in Section 2.9 modify the scattering cross section. A
better approximation given by the plasma theory is

σ =
4πr2

0

(1 + k2λ2
D)(1 + Te/Ti + k2λ2

D)
, (2.117)

where r0 is the classical electron radius, λD is the Debye length and k = |k| =
|ki − ks| (see Fig. 2.10).

In spherical coordinates we can put dV = r2dΩdr, and therefore the power
received from the height interval (r, r + ∆r) is equal to

∆PR(r) =
ne(r)σPT λ2

(4π)3r2

[∫

Ω
G2(Ω)dΩ

]
∆r. (2.118)

Here ∆r is assumed to be small. The plasma parameters are also assumed to be
constants within the cross section of the radar beam as well as within the range
(r, r + ∆r). Solving from eq. (2.118) the electron density is

ne(r) = C · ∆PR(r)
PT

· r2

∆r
· 1
σ

, (2.119)

where C is a constant determined by the antenna pattern and the radar wave
length. When eq. (2.117) is used for the radar cross section, this gives

ne(r) = C · ∆PR(r)
PT

· r2

∆r
· (1 + k2λ2

D)(1 + Te/Ti + k2λ2
D)

4πr2
0

. (2.120)

Hence we see that the electron density depends not only on the received power
but also on Debye length (which depends on electron temperature and electron
density) and the ratio of electron and ion temperatures. In many cases the radar
wave length is much larger than the Debye length, which simplifies the equation
because the terms k2λ2

D can be neglected. As a first approximation, it is also
sometimes assumed that Te = Ti and then an estimate of electron density is
obtained from the formula

ne(r) = C · ∆PR(r)
PT

· r2

∆r
· 2
4πr2

0

. (2.121)

This result is sometimes called the ’raw electron density’. Note that the electron
density given by eq. (2.121) is twice the value which would be obtained using the
cross section 4πr2

0.
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This result is sometimes called the ’raw electron density’. Note that the electron
density given by eq. (2.121) is twice the value which would be obtained using the
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0.

Electron cross section from plasma theory (not a simple Thomson cross section):

Power PR received from range interval (r, r+Dr):

Electron density ne solved from the equation above:
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where PT is transmitted power, l wavelength, G antenna gain.

Where k is the wave number of the ion acoustic wave and r0 is the
classical electron radius

126 APPENDIX A. THOMSON SCATTERING

j(r, t) = ϱe(r, t)v e(t) = −ev e(t) · δ[r− re(t)] = −i
e2E0

meω0
eiω0t · δ[r− re(t)], (A.3)

where ρe(r, t) = −eδ[r − re(t)] is the charge density of the electron and δ is the
Dirac delta function. The retarded vector potential of the current density j(r, t),
as observed at R, is

As(R, t) =
µ0

4π

∫
j(r, t − |R − r|/c)

|R − r| d3r. (A.4)

This is the vector potential of the wave emitted by the oscillating electron. Insert-
ing eq. (A.3) in eq. (A.4) gives

As(R, t) = −i
µ0e2E0

4πmeω0

∫
eiω0(t − |R − r|/c)

|R − r| · δ[r− re(t− |R− r|/c)] d3r. (A.5)

If the coordinate system is chosen to make the electron oscillate around the origin,
re ≈ 0 for small oscillations and the vector potential far from the origin is

As(R, t) = −i
µ0e2E0

4πmeω0
· eiω0 (t − |R|/c)

|R| . (A.6)

Since the wave vector of the scattered wave in the direction of R is k s = ω0R/(|R|c),
we have ω0|R|/c = k s · R and

As(R, t) = −i
µ0e2E0

4πmω0
· ei(ω0t − k s · R)

|R| . (A.7)

This is a spherical wave with an amplitude ∝ 1/|R|. At great distances from the
origin the wave fronts are nearly planes. Therefore we can use the approximation
∇× ≈ −ik s× and Faraday’s law to obtain the magnetic induction of the scattered
wave as

Bs = ∇× As ≈ −µ0e2(k s × E0)
4πmeω0

· ei(ω0t − k s · R)

|R| . (A.8)

The electric field of the wave is then simply |Es| = c|Bs| and the intensity of the
scattered radiation at R is

Ss =
1
µ0

|Re(Es) × Re(Bs)| =
1

2µ0
|Es||Bs| =

c

2µ0
|Bs|2

=
c

2µ0

(
µ0e2

4πmeω0

)2

· |k s × E0|2

|R|2 =
µ0c

2

(
e2

4πmeω0

)2

· |k s|2 · |E0|2 · sin2 X
|R|2

=
µ0ε2

0c
3

2

(
e2

4πε0mec2

)2

· |E0|2 · sin2 X
|R|2 =

ε2
0c

2
· r2

0 · |E0|2 · sin2 X
|R|2 . (A.9)

Here
r0 =

e2

4πε0mec2
= 2.82 · 10−15 m (A.10)



Radar equation for IS cont’d
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Assume a monostatic radar so that r = rT = rR and GT = GR = G and
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proportional to the number of electrons in the volume element so that
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where r0 is the classical electron radius, λD is the Debye length and k = |k| =
|ki − ks| (see Fig. 2.10).

In spherical coordinates we can put dV = r2dΩdr, and therefore the power
received from the height interval (r, r + ∆r) is equal to
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Here ∆r is assumed to be small. The plasma parameters are also assumed to be
constants within the cross section of the radar beam as well as within the range
(r, r + ∆r). Solving from eq. (2.118) the electron density is

ne(r) = C · ∆PR(r)
PT
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where C is a constant determined by the antenna pattern and the radar wave
length. When eq. (2.117) is used for the radar cross section, this gives

ne(r) = C · ∆PR(r)
PT

· r2

∆r
· (1 + k2λ2

D)(1 + Te/Ti + k2λ2
D)

4πr2
0
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Hence we see that the electron density depends not only on the received power
but also on Debye length (which depends on electron temperature and electron
density) and the ratio of electron and ion temperatures. In many cases the radar
wave length is much larger than the Debye length, which simplifies the equation
because the terms k2λ2

D can be neglected. As a first approximation, it is also
sometimes assumed that Te = Ti and then an estimate of electron density is
obtained from the formula

ne(r) = C · ∆PR(r)
PT

· r2

∆r
· 2
4πr2

0

. (2.121)

This result is sometimes called the ’raw electron density’. Note that the electron
density given by eq. (2.121) is twice the value which would be obtained using the
cross section 4πr2

0.

where C is a constant determined by the antenna gain pattern and the
radar wave length. If the Debye correction term k2lD2<< 1, then the
received power is directly proportional to electron density. If in 
addition we assume that Te/Ti=1, we get an equation for the so-called
raw electron density

Since this estimate of ne does not depend on other plasma parameters, 
it can be estimated from the received power PR from a specific range
gate, i.e. the zero lag of the corresponding ACF.
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Dependence of spectra on 
ionospheric parameters

Parameters
Freq: 449 MHz
Ne: 1012 m-3

Ti: 1000 K
Comp: 100% O+

nin: 10-6 KHz

Craig Heinselman

Te/Ti=Tr

When Te/Ti increases, Landau
damping decreases, because vph
increases and it moves to the
right in Maxwellian velocity
distributions of ions

B



Dependence of spectra on 
ionospheric parameters

Craig Heinselman

Plasma as a 
whole moves
with vi and 
produces
Doppler shift

C



Parameters
Freq: 449 MHz
Ne: 1012 m-3

Ti: 500 K
Te: 500 K
Comp: 100% NO+

Dependence of spectra on 
ionospheric parameters

Craig Heinselman

In the E and 
especially D 
region, ion-
neutral
collisions start
to attenuate
the ion-
acoustic wave

D


