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Random Variables

▶ The probability of an event is a number between 0 and 1 that is to

represent the outcomes of the event divided by the number of

experiments [PP02]

▶ Random variables: A number that is assigned to the outcome of

every experiment

▶ R.V. can be described using distributions

▶ CDF 𝐹𝑥(𝑥) = 𝑃{𝑋 ≤ 𝑥}
▶ PDF 𝑓𝑥(𝑥) ≜ 𝑑𝐹𝑥(𝑥)

𝑑𝑥 = limΔ𝑥→0
𝑃{𝑥≤𝑋≤𝑥+Δ𝑥}

Δ𝑥
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Normally Distributed R.V.

▶ Normally distributed R.V. have the following PDF:

𝑓(𝑥) = 1√
2𝜋𝜎2

exp {−(𝑥 − 𝜇)2

2𝜎2 }

▶ 𝜇 is mean, 𝜎2 is variance

▶ CLT: Sum of

independent R.V.s

converges to normally

distributed R.V.
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Multiple R.V.

▶ R.V. can include information on other R.V. which can be expressed

through joint distributions

𝑓(x) = 1
√(2𝜋)𝑛 det(𝐶)

exp {−1
2

xC−1x𝑇}

▶ If independent 𝑓(𝑥1, 𝑥2, ..., 𝑥𝑛) = 𝑓(𝑥1)𝑓(𝑥2)...𝑓(𝑥𝑛)
▶ Instead of finding whole PDF often use correlation instead

𝐸{𝑋1, 𝑋2}
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Estimation

▶ Often need to estimate statistics on R.V.

▶ Determine the mean of 𝑛 of sequence 𝑋1, 𝑋2..., 𝑋𝑛

̂𝜇 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

▶ Estimation theory can give bounds on uncertainty

▶ Correlation estimation

𝐶𝑥𝑦 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖
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Why least squares?

Least squares problem

minimize
𝜃

1
2

‖𝑦 − ℎ(𝜃)‖2
2

Why least squares and not another error metric?

▶ Everybody uses it

▶ It’s easy: closed-form linear solution for linear least-squares

▶ It punishes large errors more than small errors

▶ It gives the maximum likelihood solution when errors follow the

Normal distribution
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Likelihood function

With 𝑌 ∼ 𝑓(𝑦 ∣ 𝜃), the likelihood function is defined as:
ℒ(𝜃) ≡ 𝑓(𝑦 ∣ 𝜃)

for parameters 𝜃 and a realization 𝑦.
Measurements with zero-mean Gaussian noise

𝑌 = ℎ(𝜃) + 𝑁 with 𝑁 ∼ 𝒩(0, Σ) ⟹ 𝑌 ∼ 𝒩(ℎ(𝜃), Σ)

Likelihood:

ℒ(𝜃) = 𝑓(𝑦 ∣ 𝜃) = 1
√det(2𝜋Σ)

𝑒− 1
2 (𝑦−ℎ(𝜃))⊺Σ−1(𝑦−ℎ(𝜃))

Log-likelihood with Σ = 𝜎I:

𝑙(𝜃) = −𝑘
2

log(2𝜋𝜎2) − 1
2𝜎2 ‖𝑦 − ℎ(𝜃)‖2

2

maximize
𝜃

ℒ(𝜃) ⟺ minimize
𝜃

1
2

‖𝑦 − ℎ(𝜃)‖2
2
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Maximum likelihood

A useful framework

▶ Turns parameter estimation problem into optimization problem

▶ Many R.V.s are Gaussian (central limit theorem)

▶ Least squares is nice!

▶ Estimates come with error bars governed by the curvature of the

log-likelihood function (see Fisher information)

A Bayesian perspective

▶ Maximum a posteriori (MAP) estimate maximizes

𝑃 (𝜃 ∣ 𝑦) = 𝑓(𝑦 ∣ 𝜃)𝑃 (𝜃)
𝑃 (𝑦)

▶ With uniform prior 𝑃(𝜃), MAP = ML

▶ Other priors yield regularized ML problems

▶ e.g. Laplace prior yields 𝑙1-regularization
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Under-determined systems of equations

Not enough measurements to constrain unknown values:

⎡⎢
⎣

𝑦⎤⎥
⎦

= ⎡⎢
⎣

𝐴 ⎤⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑥
⎤
⎥
⎥
⎥
⎦

Measurement Model Unknown

▶ Infinite number of solutions

▶ Often have prior information about the true solution (e.g.

sparsity) that can make the problem well-conditioned
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Theory of compressed sensing

Finding the sparsest solution is hard in general.

Definition

Compressed sensing is a theory to guarantee solution of an

under-determined set of equations.

Approximate guidelines for application

▶ Solution known to be sparse

▶ Measurements capture the effects of all parameters

▶ Minimum number of measurements on the order of the solution

sparsity (number of nonzeros)

Benefit

Can solve an easy convex optimization problem instead of a hard

combinatorial problem.
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Equivalent convex optimization problem

Sparsest solution to noisy measurements

Find sparsest 𝑥

subject to ‖𝑦 − 𝐴(𝑥)‖2 < 𝜂 ‖𝑥‖2
2 = ∑

𝑘
|𝑥𝑘|2

𝑙1-regularized least-squares (convex)

minimize
𝑥

1
2

‖𝑦 − 𝐴(𝑥)‖2
2 + 𝜆‖𝑥‖1 ‖𝑥‖1 = ∑

𝑘
|𝑥𝑘|

The 𝑙1-norm promotes sparsity!
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Example: waveform inversion for meteor echo
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ML application: electromagnetic vector sensor

Six elements

▶ 3 orthogonal dipole and loop

elements with common phase

center

Maximum information

▶ Measures complete

electromagnetic field at a

point

▶ Sensitive to all directions and

polarizations

Atom antenna
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Vector sensor benefits

Vector sensor benefits

▶ Magnitude/direction/po-

larization of multiple

sources in single snapshot

▶ Frequency-independent

beamforming

▶ Null out interfering

direction/polarization

Tripole comparison (right)

▶ Increased sensitivity,

especially in case of

interference
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Measurements

Measurement equation

▶ Collection of independent point sources

▶ Sources distributed equally in solid angle on surrounding sphere

▶ Arbitrary polarization in horizontal/vertical basis

▶ 𝑟𝑛 = [𝐴ℎ 𝐴𝑣] [ℎ𝑛
𝑣𝑛

] + 𝑤𝑛

Measurement Direction Source Noise

vector steering vectors magnitudes/phases

Second-order statistics

▶ Sufficient statistic using sample covariance: 𝑆 = 1
𝑁

𝑁−1
∑
𝑛=0

𝑟𝑛𝑟∗
𝑛
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Imaging problem formulation

▶ Assume zero-mean complex normal:

[ℎ𝑛
𝑣𝑛

] ∼ 𝒞𝒩(0, Σ) 𝑤𝑛 ∼ 𝒞𝒩(0, 𝜎I) ∀𝑛

▶ Entries of Σ give magnitude/polarization for source directions

▶ Solve covariance estimation problem:

minimize
Σ

𝐻(Σ)

subject to Σ ⪰ 0

Maximum likelihood objective

𝐻𝑚𝑙(Σ) = log det(𝐴Σ𝐴∗ + 𝜎I) + tr((𝐴Σ𝐴∗ + 𝜎I)−1𝑆)
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Sky map using Stokes parameters

▶ Σ is composed of diagonal blocks (independent sources)

Σ = [Σℎℎ Σℎ𝑣
Σ∗

ℎ𝑣 Σ𝑣𝑣
] = 1

2
[ diag(𝐼 + 𝑄) diag(𝑈 − 𝑖𝑉 )
diag(𝑈 + 𝑖𝑉 ) diag(𝐼 − 𝑄) ]

▶ Can write Σ in terms of Stokes parameters 𝐼, 𝑄, 𝑈, 𝑉

Source sky map, covariance described with Stokes parameters
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Statistics with ISR Data

▶ ISR data can be modeled as a Normally distributed random
variable

▶ The value of the parameter is an estimate of the mean of that

process
▶ The error bar value is the estimate standard deviation of the for

random variable.

▶ Issues with this model

▶ Correlation between different parameters
▶ Bias with the measurement
▶ Correlation between different measurements, e.g. close range gates

▶ Need to be careful in applying assumptions

▶ Can impact on how you do your analysis
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Fitted Data

▶ Least Squares

̂𝛽𝐿𝑆 = arg min
𝛽

[ℎ(𝛽) − Z]𝑇C−1[ℎ(𝛽) − Z]

▶ 𝛽 the plasma parameter vector

▶ [𝑁𝑒, 𝑇𝑒, 𝑇𝑖, etc]𝑇

▶ Z the data

▶ The measured ACF or spectra

▶ C the covariance matrix of the data

▶ ℎ function between parameters and data

▶ e.g. [KM11]
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ISR Fitting

▶ Find parameters for a

given set of data

▶ Find a function to

move from one space

to another

▶ Noise can increase size

of space

24/48



Outline

Statistics

Least Squares & Maximum Likelihood

ISR Fitting

Resolution

Advanced Processing

Estimating functions

25/48



Spatial Ambiguities

▶ ISRs average over

space as well

▶ The spatial averaging

is dependent on the

pulse type used and

the beam pattern
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Spatial Ambiguities from Pulse Shape

▶ Along the beam the

spatial averaging is due

to the pulse pattern

▶ Different pulse types

yield different along

range ambiguities

Figure: [Hys18]
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Spatial Ambiguities from Beam Pattern

▶ Motion of the plasma can increase this apparent ambiguity
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Ambiguities

𝑦(𝜏𝑠, x𝑠, 𝑡𝑠) = ∫ 𝐿(𝜏𝑠, x𝑠, 𝑡𝑠, 𝜏 , x, 𝑡)𝑅(𝜏, x, 𝑡|𝛽)𝑑𝑉 𝑑𝑡𝑑𝜏

29/48



Ambiguities: Data Example

30/48



Outline

Statistics

Least Squares & Maximum Likelihood

ISR Fitting

Resolution

Advanced Processing

Estimating functions

31/48



Advance Methods of Fitting

▶ Active area of research to improve reconstruction of the
parameters

▶ Better resolution
▶ Enable new measurements

▶ e.g. use an extremely long pulse to measure top-side

▶ Data Based Inversion (Lag Profile Analysis)

▶ Linear Inversion, easier computationally

▶ Parametric Inversion (Full Profile Analysis)

▶ Non-Linear Inversion, more complex computationally
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Data Based Inversion (Lag Profile Analysis)

r̂ = arg min
r

‖z − Lr‖2
2 + 𝛾 · f(r),

▶ Inversion of linear space-time ambiguity and then fit lags

▶ Constraints are generally functions of lags, does not connect

directly to physics

▶ Many computational tools available as its similar to problems in
other fields

▶ e.g. deconvolution and image reconstruction
▶ Examples: [VLN+08], [NKKS08]
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Parametric Inversion (Full Profile Analysis)

𝛽̂ = arg min
𝛽

‖z − Lh(𝛽)‖2
2 + 𝛼 · f(𝛽)

▶ Inversion of linear space-time ambiguity and parameter-to-lag

operator (ℎ(𝛽))
▶ Constraints are generally functions of plasma parameters

▶ e.g. ⟨𝑑2𝑇𝑒/𝑑𝑧2⟩, ⟨𝑑2𝑇𝑖/𝑑𝑧2⟩ [HRCH08]
▶ Not as many computational tools available

▶ Examples: [HRCH08], [HRTvE92], [LHP97]
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Gaussian processes

Gaussian process

“A collection of random variables, any finite number of which have a

joint Gaussian distribution” [Rasmussen and Williams, 2006]

▶ For a function 𝑓(𝐱), we write
𝑓(𝐱) ∼ 𝒢𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱′))

▶ Fully defined by mean and covariance functions

𝑚(𝐱) = 𝐄[𝑓(𝐱)]

𝑘(𝐱, 𝐱′) = 𝐄[(𝑓(𝐱) − 𝑚(𝐱))(𝑓(𝐱′) − 𝑚(𝐱′))]

▶ Evaluating at points leads to a Gaussian random vector

⎡⎢
⎣

𝑓(𝐱1)
⋮

𝑓(𝐱𝑁)
⎤⎥
⎦

∼ 𝒩⎛⎜
⎝

⎡⎢
⎣

𝑚(𝐱1)
⋮

𝑚(𝐱𝑁)
⎤⎥
⎦

, ⎡⎢
⎣

𝑘(𝐱1, 𝐱1) ⋯ 𝑘(𝐱1, 𝐱𝑁)
⋮ ⋱ ⋮

𝑘(𝐱𝑁, 𝐱𝑁) ⋯ 𝑘(𝐱𝑁, 𝐱𝑁)
⎤⎥
⎦

⎞⎟
⎠
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Gaussian process regression: specification

Step 1: Select forms for mean 𝑚(𝐱) and covariance 𝑘(𝐱, 𝐱′)
▶ Functions will typically have parameters 𝜽

Matérn covariance, 𝜈 = 5
2

𝑘(𝐱, 𝐱′) = 𝜎2(1 +
√

5𝑟 + 5
3𝑟2)𝑒−

√
5𝑟

with

𝑟 = ∥𝐱−𝐱′

𝜹 ∥
2

𝜽 = [𝜎2 𝛿1 ⋯ 𝛿𝑑]⊺

−2 0 2

0.0

0.2

0.4

0.6

0.8

1.0

Matérn, ν = 5
2

Radial basis function
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Gaussian process regression: training

Step 2: Train/fit parameters 𝜽 using measurements of 𝑓(𝐱)
▶ Noisy measurements at a collection of points X

𝐲 = 𝐟(X) + 𝝐 𝝐 ∼ 𝒩(𝟎, 𝜎2
𝑛I)

▶ Maximize marginal likelihood

𝑝(𝐲 ∣ X) = ∫ 𝑝(𝐲 ∣ 𝐟 , X)𝑝(𝐟 ∣ X) 𝑑𝐟

𝐲 ∣ X ∼ 𝒩(𝐦(X), K(X, X) + 𝜎2
𝑛I)

𝑙(𝜽) = log 𝑝(𝐲 ∣ X) = −1
2

(𝐲 − 𝐦)⊺(K + 𝜎2
𝑛I)−1(𝐲 − 𝐦)

− 1
2

log det(K + 𝜎2
𝑛I) − 𝐶
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Gaussian process regression: prediction

Step 3: Predict 𝐟∗ at a collection of test points X∗
▶ Joint distribution

[𝐲
𝐟∗

] ∼ 𝒩([ 𝐦(X)
𝐦(X∗)] , [K(X, X) + 𝜎2

𝑛I K(X, X∗)
K(X∗, X) K(X∗, X∗)])

▶ Posterior distribution by conditioning on 𝐲

𝐟∗ ∣ 𝐲, X, X∗ ∼ 𝒩(𝐦∗, K∗)

𝐦∗ = 𝐦(X∗) + K(X∗, X)(K(X, X) + 𝜎2
𝑛I)−1(𝐲 − 𝐦(X))

K∗ = K(X∗, X∗) − K(X∗, X)(K(X, X) + 𝜎2
𝑛I)−1K(X, X∗)

Use mean for predicted value and variance for confidence interval
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Meteor wind measurements

▶ Doppler shift in Bragg direction for a single location/time

𝑓(𝑥, 𝑦, 𝑧, 𝑡) = 1
2𝜋

[𝑘𝑥 𝑘𝑦 𝑘𝑧] ⎡⎢
⎣

𝑢(𝑥, 𝑦, 𝑧, 𝑡)
𝑣(𝑥, 𝑦, 𝑧, 𝑡)
𝑤(𝑥, 𝑦, 𝑧, 𝑡)

⎤⎥
⎦

where
▶ 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 are Bragg vector components
▶ 𝑢, 𝑣, and 𝑤 are the unknown wind components
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Vectorized Doppler measurement equation

𝑓(𝑥, 𝑦, 𝑧, 𝑡) = 1
2𝜋

[𝑘𝑥 𝑘𝑦 𝑘𝑧] ⎡⎢
⎣

𝑢(𝑥, 𝑦, 𝑧, 𝑡)
𝑣(𝑥, 𝑦, 𝑧, 𝑡)
𝑤(𝑥, 𝑦, 𝑧, 𝑡)

⎤⎥
⎦

▶ Measure at a set of points X with noise 𝝐

𝐲(X) = 𝐚𝑢 ⊙ 𝐮 + 𝐚𝑣 ⊙ 𝐯 + 𝐚𝑤 ⊙ 𝐰 + 𝝐

X = ⎡⎢
⎣

𝐱⊺
1
⋮

𝐱⊺
𝑀

⎤⎥
⎦

= ⎡⎢
⎣

𝑥1 𝑦1 𝑧1 𝑡1
⋮ ⋮ ⋮ ⋮

𝑥𝑀 𝑦𝑀 𝑧𝑀 𝑡𝑀

⎤⎥
⎦

𝝐 ∼ 𝒩(0, Σ𝑛)

𝐚𝑢 = 1
2𝜋

⎡
⎢
⎣

𝑘𝑥1
⋮

𝑘𝑥𝑀

⎤
⎥
⎦

𝐚𝑣 = 1
2𝜋

⎡
⎢
⎣

𝑘𝑦1
⋮

𝑘𝑦𝑀

⎤
⎥
⎦

𝐚𝑤 = 1
2𝜋

⎡
⎢
⎣

𝑘𝑧1
⋮

𝑘𝑧𝑀

⎤
⎥
⎦

𝐮 = ⎡⎢
⎣

𝑢(𝐱1)
⋮

𝑢(𝐱𝑀)
⎤⎥
⎦

𝐯 = ⎡⎢
⎣

𝑣(𝐱1)
⋮

𝑣(𝐱𝑀)
⎤⎥
⎦

𝐰 = ⎡⎢
⎣

𝑤(𝐱1)
⋮

𝑤(𝐱𝑀)
⎤⎥
⎦
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Gaussian process prior for winds

▶ Model each wind component as a Gaussian process

𝑢(𝐱) ∼ 𝒢𝒫(𝑚𝑢(𝐱), 𝑘𝑢(𝐱, 𝐱′))
𝑣(𝐱) ∼ 𝒢𝒫(𝑚𝑣(𝐱), 𝑘𝑣(𝐱, 𝐱′))
𝑤(𝐱) ∼ 𝒢𝒫(𝑚𝑤(𝐱), 𝑘𝑤(𝐱, 𝐱′))

▶ Choose prior mean and covariance for 𝑢, 𝑣, 𝑤

Constant means

𝑚𝑢(𝐱) = 𝑢0

𝑚𝑣(𝐱) = 𝑣0

𝑚𝑤(𝐱) = 𝑤0

Common Matérn covariance

𝑘𝑢(𝐱, 𝐱′) = 𝑘𝑣(𝐱, 𝐱′) = 𝑘𝑤(𝐱, 𝐱′)
= 𝑘Matérn,𝜈= 5

2
(𝐱, 𝐱′; 𝜎2, 𝛿𝑥, 𝛿𝑦, 𝛿𝑧, 𝛿𝑡)

▶ Can fit parameters and/or apply physical knowledge
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Gaussian prior for Doppler measurements

𝑢(𝐱) ∼ 𝒢𝒫(𝑚𝑢(𝐱), 𝑘𝑢(𝐱, 𝐱′))
𝑣(𝐱) ∼ 𝒢𝒫(𝑚𝑣(𝐱), 𝑘𝑣(𝐱, 𝐱′))
𝑤(𝐱) ∼ 𝒢𝒫(𝑚𝑤(𝐱), 𝑘𝑤(𝐱, 𝐱′))

𝐲(X) = 𝐚𝑢 ⊙ 𝐮 + 𝐚𝑣 ⊙ 𝐯 + 𝐚𝑤 ⊙ 𝐰 + 𝝐

▶ Multivariate Gaussian for winds at measurement points

⎡⎢
⎣

𝐮
𝐯
𝐰

⎤⎥
⎦

∼ 𝒩⎛⎜
⎝

⎡⎢
⎣

𝐦𝑢(X)
𝐦𝑣(X)
𝐦𝑤(X)

⎤⎥
⎦

, ⎡⎢
⎣

K𝑢(X, X) 0 0
0 K𝑣(X, X) 0
0 0 K𝑤(X, X)

⎤⎥
⎦

⎞⎟
⎠

▶ Resulting multivariate Gaussian for Doppler measurements

𝐲 ∼ 𝒩(𝐦𝑦(X), K𝑦(X, X))

𝐦𝑦(X) = 𝐚𝑢 ⊙ 𝐦𝑢(X) + 𝐚𝑣 ⊙ 𝐦𝑣(X) + 𝐚𝑤 ⊙ 𝐦𝑤(X)
K𝑦(X, X) = (𝐚𝑢𝐚𝑢

⊺) ⊙ K𝑢(X, X) + (𝐚𝑣𝐚𝑣
⊺) ⊙ K𝑣(X, X)

+ (𝐚𝑤𝐚𝑤
⊺) ⊙ K𝑤(X, X) + Σ𝑛
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Gaussian prior for Doppler measurements
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𝑤(𝐱) ∼ 𝒢𝒫(𝑚𝑤(𝐱), 𝑘𝑤(𝐱, 𝐱′))
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⎠
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𝐲 ∼ 𝒩(𝐦𝑦(X), K𝑦(X, X))

𝐦𝑦(X) = 𝐚𝑢 ⊙ 𝐦𝑢(X) + 𝐚𝑣 ⊙ 𝐦𝑣(X) + 𝐚𝑤 ⊙ 𝐦𝑤(X)
K𝑦(X, X) = (𝐚𝑢𝐚𝑢

⊺) ⊙ K𝑢(X, X) + (𝐚𝑣𝐚𝑣
⊺) ⊙ K𝑣(X, X)

+ (𝐚𝑤𝐚𝑤
⊺) ⊙ K𝑤(X, X) + Σ𝑛
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Doppler measurement fitting

𝐦𝑦(X) = 𝐚𝑢 ⊙ 𝐦𝑢(X) + 𝐚𝑣 ⊙ 𝐦𝑣(X) + 𝐚𝑤 ⊙ 𝐦𝑤(X)
K𝑦(X, X) = (𝐚𝑢𝐚𝑢

⊺) ⊙ K𝑢(X, X) + (𝐚𝑣𝐚𝑣
⊺) ⊙ K𝑣(X, X)

+ (𝐚𝑤𝐚𝑤
⊺) ⊙ K𝑤(X, X) + Σ𝑛

▶ Maximize likelihood

𝑙(𝜽) = −1
2

(𝐲 − 𝐦𝑦)⊺K𝑦
−1(𝐲 − 𝐦𝑦) − 1

2
log det K𝑦 − 𝐶

Resulting parameters: March 14, 2016, 08:00 - 12:00

𝑢0 = −20 m/s

𝑣0 = −10 m/s

𝑤0 = −2 m/s

𝜎2 = 500 (m/s)2

𝛿𝑥 = 40 km

𝛿𝑦 = 20 km

𝛿𝑧 = 2 km

𝛿𝑡 = 30 min
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Wind estimation

▶ Can write posterior distribution for winds at prediction points X∗

⎡
⎢⎢
⎣

𝐲
𝐮∗
𝐯∗
𝐰∗

⎤
⎥⎥
⎦

∼ 𝒩
⎛⎜⎜⎜
⎝

⎡
⎢⎢
⎣

𝐦𝑦(X)
𝐦𝑢(X∗)
𝐦𝑣(X∗)
𝐦𝑤(X∗)

⎤
⎥⎥
⎦

, κ
⎞⎟⎟⎟
⎠

κ =
⎡
⎢⎢
⎣

K𝑦(X, X) 𝐚𝑢 ⊙ K𝑢(X, X∗) 𝐚𝑣 ⊙ K𝑣(X, X∗) 𝐚𝑤 ⊙ K𝑤(X, X∗)
K𝑢(X∗, X) ⊙ 𝐚𝑢 K𝑢(X∗, X∗) 0 0
K𝑣(X∗, X) ⊙ 𝐚𝑣 0 K𝑣(X∗, X∗) 0
K𝑤(X∗, X) ⊙ 𝐚𝑤 0 0 K𝑤(X∗, X∗)

⎤
⎥⎥
⎦

▶ Estimate given by mean (just linear algebra)

𝐄[𝐮∗ ∣ 𝐲] = 𝐦𝑢(X∗) + K𝑢(X∗, X) ⊙ 𝐚𝑢 ⊙ K𝑦(X, X)−1(𝐲 − 𝐦𝑦(X))

𝐄[𝐯∗ ∣ 𝐲] = 𝐦𝑣(X∗) + K𝑣(X∗, X) ⊙ 𝐚𝑣 ⊙ K𝑦(X, X)−1(𝐲 − 𝐦𝑦(X))

𝐄[𝐰∗ ∣ 𝐲] = 𝐦𝑤(X∗) + K𝑤(X∗, X) ⊙ 𝐚𝑤 ⊙ K𝑦(X, X)−1(𝐲 − 𝐦𝑦(X))

▶ Posterior covariance can be calculated as well
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Example wind field estimates

Measurements Estimates
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