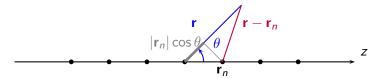


- Phased Array Fundamentals
- Passive and Active Arrays
- 3 Interferometry
- Digital Beam Forming

Maxwell's Equations are Linear:

$$\begin{aligned} \mathbf{J}_1 &= \frac{1}{\mu_0} \nabla \times (\mathbf{B}_1) - \epsilon_0 \frac{\partial}{\partial t} (\mathbf{E}_1) \\ 0 &= \nabla \times (\mathbf{E}_1) + \frac{\partial}{\partial t} (\mathbf{B}_1) \\ \mathbf{J}_2 &= \frac{1}{\mu_0} \nabla \times (\mathbf{B}_2) - \epsilon_0 \frac{\partial}{\partial t} (\mathbf{E}_2) \\ 0 &= \nabla \times (\mathbf{E}_2) + \frac{\partial}{\partial t} (\mathbf{B}_2) \\ \mathbf{J}_1 + \mathbf{J}_2 &= \frac{1}{\mu_0} \nabla \times (\mathbf{B}_1 + \mathbf{B}_2) - \epsilon_0 \frac{\partial}{\partial t} (\mathbf{E}_1 + \mathbf{E}_2) \\ 0 &= \nabla \times (\mathbf{E}_1 + \mathbf{E}_2) + \frac{\partial}{\partial t} (\mathbf{B}_1 + \mathbf{B}_2) \end{aligned}$$

Superposition Applied to Antenna Arrays

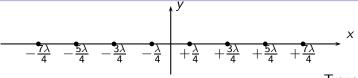

Fields radiated by single element at the origin with applied current l_0 :

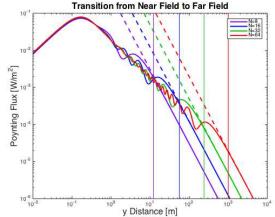
$$\mathbf{E} = \mathbf{E}_0 I_0 \frac{e^{-jk|\mathbf{r}|}}{|\mathbf{r}|}$$

Fields radiated by entire array:

$$\mathbf{E} = \mathbf{E}_0 \sum_{n=0}^{N-1} I_n \frac{e^{-jk|\mathbf{r} - \mathbf{r}_n|}}{|\mathbf{r} - \mathbf{r}_n|}$$

Far Field Approximation (Fraunhofer Zone)

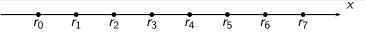

If \mathbf{r} and $\mathbf{r} - \mathbf{r}_n$ are almost parallel lines:


$$\mathbf{r} - \mathbf{r}_n \approx \mathbf{r} - |\mathbf{r}_n| \cos \theta \hat{r}$$

Assume $|\mathbf{r}_n| \ll |\mathbf{r}|$:

$$\begin{aligned} |\mathbf{r} - \mathbf{r}_n| &\approx |\mathbf{r}| \text{ for demoninator terms} \\ -jk \, |\mathbf{r} - \mathbf{r}_n| &\approx -jk \, |\mathbf{r}| + jk \, |\mathbf{r}_n| \cos \theta \\ \mathbf{E} &\approx \underbrace{\mathbf{E}_0 \frac{e^{-jk|\mathbf{r}|}}{|\mathbf{r}|}}_{\text{Element Factor}} \underbrace{\sum_{n=0}^{N-1} I_n e^{jk|\mathbf{r}_n| \cos \theta}}_{\text{Array Factor}} \end{aligned}$$

Distance to Far Field: Fresnel Numbers



Transition from near to far determined by the **Fresnel Number**:

$$rac{L^2}{r\lambda}\ll 1 o {\sf Far \; Field}$$
 $rac{L^2}{r\lambda}>1 o {\sf Near \; Field}$ $L={\sf Array \; length}$ $\lambda={\sf wavelength}$

R. H. Varney (SRI) Phased Arrays July 28, 2017 6 / 42

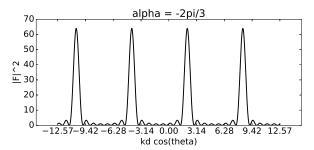
1-D Linear Phased Array

$$|\mathbf{r}_n| = nd$$
 $I_n = e^{jn\alpha}$

Array Factor:

$$F = \sum_{n=0}^{N-1} e^{jn\alpha} e^{jknd\cos\theta}$$

$$= \frac{1 - e^{jN\alpha + jNkd\cos\theta}}{1 - e^{j\alpha + jkd\cos\theta}}$$


$$= e^{j\frac{(N-1)}{2}(kd\cos\theta + \alpha)} \frac{\sin\left[\frac{N}{2}(kd\cos\theta + \alpha)\right]}{\sin\left[\frac{1}{2}(kd\cos\theta + \alpha)\right]}$$

$$|F|^2 = \frac{\sin^2\left[\frac{N}{2}(kd\cos\theta + \alpha)\right]}{\sin^2\left[\frac{1}{2}(kd\cos\theta + \alpha)\right]}$$

July 28, 2017

8 / 42

$$|F|^2 = \frac{\sin^2\left[\frac{N}{2}\left(kd\cos\theta + \alpha\right)\right]}{\sin^2\left[\frac{1}{2}\left(kd\cos\theta + \alpha\right)\right]}$$

Peak appears when $kd \cos \theta = -\alpha$

Additional peaks could appear when $kd \cos \theta = -\alpha + 2\pi m$ (Grating Lobes)

Visible Region: $0 < \theta < \pi \rightarrow -kd < kd \cos \theta < kd$

R. H. Varney (SRI) Phased Arrays

Grating Lobes

- $d < \lambda/2 \rightarrow kd < \pi$: No grating lobes will ever appear
- $\lambda/2 < kd < \lambda \rightarrow \pi < kd < 2\pi$: Grating lobes will only appear at some steering angles
- $d > \lambda \rightarrow kd > 2\pi$: Grating lobes will always appear

Example of linear array with $d = 2\lambda/3$ spacing

Movie

R. H. Varney (SRI) Phased Arrays July 28, 2017 9 / 42

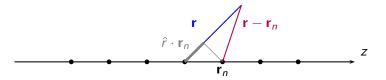
Mutual Coupling

- The true element factor for antennas in an array is different from the same type of antennas in isolation
 - Scattering off of neighboring antennas
 - Inductive coupling involving antenna near-fields

Two possible solutions

- Use a larger antenna separation and live with a limited grating-lobe free steering range.
- Use specially designed antennas to minimize coupling

EISCAT_3D Prototype Drooped Dipole \rightarrow



10 / 42

R. H. Varney (SRI) Phased Arrays July 28, 2017

11 / 42

Multi-Dimensional Arrays

$$-jk |\mathbf{r} - \mathbf{r}_n| \approx -jk |\mathbf{r}| + jk (\hat{r} \cdot \mathbf{r}_n)$$

$$\mathbf{E} \approx \underbrace{\mathbf{E}_0 \frac{e^{-jk|\mathbf{r}|}}{|\mathbf{r}|}}_{\text{Element Factor}} \underbrace{\sum_{n=0}^{N-1} I_n e^{jk(\hat{r} \cdot \mathbf{r}_n)}}_{\text{Array Factor}}$$

In spherical coordinates:

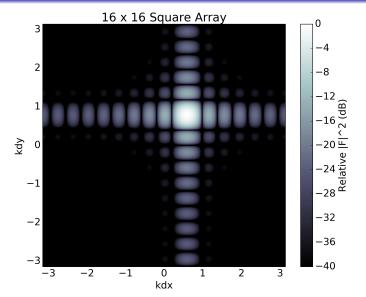
$$\hat{r} \cdot \mathbf{r}_n = x_n \cos \phi \sin \theta + y_n \sin \phi \sin \theta + z_n \cos \theta$$

R. H. Varney (SRI) Phased Arrays July 28, 2017

2-D Rectangular Array

$$\mathbf{r}_{nm} = nd_{x}\hat{\mathbf{x}} + md_{y}\hat{\mathbf{y}}$$
 $I_{nm} = e^{j(n\alpha + m\beta)}$

Array Factor:


$$|F(\theta,\phi)|^{2} = \left| \sum_{n=0}^{N_{x}-1} \sum_{m=0}^{N_{y}-1} e^{j(nkd_{x}\cos\phi\sin\theta + n\alpha + mkd_{y}\sin\phi\sin\theta + m\beta)} \right|^{2}$$

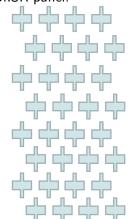
$$= \frac{\sin^{2}\left[\frac{N_{x}}{2}\left(kd_{x}\cos\phi\sin\theta + \alpha\right)\right]}{\sin^{2}\left[\frac{1}{2}\left(kd_{x}\cos\phi\sin\theta + \alpha\right)\right]} \frac{\sin^{2}\left[\frac{N_{y}}{2}\left(kd_{y}\sin\phi\sin\theta + \beta\right)\right]}{\sin^{2}\left[\frac{1}{2}\left(kd_{y}\sin\phi\sin\theta + \beta\right)\right]}$$

R. H. Varney (SRI) Phased Arrays

12 / 42

2-D Rectangular Array

R. H. Varney (SRI)

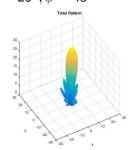

Phased Arrays

Hexagonal Spacing

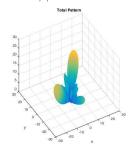
Hexagon

- • •
- • •
- • •
 - • •
 - . . .

Honeycomb Rectangular Array One AMISR panel:



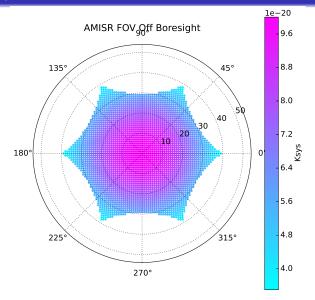
Steering A Hexagonal Array


19-antenna hexagon with $d = 3\lambda/4$.

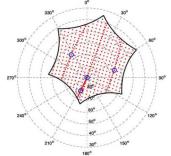
$$\theta = 0, \phi = 0$$

$$\theta = 20^{\circ}, \phi = 45^{\circ}$$

$$\theta = 45^{\circ}, \phi = 45^{\circ}$$

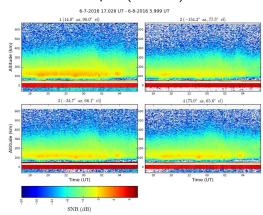


R. H. Varney (SRI)


Phased Arrays

 FOV limited by grating lobe limit
 ~30° − 40°

- Antenna gain decreases with steering angle off of boresight
- Antenna works best within ~25° off of boresight



IPY Beam Pattern

The Up-B beam is close to the grating lobe limit, and therefore has reduced sensitivity.

Reduced SNR in Up-B (Beam 2)

R. H. Varney (SRI) Phased Arrays July 28, 2017 17 / 42

Passive Phased Arrays: Jicamarca

• One transmitter feeds entire array

R. H. Varney (SRI)

Phased Arrays

July 28, 2017

Passive Phased Arrays: Jicamarca

R. H. Varney (SRI) Phased Arrays July 28, 2017 19 / 42

Manual Phasing (Jicamarca)

R. H. Varney (SRI) Phased Arrays July 28, 2017 20 / 42

Active Electronically Steerable Phased Arrays

The AMISR UHF System

AMISR AEU = Tx/Rx Unit

- Phasing control - Status monitoring
- 4096 AEUs/AMISR radar face

Unit (AEU) 32/panel

Antenna Element

Interferometry

AMISR Panel

- 32 Antenna Element Units arranged in hexagonal pattern

- 3.5 x 2 meters; 19.8 dBi / panel
- 16 kW peak power per panel
- Basic system building block for AMISR
- Embedded linux controller

Panel (with PCU)

Utility Distribution Unit (UDU)

AMISR Control System (ACS)

AMISR UDU

- 400 Hz JetPower converters
- Remote power control units
- Fiber distribution system

AMISR ACS

- Flexible transmit and receive system
- Completely remotely controlled
- Experiments run off a scheduler

R. H. Varney (SRI)

Phased Arrays

July 28, 2017

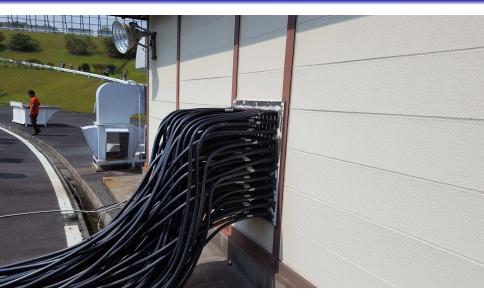
MU Radar

R. H. Varney (SRI)

Phased Arrays

July 28, 2017

MU Radar


R. H. Varney (SRI) Phased Arrays July 28, 2017 23 / 42

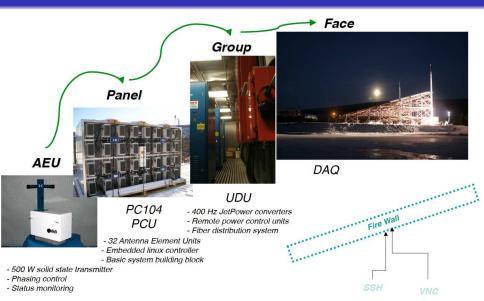
MU Radar Cabling

R. H. Varney (SRI) Phased Arrays July 28, 2017 24 / 42

MU Radar Cabling

R. H. Varney (SRI) **Phased Arrays** July 28, 2017 25 / 42

Interferometry


MU Radar Power Amplifiers

R. H. Varney (SRI) July 28, 2017 26 / 42 **Phased Arrays**

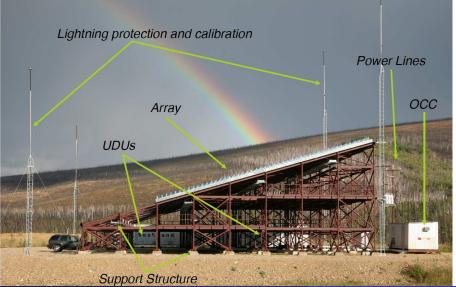
Interferometry

Advanced Modular Incoherent Scatter Radar

R. H. Varney (SRI) **Phased Arrays**

Antenna Element Unit (AEU) Specifications

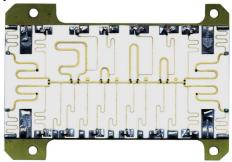
- Distributed Solid State Power Amplifiers (SSPAs)
- 430-450 MHz instantaneous bandwidth
- 10% Maximum duty cycle
- Minimum PRF interval 500 usec
- Maximum pulsewidth 2 msec
- Passive cooling (no moving parts
- 400 Hz prime power



Interferometry

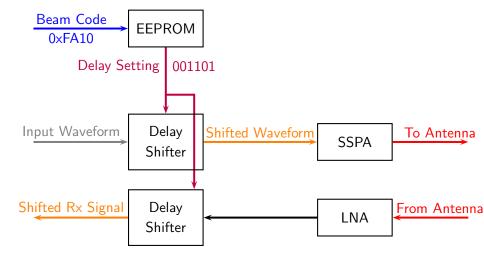
- Crossed dipoles, circular polarization on axis
- Balun built into the antenna support shaft
- Constant impendence over bandwidth and scan angle
- Spacing is hexagonal for efficiency
- Tx/Rx polarizations are opposite and fixed (not measureable)

R. H. Varney (SRI) **Phased Arrays** July 28, 2017 28 / 42

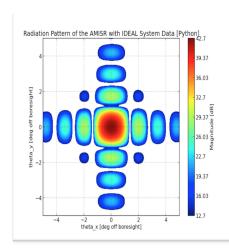

Poker Flat Incoherent Scatter Radar (PFISR)

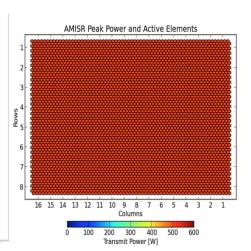
R. H. Varney (SRI) Phased Arrays July 28, 2017 29 / 42

Electronic Steering with Delay Shifters

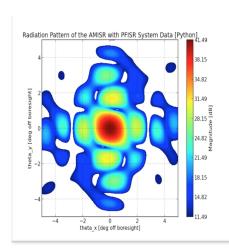

Example 4-bit delay shifter:

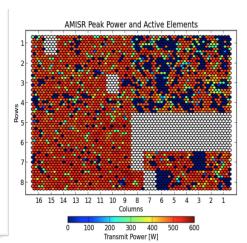
- AMISR uses 6-bit delay shifters
- $2^6 = 64$ steps spaced by $\pi/32 = 5.625^{\circ}$


R. H. Varney (SRI) Phased Arrays July 28, 2017 30 / 42

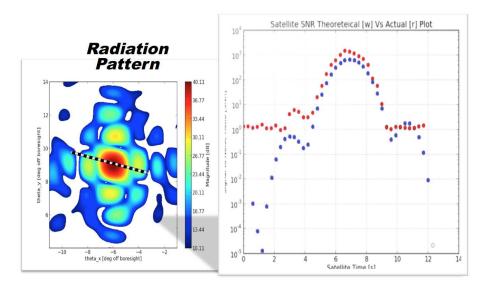

Conceptual Diagram of Steering with AMISR

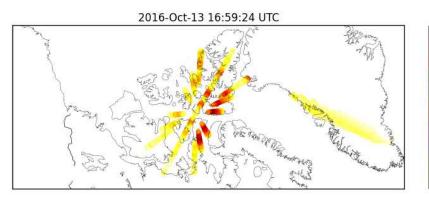
R. H. Varney (SRI) Phased Arrays July 28, 2017 31 / 42


Ideal AMISR Radiation Pattern



R. H. Varney (SRI) Phased Arrays July 28, 2017 32 / 42


AMISR Graceful Degradation

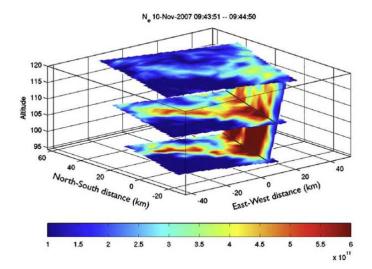

R. H. Varney (SRI) Phased Arrays July 28, 2017 33 / 42

AMISR Beamwidth During Satellite Pass

R. H. Varney (SRI) **Phased Arrays** July 28, 2017 34 / 42

Differences Between AMISR and Scanning Radars

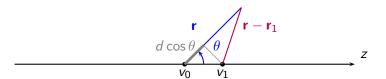
1.50 1.35 1.20 1.05 [€, € 21, 01] 0.60 0.45 № 0.30 0.15


0.00

35 / 42

R. H. Varney (SRI) Phased Arrays

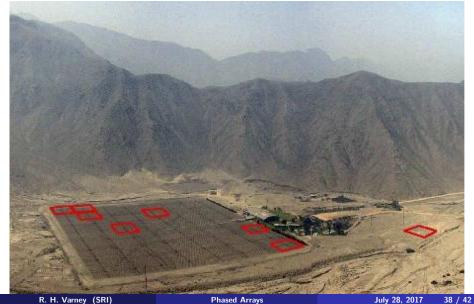
36 / 42


Imaging Auroral Structure [Semeter et al. (2009)]

R. H. Varney (SRI) Phased Arrays July 28, 2017

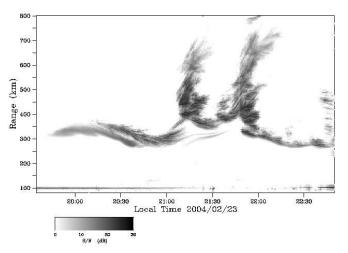
37 / 42

Two Antenna Inteferometry



$$\langle v_0 v_1^* \rangle = e^{jkd\cos\theta}$$

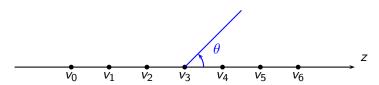
- Measure v_0 and v_1 separately and estimate the angle of arrival θ .
- ullet Larger baseline o more precise angle estimates.
- Baselines where $kd>\pi$ suffer from 2π ambiguity issues. Related to grating lobe problem.


R. H. Varney (SRI) Phased Arrays July 28, 2017

Interferometric Imaging Configuration at Jicamarca

R. H. Varney (SRI) July 28, 2017 **Phased Arrays**

Interferometric Images of Coherent Scatter

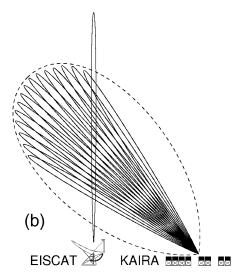

Movie

http://landau.geo.cornell.edu/image.html

R. H. Varney (SRI) Phased Arrays July 28, 2017 39 / 42

40 / 42

Digital Beam Forming



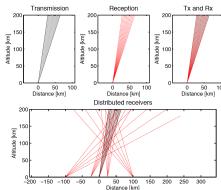
On reception:

- Digitize the signals v_n on every antenna (expensive!)
- Synthesize any beams you want by forming different linear combinations in software/firmware (computationally intense!)
- Allows you to form custom beam patterns → look at signals of interest while nulling interference.
- Allows you to form any number of different radiation patterns → look in multiple directions at once.

R. H. Varney (SRI) Phased Arrays July 28, 2017

Digital Beam Forming in Multi-static Radar Experiments

KAIRA = The Kilpisjärvi Atmospheric Imaging Receiver Array


McKay et al. (2015) 10.1109/TGRS.2014.2342252

R. H. Varney (SRI) Phased Arrays July 28, 2017 41 / 42

Phased Array Fundamentals

Major planned facility:

Operational 2021?

R. H. Varney (SRI) Phased Arrays July 28, 2017 42 / 42