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Incoherent Scatter Radar (ISR)
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Why study ISR?

Requires that you learn about a great many useful and fascinating
subjects in substantial depth.

e Plasma physics

* Radar

e Coding (information theory)

* Electronics (Power, RF, DSP)
e Signal Processing

* Inverse theory



Outline

e Mathematical toolbox

e Review of basic radar concepts

e lonospheric Doppler spectrum

e Range resolution and matched filtering
* |/Q demodulation

e Measuring the autocorrelation function (ACF) and Power Spectral
Density (PSD)



Signal Model

sine and cosine are the same function, different phase SIn(x) svsve

COS(X) e

cos(fd) = sin(@ + x/2)
= 90

2r 32 -x -al2 0 /2 7 3n2 2m

Euler’s identity consolidates these into a single function

e/’ = cos(0) + j sin(6)

Make signal oscillate in time: @ = wr = 2xft
Add information via amplitude modulation (A.M) or frequency modulation (F.M)
We now have a generic mathematical model of a radio or radar signal.

s(f) = A(t)ej(w0t+¢(t)) —
\EM. "

AM. “Carrier
Or letting w,; = d¢/dt = ¢(t) = wt

s(f) = A(f)e/ @t @d)
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Complex Exponential Function

Imaginary
A sin wt A sin wt A
Time —
:
i——wt——{

: T=1/f =2n/w
w is the “angular velocity” (radians/s) of the spinning arrow
J is the number of complete rotations ( 27 radians) in one second (1/s or Hz)

Y.

We need a signal that tells us how fast and in which direction the arrow is
spinning. This signal is the complex exponential. Invoking the Euler identity,

s(t) = Ae?¥t = Acoswt 4+ jAsinwt = I + §Q

I = in-phase component
Q = in-quadrature component
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Essential mathematical operations

Fourier Transform: Expresses a function as a weighted sum of harmonic functions (i.e.,
complex exponentials)

+00 . +0o0 .
f(t):/ Fw)e“'dw +—= F(w) :/ f(t)e 79t

— 00 —00

Convolution: Expresses the action of a linear, time-invariant system on a function.

“+00
o) = [ s@elr—nar  f1)*9(t) < F@)G@)
Correlation: A measure of the degree to which two functions look alike at a given offset.

+ 00
7(8) 0 g(t) = / Fr()glt+T)dr f(t)og(t) = F¥(@)G(w)

Autocorrelation, Convolution, Power Spectral Density, Wiener-Khinchin Theorem

Ruu = u(t) ou(t) = u(t) x u*(—t) Ruw <= U



Dirac Delta Function

A generalized function, or distribution, with the properties l x(t) = 8(1)
+00, x=0 oo
o(x) = o(x)dx =1
0, x#0 e

From these properties it follows that

+00 0 [ —>»
f(ty) = J f(®o(t —ty)dt  (sampling property)
oo N e’ o(f) may be expressed as

nonzero only at 1 = ¢, the limit of many functions

0.7+
+00 . il \(x=0.1

Flo—wy) = I F()6(w — wy — 2)d

—Oo0

= flw) * 6(w — wy) (shift property)




Fourier transform of two pulses

' <t<
rectangular pulse: f(t) = { (1) ]t\T>_Tt <T

T .
F(w) — / e_JCUt dt = — (6—ij . GJWT) . S1n w
=T

Jw - W
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t w

unit impulse: f(t) = (¢ shifted: f(r) = o6(r —1t))

F(w) = /_OO S(t)e 7t dt = 1 F(w) =



Harmonic Functions

) =1 X(w) = 27(w)
o= A

0 [ —»= 0 W —»

cos wyt &= w[§(w + wy) + §(@w — wy)]

COS wpl X(m) I T

/\/\/\/\/\/m |

A

sin gl s Jjr[d(w + ay) — d(w — axy)]

g/t = 2né(w — wy)



Convolution

Convolution: Expresses the action of a linear, time-invariant system on a function.

r+00
JO*g) = | [floglt—7rdr — Fw)G(w)
e
Flw)*G(w) = | Flo)Go-Q)dQ = f()g()

x(r) cns wot

VV\/\/\/\/ «
Vel V! |




Correlation

Correlation: A measure of the degree to which two functions look alike at a given offset.
If the two functions are the same, we call this the autocorrelation function, or ACF.

+00
Re(7) = \ £t + Df(dt = f(2) * f(=7)

—00
We will be working with discrete samples

White noise

Ry(k) = Y fn)(f)n—k)

n=—~oo

The ‘spectrum’ refers to
the power spectrum, which 1200
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Gate function

rect(t/t) = (1 for—7/2<t<7/2 ,,,:,,sinc(ﬂ)
0 otherwise 2

x(n X(w)
— 0 T I
Fa i

ISR spectrum +~— Autocorrelation function (ACF)
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-10
Frequency (KHz)

For low Te, the ISR ACF looks like a sinc function. For high Te the ACF becomes more
oscillatory and looks more like a cosine (power concentrated at the Doppler frequency
corresponding to the ion-acoustic wave speed.



How it all hangs together.

e Duality:

- Gate function in the time domain represents amplitude modulation

- Gate function in the frequency domain represents filtering

e Limiting cases:
- Gate function approaches delta function as width goes to 0 with constant area

- A constant function in time domain is a special case of harmonic function where
frequency = 0.

- A constant function in time domain is a special case of a gate function where

width = infinity.
<> A /\ i
N N

fo
fo—(1/7) fot+ (1/7)

How many cycles are in a typical ISR pulse?

PFISR frequency: 449 MHz :D | ! = s : ;\ |
Typical long-pulse length: 480 us 215,520 cycles: - ”’*"m% il B




Bandwidth of a pulsed signal

Spectrum of receiver output has sinc shape, with sidelobes half the width of the
central lobe and continuously diminishing in amplitude above and below main lobe

FREQUENCY —*

A 1 microsecond pulse has a 3 dB Two possible bandwidth measures:

bandwidth of 1 MHz 9)
“null to null” bandwidth Bnn = —

T
s

“3dB” bandwidth 5 _ 1
3dB — _

Unless otherwise specified, assume
bandwidth refers to 3 dB bandwidth

=1 MHz : +1 MHz

}_ BWyy = 2 MHz ——-I

18



Pulse-Bandwidth Connection

frequency f,

'O
FREQUENCY FREQUENCY

Shorter pulse <:> Larger bandwidth

Faster sampling rate (—_) Larger bandwidth




Components of a Pulsed Doppler Radar

s(t)

waveform
generator

1/Q
demodulator

 coswt

l

X—

_
circulator @4—@ )

transmitter
(amplifier)

|

N

Iow—n0|se
amplifier (LNA)

p(t) = s(t)cos w_t

antenna

P (t) = a(t) cos[ w t +& ()]

correlation
receiver

)
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= Physics model

(Plasma density (N,)

:> lon temperature (T;)
<
Electron temperature (T,)

(Bulk velocity (V,)
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The deciBel (dB)

The relative value of two quantities expressed on a logarithmic scale

SNR = 10 logio ?

2

Scientific
Factor of: Notation dB
0.1 10-1 -10
0.5 100.3 -3
1 100 0
2 100.3 3
10 101 10
100 102 20
1000 103 30
1,000,000 1086 60

=20 logio Vi

V>

(Power X Voltage?)

Other forms used in radar:

dBW dB relative to | Watt

dBm  dB relative to | mW

dBsm dB relative to | m? of
radar cross section

dBi dB relative to isotropic
radiation



Power

Pulsed Radar

4.‘ . Pulse length 100 usec
. 1 Mega-Watt
(2]
3
o
Qo
=
©
()
o Target
Return ™\ 10-14 Wat{
N\ AN
}_ Inter-pulse period -
(IPP) 1 msec Time
Pulse length
Dut le = 0
uty cycle Pulse repetition interval 10%
Average power = Peak power * Duty cycle 100 kWatt
Pulse repetition frequency (PRF) = 1/(IPP) 1 kHz

Continuous wave (CW) radar: Duty cycle =100% (always on)




Doppler Frequency Shift

Transmitted signal: COS(QﬂfOt)
2R
After return from target:  COS 27 fo t + 7

To measure frequency, we need to observe signal for at least one cycle.
So we will need a model of how R changes with time. Assume constant velocity:

R=R,+ vt
Substituting:
2 201,
COS [27r (fo + fo—v> t+ ]
C C
—f constant
D

| v v line-of-sight velocity
fp= =2/, P D N

Ao radar wavelength

By convention, positive Doppler shift {——)Target and radar are “closing”



Two key concepts

Two key concepts:

4 N
Distant <:Z:>Time
R = cAt/2
Velocity <:::> Frequency
% V= _]CD)‘O/2 )

A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.



Two key concepts

Two key concepts:

4 )
Distant <:Z:>Time
R = cAt/2
Velocity <:::> Frequency
% V= _]CD/\O/2 )

A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.



Concept of a “Doppler Spectrum”

zof ' " ' -
Two key concepts: Bird | o}
4 N 10 | f II -
. 1\
Distant <:::>T|me of o | |
R = cAt/2 - \
m 1o f N a
© .'Ilt Ol
Velocity <:::> Frequency G;J ol .“.l % i
V=- f D/\O/ 2 & Ay

\_ J 20k 5 |,I g
Y "H .a"l | "l If /A |I

|| ||--- .-" L'u "' p H ‘h IL' ||"‘l
40 f 4I J!’ |I "" 1“1'5?"'"-‘36' i
|' 1’1 .I,I ) lll” 'IP‘I".';,I ..'|
—E-G—" A I' II IR I

|'I 1 | ooy

R |
T Radar beam -60 _2'[,. 3 7 >0
% Velocity (m/s) — —

If there is a distribution of targets moving at different velocities (e.g., electrons in the
ionosphere) then there is no single Doppler shift but, rather, a Doppler spectrum.

What is the Doppler spectrum of the ionosphere at UHF (A, of 10 to 30 cm)?



Longitudinal Modes in a Thermal Plasma

Simple dispersion relation
f=c/A
w=2rf
k= 27/

ck k = wave number = “spatial frequency”

&
|

lon-acoustic

4 D

Ao oo \/kB (Te ' 3Ti)/mi \_/
. —_- E % % + E % — Te — § ':DP:'-
“i =8| ) P\ Tar T o)™

Langmuir

3

— 2 20,2 A 2
wp = /Wi + 3E2 v, & wpe + §vthe)\pek
-0pe

Tws, 1 wr, 3
Wri R —y | ——=——exp| — — — |w
L 8 k3 v, P 2k2v% 2 L

¥ -0




Incoherent Scatter Radar

ﬂnc[rn ]att =0 ms

0.05
Particle-in-cell (PIC): e
dvi g -0.05
= —(E(x;) + v; X B(x; '
i = o (Blx) +vi x Bxi)
VxE= ﬂ
ot | 5E 3000
VxB=pJ+ 5+ — Langmuir (“Plasma Line”)
c? Ot N
P T
V- E=— =
0 =¥ |on-acoustic (“lon Line”)
V-B=0 c 0
0
)
o
Simple rules ylgld i
complex behavior
-3000

20 40 60 80 100 120
k=2m/A (1im)

28
Diaz et al., RS 2008



Frequency (kHz) w
o 3

1
w
(@)
(@)
o

0.8

D&

0.4

0.2

ISR Measures a Cut Through This Surface

20 40

k=2mw/A (1/m)

lon-acoustic (“lon Line”)

60 80

Langmuir (“Plasma Line”)

100 120

15

-150
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ISR in a nutshell

> E

|: 1

2 E

Here’s what we measure: = :

o _5_( P )(J(W))/ GA ) - 5

P "\ arre )\ 4xr? )\ k78BN = i

o :

P = Received power A= Antennaarea '

P, = Received noise power  k, = Boltzman's constant i
P = Transmitted power T = Temperature -f., O *f, f
S = Radar cross section B = Bandwidth TR AT

G = Antenna gain N, = System noise temperature WH/\M o Wxﬁ{

Here’s the theory:

‘1 + | M 1 [g ((,D)2 ¢ ((D){z n [47:})6] F ((D)‘Z Z N’ (m)‘z 0 o a0 AN N B M 0 2%

(2 e[ e

SRS o R TN

o) =

;\’Zme kzmi 7 b ) ':"* A I Mot R
) ) I AN
—](DJ exp 16TE—KT1:2 HY ((1)’[7 )dfc —](DJ exp 167:—1('7’12 TCOS ((m:)dr 15 M
}\’ me 7 7L m 7

i
it www‘*/ \\vw%‘u




Incoherent Averaging

Normalized ISR spectrum for different integration times at 1290 MHz
] I T T T T |

I
' l 1 sample

We are seeking to estimate the
power spectrum of a Gaussian
i random process. This requires
el LS A T that we sample and average many
l ~ independent “realizations” of the
process.

051

1
J/Number of Samples

Uncertainties &

05r

-100 -50 0 50 100
Frequency (kHz)

31



Range

Range-time analysis

A single pulse is transmitted at t = 0.
* The front end propagates along the line r = ct.
* The back end follows along a parallel line.

Instantaneous position
of the transmitted pulse

—>
Time

Modulation
envelope



Range

Range-time analysis

* The scattered wave propagates
back to the radar (r=0) at speed c.

* Scattered signals from different
parts of the pulse arrive at the
antenna at different times.

A point target is represented by a
horizontal line in this diagram

—>
tT E Time
] — .
Modulation The ideal reflected signal is shown in red.
envelope The radar records discrete samples




Sampling a signal require time-integration

We send a pulse of duration T. How should we listen for the echo?

Input —

qﬂ_{>

v:fia’T_
v

— Output

Convolution of two rectangle functions

1

—T,/20 1,12

Value at a single point
-

-
I
|
I
|
I
1

®

1

1'T1+

_T1 —_—

T,

=

\

—T,/2

0

T,/2

—{T+ T,)/2

0

\

—l

0

e To determine range to our target, we only need to find the rising

edge of the pulse we sent. So make T,<<T,.
e But that means large receiver bandwidth, lots of noise power, poor

SNR.

e Could make T>>T,, then we’re integrating noise in time domain.

e So how long should we close the switch?



Sampling the received signal

Range

* The output from the radar
receiver represents a convolution
of the backscattered signal and the
receiver impulse response.

A point target is represented by a
horizontal line in this diagram

—>
Time

] = -

Modulation
envelope




Range

A point target is represented by a
horizontal line in this diagram

Computing the ACF

* We can get a larger peak signal
out of the receiver by integrating
longer for each sample

* What does this mean in terms of
receiver bandwidth?

—>
Time

Modulation
envelope



Computing the ACF

* We don’t get any more gain in
signal amplitude once our
4 integration time matches our pulse
length

Range

* Or, stated alternately, when our
receiver bandwidth matches the

bandwidth of our pulse.

A point target is represented by a
horizontal line in this diagram

—>
Time

Modulation
envelope




Matched Filter

s<t)4>ér>—>h(t) N—sy(2)

/ ) + n(r)] At — 7)dr
/ H(f)S(f)e?*™ T df + f H(f)N(f)e?*™ /" df

How should we choose h(t)<=>H(f) such that the output SNR is maximal?
S H(S)S(5)e?>m I Tdf|*

E{|f HHN(H)df|* }

Assuming white Gaussian noise, it can be shown that max SNR is when

H(f) = S"(f) <=> h(t) = s (1)

SNR =




Pulse compression and matched filtering

“If you know what you're looking for, it’s easier to find.”

100 pixels
< >
A
29 pixels
# >,
& - —)
= &
b. Target c. Kernel
Y

a. Image to be searched

Problem: Find the precise location of the target in the image.
Solution: Correlation




Barker codes

+
off
+ + + - 4+ | correlator output
+ + - |+ 1
+ + + | - o+ -1+1=0
e oale . ta1et TABLE 6.2 All Known
B Binary Barker Codes
+ |+ + - + 1+1-1-1=0
+ + 4+ - 4 | 1+1+1+1+1=5 Code Length Code
2 11 or 10
. 3 110
A 4 1110 or 1101
I 5 11101
A 7 1110010
[ 11 11100010010
[ 13 1111100110101
1 /_/'\. !" ||l
0k /N n




Volume target (e.g., the ionosphere)

A

Range

YA

Modulation H

envelope

—>
Time
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Doppler Detection: Intuitive Approach

Phasor diagram is a graphical representation of a sine wave

y

e e Y

4

Asin(wt +0)

ot +o

| & Q components*

| => in-phase component

Acos(o)

Q => in-quadrature
component

Asin(¢)

*relative to reference signal

TIME —»

PN

/

HASE ¢

e

\\\\‘~—~

7
—/

J

X

\

STROBE
LIGHT

T

Consider strobe light as
cosine reference wave
at same frequency but
with initial phase =0



Doppler Detection: Intuitive Approach

Closing on target — positive Doppler shift

Echo 1 Echo2 Echo3 Echod4 Echob Echo6 Echo 7

/ | Y - ] - <—c\ Target

a v

Transmitted
Received

Echo 3 Echo 2 ¢1 §b2
b,
Echo 4 Echo 1
] * Transmitted signal
Echo 5 Echo 8

Target’s Doppler frequency shows up
Echo 6 Echo 7 as a pulse-to-pulse shift in phase.



| and Q Demodulation

We transmit an amplitude-modulated cosine of frequency w.. The received
Reference Signal signal will have some time varying amplitue a(t) and time-varying phase ¢(t)

From Synchronizer applied to this,
b Prec(t) = a(t) cos(@(t) + wet)

Q «— Detector |«

We compute the analytic signal through Euler’s identity by “mixing”
the signal with cosine and sine

Reference Signal Received
Shifted 90° in Phase — Sz?g)al in-phase (I) channel:

Prec(t) cos(wet) = a(t) cos(o(t) + wet) cos(wt)

| «— Detector |«

= a(t)5 | cos(¢p(t) + 2wet) + cos ¢(t)

ﬁlte‘rrout
A quadrature (Q) channel (90° out of phase):
4 Prec(t) sin(w.t) = a(t) cos(d(t) + wet) sin(w,t)
Q
0 = a(t)3 - sin(o(t) + 2w6t2+ sin ¢(t)
T ﬁlte?out
I and Q channels together give the analytic signal

Srec(t) = a(t)e?®®)

The fundamental output of a pulsed Doppler radar is a
time series of complex numbers.




| and Q Demodulation in Frequency Domain

Transmitted signal Frequency domain

cos(27 f,t) [ I

-f, 0 f,

Doppler shifted T

cos(2m(fo + fp)t) ' |

ol | o
Mixed (multiplied) with carrier cos(27 f,t) [ g [ ’ [ § I
oo o i+

Cosine is even function, so sign of f; (and, hence, direction of motion) is lost.
What we need instead is:

eI2TIDt — cos(2m fpt) + jsin(27 fpt)

. fp
The analytic signal eI/t cannot be measured directly, but the cos and sin components
via mixing with two oscillators with same frequency but orthogonal phases. The components
are called “in phase” (or /) and “in quadrature” or Q):

Aei?2mfpt + ]Q <E> Aé(f[)) (for single scatterer) 46



ISR Receiver: | and Q plus correlation

BPF

fL.fH

_@

Power
splitter

@— LPF| —— I(t) “in phase”
/2 phase
cos(®,?) shift.
l (11 L]
®_ LPF __ . QO() “quadrature

We have time series of V(t) =I(t) + jQ(t), how do | compute the Doppler spectrum?

Estimate the autocorrelation

function (ACF) by computing products
of complex voltages
(“lag products”)

R, ()=

(VOV'(t + 1))

S

-

Power spectrum is Fourier
Transform of the ACF



Example: Doppler Shift of a Meteor Trail

e Collect N samples of I(t,) and Q(t,) from a target

e Compute the complex FFT of I(t,)+jQ(t,), and find the maximum in the
frequency domain

e Or compute “phase slope” in time domain.

Meteor Echo | & Q

TIME [s]

Doppler Spectra

lllllllllllllllllll

-5 0 S5
Doppler Frequency [Hz]

Y
o



Does this strategy work for ISR?

Typical ion-acoustic velocity: 3 km/s

Doppler shift at 450 MHz:  10kHz

Correlation time: 1/10kHz = 0.1 ms

Inter-pulse period (IPP) to reach 500 km: 2R/c = 3ms
Required PRF to probe ionosphere (500km range): 300 Hz

Plasma has completely decorrelated by the time we send the next pulse.

Alternately, the Doppler frequency shift imparted by the plasma is much

higher than the maximum unambiguous Doppler defined by the pulse-
repetition frequency.

ISR spectrum = Autocorrelation function (ACF)

T T T T T T T T
W

05F

-0.5
0

I 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500
Lag (usec)

-10

Frequency (KHz)



Samplin’



Autocorrelation function and power spectrum

4 Te/Ti lon temperature (Ti) to ion
{ ,—area~Ne mass (mi) ratio from the
width of the spectra

1 Ti/mi

Electron to ion
temperature ratio (Te/Ti)
from “peak-to-valley” ratio

POWER DENSITY

1=

. f Electron (= ion) density
N from total area (corrected

) f_|_ O
U FFT for temperatures)

zero lag (=signal average power)

Line-of-sight ion
velocity (Vi) from bulk
Doppler shift

Our goal is to compute lags

I >~
3  DELAY (1)-f,

AUTOCORRELATION FUNCTION p(T)




Computing the ACF (and, hence, spectrum)

mA
o0

C
3
(a'd

>
Time

17, —] o

Ts

7, =Length of RF pulse
7. =Sample Period (typically ~ 1/10 pulse length)



Computing the ACF (and, hence, spectrum)

mA
o0

C
3
(a'd

1st a

>
Time

17, —] o

Ts

7, =Length of RF pulse
7. =Sample Period (typically ~ 1/10 pulse length)



Computing the ACF (and, hence, spectrum)

mA
o0

C
3
(a'd

>
Time

17, —] o

Ts

7, =Length of RF pulse
7. =Sample Period (typically ~ 1/10 pulse length)



Computing the ACF (and, hence, spectrum)

mA
o0

C
3
(a'd

>
Time

17, —] o

Ts

7, =Length of RF pulse
7. =Sample Period (typically ~ 1/10 pulse length)



Computing the ACF (and, hence, spectrum)

mA
o0

C
3
(a'd

2nd lag \\
N \~
\
\

>
Time

17, —] o

Ts

7, =Length of RF pulse
7. =Sample Period (typically ~ 1/10 pulse length)



Computing the ACF (and, hence, spectrum)

()
©.0

C
3
(a'd

>
Time

17, —] o

Ts

7, =Length of RF pulse
7. =Sample Period (typically ~ 1/10 pulse length)



Computing the ACF (and, hence, spectrum)

()
©.0

C
3
(a'd

A

2nd AA\‘v

Uncorrelated (contributes to noise)

Correlated volumes (signal)

Uncorrelated (contributes to noise)

Tin:e
17, —] | e
z-S

7, =Length of RF pulse
7. =Sample Period (typically ~ 1/10 pulse length)



Lag-product matrix

©O 0 O O

O O O 0O

O O O O

O O O O

O O O

o O

2

12 14 16 18

10
sample



Incoherent Averaging

Normalized ISR spectrum for different integration times at 1290 MHz
] I T T T T |

I
' l 1 sample

We are seeking to estimate the
power spectrum of a Gaussian
i random process. This requires
el LS A T that we sample and average many
l ~ independent “realizations” of the
process.
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Dish Versus Phased-array

-FOV: Entire sky -FOV: +/- 15 degrees from boresight
-Integration at each position before -Integration over all positions
moving simultaneously

-Power concentrated at Klystron -Power distributed

-Significant mechanical complexity -No moving parts



Three-dimensional ionospheric imaging
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