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Incoherent Scatter Radar (ISR)
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Why study ISR?

• Plasma physics 

• Radar 

• Coding (information theory) 

• Electronics (Power, RF, DSP) 

• Signal Processing 

• Inverse theory

Requires that you learn about a great many useful and fascinating 
subjects in substantial depth. 



Outline
• Mathematical toolbox  

• Review of basic radar concepts 

• Ionospheric Doppler spectrum 

• Range resolution and matched filtering 

• I/Q demodulation 

• Measuring the autocorrelation function (ACF) and Power Spectral 
Density (PSD)



Signal Model

s(t) = A(t)ej(ωot+ϕ(t))

ejθ = cos(θ) + j sin(θ)

cos(θ) = sin(θ + π/2)

sine and cosine are the same function, different phase

Euler’s identity consolidates these into a single function

= 90∘

Make signal oscillate in time: θ = ωt = 2πft
Add information via amplitude modulation (A.M) or frequency modulation (F.M)    
We now have a generic mathematical model of a radio or radar signal.

A.M.
F.M.

Carrier
ωd = dϕ/dt → ϕ(t) = ωdt

s(t) = A(t)ej(ωo+ωd)t

Or letting



Complex Exponential Function

Time

Imaginary

Real

We need a signal that tells us how fast and in which direction the arrow is 
spinning.   This signal is the complex exponential.  Invoking the Euler identity,

I = in-phase component 
Q = in-quadrature component

is the “angular velocity” (radians/s) of the spinning arrow
is the number of complete rotations (      radians) in one second (1/s or Hz)



physics model science!



Essential mathematical operations
Fourier Transform:   Expresses a function as a weighted sum of harmonic functions (i.e., 
complex exponentials)

Convolution:  Expresses the action of a linear, time-invariant system on a function.

Correlation:  A measure of the degree to which two functions look alike at a given offset.

Autocorrelation, Convolution, Power Spectral Density, Wiener-Khinchin Theorem

F(ω)G(ω)

F*(ω)G(ω)



Dirac Delta Function

δ(t) = lim
a→0

1

4πa
e−t2/(4a)

δ(x) = {+∞, x = 0
0, x ≠ 0

x A generalized function, or distribution, with the properties

∫
+∞

−∞
δ(x)dx = 1

From these properties it follows that

f(t0) = ∫
+∞

−∞
f(t)δ(t − t0)dt (sampling property)

F(ω − ω0) = ∫
+∞

−∞
F(Ω)δ(ω − ω0 − Ω)dΩ

= f(ω) * δ(ω − ω0) (shift property)

     may be expressed as 
the limit of many functions
δ(t)

nonzero only at t = t0⏟⏟



Fourier transform of two pulses
rectangular pulse: f(t) =

{
1 −T ≤ t ≤ T
0 |t| > T

F (ω) =
∫ T

−T
e−jωt dt =

−1
jω

(
e−jωT − ejωT

)
=

2 sinωT

ω

−T T
0

1

t

f
(t

)

−π/T π/T

0

2T

ω

F
(ω

)

unit impulse: f(t) = δ(t)

F (ω) =
∫ ∞

−∞
δ(t)e−jωt dt = 1

The Fourier transform 11–7
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F (ω) =
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δ(t)e−jωt dt = 1

The Fourier transform 11–7

shifted:  f(t) = δ(t − to)



Harmonic Functions



Convolution
Convolution:  Expresses the action of a linear, time-invariant system on a function.

f(t) * g(t) = ∫
+∞

−∞
f(τ)g(t − τ)dτ ⟺ F(ω)G(ω)

F(ω) * G(ω) = ∫
+∞

−∞
F(ω)G(ω − Ω)dΩ ⟺ f(t)g(t)

X
τp

?



Correlation

Rff(τ) = ∫
+∞

−∞
f(t + τ)f̄(t)dt = f(τ) * f̄(−τ)

Correlation:  A measure of the degree to which two functions look alike at a given offset.
If the two functions are the same, we call this the autocorrelation function, or ACF.

We will be working with discrete samples

Rff(k) =
+∞

∑
n=−∞

f(n)(̄ f )(n − k)

Rff ⟺ U(ω)
2

The ‘spectrum’ refers to 
the power spectrum, which 
is the Fourier transform of
the autocorrelation function



Gate function

ISR spectrum               Autocorrelation function  (ACF)

Increasing Te

For low Te, the ISR ACF looks like a sinc function.  For high Te the ACF becomes more 
oscillatory and looks more like a cosine (power concentrated at the Doppler frequency 
corresponding to the ion-acoustic wave speed.



How it all hangs together.
• Duality: 

- Gate function in the time domain represents amplitude modulation 

- Gate function in the frequency domain represents filtering 

• Limiting cases: 
- Gate function approaches delta function as width goes to 0 with constant area 

- A constant function in time domain is a special case of harmonic function where 
frequency = 0. 

- A constant function in time domain is a special case of a gate function where 
width = infinity.

Now consider the coherent gated CW waveform  given by

(5.15)

Clearly  is periodic, where  is the period (recall that  is the
PRF). Using the complex exponential Fourier series we can rewrite  as

(5.16)

where the Fourier series coefficients  are given by

(5.17)

It follows that the FT of  is

(5.18)
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 Figure 5.3. Amplitude spectrum for a single pulse, or a train of 
non-coherent pulses.
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How many cycles are in a typical ISR pulse?   
PFISR frequency:  449 MHz
Typical long-pulse length: 480 µs 215,520 cycles!



Bandwidth of a pulsed signal

!18

“null to null” bandwidth

“3dB” bandwidth

Spectrum of receiver output has sinc shape, with sidelobes half the width of the  
central lobe and continuously diminishing in amplitude above and below main lobe

A 1 microsecond pulse has a 3 dB 
bandwidth of 1 MHz

Two possible bandwidth measures:

Unless otherwise specified, assume 
bandwidth refers to 3 dB bandwidth

€ 

Bnn =
2
t



Pulse-Bandwidth Connection

Faster sampling rate             Larger bandwidth

frequency fo

Shorter pulse            Larger bandwidth



Components of a Pulsed Doppler Radar

!20

Physics model

Plasma density (Ne) 
Ion temperature (Ti) 
Electron temperature (Te) 
Bulk velocity (Vi)

+

+

+

__

_



The deciBel (dB)

     Scientific  
  Factor of:    Notation     dB 
 0.1 10-1    -10 
 0.5 100.3 -3 
 1 100 0 
 2 100.3 3 
 10 101 10 
 100 102 20 
 1000 103 30 . 
 1,000,000 106 60

The relative value of two quantities expressed on a logarithmic scale

SNR = 10 log10
P1       = 20 log10 (Power      Voltage2)P2

V1

V2

Other forms used in radar:

dBW    dB relative to 1 Watt
dBm     dB relative to 1 mW
dBsm    dB relative to 1 m2 of  
            radar cross section
dBi       dB relative to isotropic     
            radiation



Pulsed Radar
Po

w
er

Duty cycle = 

Average power = Peak power * Duty cycle 

Pe
ak

 p
ow

er

Time

Pulse length

Inter-pulse period 
(IPP)

Pulse length 
Pulse repetition interval

Pulse repetition frequency (PRF) = 1/(IPP)

Continuous wave (CW) radar:  Duty cycle = 100%  (always on)

Target 
Return

1 Mega-Watt

100 kWatt

10%

100 µsec

1 msec

1 kHz

10-14 Watt



Doppler Frequency Shift
Transmitted signal:

After return from target:

To measure frequency, we need to observe signal for at least one cycle.   
So we will need a model of how R changes with time.  Assume constant velocity:

Substituting:

€ 

− fD constant

By convention, positive Doppler shift            Target and radar are “closing” 



Two key concepts

A Doppler radar measures backscattered power as a function range and velocity. 
Velocity is manifested as a Doppler frequency shift in the received signal. 

e-

Two key concepts: 

Distant             Time 

Velocity            Frequency

R = cΔt 2

v = − fDl 0 2
R

e-

e-



Two key concepts

Two key concepts: 

Distant             Time 

Velocity            Frequency

R = cΔt 2

v = − fDl 0 2

A Doppler radar measures backscattered power as a function range and velocity. 
Velocity is manifested as a Doppler frequency shift in the received signal. 



Concept of a “Doppler Spectrum”
ENG SC700 Radar Remote Sensing J. Semeter, Boston University

Some Other Doppler Spectra

S. Bachman, MS Thesis

NEXRAD WSR-88D

Incoherent Scatter Radar
--random thermal motion of plasma results in Doppler spectrum

..more on that in the next 2 lectures.

Tennis ball, birds, aircraft engine
--examples of solid objects that give Doppler spectrum

ENG SC700 Radar Remote Sensing J. Semeter, Boston University

Some Other Doppler Spectra

S. Bachman, MS Thesis

NEXRAD WSR-88D

Incoherent Scatter Radar
--random thermal motion of plasma results in Doppler spectrum

..more on that in the next 2 lectures.

Tennis ball, birds, aircraft engine
--examples of solid objects that give Doppler spectrum

Two key concepts: 

Distant             Time 

Velocity            Frequency

R = cΔt 2

v = − fDl 0 2

Velocity (m/s)
P

ow
er

 (d
B

)

If there is a distribution of targets moving at different velocities (e.g., electrons in the 
ionosphere) then there is no single Doppler shift but, rather, a Doppler spectrum.

lWhat is the Doppler spectrum of the ionosphere at UHF (     of 10 to 30 cm)?



Longitudinal Modes in a Thermal Plasma

27

Figure 2·4: Longitudinal modes of a plasma. Blue lines relate to ion
acoustic waves and red ones to Langmuir waves.

plasma particles start to interact more strongly with the growing wave, e.g., by heating.

This can sometimes be described in terms of the so-called quasi-linear saturation within

the Vlasov theory.

A way of categorizing plasma instabilities is to divide them between macroscopic (con-

figurational) and microscopic (kinetic) instabilities. The division is the same as within

plasma theory in general. A macroinstability is something that can be described by

macroscopic equations in the configuration space. Examples of a macroinstability are the

Rayleigh-Taylor, Farley-Buneman and Kelvin-Helmholtz instabilities. On the other hand,

a microinstability takes place in the (x,v)-space and depends on the actual shape of the

distribution function. A consequence of a microinstability is a greatly enhanced level of

fluctuations in the plasma associated with the unstable mode. These fluctuations are called

microturbulence. Microturbulence can lead to enhanced radiation from the plasma and to

enhanced scattering of particles, resulting in anomalous transport coe⇤cients, e.g., anoma-

lous electric and thermal conductivities. Examples of microinstability are the beam-driven,

ion acoustic and electrostatic ion cyclotron instabilities.

Ion-acoustic

DIAZ ET AL.: BEAM-PLASMA INSTABILITY EFFECTS ON IS SPECTRA X - 5

can account for the simultaneous enhancement in the two ion lines, and the simultaneous55

ion and plasma line enhancement.56

This purpose of this paper is to provide a unified theoretical model of modes expected in57

the ISR spectrum in the presence of field-aligned electron beams. The work is motivated58

by the phenomenological studies summarized above, in addition to recent theoretical59

results–in particular, those of Yoon et al. [2003], and references therein, which suggest60

that Langmuir harmonics should arise as a natural consequence of the same conditions61

producing NEIALs. Although these e�ects have been treated in considerable detail in the62

plasma physics literature, their implications for the field of ionospheric radio science (and63

ISR in particular) have not yet been discussed. The conditions to detect all the modes64

present within the IS spectrum within the same ISR is also presented in this work.65

2. Plasma in Thermal Equilibrium

There exist two natural electrostatic longitudinal modes in a plasma in thermal equilib-66

rium: the ion acoustic mode, which is the main mode detected by ISRs, and the Langmuir67

mode [Boyd and Sanderson, 2003]. Using a linear approach to solve the Vlasov-Poisson68

system of equations, the dispersion relation of these modes is obtained. The real part of69

the ion acoustic dispersion relation reads70

⇥s = Csk, (1)

and the imaginary part (assuming ⇥si � ⇥s, k2�2
De � 1 and Ti/Te � 1) can be written71

as72
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where Cs =
⌥

kB(Te + 3Ti)/mi is the ion-acoustic speed. The dependence of this mode

on ionospheric state parameters is observed in Eq. 2. The Langmuir mode is detected by

ISR under certain conditions, and the real part of its dispersion relation is expressed as
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�

⇤2
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and the imaginary part (assuming ⇤Li ⇤ ⇤L) is73
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The forward model used to estimate ionospheric parameters in ISR assumes that these74

are the dominating modes in the ISR spectrum. However, an injected beam of particles,75

in particular electrons, can destabilize the plasma, altering the dispersion relations and76

amplitudes of these modes.77

3. Current Model of the Langmuir Decay Process for NEIAL Formation

The model presented by Forme et al. [1993] to explain NEIALs is a two step process.

First, a beam-plasma instability enhances Langmuir Waves (LW). Second, if the enhance-

ment of LW is high enough then the enhanced LW can decay, enhancing Ion Acoustic

Waves (IAWs) and counter-propagating LWs. The plasma-beam process involves three

species: thermal electrons, thermal ions, and an electron beam with a bulk velocity of

vb. By assuming small perturbations and small damping/growth (vthe, vthi, vb ⇤ ⇤/k),

linearization of Vlasov-poison system can be used to find the dispersion relation of the
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û

S =
E ⇥ B

µ0

f(t) =
Z +1

�1
F (!)ej!tdt () F (!) =

Z +1

�1
f(t)e�j!t

dt

f(0) =
Z +1

�1
�(t)f(t)dt

f(t� T ) = f(t) ⇤ �(t� T )

Ae
j�t = A cos(�) + jA sin(�)

= I + jQ

Ae
j�t = A cos(�) + jA sin(�)

= I + jQ

1

f = c/� (1)

! = 2⇡f (2)

k = 2⇡/� (3)

! = ck (4)

k = 2⇡/�

dionosphere = ⌃mA
T
⇣
A⌃mA

T + ⌃e

⌘�1
(measurements) (5)

H(!) =
1000

j! + 200
(6)

d
2
vc

dt2
+ 7

dvc

dt
+ 10vc = 60 (7)

K =
✓
1

2
⇢u

2
◆
û
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û

S =
E ⇥ B

µ0

f(t) =
Z +1

�1
F (!)ej!tdt () F (!) =

Z +1

�1
f(t)e�j!t

dt

f(0) =
Z +1

�1
�(t)f(t)dt

f(t� T ) = f(t) ⇤ �(t� T )

Ae
j�t = A cos(�) + jA sin(�)

= I + jQ

Ae
j�t = A cos(�) + jA sin(�)

= I + jQ

1

f = c/� (1)

! = 2⇡f (2)

k = 2⇡/� (3)

! = ck (4)

k = 2⇡/�

dionosphere = ⌃mA
T
⇣
A⌃mA

T + ⌃e

⌘�1
(measurements) (5)

H(!) =
1000

j! + 200
(6)

d
2
vc

dt2
+ 7

dvc

dt
+ 10vc = 60 (7)

K =
✓
1

2
⇢u

2
◆
û
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2.4 The Particle-in-Cell Method

The simulator uses a particle-in-cell (PIC) method for both the ions and electrons. This

accurately models all dynamics, including thermal e�ects, at the cost of substantial com-

puter time. The idea of the PIC method, described in detail in books by Birdsall and

Langdon (1985), Hockney and Eastwood (1988) or Tajima (1988), is simple: The code

simulates the motion of plasmas particles in continuous phase space, whereas moments of

the distribution such as densities and currents are computed on discrete points (or cells)

from the position and velocity of the particles. The macro-force acting on the particles is

calculated from the field equations. The name “Particle-in-Cell” comes from the way of

assigning macro-quantities to the simulation particles.

In general PIC codes solve the equation of motion of particles with the Newton-Lorentz

force

dxi

d t
= vi and

dvi

d t
=

qi

mi
(E(xi) + vi ⇥B(xi)) for i = 1, . . . , N (2.49)

and the Maxwell’s equations (Equations 2.4 and 2.7) together with the prescribed rule of

calculation of � and J

� = �(x1,v1, . . . ,xN ,vN ), (2.50)

J = J(x1,v1, . . . ,xN ,vN ). (2.51)

� and J are the charge and current density of the medium at certain iteration. A

simplified scheme of the PIC simulation is given in Figure 2·8.

PIC codes usually are classified depending on dimensionality of the code and on the

set of Maxwell’s equations used. The codes solving a whole set of Maxwell’s equations are

called electromagnetic codes; electrostatic ones solve just the Poisson equation.

Specifically the code used in this work can perform two and three dimensional simu-
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When the plasma is warm, which means that the thermal velocity of the particles is

important, it can be described as previously with a force-balance motion equation but this

time with a term that accounts for the thermal velocity of the particles, a pressure term

(�pTj⌅nj). Thus, the equation becomes

mjnj
⌅v
⌅t

= qjnj(E + v⇤B)� �pTj⌅nj , (2.2)

where �p is a proportionality constant and Tj the temperature of the species j.

Even though the main modes present in a warm plasma can be obtained with Equation

2.2, part of the physics of those modes is lost in the over simplification of the motion

equation. When the temperature of a plasma is finite and the thermal velocity of the

particles is comparable to the phase velocity of the propagating wave, the interaction of

the particles and the wave becomes important. Some of the typical interactions are Landau

damping and microinstabilities. Those phenomena can be explained only through a motion

equation that takes into account the space-velocity distribution of the particles forming the

plasma. This equation is the Boltzman equation, which becomes Vlasov equation (Equation

2.3) in absence of collisions.

Landau damping and microinstabilities are important in determining the shape of the

incoherent scatter radar spectrum at high latitudes, therefore a kinetic approach, which

uses a Vlasov equation as motion equation, has to be used. The system of equations formed

by Equations 2.3 to 2.9, which includes the Vlasov equation plus Maxwell’s equations, has

to be solved self-consistently to obtain the wave modes propagating along the plasma.

⌅fj(t,x,v)
⌅t

+ v · ⌅fj(t,x,v)
⌅x

+
qj

mj
(E + v⇤B) · ⌅fj(t,x,v)

⌅v
= 0 (2.3)

⌅⇤E =
�⌅B
⌅t

(2.4)

⌅⇤B = µ0J +
1
c2

⌅E
⌅t

(2.5)
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⇥ · E =
⇤

�0
(2.6)

⇥ · B = 0 (2.7)

Coupling is complete via charge and current densities.

⇤ =
�

j

qj nj =
�

j

qj

⇥
fj d3v (2.8)

J =
�

j

qj nj vj =
�

j

qj

⇥
fj v d3v, (2.9)

where fj(x,v) represents the space-velocity distribution function of the species j, �0 and

µ0 are the permitivity and permeability of the air respectively, and c is the speed of light.

The complexity of this system of equations is evident and the quasi-linear approach is

used to obtain an approximated solution. The traditional development of the quasi-linear

theory of waves in plasmas follows a well established procedure (Krall, 1974; Nicholson,

1983): First, electromagnetic fields, and in the case of warm plasmas the space-velocity

distribution of the particles, are linearized; then the linear Vlasov equation is subjected

to a Fourier/Laplace analysis in space/time, yielding fluctuating particles distributions

which are used to settle the current density (J) and electric field (E) relation. Usually

the conductivity tensor (�) is obtained from this relation; Fourier analyzed in both space

and time, Faraday’s and Ampere’s equations are combined to yield a dispersion equation.

The solution of this dispersion equation relates frequency ⌅ and wavevector k and thereby

determines the normal modes of the plasma; thus the final step is to insert the conductivity

tensor (which brings the plasma properties) into the dispersion relation (which states waves

main features) to obtain the plasma waves. This is the path that is followed in this section.

Following this path, the linearization of the fields and space-velocity distribution func-

tion comes first and is used together with a Fourier/Laplace space/time transform of the
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Particle-in-cell (PIC):

Simple rules yield  
complex behavior

Fourier Transform in  
space and time  N(k,ω) 
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Figure 2·7: The top figure shows the ion acoustic line of the inco-
herent scattering spectrum (in log scale) for various wavenumbers (ks =
4�fradar/c). In the bottom figure the normalized ion acoustic line of the in-
coherent scattering spectrum (normalized to the maximal spectral power of
a radar operated at 527 MHz) is shown for radars with operation frequencies
of 527 MHz (close to radar frequency of AMISR ), 879 MHz (close to radar
frequency of EISCAT, Tromso) and 1289 MHz (close to radar frequency of
Sondrestrom).

Table 2.1: Summary of Plasma parameters used to calculate theoretical
IS spectra showed in Figure 2·7

Plasma Parameter Symbol Value
Ion Mass mi 1.6726⇥ 10�27 kg
e� Mass me 3.3452⇥ 10�30 kg
Ion Temperature Ti 1000 K
e� Temperature Te 2000 K
Ion Density ni 1011 1/m3

e� Density ne 1011 1/m3

ISR Measures a Cut Through This Surface
77

Figure 3·6: Simulated ISR spectra for many scatter wave numbers with
105 macroparticles (top plot). Simulated and theoretical ISR spectrum for
three di�erent scatter wave numbers with 105 macroparticles (bottom plot).

96

(a)

(b)

(c) (d)

Figure 4·5: Simulated incoherent scatter spectrum (for periodic boundary
conditions), obtained integrating 120 angular independent spectra,(a) as a
function of the frequency and the wavenumber. (b) As a function of fre-
quency for the wavenumber k ⇥54 m�1(or radar frequency of ⇥ 1300 MHz),
which is similar to the wavenumber of Sondrestrom. (c) and (d) are close
ups of the negative and positive Langmuir modes, respectively.
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Figure 2·5: The top figure shows an Incoherent Scattering Spectrum,
including the three lines. The middle figure shows a zoom to the ion acoustic
line, which is the focus of this research. The bottom figure shows the
autocorrelation function �(⇥) of the ion acoustic line. f+ is the Doppler
frequency associated with the ion acoustic phase velocity.

ISR in a nutshell

SNR = Pr
Pn
=

Pt
4pR2

!
"#

$
%&

s (w)
4pR2

!
"#

$
%&

GA
KTBNsys

!

"
#

$

%
&

Pr =  Received power
Pn =  Received noise power
Pt =  Transmitted power
s =  Radar cross section
G =  Antenna gain
A =  Antenna area
kB =  Boltzman's constant
T =  Temperature
B =  Bandwidth

Nsys =  System noise temperature

SNR = Pr
Pn
=

Pt
4pR2

!
"#

$
%&

s (w)
4pR2

!
"#

$
%&

GA
KTBNsys

!

"
#

$

%
&

Pr =  Received power
Pn =  Received noise power
Pt =  Transmitted power
s =  Radar cross section
G =  Antenna gain
A =  Antenna area
kB =  Boltzman's constant
T =  Temperature
B =  Bandwidth

Nsys =  System noise temperature

SNR = Pr
Pn
=

Pt
4pR2

!
"#

$
%&

s (w)
4pR2

!
"#

$
%&

GA
KTBNsys

!

"
#

$

%
&

Pr =  Received power
Pn =  Received noise power
Pt =  Transmitted power
s =  Radar cross section
G =  Antenna gain
A =  Antenna area
kB =  Boltzman's constant
T =  Temperature
B =  Bandwidth

Nsys =  System noise temperature

Here’s what we measure:

Here’s the theory:

                                                              

Ti/mi

Te/Ti

Vi

area ~ Ne

f = c/� (1)

! = 2⇡f (2)

k = 2⇡/� (3)

! = ck (4)

cos(2⇡(fo + fD)t) (5)

cos(2⇡(fo + fD)t) (6)

e
j2⇡fDt = cos(2⇡fDt) + j sin(2⇡fDt) (7)

Ae
j2⇡fDt = I(t) + jQ(t) (8)

�(!) (9)

k = 2⇡/�

dionosphere = ⌃mA
T
⇣
A⌃mA

T + ⌃e

⌘�1
(measurements) (10)

H(!) =
1000

j! + 200
(11)

d
2
vc

dt2
+ 7

dvc

dt
+ 10vc = 60 (12)

K =
✓
1

2
⇢u

2
◆
û

S =
E ⇥ B

µ0

f(t) =
Z +1

�1
F (!)ej!tdt () F (!) =

Z +1

�1
f(t)e�j!t

dt

f(0) =
Z +1

�1
�(t)f(t)dt

f(t� T ) = f(t) ⇤ �(t� T )

1

f = c/� (1)

! = 2⇡f (2)

k = 2⇡/� (3)

! = ck (4)

cos(2⇡(fo + fD)t) (5)

cos(2⇡(fo + fD)t) (6)

e
j2⇡fDt = cos(2⇡fDt) + j sin(2⇡fDt) (7)

Ae
j2⇡fDt = I(t) + jQ(t) (8)

�(!) (9)

k = 2⇡/�

dionosphere = ⌃mA
T
⇣
A⌃mA

T + ⌃e

⌘�1
(measurements) (10)

H(!) =
1000

j! + 200
(11)

d
2
vc

dt2
+ 7

dvc

dt
+ 10vc = 60 (12)

K =
✓
1

2
⇢u

2
◆
û
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Incoherent Averaging

!31

Uncertainties ∝
1

Number of Samples

We are seeking to estimate the 
power spectrum of a Gaussian 
random process.  This requires 
that we sample and average many 
independent “realizations” of the 
process.

69

Figure 3·2: Simulated IS spectra for di�erent number of independent spec-
tra integrated at an operation frequency of 1289 MHz. Top plot shows an
average of one spectrum. The middle plot shows an average of 30 inde-
pendent spectra. The bottom plot shows an average of 600 independent
spectra.

Normalized ISR spectrum for different integration times at 1290 MHz

1 sample

30 samples

600 samples



Range-time analysis

Time

R
an

ge

Modulation
envelope

Instantaneous position  
of the transmitted pulse

A single pulse is transmitted at t = 0. 
• The front end propagates along the line r = ct. 
• The back end follows along a parallel line.



Range-time analysis

Time

R
an

ge

A point target is represented by a  
horizontal line in this diagram

• The scattered wave propagates 
back to the radar (r=0) at speed c.  

• Scattered signals from different 
parts of the pulse arrive at the 
antenna at different times.

t1 t2 t3 t4 t5

t2 t3 t4

Modulation
envelope

The ideal reflected signal is shown in red.   
The radar records discrete samples



Sampling a signal require time-integration

• To determine range to our target, we only need to find the rising 
edge of the pulse we sent.  So make T1<<T2. 

• But that means large receiver bandwidth, lots of noise power, poor 
SNR. 

• Could make T1>>T2, then we’re integrating noise in time domain. 
• So how long should we close the switch? 

Input Output

Convolution of two rectangle functions

Value at a single point

We send a pulse of duration τ.  How should we listen for the echo?



Sampling the received signal
R

an
ge

Modulation
envelope

A point target is represented by a  
horizontal line in this diagram

• The output from the radar 
receiver represents a convolution 
of the backscattered signal and the 
receiver impulse response.

Time



Computing the ACF 
R

an
ge

Modulation
envelope

Time

A point target is represented by a  
horizontal line in this diagram

• We can get a larger peak signal 
out of the receiver by integrating 
longer for each sample

• What does this mean in terms of 
receiver bandwidth?



Computing the ACF 
R

an
ge

Modulation
envelope

Time

• We don’t get any more gain in 
signal amplitude once our 
integration time matches our pulse 
length

• Or, stated alternately, when our 
receiver bandwidth matches the 
bandwidth of our pulse.

A point target is represented by a  
horizontal line in this diagram



Matched Filter

How should we choose h(t)      H(f) such that the output SNR is maximal?

Assuming white Gaussian noise, it can be shown that max SNR is when 

+



Pulse compression and matched filtering
“If you know what you’re looking for, it’s easier to find.”

c. Kernel

Problem: Find the precise location of the target in the image. 
Solution: Correlation
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Volume target (e.g., the ionosphere)
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• In Barker-coded experiments
the sampling interval is equal to
the bit length.

• The signal is filtered by a
(digital) matched filter.

• The impulse response of the
matched filter is a mirror
image of the modulation
envelope.

• The matched filter
uses n samples to
make a single
filtered sample
(n = the num-
ber of bits
in the
code).

time
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Working principle of Barker codes

range-amplitude
ambiguity
function

sample no

0 T 2T 5T

• The resulting range-
amplitude ambiguity
function contains a
centre peak and
side bands.

• The height of the
centre peak is equal
to the number of bits
in the code.

• The range-amplitude
ambiguity function is
equal to the auto-
correlation function
of the modulation
envelope.
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Doppler Detection: Intuitive Approach
Phasor diagram is a graphical representation of a sine wave

Consider strobe light as 
cosine reference wave 
at same frequency but 
with initial phase = 0

I & Q components* 
I => in-phase component 
 Acos(φ) 
Q => in-quadrature 

component 
 Asin(φ)

*relative to reference signal



Doppler Detection:  Intuitive Approach
Closing on target – positive Doppler shift

e-

Transmitted 
Received

Target’s Doppler frequency shows up  
as a pulse-to-pulse shift in phase.
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Ae
j2⇡fDt = I(t) + jQ(t) (8)

�(!) (9)

�1 (10)

�2 (11)

We transmit an amplitude-modulated cosine of frequency !c. The received
signal will have some time varying amplitue a(t) and time-varying phase �(t)
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I and Q Demodulation
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The fundamental output of a pulsed Doppler radar is a  
time series of complex numbers.
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I and Q Demodulation in Frequency Domain
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fo-fo

fo+fD-fo-fD

fD

Transmitted signal    Frequency domain

Doppler shifted

0

fo+fD-fD fD-fo-fD

The analytic signal                 cannot be measured directly, but the cos and sin components  
via mixing with two oscillators with same frequency but orthogonal phases.  The components 
are called “in phase” (or I) and “in quadrature” (or Q):  

Cosine is even function, so sign of fD (and, hence, direction of motion) is lost.   
What we need instead is:

€ 
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û

S =
E ⇥ B

µ0

f(t) =
Z +1

�1
F (!)ej!tdt () F (!) =

Z +1

�1
f(t)e�j!t

dt

f(0) =
Z +1

�1
�(t)f(t)dt

f(t� T ) = f(t) ⇤ �(t� T )

Ae
j�t = A cos(�) + jA sin(�)

= I + jQ

Ae
j�t = A cos(�) + jA sin(�)

= I + jQ

1

f = c/� (1)

! = 2⇡f (2)

k = 2⇡/� (3)

! = ck (4)

cos(2⇡(fo + fD)t) (5)

cos(2⇡(fo + fD)t) (6)

e
j2⇡fDt = cos(2⇡fDt) + j sin(2⇡fDt) (7)

k = 2⇡/�

dionosphere = ⌃mA
T
⇣
A⌃mA

T + ⌃e

⌘�1
(measurements) (8)

H(!) =
1000

j! + 200
(9)

d
2
vc

dt2
+ 7

dvc

dt
+ 10vc = 60 (10)

K =
✓
1

2
⇢u

2
◆
û
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ISR Receiver:  I and Q plus correlation

BPF 
fL,fH G

Power 
splitter

π/2 phase  
shift. 

LPF

LPF

I(ti)   “in phase”

Q(ti)   “quadrature”

We have time series of V(t) =I(t) + jQ(t), how do I compute the Doppler spectrum?

Rvv (t ) =
V (t)V *(t + t )

S

Estimate the autocorrelation 
function (ACF) by computing products 

of complex voltages 
(“lag products”)

Power spectrum is Fourier  
Transform of the ACFFFT



Example:  Doppler Shift of a Meteor Trail

• Collect N samples of I(tk) and Q(tk) from a target 
• Compute the complex FFT of I(tk)+jQ(tk), and find the maximum in the 

frequency domain 
• Or compute “phase slope” in time domain. 

Meteor Echo I & Q

Meteor Echo Power

Time (s)

Vo
lta

ge
S

N
R

 (d
B

)



Does this strategy work for ISR?
Typical ion-acoustic velocity:  3 km/s
Doppler shift at 450 MHz:     10kHz
Correlation time:  1/10kHz = 0.1 ms
Inter-pulse period (IPP) to reach 500 km:   2R/c = 3ms
Required PRF to probe ionosphere (500km range):    300 Hz 

Alternately, the Doppler frequency shift imparted by the plasma is much 
higher than the maximum unambiguous Doppler defined by the pulse-
repetition frequency.

Plasma has completely decorrelated by the time we send the next pulse.

ISR spectrum               Autocorrelation function  (ACF)

Increasing Te



Samplin’



Autocorrelation function and power spectrum

31

Figure 2·5: The top figure shows an Incoherent Scattering Spectrum,
including the three lines. The middle figure shows a zoom to the ion acoustic
line, which is the focus of this research. The bottom figure shows the
autocorrelation function �(⇥) of the ion acoustic line. f+ is the Doppler
frequency associated with the ion acoustic phase velocity.

                                                              

Ti/mi

Te/Ti

Vi

Ion temperature (Ti) to ion 
mass (mi) ratio from the 
width of the spectra

Electron to ion 
temperature ratio (Te/Ti) 
from “peak-to-valley” ratio

Electron (= ion) density 
from total area (corrected 
for temperatures)

Line-of-sight ion 
velocity (Vi) from bulk 
Doppler shift

area ~ Ne
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Figure 2·5: The top figure shows an Incoherent Scattering Spectrum,
including the three lines. The middle figure shows a zoom to the ion acoustic
line, which is the focus of this research. The bottom figure shows the
autocorrelation function �(⇥) of the ion acoustic line. f+ is the Doppler
frequency associated with the ion acoustic phase velocity.

zero lag (=signal average power)

1st lag

2nd lag

3rd lag

Our goal is to compute lags

• The purpose of a monostatic radar 
is to measure the range profile of the 
signal autocorrelation function (acf) 
• The acf is sampled at certain 
intervals of delay. • Convention: lags 
are numbered as 0, 1, 2, .... • Zero lag 
is equal to signal power. • The range 
and lag resolutions of the 
measurement are 
determined by the radar modulation 
and sampling rate.



Computing the ACF (and, hence, spectrum)
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Computing the ACF (and, hence, spectrum)
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Incoherent Averaging

!60

Uncertainties ∝
1

Number of Samples

We are seeking to estimate the 
power spectrum of a Gaussian 
random process.  This requires 
that we sample and average many 
independent “realizations” of the 
process.

69

Figure 3·2: Simulated IS spectra for di�erent number of independent spec-
tra integrated at an operation frequency of 1289 MHz. Top plot shows an
average of one spectrum. The middle plot shows an average of 30 inde-
pendent spectra. The bottom plot shows an average of 600 independent
spectra.

Normalized ISR spectrum for different integration times at 1290 MHz

1 sample

30 samples

600 samples



Dish Versus Phased-array

-FOV:  Entire sky 
-Integration at each position before 
 moving 
-Power concentrated at Klystron 
-Significant mechanical complexity

-FOV:  +/- 15 degrees from boresight 
-Integration over all positions  
 simultaneously 
-Power distributed 
-No moving parts 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