

OneWorld Medical Devices Vaccine Pac

www.OneWorldMD.com
Serena Cheng (serena@sloan.mit.edu)
Ethan Crumlin (ecrumlin@mit.edu)

Company Overview

Company Mission

Improve global health and social development efforts.

Vaccine Pac

The Vaccine Pac is a portable temperature-controlled transport and storage system for medical/disaster relief uses.

OneWorldMD Management Team

Chief Executive Officer
Chief Technical Officer
Chief Financial Officer
Manufacturing VP
Public Relations VP

Serena Cheng - MIT MBA Ethan Crumlin - MIT M.E. Geoff Becker - MIT M.E. Emily Smith - MIT M.E. Amy Wong - MIT M.E.

Opportunity and Market Need

There are over 4.3M¹ deaths from vaccinepreventable diseases each year

Vaccines

- Vaccines must be maintained at 2-8°C (36-46°F)
- Inadequate safe supply in developing countries

Vaccine Transport/Storage - urban to rural areas

<u>Transport</u>: Current 'cold chain' severely outdated

30-50% wastage during outreach sessions

Storage: Inadequate, unreliable refrigeration methods at centers

Additional wastage at outreach centers

¹ Estimate from the World Health Organization (January 2004)

Market Size

Market potential for ~200,000 vaccine transport units between 2007 - 2015

Medical Outreach Centers

250,000 medical outreach centers worldwide

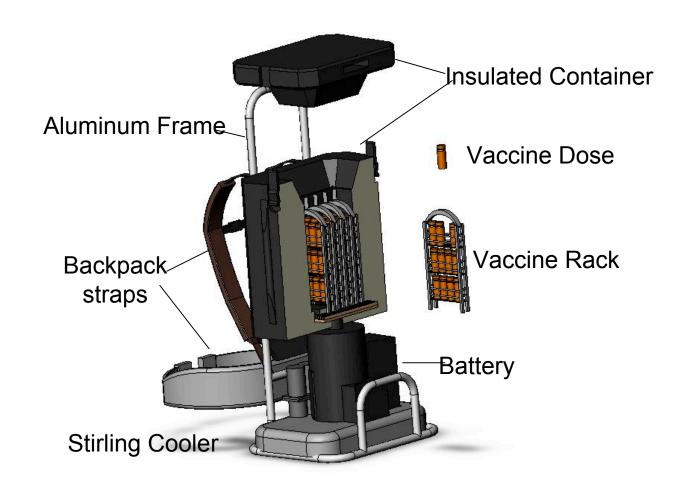
Disaster/Epidemic Relief

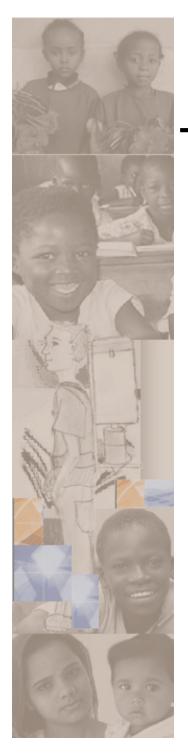
- Global aid organizations
 - Hurricane Katrina
 - Southeast Asia Tsunami
 - Avian Flu

Other Immediate Medical Uses

- Stationary vaccine storage unit
- Blood transporter

Vaccine Pac Technology/Design


Vaccine Pac Design (Patent Pending)


- World Health Organization (WHO) 'Cold Carrier' specifications
- Program for Appropriate Technology in Health (PATH) input
- Radical improvement over current outdated products

Customer Need	Vaccine Pac Technology/Design
Temperature Control	 Stirling cooler, control system Maintains 2-8°C for 18-24 hours
Portability	<35lbs fully loadedPowered by rechargeable battery
Longevity	Holds ~1,200 vaccine dosesVariety of recharging options
Modularity	Components easily re-arrangedUnits stack for transport/storage

Vaccine Pac Prototype

Social Value Proposition

OneWorld Medical Devices, with the Vaccine Pac...

...is saving lives and improving global health by significantly reducing the 4.6M vaccine-preventable deaths each year.

Impact Value Chain

Activities

Outputs

Outcomes

Goal Alignment

- Portable temperature-controlled unit
- Usage flexibility
- Volume production
- Distribution to developing countries
- Vaccinating people otherwise not vaccinated
- Cost savings from reduced wastage
- Lives and DALYs saved
- Improved health
- Allows for more vaccine transport
- Allows for on-site vaccine storage

Social Impact Indicators

Quantitative Indicators

- Number of lives saved
- 2. Disability Adjusted Life Years (DALY)
- 3. Number of saved vaccines

Qualitative Outcomes

- 1. Improved quality of life
- 2. Local community economic development
- 3. Medical and workplace practices
- 4. Environmental benefits

SIA Analysis Scope

Time Frame

10 years (2006-2015)

Vaccine Pacs

Number produced

Product lifetime 5 years (60 months)

Retail price ~\$1,000

Wastage reduction 30-50% to ~20%

Major Diseases

(vaccine-preventable)

Tuberculosis

Pertussis

192,700

Polio

Diptheria

Measles

Tetanus

Malaria -- starting 2010

First Order Analysis

This analysis is based on the projected Vaccine Pac product placement and its reduction of vaccine wastage.

Direct monitoring

- 1. Number of vaccines saved
- 2. Monetary savings of non-wasted vaccines
- 3. Additional people vaccinated

Major assumptions

- 1. Vaccine wastage reduced to 20%
- 2. 3 outreach sessions per month
- 3. 100 vaccines per session (same as current cold carriers)
- 4. Average cost \$0.56 per vaccine

First Order Analysis Results

Yearly Results

	2007	2008	2009	2010	2011	2012	2013	2014	2015
Vaccine Pacs	800	4,980	7,920	10,000	12,000	30,000	30,000	30,000	30,000
Related Products	0	0	0	2,000	3,000	8,000	8,000	8,000	8,000
Vaccines Saved	320,000	4,624,000	10,800,000	18,000,000	24,400,000	41,200,000	56,400,000	68,400,000	68,400,000
Cost Savings	\$192,000	\$2,774,400	\$6,480,000	\$10,800,000	\$14,640,000	\$24,720,000	\$33,840,000	\$41,040,000	\$41,040,000
Add'l People Vacc.	16,000	231,200	540,000	900,000	1,220,000	2,060,000	2,820,000	3,420,000	3,420,000

Overall Results: 2007-2015

Vaccine Pacs/Related Products	192,700
Vaccines Saved	292,544,000
Cost Savings	\$175,526,400
Additional People Vaccinated	14,627,200

Vaccine Pac ROI

Vaccine Pac Retail Price ~\$1,000

Vaccine Savings \$3,081

* Vaccine Pac pays for itself in ~20 months*

This analysis is based on the World Health Organization deaths and DALYs data for vaccine-preventable diseases.

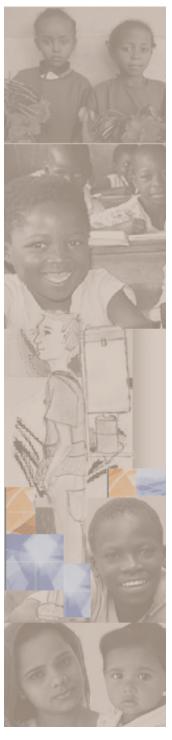
Major assumptions

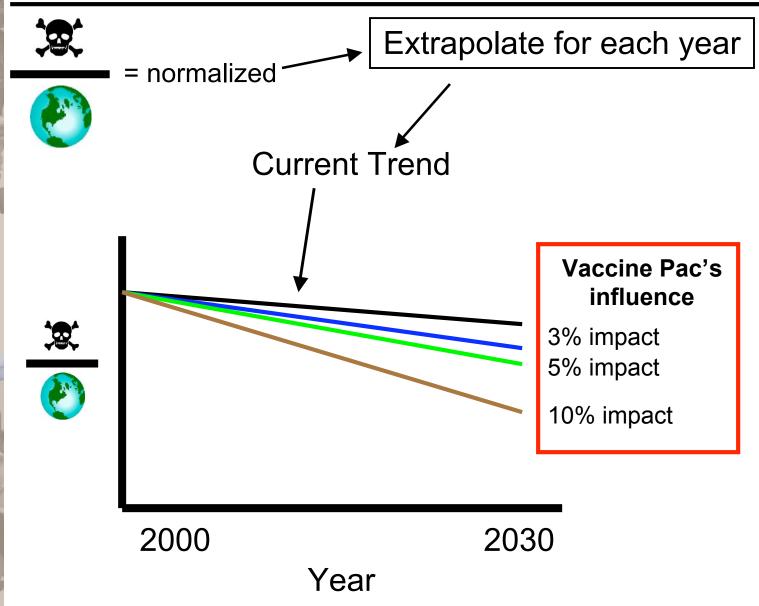
- 1. Deaths and DALYs extrapolated into the future
- 2. Vaccine deaths and DALYS have a linear trend
- 3. Vaccine Pac can reduce trend
- 4. Human productive years is age 20-60 years
- 5. Minimum value of a life is \$500 GDP per capital

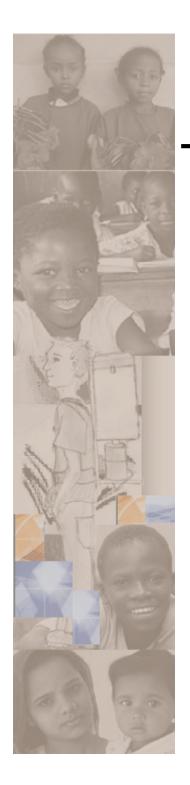
Data sources

- 2000-2002 Infectious Diseases data -- WHO
- Global Population Profile: 2002 -- U.S. Agency for International Development
- GDP per capita data -- U.S. Central Intelligence Agency

Analysis key


= World Population




= Vaccine-preventable deaths

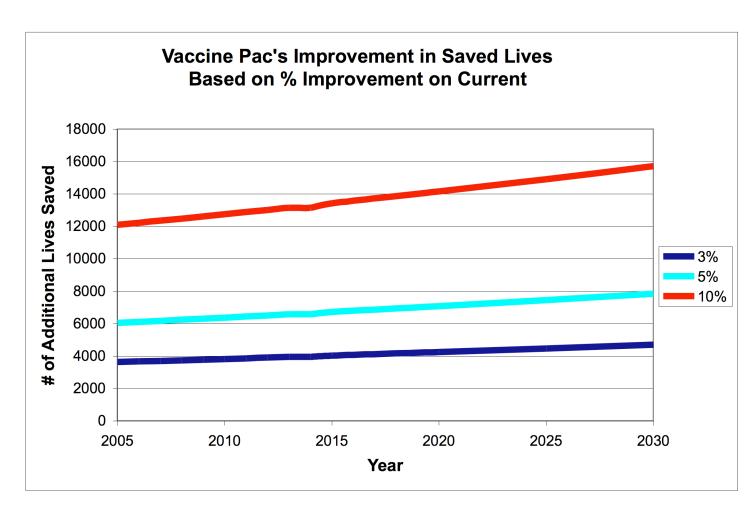
= Vaccine-preventable DALYs

Second Order Analysis Results

Overall Results: 2007-2015

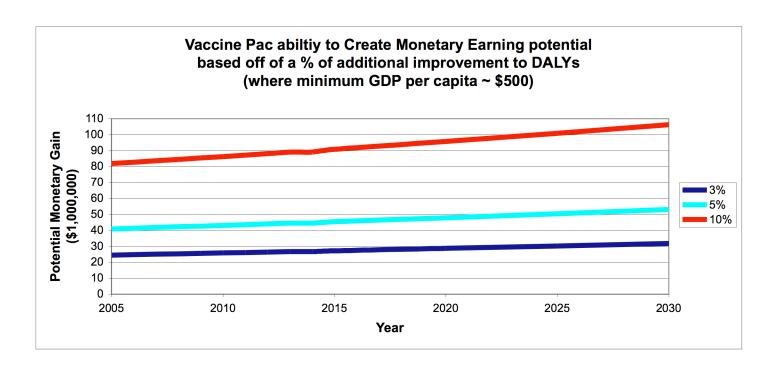
Impact %	Deaths Prevented	Reduced Lost DALYs
3%	35,000	470,000
5%	58,000	785,000
10%	116,000	1,570,000

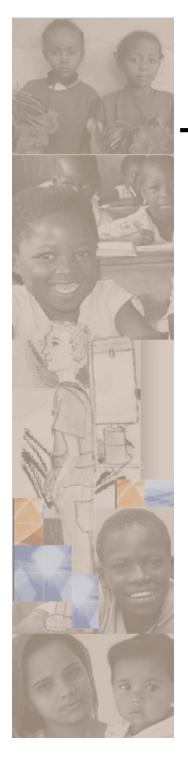
In order to monetize:


- Only consider working ages 20-60 years
- Minimum annual GDP per capita is \$500

This yields lost earnings due to re-gained DALYs:

Impact %	Reduced Lost DALYs	Re-gained Earnings
3%	470,000	\$235M
5%	785,000	\$393M
10%	1,570,000	\$785M




Second Order Analysis Results

Second Order Analysis Results

Milestones and Next Steps

Year	Milestones	Actions		
2006	Secure seed funding	Competitions, grants		
2007	Field test Finalize design	Partner PATH, UN Evaluation/field test		
2008	Secure Series A funding Reach profitability Sales, manufacturing Volume production Grow product portfolio	Social investors		
2009		Sales and partnerships Key full-time hires Contract manufacturing		
2010		Contract manufacturing R&D related products		
2011	Secure Series B funding	Social investors		
2012	Increase profitability Grow organization	Technology licensing Management, technical		

Thank-you!

Special thanks to:
GSVC organization
Janet Handel and Anu Oza