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Superposition Principle

Maxwell’s Equations are Linear:
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Superposition Applied to Antenna Arrays

z

rn

θ

r r− rn

Fields radiated by single element at the origin with applied current I0:
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Far Field Approximation (Fraunhofer Zone)
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If r and r− rn are almost parallel lines:

r− rn ≈ r− |rn| cos θr̂

Assume |rn| ≪ |r|:

|r − rn| ≈ |r| for demoninator terms
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Distance to Far Field: Fresnel Numbers
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Transition from near
to far determined by
the Fresnel Number:

L2
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≪ 1 → Far Field
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> 1 → Near Field

L = Array length

λ = wavelength
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1-D Linear Phased Array
x

r2r1r0 r3 r4 r5 r6 r7

|rn| = nd In = e jnα

Array Factor:
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1-D Linear Phased Array Cont.

|F |2 =
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alpha = -2pi/3

Peak appears when kd cos θ = −α
Additional peaks could appear when kd cos θ = −α+2πm (Grating Lobes)
Visible Region: 0 < θ < π → −kd < kd cos θ < kd
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Grating Lobes

d < λ/2 → kd < π: No grating lobes will ever appear

λ/2 < kd < λ → π < kd < 2π: Grating lobes will only appear at
some steering angles

d > λ → kd > 2π: Grating lobes will always appear

Example of linear array with d = 2λ/3 spacing

Movie
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Mutual Coupling

The true element factor for antennas in an array is different from the
same type of antennas in isolation

Scattering off of neighboring antennas
Inductive coupling involving antenna near-fields

Two possible solutions

Use a larger antenna separation and live with a limited grating-lobe
free steering range.

Use specially designed antennas to minimize coupling

EISCAT 3D Prototype Drooped Dipole →
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Multi-Dimensional Arrays
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In spherical coordinates:

r̂ · rn = xn cosφ sin θ + yn sinφ sin θ + zn cos θ
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2-D Rectangular Array
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2-D Rectangular Array
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Hexagonal Spacing

Hexagon Honeycomb Rectangular Array
One AMISR panel:
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Steering A Hexagonal Array

19-antenna hexagon with d = 3λ/4.

θ = 0, φ = 0 θ = 20◦, φ = 45◦ θ = 45◦, φ = 45◦
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AMISR Antenna Properties

FOV limited by
grating lobe limit
∼30◦ − 40◦

Antenna gain
decreases with
steering angle off of
boresight

Antenna works best
within ∼25◦ off of
boresight
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The PFISR Up-B Compromise

IPY Beam Pattern

The Up-B beam is close
to the grating lobe limit,
and therefore has reduced
sensitivity.

Reduced SNR in Up-B (Beam 2)
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Passive Phased Arrays: Jicamarca

One transmitter feeds entire array
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Passive Phased Arrays: Jicamarca
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Manual Phasing (Jicamarca)
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Active Electronically Steerable Phased Arrays
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MU Radar
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MU Radar
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MU Radar Cabling
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MU Radar Cabling

R. H. Varney (SRI) Phased Arrays July 28, 2017 25 / 39



Phased Array Fundamentals Passive and Active Arrays Interferometry Digital Beam Forming

MU Radar Power Amplifiers
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Advanced Modular Incoherent Scatter Radar
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Antenna Element Unit (AEU) Specifications
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Poker Flat Incoherent Scatter Radar (PFISR)
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Electronic Steering with Delay Shifters

Example 4-bit delay shifter:

AMISR uses 6-bit delay shifters

26 = 64 steps spaced by π/32 = 5.625◦
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Conceptual Diagram of Steering with AMISR

Beam Code

0xFA10
EEPROM

Delay Setting 001101

Delay

Shifter

Input Waveform Shifted Waveform
SSPA

To Antenna
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Differences Between AMISR and Scanning Radars
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Imaging Auroral Structure [Semeter et al. (2009)]
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Two Antenna Inteferometry

z

v0 v1

θd cos θ

r r − r1

〈v0v
∗
1 〉 = e jkd cos θ

Measure v0 and v1 separately and estimate the angle of arrival θ.

Larger baseline → more precise angle estimates.

Baselines where kd > π suffer from 2π ambiguity issues. Related to
grating lobe problem.
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Interferometric Imaging Configuration at Jicamarca
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Interferometric Images of Coherent Scatter

http://landau.geo.cornell.edu/image.html

Movie
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Digital Beam Forming

z

v0 v1 v2 v3 v4 v5 v6

θ

On reception:

Digitize the signals vn on every antenna (expensive!)

Synthesize any beams you want by forming different linear
combinations in software/firmware (computationally intense!)

Allows you to form custom beam patterns → look at signals of
interest while nulling interference.

Allows you to form any number of different radiation patterns → look
in multiple directions at once.
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Digital Beam Forming in Multi-static Radar Experiments

KAIRA = The Kilpisjärvi
Atmospheric Imaging
Receiver Array

McKay et al. (2015)
10.1109/TGRS.2014.2342252
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EISCAT 3D

Major planned facility:

Operational 2021?
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