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Welcome to the 2017 ISR Summer School!

* The mission of this school is to introduce students to basic incoherent
scatter radar (ISR) concepts and encourage the use of data products in their
ongoing research efforts.

* Every student comes with a slightly different background. Each lecture is
structured to come at the ISR concepts from a different angle so you may
find some lectures building from your particular education base more than
others.

* Ask questions! There will be lots of unstructured time in the afternoons
where you can discuss concepts you didn’t understand with the lecturers. If
you hear unfamiliar jargon or acronyms during the lectures feel free to ask
for a definition — you are likely not alone.

* Even if you don’t become an ISR expert, this school will give you the tools
you need to use ISR data in your research and become more familiar with
topics you will encounter in future conferences.

 All lectures will be placed on the school wiki for future reference.



The Upper Atmosphere

Altitude (km)

Neutral Temperature

Electron Density

1000 —
800! Topside | DMSP 830 km
Iridium 780 km
6007 1
Hubble 559 km
4007 Thermosphere | 1SS 340 k
m
F-region
2007
%osphere Stratosphere —Bregion E-regioh
= roposphere, . .
200 400 600 800 1000108 1010 1012

Temperature (K)

Electron Density (m_3)

© 2013 SRI International



The Magnetic Field
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The neutral atmosphere

* The troposphere is heated by the
warm ground and infrared radiation is
emitted radially. T decreases with
height. The tropopause is at 12-15 km,
T., ~-53C.

* In the stratosphere, the ozone (O;)
layer at 15-40 km absorbs solar
radiation. The stratopause is at 50 km
with T__ ~7C.

* In the mesosphere, heat is removed
by the radiation of infrared and visible
airglow as well as by eddy transport.
The mesopause is close to 85 km with
T, "~ -100C.

* |In the thermosphere, UV radiation is
absorbed and it produces dissociation
of molecules and ionization of atoms
and molecules.
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The neutral atmosphere
Atmospheric gas in a stationary state

Above the surface of the Earth, the atmospheric pressure p and density n are given

>4

= pp ex —/z mg dz| = ppex —/ dz
Zo Z0
and .
P To x _/ dZ
“ TP |7 ) HE)

Where p, and n,are values at a reference height z,. If the atmosphere is isothermal
(T=constant), the scale height H

_ ksT
=

H

Is independent of altitude and then the hydrostatic equations are

pzmexp(—%), n = ng exp (—Z;IZO)
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The neutral atmosphere
Atmospheric gas in a stationary state

Since the scale height is in fact dependent on temperature and we now know that
temperature increases with altitude in the thermosphere,

ke T
mg

H =

we will see in upcoming lectures that it is possible to take ISR measurements with lower
range resolution in the F-region as compared to the lower E-region.
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The neutral atmosphere
Atmospheric regions by composition

* The homosphere is the region below about 100 km altitude, where all gas
constituents are fully mixed; i.e. the relative concentrations of different
molecular species are independent of height. This is caused by turbulent
mixing of the air.

* The turbopause is the upper boundary of the homosphere at an altitude of
about 100 km.

* The heterosphere is the region above the homosphere. In the absence of
atmospheric turbulence, each molecular species distributes with height
independently of the other species (according to its own scale height). At
great altitudes light molecular species dominate.
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The neutral atmosphere
Composition in the heterosphere
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Figure: Atmospheric composition during (a) solar minimum and (b) solar
maximum (U. S. Standard atmosphere, 1976).
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The ionosphere

lonospheric regions and typical daytime
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The ionosphere

Composition in the heterosphere

* O* dominates around the F
region peak and H* starts to
increase rapidly above 300
km.

* NO*and O,* are the
dominant ions in E and
upper D regions (lon
chemistry: e.g. N,*+ O —>
NO* + N).

* The D-region (not shown)
contains positive and
negative ions (e.g. O,7) and
ion clusters (e.g. H*(H,0),,
(NO)*(H,0),)
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The ionosphere
lon temperatures
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Figure: An example of neutral, ion, and electron temperature profiles
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The ionosphere
Dynamics of the ionosphere

The important equations for ions (number density n;) and electrons (number density n,)
in the ionosphere are the continuity equations:

ani,e
ot

+ \E (ni,eVi,e) — (di.e — /i,e;

where g is the production rate per unit volume and / is the loss rate per unit volume;
and the momentum equations:

n;im; (% + Vj - V) V;

0
Ne Me (E + Ve - V) Ve = NeMeg — eNe(E +ve X B) — Vpe — Nemee(Ve —u)

nim;g + en;(E +v; x B) — Vp; — nimjvi(vi—u) |

Where E is the electric field, B is magnetic induction, p; and p, are the pressures of the
ion and electron gas, and the ion-neutral and electron-neutral collision frequencies are
denoted by /;and 1/, respectively
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The ionosphere
lonization source: solar radiation
Chapman production function by using a height variable h" = h — Insec x:

g(x.h") = gmocosx - exp [1 e ] ’

where x is the solar zenith angle and h = (z — zm,0)/H, where H is the
atmospheric scale height.
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The ionosphere
lonization source: particle precipitation (electrons)

High-energy electron deposit energy at lower altitudes.
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Figure: lonization rate for monoenergetic electrons with energies 2-100 keV
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The ionosphere
lonization source: particle precipitation (protons)
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The ionosphere
Loss mechanisms

We have now dealt with the production rate, but there are also loss terms to deal with:

8[‘),’76
ot

+ V- (ni,evi,e) — (di.e — /i,e;

1. Recombination
2. Transport/Diffusion

While chemical recombination is very important at lower altitudes (D, E, F1 regions),
diffusion plays a larger role at higher altitudes (F2 region) where the densities are very
low.
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The ionosphere
Equations of motion

Conductivities matter because the ionosphere is a plasma with an embedded magnetic
field.

V- lo- (E(r,t) + U(r,t) x B)] = 0

Parallel equation of motion:
qE=myv. u. —eE=m_v_u

1 1 1 € ¢€n €

Perpendicular equation of motion:

q(EL +u, xB) =myv. u,,

1 1n

— e(EL+ue xB) =myy_u,,
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The ionosphere
Collision frequencies

lon and electrons collide with neutrals as they gyrate. How they move in response to
imposed force fields depends very much on the collision frequency relative to the gyro-

frequency.
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The ionosphere
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Question: Why are T, and T, identical at low altitudes? Why is T, so
much higher than either T, or T,?

21
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The ionosphere
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Answer: At lower altitudes, the ions and neutrals have the same
temperature due to a high rate of collisions and the high mass of the
ions. The electrons have a gyrofrequency much higher than the collision

frequency. The electron temperature typically remains higher than the
ion temperature due to its much lower mass.
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The ionosphere

Conductivity
1 y ° | v’ 5
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The ionosphere
Conductivities
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The ionosphere
Conductivities

Mar 21 R=35.0 12.0 LT
400 ( 35.0, 135.0) 3.0U0T

350 r

§300 P\
250 |
F 2007
E
B 190 T
4
e
107°

1072 1 102
CONDUCTIVITY (S/m)

:Parallel

:Pedersen e :Hall

Question: There is a peak in the Hall and Pedersen conductivities in the
E-region. What ionospheric phenomenon also peaks at this altitude?
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The ionosphere
Conductivities
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Answer: The auroral and equatorial electrojets
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The ionosphere
Debye length

* The Debye length is a measure of the plasma’s ability to shield out electric potentials
that are applied to it

* The Debye length marks the division between different regimes of plasma’s behavior;
i.e. collective plasma motion versus that of individual particle motion.

* Plasma phenomenon that take place over distances greater than the Debye length
must be described in terms of collective behavior of the plasma.

* Plasma will not support large potential variations (i.e. will seek to maintain charge
neutrality) over distances larger than the Debye length.
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The ionosphere
Debye length

* The Debye length increases with
altitude — from a few millimeters in
the F-region up to meters in the
magnetosphere

* The Debye length in the Eand F e
regions ranges from 0.1 -1 cm

ALTITUDE [km]

)‘D =~ 69\/Te/ne

N
o

0

MESOSPHERE

STRATOSPHERE

| | TROPOSPHERE

0 | | | |

107 109 10M1 200 400 1000 2000
ELECTRON DENSITY [m-3] TEMPERATURE [K]

© 2013 SRI International 28



The ionosphere

Question: If we want to measure bulk plasma parameters with an
incoherent scatter radar, how will the Debye length affect our choice of
radar frequency?
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The ionosphere
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Answer: While the radar frequency needs to be higher than that of
ionospheric plasma frequencies and irregularities, it should also be
chosen with a wavelength greater than the Debye length. This becomes
an issue at higher altitudes.
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Radio measurements of the upper atmosphere

* Propagation and Reflection Experiments:
— Consider ionospheric plasma as a continuum
— Ray-bending and reflection governed by variable index of refraction
* Incoherent Scatter Radar:
— Consider ionospheric plasma as a collection of electron point targets
— Assume plasma is stable and near thermodynamic equilibrium
— Use statistical mechanics to describe scatter
* Coherent Scatter Radar:
— Consider ionospheric plasma as a heterogenous, structured medium
— Scatter from turbulence, plasma irregularities, etc.
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The Appleton-Hartree equation

X(1-X)

n’ =1 -

L. (1, )
(1—X>—2Y_-~(4YT (- X)Y; )

w @ £,,

: Y
w w <\~

«w = the angular frequency of the radar wave,
Y, = Ycost, Y, = Ysmb,

¢ = angle between the wave vector k and B,

k = wave vector of propagating radiation,

B = geomagnetic field, N = electron density
e = electronic charge, m, = electron mass,

and ¢ = permittivity constant.
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The Appleton-Hartree equation

Index of refraction in an unmagnetized plasma:
2 —1 — n2 2
n“=1-w%./o

: 2 _ a2
Electron plasma frequency: %, = e*n,/egm,
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Reflection experiments: ionosondes
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lonograms
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GPS time difference of arrival

 Satellite radio signals have to traverse the ionosphere to reach the ground.

* Different frequencies travel at different speeds through the ionosphere. A
dual frequency GPS receiver can measure the time difference of arrival of
signals at different frequencies.

* Time difference of arrival gives the line integral of the electron density
along the ray path (total electron content, or TEC).

‘I "/:'
W
receive

-~ i e -..'n /- ."-,. \\.v‘ J
= leceiver g -~ receiver ";l
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lonospheric response to 2011 Tohoku earthquake
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Total electron content maps
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Incoherent scatter radar

Radar Cross Section of One Electron:

2

Co = 4’.173 2107 m?
Suppose N, = 10** m * and V = 1 km™:

‘)

o=10" x10° %10 = 107% m*

Power received by 2 430 MHz, 300 m radar with 1 MW of power and 60%
efficiency from a 100 pm x 100 pm target at 300 km:

G Aef,l — ~15yxr
Pf 4;7R20477R2 =~ 4 x 10 W

Noise Power for a 200 K receiver with a3 500 kHz bandwidth:
N = kg TyB = 1.4 x 107°W

Py =
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Incoherent Scatter Radar
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Incoherent Scatter Radar

The Topside lonosphere at Arecibo, March 17-18, 1994
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Sondrestrom
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Influx of particles and Joule
heating (due to current flow)

Vr from elscans, 4m elscans, 15s int (m/s)

12L7

18 1 1 1 1 1 1
70 72 74 76 78 80
PACE Geomagnetic Latitude - Deg

80 78 76 74 72 70
PACE Geomagnetic Latitude - Deg

2005 July 20
102331.7-170343.8 Max Value : 4000
Vector Scale : 4000 Error <= 300

pveest-42069-42093-15smrg-1sigma 050720-1030-1700-w-155ps

2005 July 20

102331.7-1703438

18 1 1 1 1 1 1 1 1 1 1 1
70 72 74 76 78 80
PACE Geomagnetic Latitude - Deg

16
B0 78 76 74 72 70
PACE Geomagnetic Latitude - Deg

Ne, 4m elscans, 15s int (m-3) x 10"

Rel. Error <=30.0%

6.00 748 932 116 145 18.1 225 281 350

PO A2060-42093- 155 mig- 19gma 050720-1030-1700-n0-300km- 155.p5.

Electr
enhan

LT
2005 July 20 "
102331.7-1703438 s

Altitude (km): 300.0

18 L 1 e
70 72 74 76 78 80 B0 78 76 74 72 70
PACE Geomagnetic Latitude - Deg PACE Geomagnetic Latitude - Deg

Te, 4m elscans, 155 int (K) x 10°
Rel. Error <=30.0%

140 165 150 215 240 265 290 s 340

3Cpont42069-42093-155mig-1sgma 050720-030-1700-to- 300km-155.p5

lon te

Altitude (km): 300.0

« enhan

2005 July 20
102331.7-170343.8 ;

18 0L 1 L L 1 ! 1 1 1 1 ! 6
70 72 74 76 78 80 B0 78 76 74 72 70
PACE Geomagnetic Latitude - Deg PACE Geomagnetic Latitude - Deg

Ti, 4m elscans, 15s int (K) x 107
Rel. Error <=30.0%

5 7 9 n 13 15 17 19 21

CPOM42060-42093- 155 mig- 19gma 050720-1030-1700-1-3006m-155.ps

© 2013 SRI International

Electron density
enhancement

perature
ement

43



Incoherent Scatter Radar

N, 10-Nov-2007 09:43:51 -- 09:44:50
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Incoherent Scatter Radar

Typical D- region Spectra
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Range (km)

Incoherent Scatter Radar
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Coherent Scatter Radar

* Any medium with stochastic index of refraction fluctuations can produce
coherent scatter.

* Can work in neutral air.

* Works very well in plasmas. Small electron density fluctuations produces
significant index of refraction fluctuations.

* Structures must match A;/2 to get constructive interference between the
scatter.

* Structures must be aligned L to the radar line of sight for constructive
interference in the direction back to a monostatic radar.

* Field-aligned irregularities in a plasma are observed when looking L to B.
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Equatorial electrojet, 150-km echoes, and mesospheric
turbulence

SNR map West beam

Courtesy J. Chau L.T. (hr) Jan27,2009
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Auroral electrojet instabilities
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lonospheric modification
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Meteors and meteor trails
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Equatorial spread F

Zenith Ansgle (deg)

8000
700 O
4600
@
© ~
o0 =
] 3
430 -
O ' -
IR r “ " g =
KIS >

100 0 A -

] Ob 00 20 D0 00 21 0000 220G 00
Local Time 1996 Sep 08

[ 20 10
S/N (db)

Hysell and Burcham, 1998



SuperDARN

...................................... lonospheric plasma irregularities
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SuperDARN

Northern Hemisphere

Southern Hemisphere
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SuperDARN data
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The week ahead

* The week is divided up into morning lectures and afternoon group work.

* The lectures will take you through the basics of radar, ISR theory, pulse
coding, data analysis and fitting, and data interpretation. Some topics will
be iterated to give different perspectives and review material.

* Experiments will be designed on Tuesday and run that night at the Arecibo
Observatory.

* On Tuesday night your group will have the opportunity to go to the control
room and observe your experiment being run.

* Data will be delivered on Wednesday afternoon and the rest of the week’s
group work will be used to analyze the results.

* Each group will present results from their experiments on Saturday
morning.

* Now it’s time for a group picture outside!
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