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Radar

* RADAR (RAdio Detection And Ranging)

— is a technique for detecting and
studying remote targets by
transmitting a radio wave in the
direction of the target and observing
the reflection of the wave.

— Radar is an object detection system
which uses radio waves to determine
the range, altitude, direction, or
speed of objects. (wikipedia)




Doppler Radar

* In order to detect the velocity of the target we are
taking advantage of a concept called Doppler Shifts

« We are rather familiar with it when if comes to sound
waves
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Doppler Radar — time domain




Doppler Radar — frequency domain
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Doppler Radar — frequency domain
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How can we use this method here?




...and at slightly higher latitudes here?

Photo: Anja Stramme




The answer IS....



The answer IS....

Electrons!



Like most things on Earth — it all starts on the Sun...

a\
Earth to Scale




UV radiation

UV and EUV radiation is driving Earths energy balance, and are responsible for an
ionosphere with charged particles in the upper part of our atmosphere.
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Electron Density profile

A complex balance
between the ionization
and recombination and
diffusion results in an
altitude dependent
electron (and ion) density
profile.
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The Sun is an active star!

24.07.2017



The Sun is an active star... Most days...!
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At high latitudes electron (and proton) with solar wind origin creates
additional ionization, seen as aurora borealis/australis dispays
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At high latitudes electron (and proton) with solar wind origin creates
additional ionization, seen as aurora borealis/australis dispays
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Optical versus Radar Aurora
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Scattering from charged particles

* When a charged paraticle is

subjected to an
electriomagnetic wave, it
start occilating with the
wave

When a charged particle
occilates it emitts an
electromagnetic wave

So by radiating an electron
with a radar wave, the
electron becomes a tiny
antenna itself and radiates
power in all directions
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Total cross section estimate:

Consider an antenna with a 1-
degree beam measuring the
ionospheric plasma at 300 km
range and using a 300
microsecond pulse.

If the electron density is 10!?
m, the total number of
electrons scattering into a
given measurement 1S
~8.8x1023. This yields a total
cross-section of 88 mm?— we
need a big radar!

45 km




“The possibility that incoherent scattering from electrons in the
ionosphere, vibrating independently, might be observed by radar
techniques has apparently been considered by many workers
although seldom seriously because of the enormous sensitivity
required...”

K.L. Bowles [Cornell PhD 1955], Observations of vertical incidence
scatter from the ionosphere at 41 Mc/sec. Physical Review Letters
1958:



Thermal fluctuating electrons
“Incoherent Scattering”
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Thermal fluctuating electrons
“Incoherent Scattering”

I

frequency

This could have been the whole story, and the

statistical properties - density, velocity, temperature -
of the electron gas could have been calculated from
the power, doppler, width of the spectra respectively...



n order to detect this you need Arecibc




What if there are colletive behaviours
In the ionospheric plasma....
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The ionospheric ions acts as sloooow pacers for
the electron gas
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Incoherent scattering - the short story
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Langmuir waves

g
lon acoustic waves
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Plasma Wave Approach (cont'd)
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Landau damping

Landau wave-particle interactions
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Incoherent Scattering Spectrum
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Debye length dependence

A xl/k

radar radar

Electraon cloud
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Debye length dependence

Ion

Electron cloud
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no collective interactions




How ISRs work...

) Electrons reflect

(®)]
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High power pulse Very sensitive receiver

Only ~0.0000000000000000001% of the transmitted power is returned!



How ISRs work...

Electrons reflect

S
c the pulse....
&U e pulse
Let’s go back here for
a while...
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Time

High power pulse Very sensitive receiver
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Electron Density ~ Signal
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Incoherent Averaging

Normalized ISR spectrum for different integration times at 1290 MHz

I 1 ]

H
X 1 sample

We are seeking to estimate the
power spectrum of a Gaussian
random process. This requires
that we sample and average many
independent “realizations” of the
process.
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Complex baseband amplitude
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Radar Frequency Dependenmes
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EIectron/Ion Temperature Ratio
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lon Velocity
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Spectral space as a function of altitude

electron
density profile

Incoherent scatter spectra

[
T
&
g D
‘“’f N
=
Q
®
I A |

plasma e plasma

line line line

downshifted upshifted

frequency

A

y



Plasma Parameter Profile
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And this is the level data we will work
on in the MADRIGAL session...



Questions you should ask

(...although some might cause facepalming and potential religious wars among the lecturers)

What is the difference between coherent
and incoherent scatter?

What is the significance of under- versus
over-spred targets?

What is a hard target versus a soft
target?

What is the difference between a beam
filling versus a point target?



