RocketTeam

2015-2016 Project Therion Critical Design Review

March 10, 2016

Agenda

- Team Overview
- Competition Overview
- System Overview, Schedule
- Subsystems
 - Propulsion
 - Structures
 - Recovery
 - Avionics
 - Payload
- Systems Level Risks
- Goal Evaluation

Team

Photo: IREC 2015, Utah

Competition

- Intercollegiate Rocket Engineering Competition (IREC)
- Hosted by Experimental Sounding Rocket Association (ESRA)
- Green River Utah, June 2016
- Last year
 - 41 Rockets, 7 countries
 - 1st place in Basic Category
- This year
 - Basic Category
 - 10,000ft Target Apogee
 - 10lb payload
- Preparing for Advanced Category 2017
 - All components student designed and built

Scoring

- Distance from target altitude
- Professionalism
- Payload
 - Complexity
 - Scientific Value
 - Mission Completion
- Recovery
- Poster Presentation

Propulsion COTS Solid M3400

Recovery -

-

Autonomously actuated Parafoil -

System Spec

- Single separation, dual deploy backup -
- **Avionics** -
 - Custom system -
 - Live telemetry _
- Structure _
 - Composite layups _
 - FEM analysis on airframe -
- Payloads -
 - **Plasma Physics Experiment** _
 - **OpenCV Optical Flow Experiment** -

Concept of Operations

PliT

RocketTeam

Launch	Rocket	Features	Date
Flight Test 0	Therion I	Composite wrap, Backup recovery	March 26
Flight Test 1	Therion II	Pure composite structure, Parafoil recovery	April 9
Flight Test 2	Therion III	Full flight test	April 25
IREC	Therion IV	Competition flight	June 15

RocketTeam

Propulsion

Project Overview

- 2 Goals
 - Custom Propulsion
 - COTS propulsion for descope

Custom Propulsion

- Many unknown regulations
- Safety concerns
- Tight Schedule

- Status: Descoped to COTS motor

ocketTeam

Commercial Motor

- CTI 9994M3400-P White Thunder
- 9994 Ns Impulse
- Average Thrust: 3421.1 N
- Liftoff mass: 57.3lbs (Dry: 46.7lbs)

ocketTeam

Commercial Motor

Thrust Curve

Motor Casing

- CTI Pro98-4G case

- Dim 'A' = 27.14in

Questions?

Structures

General Specifications

- 6in Diameter
- ~10ft long
 - 24in Fin Can (Prop)
 - 48in Parafoil
 - 2in Avionics Switchband
 - 24in Backup Recovery
 - 24in Nosecone

General Specifications

_

RocketTeam

Parafoil Fin Can

General Specifications

- Couplers
 - COTS phenolic tube
- Bulkheads
 - 0.5in plywood, S-glass sandwich panel

Therion I Progress

Introduction - Propulsion - Structures - Payloads - Recovery - Avionics – Conclusion 21

Fin Can Assembly

- 0.5in plywood, carbon fiber centering ring
- Aluminum threaded insert for rail button
- 0.25in aluminum centering ring

Introduction - Propulsion - Structures - Payloads - Recovery - Avionics - Conclusion 22

Fin Can Assembly

- 0.375in aluminum centering ring
 - Rail button insert
- 0.375in thrust plate
- Sandwich panel fins
 - 0.25in
 - Foam, 2 ply carbon fiber

FEM Analysis

- Ran FEA with ABAQUS
 - Swept # of plys and ply angles
- Result: 4 ply, 45 degree angle

FEA Analysis

- Less than 1mm deflection
- Factor of safety on buckling is 7

Layup Process

- 4 ply S-Glass
 - 45 and -45 degree fiber angle

Introduction - Propulsion - Structures - Payloads - Recovery - Avionics - Conclusion 26

Layup Process

- Mandrel Wrapped
- Vacuum at -0.7atm
- Mylar underneath for separation

Questions?

Plasma Physics Experiment **Ilii** RocketTeam

Payload intent

- RocketTeam
- Use dielectric barrier discharge (DBD) actuators on the rocket nosecone to:
 - Reduce skin drag
 - Shift the shock attachment point aft

Payload module with DBD power supplyDBD electrode prototypeIntroduction - Propulsion - Structures - Payloads - Recovery - Avionics - Conclusion29

Mode of operation

 Dielectric barrier discharge (DBD) actuators use a RFexcited plasma to create a 5-10m/s electric wind

ocketTeam

- Wind vector is tangential to surface, peaks at y=.5mm
- Primarily a electrohydrodynamic effect*

*KOSTOV, K.G.; HONDA, R.Y.; ALVES, L.M.S. and KAYAMA, M.E.. Characteristics of dielectric barrier discharge reactor for material treatment. *Braz. J. Phys.* [online]. 2009, vol.39, n.2 [cited 2016-03-08], pp. 322-325

Mode of operation

• Interactions of the electric wind with the boundary layer can reduce skin friction and promote flow attachment

Thomas F O, Kozlov A and Corke T C 2006 Plasma actuators for bluff body flow control. AIAA Meeting (San Francisco, USA, June 2006)paper #2006-2845

Rocket**Team**

Leonov, Sergey, et al. "Supersonic/Transonic Flow Control by Electro-Discharge Plasma Technique." *Proceedings of 25th International Congress of the Aeronautical Sciences*. 2006.

Prior research

RocketTeam

- DBD actuators have been shown to reduce drag across a wide variety of flight regimes
 - Kogan et. al.: Flat surface
 - 10m/s flow, 13% drag reduction
 - S. Roy: Vehicle body
 - 30m/s flow, 10% drag reduction
 - A. Duchmann: Airfoil, ~100m/s
 - 3% increase in transition distance from leading edge
 - S. Im Step in M = 4.7 flow
 - Significant thinning of BL, possible drag reduction
- Suggested mechanism: T-S wave damping.
 - EHD effect? Thermal?

Top: No DBD actuation. Bottom: DBD actuator engaged. Note the significant boundary layer thinning. From S. Im et. al.

Our DBD actuators are in series

- to increase the magnitude of the electric wind
- Electrodes are 10mil Kapton dielectric with Cu conductors
- Top conductor: 6.25mm
- Bottom conductor: 12.5mm
- Offset: 2.0mm
- Driven by 10kV/10kHz

Prototype electrodes

Prototype

Wind tunnel tests are in the works

Hope to show an electric wind velocity > 30m/s

Questions?

OpenCV Optical Flow Experiment

RocketTeam

Phii
OpenCV Optical Flow Experiment

- Measuring rotation using Lucas-Kanade Optical Flow.

RocketTeam

Figure: Visualization of Optical Flow

Lucas-Kanade Method

- A 3x3 pixel patch is used to find displacement

Rotation Matrices

- The rotation matrix for each time step dt is found by inputting displacement

$$R = x' x^{T} (xx^{T})^{-1} = \begin{cases} \cos \theta & -\sin \theta & x_{T} \\ \sin \theta & \cos \theta & y_{T} \\ 0 & 0 & 1 \end{cases}$$

Hardware Implementation

- Arducam video camera connected to a Raspberry Pi Model B+

l'liī

RocketTeam

OpenCV CONOPs

RocketTeam

Questions?

Parafoil Recovery

Introduction - Propulsion - Structures - Recovery - Avionics - Payloads - Conclusion 43

Parafoil Recovery Assembly

Mortar Assembly

Parafoil Assembly

Redundant Pyrotechnic Rope Cutters

Pyrotechnic Rope Cutter (PRC)

Parafoil CONOPs

Packing the Parafoil

Starting configuration

Parafoil Deployment

ocket**Team**

Actuation

Single Actuator

Assembled Actuator System

Expected Performance

Expected velocity when pilot chute deploys: 15 - 20 m/s

Parachute Name	Parachute Diameter	Opening Shock	Steady Velocity
Pilot	3 ft diameter	31.5 lbs	58.3 ft/s
Parafoil	67 ft sq	472.9 lbs	18.9 ft/s

Rocket**Team**

Questions?

Backup Recovery

Backup Recovery CONOPs

Backup Recovery Assembly **Ilii** RocketTeam

Parachute Design and construction **Min** RocketTeam

Nylon tape (seam reinforcements)

Polypropylene webbing (shroud lines)

Geometry: Semi-ellipsoidal, 0.707 aspect ratio

Expected Performance

Parachute Name	Parachute Diameter	Opening Shock	Steady Velocity
Drogue	2.5 ft	654.1 lbs	69.9 ft/s
Main	9.5 ft	719.7 lbs	18.4 ft/s

RocketTeam

Questions?

Avionics

Avionics System

- Coupler
- Switch band
- Sled
- Interface
- Electronics
- Batteries

RocketTeam

Avionics System

- Pyxida Cape
 - Sensor Read
 - SD Logging
 - XBee Transmitter
- BeagleBone Black
 - Guidance
 - Navigation
 - Control

COTS Backup

- A TeleMtrum provides redundancy for pyrotechnics and tracking
- COTS defaults to "ON"
- Pyros inhibited after confirmation of successful event using PNP transistors

ocketTeam

- ARM Microcontroller runs a program written in Arduino flavored
 C++ to pass the data to the BeagleBone
- BeagleBone runs Debian 8.2 Linux Based OS interpreting Python for GNC
- Ground Station runs Custom and COTS software to receive telemetry

GNC

RocketTeam

GNC software and mission phases **III** RocketTeam

GNC: Plant Model

RocketTeam

GNC: Plant Model

Ascent: 6 DoF rigid body Gravity Body aero Thrust Pilot descent: 6 DoF rigid body Gravity Body aero Chute aero Parafoil flight: 4 DoF Dubins car Const sink rate and airspeed

GNC: Sensors

|**||**|;_,

RocketTeam

RocketTeam

Non-linear measurement functions Roughly normally distributed noise Plus sensor-specific issues:

Gyro: Bias walk Accelerometer

Magnetometer: Calibration

GPS: Time to lock Loss of lock Spherical coordinates WGS84 vs MSL altitude **Barometer:** Temperature and pressure corrections

GNC: Navigation

RocketTeam
GNC: Navigation

GNC: Navigation

- Unscented Kalman Filter
 - Non-linear measurement & dynamics
 - Roughly normally distributed noise
- Quaternion state requires special care

A Quaternion-based Unscented Kalman Filter for Orientation Tracking

Edgar Kraft Physikalisches Institut, University of Bonn, Nussallee 12, 53115 Bonn, Germany kraft@physik.uni-bonn.de

Abstract – This paper describes a Kalman filter for the real-time estimation of a rigid body orientation from measurements of acceleration, angular velocity and magnetic

The set of quaternions \mathbb{H} is a superset of the complex numbers \mathbb{C} and the elements can be used to describe spatial rotations similarly to the way complex numbers describe planar ocketTeam

GNC: Guidance

lilii.

RocketTeam

GNC: Guidance

Rocket**Team**

Outputs

- Steering: Send desired yaw and yaw rate to control module
- Flare for landing: Send desired flare setting to control module

GNC: Wind

- Not sensed or estimated in real time
- Estimate loaded into config files on day-of-launch
 - NOAA/FAA FB winds aloft for KGJT airport
- Landing site chosen to be downwind of launch site

GNC: Control

GNC: Control

- PID control of yaw
- Open-loop flare control for landing

GNC: FSM

Finite State Target landing site Machine Control Navigation Guidance Estimated Desired state state Pyro Parafoil **Measurements** events brakes Sensors Plant **Actuators**

|**||**|;_,

RocketTeam

RocketTeam

A Finite State Machine (FSM) will compare the current vehicle state to start or end conditions for various vehicle states.

GNC: FSM State Flow

Nominal Modes

- 1. Idle
- 2. Startup
- 3. Boost
- 4. Coast
- 5. Pilot
- 6. Parafoil
- 7. Low
- 8. Landed

Contingency Modes:

ocketTeam

- A. Startup Failure
- → B. Drogue
 - C. Main
 - D. COTS

GNC

RocketTeam

GNC: Simulation and testing **III** RocketTeam

GNC: Simulation of parafoil **IIII** RocketTeam

- Slegers and Costello:
 - 9 DoF
 - Panel-based aero model
 - C_D, C_L from USAF & NASAS wind tunnel tests
 - Test control and estimation robustness

Questions?

System level risks

Rocket Loss Matrix

Risk	5 (high risk)								
	4			F					
	3		А	В					
	2		D	E		G,H			
	1 (low risk)					С, І			
		1 (low impact)	2	3	4	5 (high impact)			
Impact (with Respect to Loss of Rocket)									

- A. Loss of GPS Signal
- B. Pyxida Failure
- C. COTS Altimeter Failure
- D. Actuator Failure
- E. Pilot Deployment Failure

F. Parafoil Deployment Failure

ocketTeam

- G. Drogue Deployment Failure
- H. Main Deployment Failure
- I. Structural Failure

Project Failure Matrix

Risk	5 (high risk)								
	4			5					
	3			2					
	2		1		3, 7	4			
	1 (low risk)					6			
		1 (low impact)	2	3	4	5 (high impact)			
Impact (with Respect to Project Loss)									

- 1. Loss of Therion I
- 5. Schedule Slip
- 2. Loss of Therion II
- 3. Loss of Therion III
- 4. Loss of Therion IV

6. Team Member Safety

RocketTeam

7. Budget

Goal Evaluation

- Baseline
 - Within 1000ft of target apogee
 - Full recovery
 - 10lb payload
 - 1 Successful test flight
 - Maximum custom hardware
- Target Goals
 - 10 minute integration
 - Successful Parafoil deployment
 - Full data recovery
 - Control attempted
 - Plasma operational
 - OpenCV operational
- Stretch Goals
 - Live telemetry
 - Lands in target area
 - Within 100ft of target apogee
 - Custom Propulsion

Questions? Further discussion?

Send to: <u>rt-exec@mit.edu</u>