Data inference: fitting (regression)
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inverse problems

theory |06l error data+error
G ("m)+"e = d
o discrete G m + e = _d
—~ M~
RnXm ]R'm Rn Rn

or continuous [ G(¢, z)m(x)dz + e = d(1)
or a combination

e linear (as above) or nonlinear

e i.e. convolution, Fourier transform, Abel transform, Radon
transform, or full ISR theory

— need to estimate m with only statistical information on e
— generally cannot and do not want to simply evaluate G~!
— “Riemann-Lebesque Lemma”

— existence, uniqueness, stability of estimator?
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discrete linear inverse methods

Consider forward problem
Gim—mo)+e=d— Gms
Seeking morel estimate of form

eSt—mo—l—Gd Gmo)

=i

Problem could be under determined, over deterined, or both
(mixed) as well as possibly unstable ...



Fundamental theorem of linear algebra; SVD

vector spaces: Gr=vy 2/G=9y" Gx=0 2!G=0

G = UAVY, d=Gm

_ column left Apzp O TOW space

- space | null space 0 0 null space
e—ve?sz:f GGt \/% e—veT:sxg?GtG

G = VAU, m=Gd

_ row | null A;xlp 0 column space

- space | space 0 O left null space
mxm mxn nrn

mepA;:plpU;mn

— condition no. = Apax/Amin
— introduce damping f; = A?/(A? + o?) or “regularization”



linear optimization strategies

Optimize some combination of:

e model prediction error (x?):
(Gm — )" C; (Gm — d)
o model length
(m —mo)T LT L(m — m,)
e spread of model (R,,) or data (R,) resolution

Gm=~d, Gd =m*™" - GG m~m™, GG d~ dP™!
R R,
m d
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strategies II

@ model error covariance
Cr = GCyGT
o Bayesian model probability
P(mld) o e~ m=t=me) € (mt —mo)+(Gm—d) 7O ! (Gm-—a)
All (including pseudoinverse) yield same estimate:
m® = me+ (GTC'G+CN) TGO N (d — Gm)

which is the weighted damped least squares estimate (also the
Kalman gain)
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illustrative example - least squares

m = argmin||Gm — d||3
m

G'(Gm—d) = 0
G'Gm = GUW
mest — (GtG)—thd

now add weights:

m = argmin (Gm — d)'C;'(Gm — d)

2
= argmin HC;I/ZGm — C’dfl/QdH2
~ (G'C'e)7iGretd
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add damping

m = argmin (Gm — d)'C;'(Gm — d) + o*m'C,,'m

(2;1/2(; . (1;1/2d
o 07;1 /2 0

~ (G'C;'G+d*Ch)y'Gle

2

= argmin
m

2

— used normal equations again

— have defined C,;bl = C’n_zl/ 2tC;ll/ 2 for real symmetric Cy,
— large a guarantees existence of inverse

— this is called ‘weighted damped least squares’

— expensive!
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additional constraints

— consider constraint of form Fm — h = 0:
— can include this by augmenting original forward problem:

G'G F? m _ Gtd
F 0 A N h
.. where X is an undetermined (Lagrange) multiplier
— invert LHS for solution, if possible
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optimization problem: iterative methods

G'Gm,6 = G

N ~~
A T h
pidp; = 0

— solve this linear system of equations iteratively using
conjugate gradients

— for overdetermined problems, A positive definite, problem has
unique solution

— for mixed-determined problems, A positive with a ridge,
solutoin depends on initial guess for z

— if x, is the zero vector, method converges on damped solution
— convergence in m iterations guaranteed but for roundoff error
— early termination tantemount to increased «

— nothing worse than matrix-vector multiply involved

— suitable for sparse math
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nonlinear problem - Newton’s minimization method

— consider a scalar cost function ¢(x) of a parameter vector x:

1
~ t Lot o2
c(xzo+dz) =~ c(ze)+ Ve (x5)'dx+ 253: Vec(xo)ox +
gradient Hessian

Ve(zo 4+ 62) ~ Ve(zo) + Ve(zo)dz + - -
— at cost-function minimum, gradient term vanishes, and
Vic(zo)dr ~ —Ve(zo)

. which is the foundation for Newton’s minimization method,
with 2o — xo + 0z
— never calculate Hessian (2nd derivative) matrix in practice!
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quadratic optimization and the Jacobian

— consider specifically a quadratic cost function of least-squares
form (with data covariances absorbed here)

n

co(m) = Y (G(m); - di)*

i=1

= > film)?
=1

ofh .. Oft

omq OMam
J = : :

omq OMmam

Ve = 2J(m)'f
Vi ~ 2JtJ
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steepest descent
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Levenberg Marquardt

—use J in Newton’s method, iterate ...
Jm)I(m)sm = —J(m)' f(m)
— improve iteration with some added damping ...
(J'T+ADdm = —J'f

adjust A parameter to assure convergence

for large A, this is the method of steepest descent

e 6 o

for small A, this is Newton’s method

error propagation (assuming Cy = I)

covm =~ (JLJ)™!

(]

iterate until either |[Ve(m)||? or changes to it are small

(]

improve convergence by factoring A matrix



augmented problem with weights, damping

— calculate Jacobian analytically if possible, with finite
differences otherwise

— weights, damping, and constraints included through
augmentation of A matrix, as in linear problem, e.g.

(m) G(m)—d
am ocC;LIﬂm )
J(m)
K =
(m) < Oécn—11/2 )
(KtK—I—AI)(Sm = —Kt( GW_LI72CZ )
aCr'“m

— always use NETLIB (never Numerical Recipes)
— consider non-negative least squares (NNLS)
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