#### **Student Introduction to AMISR and Phased Arrays**



How is it different from other ISRs? What are the measurement improvements?

### **Early Technology vs. New**

#### **Early Technology**

- Fixed location
- Single, large steerable antennas (fixed steering phased array)
- Vacuum tube power amplifiers
- High voltage power supplies
- Liquid cooling heat exchangers

#### New

- Distributed solid state amplifiers
- Modular, scalable design
- Heavily networked lots and lots of inexpensive computing power

# Present IS Radars

### 10 radars operate routinely



#### **High Latitude ISRs**



#### **Polar Cap ISR**

#### AMISR, Resolute Bay, Canada 2009



### **RISR-N and RISR-C**



#### **PFISR**



### **MUIR (HAARP, AK) and AMISR-7 (Jicamarca)**



#### HAARP Site, Alaska University of Alaska

#### Jimarca, Peru @ Magnetic Equator Cornell University



### What is a Phased Array?

- A phased array is a group of antennas whose effective (summed) radiation pattern can be altered by phasing the signals of the individual elements.

- By varying the phasing of the different elements, the radiation pattern can be modified to be maximized / suppressed in given directions, within limits determined by

(a) the radiation pattern of the elements,

(b) the size of the array, and

(c) the configuration of the array.



*Element Spacing 0.50λ* 

Element Spacing  $0.67\lambda$ 



$$\begin{array}{rcl} \textbf{Hert zian Dipole} \\ far field & rear field \\ H_{\phi} &= Id\ell \sin \theta \frac{1}{4\pi} \begin{bmatrix} jk_0 \\ r \\ t^2 \\ t$$







$$\begin{array}{c} \textbf{Antenna Arrays} \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi) \\ \textbf{F}_{mn} = x_m \hat{x} \quad (x_m, y_n) \quad (x_m, y_n)$$

Antenna Arrays  

$$r_{mn} = x_m \hat{x} + y_n \hat{y} \quad (r, \theta, \phi)$$

$$F_{array}(\theta, \phi) = \sum_m \sum_n I_{mn} e^{jkr_{mn} \cdot \hat{r}}$$
Poynting vector  

$$\mathbf{P} = \frac{1}{2} \Re\{\mathbf{E} \times \mathbf{H}\} = \frac{1}{2z_0} |\mathbf{E}|^2 \hat{r}$$

$$= \frac{1}{2z_0} (|E_\theta|^2 + |E_\phi|^2) |F_{array}|^2 \hat{r}$$

$$f = \frac{1}{2z_0} (|E_\theta|^2 + |E_\phi|^2) |F_{array}|^2 \hat{r}$$











$$\begin{aligned} \textbf{Pirective Gain of Antenna Array} \\ \text{Recall:} \\ D(\theta, \phi) &= \frac{\text{Power Density Radiated In } (\theta, \phi) \text{ Direction}}{\text{Average Power Density}} = 4\pi R^2 \frac{\text{Power Density In } (\theta, \phi)}{\text{Total Power Radiated}} \\ \langle P_r \rangle &= \frac{1}{2} \Re \{ \mathbf{E} \times \mathbf{H} \} \cdot \hat{\mathbf{r}} = \frac{1}{2z_0} |\mathbf{E}|^2 |F_{array}|^2 = P_{el} |F_{array}|^2 \\ P_{total} &= \int_0^{2\pi} d\phi \int_0^{\pi} P_{el} |F_{array}|^2 r^2 \sin \theta d\theta \\ D(\theta, \phi) &= 4\pi r^2 \frac{P_{el} |F_{array}|^2}{\int_0^{2\pi} d\phi \int_0^{\pi} P_{el} |F_{array}|^2 r^2 \sin \theta d\theta} \end{aligned}$$
  
If element pattern is much broader than array pattern,  
$$D(\theta, \phi) &= 4\pi r^2 \frac{|F_{array}|^2}{\int_0^{2\pi} d\phi \int_0^{\pi} |F_{array}|^2 r^2 \sin \theta d\theta} \end{aligned}$$



The Fourier Analogy  $F_{array} = \sum I_m e^{jkdm(\cos\psi_x - \cos\psi_{x0})}$ Array factor can be interpreted as DFT of weighting factors m $= \sum_{m} I_m e^{jm\gamma}$  $= \sum_{m} I_m z^m$ Array factor in spatial z domain mInverse DFT - principle of many array design methods (analogous to FIR filter design)  $I_m = \frac{1}{2\pi} \int_{-\pi}^{\pi} F_{array}(\gamma) e^{-j\gamma m} d\gamma$ 



#### **Tx/Rx Beam Pattern Control**

Chau et al., [2009]



- Determine which meteors in the narrow beam are coming from sidelobes (~15 %)

- Increase number of large cross-section meteor detections



Photos by Craig Heinselman

#### **AMISR Buildup**



### **Sub-components**



### **Power Amplifiers and Antennas**

- Distributed Solid State Power Amplifiers (SSPAs)
- 430-450 MHz instantaneous bandwidth
- 10% Maximum duty cycle
- Minimum PRF interval 500 usec
- Maximum pulsewidth 2 msec
- Passive cooling (no moving parts
- 400 Hz prime power





- Crossed dipoles, circular polarization on axis
- Balun built into the antenna support shaft
- Constant impendence over bandwidth and scan angle
- Spacing is hexagonal for efficiency
- Tx/Rx polarizations are opposite and fixed (not measureable)

### **Panel**



### Adding a panel to the group



#### **AMISR Sensitivity vs. Size**





### **AMISR Coverage – Poker Flat**



#### **Discrete look directions**



### **Groups (E.g., interferometry)**



v03-004/v1

#### **Rx Control - Interferometry**

Sparks et al., 2010



- Determine location of meteor within beam
- Determine trajectory of meteor
- Study source populations



#### **Receive-only Imaging – Beam-Forming Test**



#### **Receive-only Imaging – Beam-Forming Test**



#### What are the Measurement Improvements



- Inertia-less antenna pointing
  - Pulse-to-pulse beam positioning
  - Supports great flexibility in spatial sampling
  - Helps remove spatial/temporal ambiguities
  - Eliminates need for predetermined integration



#### PFISR: Images of the Aurora in 4-Dimensions (3-D images v. time)

#### % full power % low cycle % on

## **PFISR Operations**



### **AMISR Technical Specifications**

- Peak Power: 2 MW
- Max RF Duty: 10%
- Pulse Length: 1 μsec 2 msec
- TX Frequency: 430-450 MHz
- Antenna Gain: ~43 dBi
- Antenna Aperture: ~715 m<sup>2</sup>
- Beam Width: ~1.1°
- System temperature: ~120 K
- Steering: Pulse to pulse over ~ +/-25°
- Max system power consumption: ~700 KW
- Max operations: continuous, depending on power availability
- Unattended operations
- Data volume ~6 TB/year at Poker Flat
- No moving parts on the antenna
- Environment: -40° C to +35° C

- Altitude coverage: ~60 km to ?? km (depending on Ne)
- Minimum measurable electron densities: ~1e9 m<sup>-3</sup>
  - Typical time resolution:
    - E region <~3 min,
    - F region <~1 min,
    - ~10 look directions and typical ionospheric conditions many caveats apply!
- Typical range resolution: 600 meters to 72 km (mode dependent, can be extended)
  - Plasma parameters: Ne, Te, Ti, Vi,  $v_{in}$ , composition
- Derived parameters: E, J, J·E, J·E', Un,  $\sigma_P$ ,  $\sigma_H$

#### Peak Power 1778 KW (3557/476/31)

2010-07-23 21:57 UTC





C-16 C-15 C-14 C-13 C-12 C-11 C-10 C-09 C-08 C-07 C-06 C-05 C-04 C-03 C-02 C-01