
What's New in iOS

Contents

Introduction 8
Organization of This Document 8
Getting the iOS SDK 9

iOS 7.0 10
User Interface Changes 10

A New Design 10
UIKit Dynamics 11
Text Kit 11

Multitasking Enhancements 12
Games 12

Sprite Kit Framework 13
Game Controller Framework 13
Game Center Improvements 13

Maps 14
AirDrop 14
Inter-App Audio 15
Peer-to-Peer Connectivity 15
New Frameworks 15
Additional Framework Enhancements 16

UIKit Framework 16
Store Kit Framework 17
Security Framework 18
Pass Kit Framework 18
OpenGL ES 18
MessageUI Framework 19
Media Player Framework 19
Map Kit Framework 19
Image I/O Framework 19
iAd Framework 19
Game Kit Framework 20
Foundation Framework 20
Core Telephony Framework 20
Core Motion Framework 21

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

2

Core Location Framework 21
Core Foundation Framework 21
Core Bluetooth Framework 21
AV Foundation Framework 22
Accelerate Framework 23

Objective-C 23
Deprecated APIs 23

iOS 6.1 25
Map Kit Searches 25

iOS 6.0 26
Maps 26
Social Framework 27
Pass Kit 27
Game Center 27
Reminders 28
In-App Purchase 29
Collection Views 29
UI State Preservation 30
Auto Layout 30
Data Privacy 30
Additional Framework Enhancements 31

UIKit Framework 31
OpenGL ES 32
Media Player Framework 33
Image IO Framework 33
iAd Framework 33
Foundation Framework 33
External Accessory Framework 34
Event Kit Framework 34
Core Video Framework 34
Core Media Framework 35
Core Location Framework 35
Core Bluetooth Framework 35
Core Audio 35
AV Foundation Framework 36
Ad Support Framework 37
Accelerate Framework 37

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

3

iOS 5.1 38
Dictation Support in Text Input Views 38

iOS 5.0 39
iCloud Storage APIs 39
iCloud Backup 40
Automatic Reference Counting 41
Storyboards 43

Creating Storyboard Files 43
Preparing to Transition to a New View Controller 44
Presenting Storyboard View Controllers Programmatically 44

Newsstand Support 45
AirPlay Improvements 46
New Frameworks 46

GLKit Framework 46
Core Image Framework 47
Twitter Framework 47
Accounts Framework 48
Generic Security Services Framework 48
Core Bluetooth 48

App Design-Level Improvements 48
Document Support 49
Data Protection Improvements 49
Custom Appearance for UIKit Controls 50
Container View Controller Support 50
Settings 51

Xcode Tools 51
Xcode Improvements 51
OpenGL ES Debugging 51
UI Automation Enhancements 52
Instruments 52

Additional Framework Enhancements 53
UIKit 53
OpenGL ES 54
OpenAL 55
Message UI 55
Media Player 55
Map Kit 55
iAd 56

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

4

Game Kit 56
Foundation 56
External Accessory 57
Event Kit and Event Kit UI 57
Core Motion 58
Core Location 58
Core Graphics 58
Core Data 58
Core Audio 60
AV Foundation 60
Assets Library 61
Address Book 61
Security 61

iOS 4.3 62
AirPlay Video Support 62
Framework Enhancements 63

AV Foundation 63
Core Audio Frameworks 63
iAd 64
Media Player 64
UIKit 64

iOS 4.2 65
Printing 65
AirPlay 66
Core MIDI 66
Weak Linking Support 66
Framework Enhancements 67

Core Location 67
Game Kit 67
iAd 68
Media Player 68
UIKit 68

iOS 4.1 69
Game Center 69
Framework Enhancements 69

AV Foundation 70
Assets Library 70

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

5

Core Text 70
System Configuration 70
UIKit 70

iOS 4.0 71
Multitasking 71
Integration Technologies 72

Local Notifications 72
Event Kit 72
Core Motion 73
Data Protection 73
Core Telephony 73
iAd 74

Graphics and Multimedia 74
High-Resolution Screen Support 74
Quick Look Framework 74
AV Foundation 75
Assets Library 75
Image I/O 76
Core Media 76
Core Video 76

Core Services 76
Block Objects 76
Grand Central Dispatch 77
Accelerate Framework 77

Xcode Tools 77
Xcode Improvements 77
UI Automation API 78

Framework Enhancements 78
UIKit Framework Enhancements 78
Foundation Framework Enhancements 79
OpenGL ES Enhancements 80
Game Kit Enhancements 80
Core Location Enhancements 81
Map Kit Enhancements 81
Message UI Enhancements 82
Core Graphics Enhancements 82
ICU Enhancements 82

Inherited Improvements 82

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

6

Document Revision History 84

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

7

Important: This is a preliminary document for an API or technology in development. Although this document
has been reviewed for technical accuracy, it is not final. This Apple confidential information is for use only
by registered members of the applicable Apple Developer program. Apple is supplying this confidential
information to help you plan for the adoption of the technologies and programming interfaces described
herein. This information is subject to change, and software implemented according to this document should
be tested with final operating system software and final documentation. Newer versions of this document
may be provided with future seeds of the API or technology.

This document provides information about features that were introduced in different versions of iOS and that
affect the development of iOS apps. This document describes only features that affect the development of iOS
apps. It does not include user-level features unless there is an aspect of the feature that affects app development.
It also does not specifically address minor OS updates that include only bug fixes (and no new features). For
additional information about a specific release, you should also see the corresponding release notes.

In addition to describing the new features for each iOS release, this document attempts to provide insight as
to how and when you might use those features in your own software. Wherever possible, this document also
provides links to other Apple conceptual and reference documentation for that feature. For a complete list of
features you can use in your iOS apps, see iOS Technology Overview .

Organization of This Document
This document includes the following articles:

 ● “iOS 7.0” (page 10) describes the new and updated features in iOS 7.0.

 ● “iOS 6.1” (page 25) describes the new and updated features in iOS 6.1.

 ● “iOS 6.0” (page 26) describes the new and updated features in iOS 6.0.

 ● “iOS 5.1” (page 38) describes the new and updated features in iOS 5.1.

 ● “iOS 5.0” (page 39) describes the new and updated features in iOS 5.0.

 ● “iOS 4.3” (page 62) describes the new and updated features in iOS 4.3.

 ● “iOS 4.2” (page 65) describes the new and updated features in iOS 4.2.

 ● “iOS 4.1” (page 69) describes the new and updated features in iOS 4.1.

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

8

Introduction

 ● “iOS 4.0” (page 71) describes the new and updated features in iOS 4.0.

Getting the iOS SDK
Development of iOS apps requires an Intel-based Macintosh computer and an up-to-date version of Mac OS
X. You must also download and install the iOS SDK. For information about how to get the iOS SDK, go to the
iOS Dev Center.

Introduction
Getting the iOS SDK

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

9

http://developer.apple.com/devcenter/ios/

iOS 7 is a major update with compelling features for developers to incorporate into their apps. The UI has been
completely redesigned. In addition, iOS 7 introduces a new animation system for creating 2D and 2.5D games.
Multitasking enhancements, peer-to-peer connectivity, and many other important features make iOS 7 the
most significant release since the first iPhone SDK.

This article summarizes the key developer-related features introduced in iOS 7. This version of the operating
system runs on current iOS-based devices. In addition to describing the key new features, this article lists the
documents that describe those features in more detail.

For late-breaking news and information about known issues, see iOS 7 Release Notes . For the complete list of
new APIs added in iOS 7, see iOS 7.0 API Diffs .

User Interface Changes
iOS 7 includes many new features intended to help you create great user interfaces.

A New Design
The iOS 7 UI has been completely redesigned. Throughout the system, a sharpened focus on functionality and
on the user's content informs every aspect of design. Translucency, refined visual touches—and fluid, realistic
motion—impart clarity, depth, and vitality to the user experience. Whether you're creating a new app or
updating an existing one, keep these qualities in mind as you work on the design.

Apps compiled against the iOS 7 SDK automatically receive the new appearance for any standard system views
when the app is run on iOS 7. If you use Auto Layout to set the size and position of your views, those views
are repositioned as needed. But there may still be additional work to do to make sure your interface still has
the appearance you want. Similarly, if you customize your app’s views, you may need to make changes to
support the new appearance fully.

For guidance on how to design apps that take full advantage of the new look in iOS 7, see iOS 7 Design Re-
sources.

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

10

iOS 7.0

https://developer.apple.com/library/prerelease/ios/design/index.html
https://developer.apple.com/library/prerelease/ios/design/index.html

UIKit Dynamics
Apps can now specify dynamic behaviors for UIView objects and for other objects that conform to the
UIDynamicItem protocol. (Objects that conform to this protocol are called dynamic items .) Dynamic behaviors
offer a way to improve the user experience of your app by incorporating real-world behavior and characteristics,
such as gravity, into your app’s animations. UIKit supports the following types of dynamic behaviors:

 ● A UIAttachmentBehavior object specifies a connection between two dynamic items or between an
item and a point. When one item (or point) moves, the attached item also moves. The connection is not
completely static, though. An attachment behavior has damping and oscillation properties that determine
how the behavior changes over time.

 ● A UICollisionBehavior object lets dynamic items participate in collisions with each other and with
the behavior’s specified boundaries. The behavior also lets those items respond appropriately to collisions.

 ● A UIGravityBehavior object specifies a gravity vector for its dynamic items. Dynamic items accelerate
in the vector’s direction until they collide with other appropriately configured items or with a boundary.

 ● A UIPushBehavior object specifies a continuous or instantaneous force vector for its dynamic items.

 ● A UISnapBehavior object specifies a snap point for a dynamic item. The item snaps to the point with a
configured effect. For example, it can snap to the point as if it were attached to a spring.

Dynamic behaviors become active when you add them to an animator object, which is an instance of the
UIDynamicAnimator class. The animator provides the context in which dynamic behaviors execute. A given
dynamic item can have multiple behaviors, but all of those behaviors must be animated by the same animator
object.

For information about the behaviors you can apply, see UIKit Framework Reference .

Text Kit
Text Kit is a full-featured, high-level framework for apps that need to handle text that has all the characteristics
of fine typography. Text Kit can lay out styled text into paragraphs, columns, and pages; it easily flows text
around arbitrary regions such as graphics; and it manages multiple fonts. Text Kit is integrated with all UIKit
text-based controls to enable applications to create, edit, display, and store text more easily—and with less
code than was previously possible in iOS.

Text Kit comprises new classes plus extensions to existing classes, including the following:

 ● The NSAttributedString class has been extended to support new attributes.

 ● The NSLayoutManager class generates glyphs and lays out text.

 ● The NSTextContainer class defines a region where text is laid out.

 ● The NSTextStorage class defines the fundamental interface for managing text-based content.

iOS 7.0
User Interface Changes

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

11

For more information about Text Kit, see Text Programming Guide for iOS .

Multitasking Enhancements
iOS 7 supports the following new background execution modes for apps:

 ● Apps that regularly require new content can register with the system and be woken up or launched
periodically to download that content in the background. To register, include the UIBackgroundModes
key with the fetch value in your app’s Info.plist file and set the minimum time you want between
fetch operations using the setMinimumBackgroundFetchInterval:method. You must also implement
the application:performFetchWithCompletionHandler:method in your app delegate to perform
any downloads.

 ● Apps that use push notifications to notify the user that new content is available can now use those
notifications to initiate background download operations. To support this mode, include the
UIBackgroundModes key with the remote-notification value in your app’s Info.plist file. Your
app delegate must also implement the
application:didReceiveRemoteNotification:fetchCompletionHandler: method.

Apps supporting either the fetch or remote-notification background modes may be launched or moved from
the suspended to background state at appropriate times. In the case of the fetch background mode, the
system uses available information to determine the best time to launch or wake apps. For example, it does so
when networking condition are good or when the device is already awake. Apps supporting the
remote-notification background mode may be woken up when a new push notification arrives but before that
notification is delivered to the user. The app can use the interval to download new content and have that
content ready to present to the user when the notification is subsequently delivered.

To handle the downloading of content in the background, apps should use the new NSURLSession class.
This class improves on the existing NSURLConnection class by providing a simple, task-based interface for
initiating and processing NSURLRequest objects. A single NSURLSession object can initiate multiple download
and upload tasks, and through its delegate can handle any authentication requests coming from the server.

For more information about the new background modes, see “App States and Multitasking” in iOS App
Programming Guide .

Games
iOS 7 includes enhanced support for games.

iOS 7.0
Multitasking Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

12

Sprite Kit Framework
The Sprite Kit framework (SpriteKit.framework) provides a hardware-accelerated animation system
optimized for creating 2D and 2.5D games. Sprite Kit provides the infrastructure that most games need, including
a graphics rendering and animation system, sound playback support, and a physics simulation engine. Using
Sprite Kit frees you from creating these things yourself and lets you focus on the design of your content and
the high-level interactions for that content.

Content in a Sprite Kit app is organized into scenes. A scene can include textured objects, video, path-based
shapes, Core Image filters, and other special effects. Sprite Kit takes those objects and determines the most
efficient way to render them onscreen. When it comes time to animate the content in your scenes, you can
use Sprite Kit to specify explicit actions you want to perform or use the physics simulation engine to define
physical behaviors (such as gravity, attraction, or repulsion) for your objects.

In addition to the Sprite Kit framework, there are Xcode tools for creating particle emitter effects and texture
atlases. You can use the Xcode tools to manage app assets and update Sprite Kit scenes quickly.

For more information about how to use Sprite Kit, see Sprite Kit Programming Guide . To see an example of
how to use Sprite Kit to build a working app, see code:Explained Adventure .

Game Controller Framework
The Game Controller framework (GameController.framework) lets you discover and configure
Made-for-iPhone/iPod/iPad (MFi) game controller hardware in your app. Game controllers can be devices
connected physically to an iOS device or connected wirelessly over Bluetooth. The Game Controller framework
notifies your app when controllers become available and lets you specify which controller inputs are relevant
to your app.

For more information about supporting game controllers, Game Controller Programming Guide .

Game Center Improvements
Game Center includes the following improvements:

 ● Exchanges give players an opportunity to initiate actions with other players, even when it is not their turn.
You can use this feature to implement simultaneous turns, player chats, and trading between players
when it is not their turn.

 ● The limit on per-app leaderboards has been raised from 25 to 100. You can also organize your leaderboards
using a GKLeaderboardSet object, which increases the limit to 500.

 ● You can add conditions to challenges that define when the challenge has been met. For example, a
challenge to beat a time in a driving game might stipulate that other players must use the same vehicle.

 ● The framework has improved its authentication support and added other features to prevent cheating.

iOS 7.0
Games

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

13

For more information about how to use the new Game Center features, see Game Center Programming Guide .
For information about the classes of the Game Kit framework, see Game Kit Framework Reference .

Maps
The Map Kit framework (MapKit.framework) includes numerous improvements and features for apps that
use map-based information. Apps that use maps to display location-based information can now take full
advantage of the 3D map support found in the Maps app, including controlling the viewing perspective
programmatically. Map Kit includes other changes that enhance maps in your app.

 ● Overlays can be placed at different levels in the map content, so that they appear above or below other
relevant data.

 ● You can apply an MKMapCamera object to a map to add position, tilt, and heading information to their
appearance. Camera information imparts a 3D viewing experience onto your map like the one provided
by Maps.

 ● The MKDirections class lets you ask for direction-related route information from Apple. You can use
that route information to create overlays for display on your own maps.

 ● The MKGeodesicPolyline class lets you create a line-based overlay that follows the curvature of the
earth.

 ● Apps can use the MKMapSnapshotter class to capture map-based images.

 ● The visual representation of overlays is now based on the MKOverlayRenderer class, which replaces
overlay views and offers a simpler rendering approach.

 ● Apps can now supplement or replace a map’s existing tiles using the MKTileOverlay and
MKTileOverlayRenderer classes.

For more information about the classes of the Map Kit framework, see Map Kit Framework Reference .

AirDrop
AirDrop lets users share photos, documents, URLs, and other kinds of data with nearby devices. AirDrop support
is now built-in to the existing UIActivityViewController class. This class displays different options for
sharing the content that you specify. If you are not yet using this class, you should consider adding it to your
interface.

For more information about using an activity view controller to share data, see UIActivityViewController Class
Reference

iOS 7.0
Maps

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

14

Inter-App Audio
The Audio Unit framework (AudioUnit.framework) adds support for Inter-App Audio, which enables the
ability to send MIDI commands and stream audio between apps on the same device. For example, you might
use this feature to record music from an app acting as an instrument or use it to send audio to another app
for processing. To vend your app’s audio data, publish a AURemoteIO instance as an audio component that is
visible to other processes. to use audio features from another app, use the audio component discovery interfaces
in iOS 7.

For information about the new interfaces, see the framework header files. For general information about the
interfaces of this framework, see Audio Toolbox Framework Reference .

Peer-to-Peer Connectivity
The Multipeer Connectivity framework (MultipeerConnectivity.framework) supports the discovery of
nearby devices and the direct communication with those devices without requiring Internet connectivity. This
framework makes it possible to create multipeer sessions easily and to support reliable in-order data transmission
and real-time data transmission. With this framework, your app can communicate with nearby devices and
seamlessly exchange data.

The framework provides programmatic and UI-based options for discovering and managing network services.
Apps can integrate the MCPeerPickerViewController class into their UI to display a list of peer devices
for the user to choose from. Alternatively, you can use the MCNearbyServiceBrowser class to look for and
manage peer devices programmatically.

For more information about the interfaces of this framework, see Multipeer Connectivity Framework Reference .

New Frameworks
iOS 7 includes the following new frameworks:

 ● The Game Controller framework provides an interface for communicating with game-related hardware;
see “Game Controller Framework” (page 13).

 ● The Sprite Kit framework provides support for sprite-based animations and graphics rendering; see “Sprite
Kit Framework” (page 13).

 ● The Multipeer Connectivity framework provides peer-to-peer networking for apps; see “Peer-to-Peer
Connectivity” (page 15).

iOS 7.0
Inter-App Audio

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

15

 ● The JavaScript Core framework (JavaScriptCore.framework) provides Objective-C wrapper classes
for many standard JavaScript objects. Use this framework to evaluate JavaScript code and parse JSON
data. For information about the classes of this framework, see the header files.

 ● The Media Accessibility framework (MediaAccessibility.framework) manages the presentation of
closed-caption content in your media files. This framework works in conjunction with new settings that
let the user enable the display of closed captions.

 ● The Safari Services framework (SafariServices.framework) provides support for programmatically
adding URLs to the user’s Safari reading list. For information about the class provided by this framework,
see the framework header files.

Additional Framework Enhancements
In addition to the items discussed in the preceding sections, the following frameworks have significant
enhancements. For a complete list of new interfaces, see iOS 7.0 API Diffs .

UIKit Framework
The UIKit framework (UIKit.framework) includes the following enhancements:

 ● All UI elements have been updated to present the new look associated with iOS 7.

 ● UIKit Dynamics lets you mimic real-world effects such as gravity in your animations; see “UIKit
Dynamics” (page 11).

 ● Text Kit provides sophisticated text editing and display capabilities; see “Text Kit” (page 11).

 ● The UIView class defines the following additions:

 ● The tintColorproperty applies a tint color that affects both the view and its subviews. For information
on how to apply tint colors, see iOS 7 UI Transition Guide .

 ● You can create keyframe-based animations using views. You can also make changes to your views
and specifically prevent any animations from being performed.

 ● The UIViewController class defines the following additions:

 ● View controller transitions can be customized, driven interactively, or replaced altogether with ones
you designate.

 ● View controllers can now specify their preferred status bar style and visibility. The system uses the
provided information to manage the status bar style as new view controllers appear. You can also
control how this behavior is applied using the UIViewControllerBasedStatusBarAppearance
key in your app’s Info.plist file.

iOS 7.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

16

 ● The UIMotionEffect class defines the basic behavior for motion effects, which are objects that define
how a view responds to device-based motion.

 ● Collection views support UIKit Dynamics. Using this support, you can apply behavior objects to layout
attributes to animate the corresponding items in the collection.

 ● The imageNamed: method of UIImage supports retrieving images stored in image asset catalogs, which
are a way to manage and optimize assets that have multiple sizes and resolutions. You create image asset
catalogs in Xcode.

 ● There is a new snapshot method on UIView and UIScreen creates a view that you can use to present
your app’s content.

 ● The UIKeyCommand class wraps keyboard events received from an external hardware keyboard. These
events are delivered to the app’s responder chain for processing.

 ● A UIFontDescriptor object describes a font using a dictionary of attributes. Use font descriptors to
interoperate with other platforms.

 ● The UIFont and UIFontDescriptor classes support dynamic text sizing, which improves legibility for
text in apps. With this feature, the user controls the desired font size that all apps in the system should
use.

 ● The UIActivity class now supports new activity types, including activities for sending items via AirDrop,
adding items to a Safari reading list, and posting content to Flickr, Tencent Weibo, and Vimeo.

 ● The UIApplicationDelegate protocol adds methods for handling background fetch behaviors.

 ● UIKit adds support for running in a guided-access mode, which allows an app to lock itself to prevent
modification by the user. This app is intended for institutions such as schools where users bring their own
devices but need to run apps provided by the institution.

 ● State restoration now allows the saving and restoration of any object. Objects adopting the
UIStateRestoring protocol can write out state information when the app moves to the background
and have that state restored during subsequent launches.

 ● Table views now support estimating the height of rows and other elements, which improves scrolling
performance.

For information about the classes of this framework, see UIKit Framework Reference .

Store Kit Framework
The Store Kit framework (StoreKit.framework) has migrated to a new receipt system that developers can
use to verify in-app purchases on the device itself. You can also use it to verify the app purchase receipt on
the server.

For more information about how to use this new receipt system, see Receipt Validation Programming Guide .

iOS 7.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

17

Security Framework
The Security framework (Security.framework) adds support for syncing passwords between user's devices
via iCloud. Apps can mark their keychain items for iCloud via a new keychain attribute
(kSecAttrSyncronizable).

For more information about this attribute, see the framework header files. For general information about the
keychain, see the Keychain Services Programming Guide .

Pass Kit Framework
The Pass Kit framework (PassKit.framework) includes new APIs for adding multiple passes at once, along
with these additions to the pass file format:

 ● New keys specify the expiration date for a pass.

 ● You can specify that a pass is relevant only when it is in the vicinity of specific Bluetooth beacons.

 ● New attributes control how a pass is displayed. You can group passes together, display links with custom
text on the back of a pass, and control how time values are displayed on the pass.

 ● You can now associate extra data with a pass. This data is available to your app but not displayed to the
user.

 ● You can designate which data detectors to apply to the fields of your passes.

For information about how to use Pass Kit in your app, see Passbook Programming Guide . For information
about the pass file format, see Passbook Package Format Reference .

OpenGL ES
OpenGL ES includes the following new extensions:

 ● The EXT_sRGB extension adds support for sRGB framebuffer operations.

 ● The GL_APPLE_pvrtc_sRGB extension adds support for sRGB texture data compressed in the PVRTC texture
format.

 ● The GL_APPLE_draw_instanced and GL_APPLE_instanced_arrays extensions can improve rendering
performance when your app draws multiple instances of the same object. You use a single call to draw
instances of the same object. You add variation to each instance by specifying how fast each vertex attribute
advances or by referencing an ID for each instance in your shader.

As always, check for the existence of an extension before using it in your app.

iOS 7.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

18

http://www.khronos.org/registry/gles/extensions/EXT/EXT_sRGB.txt
http://developer.apple.com/devcenter/download.action?path=/ios/opengl_es_extensions/apple_pvrtc_sRGB.txt
http://developer.apple.com/devcenter/download.action?path=/ios/opengl_es_extensions/apple_draw_instanced.txt
http://developer.apple.com/devcenter/download.action?path=/ios/opengl_es_extensions/apple_instanced_arrays.txt http://developer.apple.com/devcenter/download.action?path=/ios/opengl_es_extensions/apple_instanced_arrays.txt http://developer.apple.com/devcenter/download.action?path=/ios/opengl_es_extensions/apple_instanced_arrays.txt http://developer.apple.com/devcenter/download.action?path=/ios/opengl_es_extensions/apple_instanced_arrays.txt http://developer.apple.com/devcenter/download.action?path=/ios/opengl_es_extensions/apple_instanced_arrays.txt http://developer.apple.com/devcenter/download.action?path=/ios/opengl_es_extensions/apple_instanced_arrays.txt

Also, textures can now be accessed in vertex shaders; query the value of the
MAX_VERTEX_TEXTURE_IMAGE_UNITS attribute to determine the exact number of textures you can access.

MessageUI Framework
In the MessageUI framework, the MFMessageComposeViewController class adds support for attaching files
to messages. For information about the new interfaces, see the framework header files.

For information about the classes of this framework, see Message UI Framework Reference .

Media Player Framework
In the Media Player framework, the MPVolumeView class provides support for determining whether wireless
routes such as AirPlay and Bluetooth are available for the user to select. You can also determine whether one
of these wireless routes is currently active. For information about the new interfaces, see the framework header
files. For information about the classes of Media Player framework, see Media Player Framework Reference .

Map Kit Framework
The Map Kit framework (MapKit.framework) includes changes that are described in “Maps” (page 14).

For information about the classes of this framework, see Map Kit Framework Reference .

Image I/O Framework
The Image I/O framework (ImageIO.framework) now has interfaces for getting and setting image metadata.

For information about the new interfaces, see the framework header files. For information about the classes
of this framework, see Image I/O Reference Collection .

iAd Framework
The iAd framework (iAd.framework) includes two extensions to other frameworks that make it easier to
incorporate ads into your app’s content:

 ● The framework introduces new methods on the MPMoviePlayerController class that let you run ads
before a movie.

 ● The framework extends the UIViewController class to make it easier to create ad-supported content.
You can now configure your view controllers to display ads before displaying the actual content they
manage.

iOS 7.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

19

For information about the new interfaces, see the framework header files. For information about the classes
of this framework, see Ad Support Framework Reference .

Game Kit Framework
The Game Kit framework (GameKit.framework) includes numerous changes, which are described in “Game
Center Improvements” (page 13).

For information about the classes of this framework, see Game Kit Framework Reference .

Foundation Framework
The Foundation framework (Foundation.framework) includes the following enhancements:

 ● The NSURLSession class is a new class for managing the acquisition of network-based resources in the
background. This class serves as a replacement for the NSURLConnection class and its delegate; it also
replaces the NSURLDownload class and its delegate.

 ● The NSURLComponents class is a new class for parsing the components of a URL. This class supports the
URI standard (rfc3986/STD66) for parsing URLs.

 ● The NSNetService and NSNetServiceBrowser classes support peer-to-peer discovery over Bluetooth
and Wi-Fi.

 ● The NSURLCredential and NSURLCredentialStorage classes let you create credentials with a
synchronizable policy and provide the option of removing credentials with a synchronizable policy from
iCloud.

 ● The NSURLCache, NSURLCredentialStorage, NSHTTPCookieStorage classes now support for the
asynchronous processing of storage requests.

 ● The NSCalendar class supports new calendar types.

For information about the new interfaces, see the framework header files and Foundation release notes. For
general information about the classes of this framework, see Foundation Framework Reference .

Core Telephony Framework
The Core Telephony framework (CoreTelephony.framework) lets you get information about the type of
radio technology in use by the device, the current signal strength, and the cell ID serving the device. Apps
developed in conjunction with a carrier can also authenticate their apps against a particular subscriber for that
carrier.

iOS 7.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

20

For information about the new interfaces, see the framework header files. For general information about the
classes of the Core Telephony framework, see Core Telephony Framework Reference

Core Motion Framework
The Core Motion framework (CoreMotion.framework) adds support for step counting and motion tracking.
With step counting, the framework detects movements that correspond to user motion and uses that information
to report the number of steps to your app. Because the system detects the motion, the system can continue
to gather step data even when your app is not running. Alongside this feature, the framework can also distinguish
different types of motion, including different motions reflective of travel by walking, by running, or by
automobile. Navigation apps might use that data to change the type of directions they give to users.

For information about the new interfaces, see the framework header files. For general information about the
classes of this framework, see Core Motion Framework Reference .

Core Location Framework
The Core Location framework (CoreLocation.framework) supports ranging using Bluetooth devices. Ranging
lets you determine the relative range of nearby Bluetooth devices and respond appropriately. For example, a
museum might place Bluetooth beacons in its galleries and provide visitors with an app that displays information
as the user enters and exits those galleries. The framework also supports deferring the delivery of location
updates until a specific time has elapsed or the user has moved a minimum distance.

For general information about the classes of this framework, see Core Location Framework Reference .

Core Foundation Framework
The Core Foundation framework (CoreFoundation.framework) now supports scheduling stream objects
on dispatch queues. For information about the new interfaces, see the framework header files.

For general information about the interfaces of this framework, see Core Foundation Framework Reference .

Core Bluetooth Framework
The Core Bluetooth framework (CoreBluetooth.framework) includes the following enhancements:

 ● The framework supports saving state information for central and peripheral objects and restoring that
state at app launch time. You can use this feature to support long-term actions involving Bluetooth devices.

 ● The central and peripheral classes now use an NSUUID object to store unique identifiers.

 ● You can now retrieve peripheral objects from a central manager synchronously.

iOS 7.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

21

For information about the new interfaces, see the framework header files. For general information about the
classes of this framework, see Core Bluetooth Framework Reference .

AV Foundation Framework
The AV Foundation framework (AVFoundation.framework) includes the following enhancements:

 ● The AVAudioSession class supports the following new behaviors:

 ● Support for selecting the preferred audio input, including audio from built-in microphones

 ● Support for multichannel input and output

 ● The AVVideoCompositing and related classes let you support custom video compositors.

 ● The AVSpeechSynthesizer and related classes provide speech synthesis capabilities.

 ● The capture classes add support and interfaces for the following features:

 ● Discovery of a camera’s supported formats

 ● Support for 60 fps recording

 ● Video zoom (true and digital) in recordings and video preview, including custom ramping

 ● Real-time discovery of machine-readable barcode metadata

 ● Autofocus range restriction

 ● Access to the clocks used during capture

 ● There are new metadata key spaces for supported ISO formats such as MPEG-4 and 3GPP and improved
support for filtering metadata items when copying those items from source assets to output files using
the AVAssetExportSession class.

 ● The AVAssetWriter class provides assistance in formulating output settings and there are new level
constants for H.264 encoding.

 ● The AVPlayerLayer class adds the videoRect property, which you can use to get the size and position
of the video image.

 ● The AVPlayerItem class supports the following changes:

 ● Asset properties can be loaded automatically when AVPlayerItem objects are prepared for playback.

 ● When you link your app against iOS SDK 7, the behavior when getting the values of player item
properties—such as the duration, or tracks, or presentationSize properties—is different than
pervious versions of iOS. The properties of this class now return a default value and no longer block
your app if the AVPlayerItem object is is not yet ready to play. As soon as the player item’s status
changes toAVPlayerItemStatusReadyToPlay, the getters reflect the actual values of the underlying
media resource. If you use key-value observing to monitor changes to the properties, your observers
are notified as soon as changes are available.

iOS 7.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

22

 ● The AVPlayerItemLegibleOutput class can process timed text from media files.

 ● The AVAssetResourceLoadingDelegate protocol now supports loading of arbitrary ranges of bytes
from a media resource.

For information about the new interfaces, see the framework header files. For general information about the
classes of this framework, see AV Foundation Framework Reference .

Accelerate Framework
The Accelerate framework (Accelerate.framework) includes the following enhancements:

 ● Improved support for manipulating Core Graphics data types

 ● Support for working with grayscale images of 1, 2, or 4 bits per pixel

 ● New routines for converting images between different formats and transforming image contents

 ● Support for biquad (IIR) operations

For information about the new interfaces, see the framework header files. For general information about the
functions and types of this framework, see Accelerate Framework Reference .

Objective-C
The Objective-C programming language has been enhanced to support modules, resulting in faster builds and
shorter project indexing times. Module support is enabled in all new projects created using Xcode 5. If you
have existing projects, you must enable this support explicitly by modifying your project’s Enable Modules
setting.

Deprecated APIs
From time to time, Apple adds deprecation macros to APIs to indicate that those APIs should no longer be
used in active development. When a deprecation occurs, it is not an immediate end-of-life to the specified API.
Instead, it is the beginning of a grace period for transitioning off that API and onto newer and more modern
replacements. Deprecated APIs typically remain present and usable in the system for a reasonable amount of
time past the release in which they were deprecated. However, active development on them ceases and the
APIs receive only minor changes—to accommodate security patches or to fix other critical bugs. Deprecated
APIs may be removed entirely from a future version of the operating system.

iOS 7.0
Objective-C

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

23

As a developer, it is important that you avoid using deprecated APIs in your code as soon as possible. At a
minimum, new code you write should never use deprecated APIs. And if you have existing code that uses
deprecated APIs, update that code as soon as possible. Fortunately, the compiler generates warnings whenever
it spots the use of a deprecated API in your code and you can use those warnings to track down and remove
all references to those APIs.

This release includes deprecations in the following technology areas:

 ● The Map Kit framework includes deprecations for the MKOverlayView class and its various subclasses.
The existing overlay views have been replaced with an updated set of overlay renderer objects that descend
from the MKOverlayRenderer class. For more information about the classes of this framework, see Map
Kit Framework Reference .

 ● The AudioSession API in the Audio Toolbox framework is deprecated. Applications should use the
AVAudioSession class in the AV Foundation framework instead.

 ● The CLRegion class in the Core Location framework is replaced by the CLCircularRegion class. The
CLRegion class continues to exist as an abstract base class that supports both geographic and beacon
regions.

 ● The UUID property of the CBCentral class is deprecated. To specify the unique ID of your central objects,
use the identifier property instead.

 ● The Game Kit framework contains assorted deprecations intended to clean up the existing API and provide
better support for new features.

 ● The UIKit framework contains the following deprecations:

 ● The wantsFullScreenLayout property of UIViewController is deprecated. In iOS 7 and later,
view controllers always support full screen layout.

 ● The UIPopoverController class no longer supports the notion of an arrow direction; it supports
a presentation direction.

 ● UIColor objects that provided background textures for earlier versions of iOS are gone.

 ● Many drawing additions to the NSString class are deprecated in favor of newer variants.

 ● The gethostuuid function in the libsyscall library is deprecated.

 ● In iOS 7 and later, if you ask for the MAC address of an iOS device, the system returns the value
02:00:00:00:00:00. If you need to identify the device, use the identifierForVendor property of
UIDevice instead. (Apps that need an identifier for their own advertising purposes should consider using
the advertisingIdentifier property of ASIdentifierManager instead.)

For a complete list of specific API deprecations, see iOS 7.0 API Diffs .

iOS 7.0
Deprecated APIs

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

24

This article summarizes the key developer-related features introduced in iOS 6.1. This version of the operating
system runs on current iOS-based devices. In addition to describing the key new features, this article lists the
documents that describe those features in more detail.

For late-breaking news and information about known issues, see iOS 6.1 Release Notes . For the complete list
of new APIs added in iOS 6.1, see iOS 6.1 API Diffs .

Map Kit Searches
The Map Kit framework now lets you programmatically search for map-based addresses and points of interest.
The MKLocalSearch class initiates a search for map-based content using a natural language string. In other
words, you can enter place name information or portions of an address and have Map Kit return search results
that match the information you provide. For example, searching for the string “coffee” would return the location
of local coffee bars along with information about each one.

For more information about the classes of the Map Kit framework, including the new search-related classes,
see Map Kit Framework Reference .

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

25

iOS 6.1

This article summarizes the key developer-related features introduced in iOS 6. This version of the operating
system runs on current iOS-based devices. In addition to describing the key new features, this article lists the
documents that describe those features in more detail.

For late-breaking news and information about known issues, see iOS 6.0 Release Notes . For the complete list
of new APIs added in iOS 6, see iOS 6.0 API Diffs .

Maps
In addition to the new map tiles provided by Apple, the Maps app and MapKit framework now support additional
interactions with other apps. Apps that do not incorporate their own map support now have an easier way to
launch the Maps app and display points of interest or directions. Apps that offer routing information, such as
turn-by-turn navigation services, can now register as a routing app and make those services available to the
entire system.

Registering as a routing app gives you more opportunities to get your app in front of users. Routing apps are
not limited to just driving or walking directions. Routing apps can also include apps that provide directions
for the user’s favorite bicycle or hiking trail, for air routes, and for subway or other public transportation lines.
And your app does not even have to be installed on the user’s device. Maps knows about routing apps in the
App Store and can provide the user with the option to purchase those apps and use them for directions.

Apps that do not provide routing directions themselves can also take advantage of both Maps and routing
apps. Apps can use new interfaces to ask the Maps app to display specific locations or to display routing
directions between two locations.

For information about how to provide directions from your app, or how to use the Maps app to display directions,
see Location Awareness Programming Guide .

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

26

iOS 6.0

Social Framework
The Social framework (Social.framework) provides a simple interface for accessing the user’s social media
accounts. This framework supplants the Twitter framework that was introduced in iOS 5 and adds support for
other social accounts, including Facebook and Sina’s Weibo service. Apps can use this framework to post status
updates and images to a user’s account. This framework works with the Accounts framework to provide a
single sign-on model for the user and to ensure that access to the user’s account is approved.

The UIKit framework also provides a new UIActivityViewController class for displaying actions that the
user might perform on some selected content. One use of this class is to allow the user to post content to
social accounts, such as Twitter or Facebook. You present this class modally on iPhone or using a popover
controller on iPad. When the user taps one of the buttons, the view controller presents a new interface to
perform the associated action.

For more information about the Social framework, see Social Framework Reference . For information about the
UIActivityViewController class, see UIKit Framework Reference .

Pass Kit
Pass Kit is a new technology that uses web services, a new file format, and an Objective-C framework
(PassKit.framework) to implement support for downloadable passes. Companies can create passes to
represent items such as coupons, boarding passes, event tickets, and discount cards for businesses. Instead of
carrying a physical representation of these items, users can now store them on their iOS device and use them
the same way as before.

Passes are created by your company’s web service and delivered to the user’s device via email, Safari, or your
custom app. The pass itself uses a special file format and is cryptographically signed before being delivered.
The file format identifies relevant information about the service being offered so that the user knows what it
is for. It might also contain a bar code or other information that you can then use to validate the card so that
it can be redeemed or used.

For more information about Pass Kit and for information how to add support for it into your apps, see Passbook
Programming Guide .

Game Center
Game Center has been updated and new features have been added to improve the game playing experience.
The Game Kit framework (GameKit.framework) includes the following incremental and major changes:

iOS 6.0
Social Framework

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

27

 ● Challenges allow a player to challenge a friend to beat an achievement or score. Players can issue challenges
from the Game Center app. You can also use the GKChallenge class to issue challenges from within your
game.

 ● The GKGameCenterViewController class incorporates all of the previous capabilities of the leaderboard,
achievement and friend request view controllers. You can use the previous view controllers too, but they
now present the appropriate tab in the game center view controller.

 ● The process for authenticating a local player has changed. In the new process, you set the
authenticateHandler property to a block that performs all the authentication steps. Once set, Game
Kit automatically authenticates the local player when necessary. However, Game Kit does not display the
authentication interface directly. Instead, it lets your handler present the provided authentication view
controller, giving you more control over exactly when the authentication user interface appears.

 ● The turn-based match class now has support for player timeouts. When using a timeout, you specify a list
of players in order. If a player times out, the next player in the list is asked to take a turn instead.

 ● The GKMatchmaker class has been updated to include better support for programmatic matchmaking.
It is now easier to implement your own user interface for matchmaking on top of Game Center’s built-in
support.

 ● The GKPlayer class now supports display names for players.

 ● The GKMatch class provides a method to estimate which player has the best connection to Game Center.
You can use this method when implementing your own client-server architecture on top of the GKMatch
infrastructure.

 ● The GKAchievement class now allows multiple achievements to be submitted at the same time.

For more information about how to use Game Center in your app, see Game Center Programming Guide .

Reminders
The Event Kit framework now includes interfaces for creating and accessing reminders on the user’s device.
The reminders you create show up in the Reminders app along with ones created by the user. Reminders can
include proximity or time-based alarms.

For more information about the interfaces of the Event Kit framework, including the new interfaces for creating
reminders, see Event Kit Framework Reference .

iOS 6.0
Reminders

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

28

In-App Purchase
The Store Kit framework (StoreKit.framework) now supports the purchasing of iTunes content inside your
app and provides support for having downloadable content hosted on Apple servers. With in-app content
purchases, you present a view controller that lets users purchase apps, music, books, and other iTunes content
directly from within your app. You identify the items you want to make available for purchase but the rest of
the transaction is handled for you by Store Kit.

Prior to iOS 6, you were responsible for managing any downloadable content made available through in app
purchase. Hosted downloads now simplify the work you need to do to make content available to users. The
new SKDownload class represents a downloadable piece of content. In addition, the SKPaymentTransaction
class has been modified to provide an array of download objects for any hosted content. To download a piece
of content, you queue a download object on the payment queue. When the download completes, your payment
queue observer is notified.

For more information about the classes of the Store Kit framework, see Store Kit Framework Reference .

Collection Views
The UICollectionView class offers a new way to present ordered data to users. With a collection view object,
you are now able to define the presentation and arrangement of embedded views. The collection view class
works closely with an accompanying layout object to define the placement of individual data items. UIKit
provides a standard flow-based layout object that you can use to implement multi-column grids containing
items of standard or varying sizes. And if you want to go beyond grid layouts, you can create your own custom
layout objects to support any layout style you choose.

Collection views work with a dedicated group of classes to support the display of items. In addition to cells,
collection views can have supplementary views and decoration views. The usage and placement of these views
is controlled entirely by the layout object. For example, the flow-based layout object uses supplementary views
to implement header and footer views for sections in the collection view.

Other noteworthy features of collection views include:

 ● A UICollectionViewController class for managing the presentation of collection views in your app

 ● Support for animating content within the collection view

 ● Batch support for inserting, moving, and deleting items

 ● A simplified model for creating and managing cells and other views

For more information about using collection views to implement your user interface, see Collection View
Programming Guide for iOS .

iOS 6.0
In-App Purchase

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

29

UI State Preservation
State preservation makes it easier for apps to restore their user interface to the state it was in when the user
last used it. Prior to iOS 6, apps were encouraged to write out information about their current interface state
in the event that the app was terminated. Upon relaunch, the app could use this state to restore its interface
and make it seem as if the app had never quit. State preservation simplifies this process by providing you with
all of the core infrastructure for saving and restoring your app’s interface.

Implementing state preservation still requires effort on your part to identify what parts of your interface to
save. In addition, the preservation and restoration processes can be customized to accommodate unforeseen
circumstances, such as missing content during a subsequent relaunch or changes to your app’s UI.

For more information about how to add state preservation support to your app, see iOS App Programming
Guide .

Auto Layout
Auto layout improves upon the “springs and struts” model previously used to lay out the elements of a user
interface. With auto layout, you define rules for how to lay out the elements in your user interface. These rules
express a larger class of relationships and are more intuitive to use than springs and struts.

The entities used in Auto Layout are Objective-C objects called constraints. This approach brings you a number
of benefits:

 ● Localization through swapping of strings alone, instead of also revamping layouts.

 ● Mirroring of user-interface elements for right-to-left languages like Hebrew and Arabic.

 ● Better layering of responsibility between objects in the view and controller layers.

A view object usually knows best about its standard size and its positioning within its superview and
relative to its sibling views. A controller can override these values if something nonstandard is required.

For more information about using auto layout, see Cocoa Auto Layout Guide .

Data Privacy
In addition to location data, the system now asks the user’s permission before allowing third-party apps to
access certain user data, including:

 ● Contacts

 ● Calendars

iOS 6.0
UI State Preservation

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

30

 ● Reminders

 ● Photo Library

For contact, calendar, and reminder data, your app needs to be prepared to be denied access to these items
and to adjust its behavior accordingly. If the user has not yet been prompted to allow access, the returned
structure is valid but contains no records. If the user has denied access, the app receives a NULL value or no
data. If the user grants permission to the app, the system subsequently notifies the app that it needs to reload
or revert the data.

For the photo library, the existing interface supports the app being denied access.

Your app can provide a description for how it intends to use the data in its Info.plist file. That data is then
displayed to the user when the system needs to prompt for access. For more information about the keys you
need to add to your Info.plist file, see Information Property List Key Reference . For more information about
accessing specific kinds of data, see the respective framework reference.

Additional Framework Enhancements
In addition to the items discussed in the preceding sections, the following frameworks have additional
enhancements. For a complete list of new interfaces, see iOS 6.0 API Diffs .

UIKit Framework
The UIKit framework (UIKit.framework)includes the following enhancements:

 ● UIKit now supports state preservation for your app’s user interface; see “UI State Preservation” (page 30).

 ● Views now support constraint-based layout; see “Auto Layout” (page 30).

 ● The UICollectionView class (and its supporting classes and protocols) support the presentation of
ordered collections of items; see “Collection Views” (page 29).

 ● UITextView and UITextField now support styled text using attributed strings.

 ● UIKit now includes support for drawing NSAttributedString and NSMutableAttributedString
objects. In addition, string-based views now support attributed strings for content.

 ● Accessibility support has been improved to include new VoiceOver enhancements:

 ● VoiceOver can now use gestures to trigger specific actions.

 ● Developers can order items together in the element list that VoiceOver creates to provide a more
logical flow from element to element.

 ● Scroll views can now provide a special status string during scrolling.

iOS 6.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

31

 ● You can now post notifications that let the accessibility system know your app’s layout or UI have
changed.

 ● New notifications provide information about the state of VoiceOver announcements.

 ● The UIActivityViewController class adds support for sharing content via services like email, Twitter,
and Facebook; see also, “Social Framework” (page 27).

 ● The UIDevice class adds a vendor-specific identifier.

 ● The UIImage class includes new initialization methods for specifying the scale factor of an image.

 ● Appearance customization support has been added to the UIBarButtonItem, UIPageControl,
UIPageViewController, UISwitch, and UIStepper classes.

 ● The UITableView class includes the following changes:

 ● Support for a new UITableViewHeaderFooterView class implements the table’s headers and
footers

 ● A simplified model for creating and managing cells and other views.

 ● The UITableViewController class allows you to add a built-in refresh control (UIRefreshControl)
to reload the table contents.

 ● Storyboards allow you to unwind segues and specify restoration identifiers.

 ● The UIWebView class provides a way to disable the incremental rendering of web content.

 ● The UIViewController class has new interfaces supporting the following behaviors:

 ● New interfaces provide a clearer path for managing and tracking interface rotations.

 ● You can prevent a segue from being triggered.

 ● Support has been added for unwinding segues.

 ● You can now subclass UINavigationBar and incorporate your custom navigation bar into your app’s
navigation interfaces.

For information about the classes of the UIKit framework, see UIKit Framework Reference .

OpenGL ES
OpenGL ES includes the following new extensions:

 ● The GL_EXT_texture_storage extension allows your app to specify the entire structure of a texture in a
single call, allowing your textures to be optimized further by OpenGL ES.

 ● The GL_APPLE_copy_texture_levels extension builds on top of the functionality of the
GL_EXT_texture_storage extension and allows a set of texture mipmaps to be copied from one texture
to another.

iOS 6.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

32

http://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_storage.txt
http://www.khronos.org/registry/gles/extensions/APPLE/APPLE_copy_texture_levels.txt

 ● The GL_EXT_map_buffer_range extension improves performance when you only need to modify a subset
of a buffer object.

 ● The GL_APPLE_sync extension provides fine-grain synchronization to your app. It allows you to choose a
subset of submitted OpenGL ES commands and block until those commands complete.

 ● The GL_EXT_shader_framebuffer_fetch extension is only available to OpenGL ES 2.0 applications and
provides access to the framebuffer data as an input to your fragment shader.

These extensions are available on all devices capable of running iOS 6. As always, check for the existence of
an extension before using it in your application.

Media Player Framework
The MPVolumeView class now provides interfaces for customizing the appearance of the volume view. You
can use these interfaces to change the images associated with the volume slider and routing button.

For information about the classes of the Media Player framework, see Media Player Framework Reference .

Image IO Framework
The Image IO framework (ImageIO.framework) includes support for accessing EXIF and IPTC metadata
properties for images. You can access this metadata using functions associated with the CGImageSourceRef
and CGImageDestinationRef opaque types.

For information about the classes of the Image IO framework, see Image I/O Reference Collection .

iAd Framework
The iAd framework (iAd.framework) supports a new medium rectangle banner size for ads on iPad devices.
For information about the classes of the iAd framework, see iAd Framework Reference .

Foundation Framework
The Foundation framework (Foundation.framework) includes the following enhancements:

 ● TheNSFileManager class includes theubiquityIdentityTokenmethod for determining the availability
of iCloud, and the NSUbiquityIdentityDidChangeNotification notification for responding to a
user logging into or out of iCloud, or changing accounts.

 ● The NSUUID class helps you create objects that represent various types of UUIDs (Universally Unique
Identifiers). For example, you can create an NSUUID object with RFC 4122 version 4 random bytes, or you
can base it on an existing UUID string.

iOS 6.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

33

http://www.khronos.org/registry/gles/extensions/EXT/EXT_map_buffer_range.txt
http://www.khronos.org/registry/gles/extensions/APPLE/APPLE_sync.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_framebuffer_fetch.txt

 ● The NSURLRequest class lets you specify whether a request should be allowed to happen over a cellular
network.

 ● The NSString class has new methods for converting a string to uppercase, lowercase, or an initial capital
case.

For information about the classes of the Foundation framework, see Foundation Framework Reference .

External Accessory Framework
The External Accessory framework (ExternalAccessory.framework) includes new interfaces for managing
connections to Bluetooth devices. Apps can now post an alert panel that lists the Bluetooth devices available
for pairing. Support is also provided for waking previously paired accessories that do not automatically connect.

For information about the classes of the External Accessory framework, see External Accessory Framework
Reference .

Event Kit Framework
The Event Kit framework (EventKit.framework) includes the following enhancements:

 ● The framework supports the creation of reminders; see “Reminders” (page 28).

 ● Calendar and reminder events can now vend an external identifier that lets multiple devices refer to the
same event on the server. The server provides the actual identifier string, which is accessed using the
calendarItemExternalIdentifier property of EKCalendarItem.

 ● For apps linked against iOS 6 and later, the system asks for the user’s permission before granting access
to calendar and reminder data.

 ● Apps can now cancel editing programmatically from an EKEventEditViewController object.

For information about the classes of the Event Kit framework, see Calendar and Reminders Programming Guide .

Core Video Framework
The Core Video framework (CoreVideo.framework) adds support for two new pixel formats. These formats
provide efficient storage for one-channel and two-channel images that interoperate with OpenGL ES. For
information about the functions of the Core Video framework, see Core Video Framework Reference .

iOS 6.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

34

Core Media Framework
The Core Media framework (CoreMedia.framework) adds the CMClockRef and CMTimebaseRef types,
which define fundamental media time service behaviors. For information about the functions of the Core Media
framework, see Core Media Framework Reference .

Core Location Framework
The Core Location framework (CoreLocation.framework) includes the following changes.

 ● The CLLocationManager object now pauses the delivery of location events when the user has not moved
for an extended period of time. This behavior saves power by allowing the framework to turn off the GPS
and other hardware. It is enabled by default but may be disabled by changing the value in the
pausesLocationUpdatesAutomatically property of the location manager object.

 ● You can refine location accuracy based on usage by assigning an appropriate value to the activityType
property of CLLocationManager. This property currently lets you distinguish between driving usage
and fitness usage.

 ● The framework supports improved location accuracy while offline and driving.

For information about the classes of the Core Location framework, see Core Location Framework Reference .

Core Bluetooth Framework
The Core Bluetooth framework (CoreBluetooth.framework) supports interacting with Bluetooth devices
in peripheral mode. Previously, an iOS device could only interact in central mode but it can advertise itself in
peripheral mode and communicate with other iOS devices.

For information about the classes of the Core Bluetooth framework, see Core Bluetooth Framework Reference .

Core Audio
Core Audio family of frameworks includes the following changes:

 ● There is a new AUDeferredRenderer audio unit that allows audio to be processed on a lower-priority thread
using relatively larger time slices.

 ● The AudioQueueProcessingTap audio unit allows you to intercept the data in an audio queue and process
it.

For information about the audio technologies available in iOS, see Multimedia Programming Guide . For
information about the new audio units, see Audio Unit Component Services Reference .

iOS 6.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

35

AV Foundation Framework
The AV Foundation framework (AVFoundation.framework) includes the following enhancements:

 ● The AVPlayer class adds support for syncing playback to an external time source. A single player object
can also play both HTTP Live Streams and file-based assets (including both local files and files that are
progressively downloaded). And you can use multiple AVPlayerLayer objects to display the visual output
of the same player object.

 ● The new AVPlayerItemOutput class works with an AVPlayerItem object to obtain decoded video
frames during playback so that your app can process them.

 ● The AVAssetResourceLoader class allows you to insert a delegate object into the asset loading process
and handle custom resource requests. This class works with the AVURLAsset class.

 ● The AVAudioSession class now exposes information about the current audio route in use.

 ● The AVAudioMixInputParameters class provides access to an MTAudioProcessingTapRef data type,
which can be used to access audio data before it is played, read, or exported.

 ● The AVAudioSession class includes the following enhancements:

 ● Use of an audio session delegate to detect interruptions and changes is now deprecated in favor of
a set of new notifications.

 ● Audio sessions support a new audio category, AVAudioSessionCategoryMultiRoute, that allows
routing of audio to and from multiple audio hardware devices.

 ● Audio sessions support a new mode, AVAudioSessionModeMoviePlayback, that engages
appropriate output signal processing for movie playback scenarios.

 ● The AVCaptureConnection class allows you to enable or disable support for video stabilization on
incoming video.

 ● The AVCaptureMetadataOutput class is a new class for intercepting metadata emitted by a capture
connection object.

 ● The AVMetadataFaceObject is a new class that reports the face-detection data captured by an
AVCaptureMetadataOutput object.

 ● The AVTextStyleRule class is a new class for specifying style options for subtitles, closed captions, and
other text-related media assets.

 ● The AVAudioPlayer class can play audio items from the user’s iPod library using URLs obtained from
the MPMediaLibrary class. You can also set channel assignments using the channelAssignments
property.

For information about the classes of the AV Foundation framework, see AV Foundation Framework Reference .

iOS 6.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

36

Ad Support Framework
The Ad Support framework (AdSupport.framework) is a new framework that provides access to an identifier
that apps can use for advertising purposes. This framework also provides a flag that indicates whether the user
has opted out of ad tracking. Apps are required to read and honor the opt-out flag before trying to access the
advertising identifier.

For more information about this framework, see Ad Support Framework Reference .

Accelerate Framework
The Accelerate framework (Accelerate.framework) includes new vector-scalar power functions, vDSP
functions, discrete cosine transform functions, SSE-related vector functions, sine functions, and vImage functions.

For information about the functions of the Accelerate framework, see Accelerate Framework Reference .

iOS 6.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

37

This article summarizes the key developer-related features introduced in iOS 5.1. This version of the operating
system runs on current iOS-based devices. In addition to describing the key new features, this article lists the
documents that describe those features in more detail.

For late-breaking news and information about known issues, see iOS 5.1 Release Notes . For the complete list
of new APIs added in iOS 5.1, see iOS 5.1 API Diffs .

Dictation Support in Text Input Views
On supported devices, iOS automatically inserts recognized phrases into the current text view when the user
has chosen dictation input. The new UIDictationPhrase class (declared in UITextInput.h) provides you
with a string representing a phrase that a user has dictated. In the case of ambiguous dictation results, the
new class provides an array containing alternative strings. New methods in the UITextInput protocol allow
your app to respond to the completion of dictation.

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

38

iOS 5.1

This article summarizes the key developer-related features introduced in iOS 5.0. This version of the operating
system runs on current iOS-based devices. In addition to describing the key new features, this article lists the
documents that describe those features in more detail.

For late-breaking news and information about known issues, see iOS 5.0 Release Notes . For the complete list
of new APIs added in iOS 5.0, see iOS 5.0 API Diffs .

iCloud Storage APIs
The iCloud storage APIs let your app write user documents and data to a central location and access those
items from all of a user’s computers and iOS devices. Making a user’s documents ubiquitous using iCloud
means that a user can view or edit those documents from any device without having to sync or transfer files
explicitly. Storing documents in a user’s iCloud account also provides a layer of security for that user. Even if
a user loses a device, the documents on that device are not lost if they are in iCloud storage.

There are two ways that apps can take advantage of iCloud storage, each of which has a different intended
usage:

 ● iCloud document storage—Use this feature to store user documents and data in the user’s iCloud account.

 ● iCloud key-value data storage—Use this feature to share small amounts of data among instances of your
app.

Most apps will use iCloud document storage to share documents from a user’s iCloud account. This is the
feature that users think of when they think of iCloud storage. A user cares about whether documents are shared
across devices and can see and manage those documents from a given device. In contrast, the iCloud key-value
data store is not something a user would see. It is a way for your app to share small amounts of data (up to a
per-app total of 1 MB and a maximum of 1,024 keys) with other instances of itself. Apps can use this feature
to store important state information. A magazine app might save the issue and page that the user read last,
while a stocks app might store the stock symbols the user is tracking.

For information on how to use iCloud document and key-value data storage, see iCloud Design Guide .

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

39

iOS 5.0

iCloud Backup
Users can now opt to have their apps and app data backed up directly to their iCloud account, making it easier
to restore apps to their most recent state. Having data backed up in iCloud makes it easy for a user to reinstall
that data to a new or existing iOS device. However, because the amount of space in a user’s iCloud account is
limited, apps must be even more selective about where they store files.

The placement of files in your app’s home directory determines what gets backed up and what does not.
Anything that would be backed up to a user’s computer is also backed up wirelessly to iCloud. Thus, everything
in the Documents directory and most (but not all) of your app’s Library directory. To minimize the amount
of data stored in the user’s iCloud account, developers are encouraged to put more files in the Library/Caches
directory, especially if those files can be easily re-created or obtained in another way.

Note: Any documents that your app stores explicitly in iCloud (using the iCloud storage APIs) are
not backed up with your app. (Those documents are already stored in the user’s iCloud account and
therefore do not need to be backed up separately.)

For information on which directories are backed up, and for information about iCloud document storage, see
iOS App Programming Guide .

iOS 5.0
iCloud Backup

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

40

Automatic Reference Counting
Automatic Reference Counting (ARC) is a compiler-level feature that simplifies the process of managing the
lifetimes of Objective-C objects. Instead of you having to remember when to retain or release an object, ARC
evaluates the lifetime requirements of your objects and automatically inserts the appropriate method calls at
compile time.

{app_code}

{app_code}

{app_code}

{app_code}

{app_code}

{app_code}

{app_code}

{app_code}

{app_code}

{app_code}

Automatic Reference CountingReference counting manually

retain/release code

retain/release code

retain/release code

retain/release code

retain/release code

retain/release code

Time
 to produce

Time
to produce

To be able to deliver these features, ARC imposes some restrictions—primarily enforcing some best practices
and disallowing some other practices:

 ● Do not call the retain, release, autorelease, or dealloc methods in your code.

In addition, you cannot implement custom retain or release methods.

Because you do not call the release method, there is often no need to implement a custom dealloc
method—the compiler synthesizes all that is required to relinquish ownership of instance variables. You
can provide a custom implementation of dealloc if you need to manage other resources.

 ● Do not store object pointers in C structures.

Store object pointers in other objects instead of in C structures.

 ● Do not directly cast between object and nonobject types (for example, between id and void*).

iOS 5.0
Automatic Reference Counting

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

41

You must use special functions or casts that tell the compiler about an object’s lifetime. You use these to
cast between Objective-C objects and Core Foundation objects.

 ● You cannot use NSAutoreleasePool objects.

Instead, you must use a new @autoreleasepool keyword to mark the start of an autorelease block. The
contents of the block are enclosed by curly braces, as shown in the following example:

@autoreleasepool

{

// Your code here

}

ARC encourages you to think in terms of object graphs, and the relationships between objects, rather than in
terms of retain and release. For this reason, ARC introduces new lifetime qualifiers for objects, including zeroing
weak references. The value of a zeroing weak reference is automatically set to nil if the object to which it
points is deallocated. There are qualifiers for variables, and new weak and strong declared property attributes,
as illustrated in the following examples:

// The following declaration is a synonym for: @property(retain) MyClass *myObject;

@property(strong) MyClass *myObject;

// The following declaration is similar to "@property(assign) MyOtherClass
*delegate;"

// except that if the MyOtherClass instance is deallocated,

// the property value is set to nil instead of remaining as a dangling pointer

@property(weak) MyOtherClass *delegate;

Xcode provides migration tools to help convert existing projects to use ARC. For more information about how
to perform this migration, see What's New in Xcode . For more information about ARC itself, see Transitioning
to ARC Release Notes .

iOS 5.0
Automatic Reference Counting

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

42

Storyboards
Storyboards are the new way to define your app’s user interface. In the past, you used nib files to define your
user interface one view controller at a time. A storyboard file captures your entire user interface in one place
and lets you define both the individual view controllers and the transitions between those view controllers.
As a result, storyboards capture the flow of your overall user interface in addition to the content you present.

If you are creating new apps, the Xcode templates come preconfigured to use storyboards. For other apps,
the process for using storyboards is as follows:

1. Configure your app’s Info.plist file to use storyboards:

 ● Add the UIMainStoryboardFile key and set its value to the name of your storyboard file.

 ● Remove the existing NSMainNibFile key. (Storyboards replace the main nib file.)

2. Create and configure the storyboard file in Xcode; see “Creating Storyboard Files” (page 43).

3. Update your view controllers to handle storyboard transitions; see “Preparing to Transition to a New View
Controller” (page 44).

4. If you ever need to present a view controller manually (perhaps to support motion-related events), use
the storyboard classes to retrieve and present the appropriate view controller; see “Presenting Storyboard
View Controllers Programmatically” (page 44).

Apps can use a single storyboard file to store all of their view controllers and views. At build time, Interface
Builder takes the contents of the storyboard file and divides it up into discrete pieces that can be loaded
individually for better performance. Your app never needs to manipulate these pieces directly, though. All you
must do is declare the main storyboard in your app’s Info.plist file. UIKit handles the rest.

Creating Storyboard Files
You use Interface Builder to create storyboard files for your app. Most apps need only one storyboard file, but
you can create multiple storyboard files if you want. Every storyboard file has a view controller known as the
initial view controller. This view controller represents the entry point into the storyboard. For example, in
your app’s main storyboard file, the initial view controller would be the first view controller presented by your
app.

Each view controller in a storyboard file manages a single scene. For iPhone apps, a scene manages one screen’s
worth of content, but for iPad apps the content from multiple scenes can be on screen simultaneously. To add
new scenes to your storyboard file, drag a view controller from the library to the storyboard canvas. You can
then add controls and views to the view controller’s view just as you would for a nib file. And as before, you
can configure outlets and actions between your view controller and its views.

iOS 5.0
Storyboards

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

43

When you want to transition from one view controller to another, Control-click a button, table view cell, or
other trigger object in one view controller, and drag to the view controller for a different scene. Dragging
between view controllers creates a segue, which appears in Interface Builder as a configurable object. Segues
support all of the same types of transitions available in UIKit, such as modal transitions and navigation transitions.
You can also define custom transitions and transitions that replace one view controller with another.

For more information about using Interface Builder to configure your storyboard files, see What's New in Xcode .

Preparing to Transition to a New View Controller
Whenever a user triggers a segue in the current scene, the storyboard runtime calls the
prepareForSegue:sender: method of the current view controller. This method gives the current view
controller an opportunity to pass any needed data to the view controller that is about to be displayed. When
implementing your view controller classes, you should override this method and use it to handle these
transitions.

For more information about implementing the methods of theUIViewController class, seeUIViewController
Class Reference .

Presenting Storyboard View Controllers Programmatically
Although the storyboard runtime usually handles transitions between view controllers, you can also trigger
segues programmatically from your code. You might do so when it is not possible to set up the segue entirely
in Interface Builder—for example, when doing so involves using accelerometer events to trigger the transition.
There are several options for transitioning to a new view controller:

 ● If a storyboard file contains an existing segue between the current view controller and the destination
view controller (perhaps triggered by some other control in the view controller), you can trigger that segue
programmatically using theperformSegueWithIdentifier:sender:method ofUIViewController.

 ● If there is no segue between the view controllers but the destination view controller is defined in the
storyboard file, first load the view controller programmatically using the
instantiateViewControllerWithIdentifier: method of UIStoryboard. Then present the view
controller using any of the existing programmatic means, such as by pushing it on a navigation stack.

 ● If the destination view controller is not in the storyboard file, create it programmatically and present it as
described in View Controller Programming Guide for iOS .

iOS 5.0
Storyboards

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

44

Newsstand Support
Newsstand provides a central place for users to read magazines and newspapers. Publishers who want to
deliver their magazine and newspaper content through Newsstand can create their own iOS apps using the
Newsstand Kit framework (NewsstandKit.framework), although doing so is not required. A big advantage
of the Newsstand Kit framework, however, is that you can use it to initiate background downloads of new
magazine and newspaper issues. After you start a download, the system handles the download operation and
notifies your app when the new content is available.

Unlike other iOS apps, Newsstand apps appears only in Newsstand itself, not in a user’s Home screen. And
instead of displaying an app icon, the app typically displays the cover of their most recent issue, with some
additional adornments provided by Newsstand. When the user taps that cover art, your app launches normally
to present the current issue or any back issues that were downloaded and are still available.

Note: Newsstand apps must include the UINewsstandApp key in their Info.plist file to indicate
that they support Newsstand. For more information about this key, see Information Property List Key
Reference .

Creating an app that uses Newsstand Kit requires some interplay between the actual app and the content
servers that you manage. Your servers are responsible for notifying the app when new content is available,
typically using a push notification. If your Newsstand app includes the UIBackgroundModes key with the
newsstand-content value in its Info.plist file, your Newsstand app is launched in the background so
that it can start downloading the latest issue. The download process itself is managed by the system, which
notifies your app when the content is fully downloaded and available.

When your server is alerting your app of a new issue, that server should include the content-available
property (with a value of 1) in the JSON payload. This property tells the system that it should launch your app
so that it can begin downloading the new issue. Apps are launched and alerted to new issues once in a 24-hour
period at most, although if your app is running when the notification arrives, it can begin downloading the
content immediately.

In addition to your server providing content for each new issue, it should also provide cover art to present in
Newsstand when that issue is available. This cover art is displayed in place of the app’s default icon, which is
specified by the Newsstand-specific icons in the CFBundleIcons key of your app’s Info.plist file. Cover
art gives users a more visual cue that a new issue is available. Your app can also add a badge to new issues.

For information about the classes you use to manage Newsstand downloads, see Newsstand Kit Framework
Reference . For information about how to use push notifications to notify your apps, see Local and Push
Notification Programming Guide .

iOS 5.0
Newsstand Support

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

45

AirPlay Improvements
AirPlay lets users stream audio and video from an iOS-based device to AirPlay–enabled devices such as televisions
and audio systems. In iOS 5, developers can now use AirPlay to present app content on a nearby Apple TV 2.
Users can now mirror the content of an iPad 2 to an Apple TV using AirPlay for any app. And developers who
want to display different content (instead of mirroring) can assign a new window object to any UIScreen
objects connected to an iPad 2 via AirPlay.

In addition, you can now take advantage of AirPlay in the following ways:

 ● Apps that use AV Foundation can now use the AVPlayer class to stream audio and video content over
AirPlay; see AV Foundation Framework Reference .

 ● The Media Player framework includes support for displaying “Now Playing” information in several locations,
including as part of the content delivered over AirPlay; see MPNowPlayingInfoCenter Class Reference .

 ● The UIWebView class now supports the presentation of multimedia content over AirPlay. This support is
enabled by default, but you can opt out of it if you want to.

Note: In iOS 5, AirPlay is enabled by default for all objects that support it. If you do not want your
app’s content to be playable over AirPlay, you must opt out explicitly.

For more information about delivering content over AirPlay, and the support media formats, see AirPlay
Overview .

New Frameworks
In iOS 5.0, there are several new frameworks you should investigate.

GLKit Framework
The GLKit framework (GLKit.framework) contains a set of Objective-C based utility classes that simplify the
effort required to create an OpenGL ES 2.0 app. GLKit provides support for four key areas of app development:

 ● The GLKView and GLKViewController classes provide a standard implementation of an OpenGL
ES–enabled view and associated rendering loop. The view manages the underlying framebuffer object on
behalf of the app; your app just draws to it.

iOS 5.0
AirPlay Improvements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

46

 ● The GLKTextureLoader class provides image conversion and loading routines to your app, allowing it
to automatically load texture images into your context. It can load textures synchronously or asynchronously.
When loading textures asynchronously, your app provides a completion handler block to be called when
the texture is loaded into your context.

 ● The GLKit framework provides implementations of vector, matrix, and quaternions as well as a matrix stack
operation to provide the same functionality found in OpenGL ES 1.1.

 ● The GLKBaseEffect, GLKSkyboxEffect, and GLKReflectionMapEffect classes provide configurable
graphics shaders that implement commonly used graphics operations. In particular, the GLKBaseEffect
class implements the lighting and material model found in the OpenGL ES 1.1 specification, simplifying
the effort required to migrate an app from OpenGL ES 1.1 to OpenGL ES 2.0.

For information about the classes of the GLKit framework, see GLKit Framework Reference .

Core Image Framework
The Core Image framework (CoreImage.framework) provides a powerful set of built-in filters for manipulating
video and still images. You can use the built-in filters for everything from simple operations (like touching up
and correcting photos) to more advanced operations (like face and feature detection). The advantage of using
these filters is that they operate in a nondestructive manner so that your original images are never changed
directly. In addition, Core Image takes advantage of the available CPU and GPU processing power to ensure
that operations are fast and efficient.

The CIImage class provides access to a standard set of filters that you can use to improve the quality of a
photograph. To create other types of filters, you can create and configure a CIFilter object for the appropriate
filter type.

For information about the classes and filters of the Core Image framework, see Core Image Reference Collection .

Twitter Framework
The Twitter framework (Twitter.framework) provides support for sending Twitter requests on behalf of the
user and for composing and sending tweets. For requests, the framework handles the user authentication part
of the request for you and provides a template for creating the HTTP portion of the request. (Refer to the
Twitter API for populating the content of the request.) The composition of tweets is accomplished using the
TWTweetComposeViewController class, which is a view controller that you post with your proposed tweet
content. This class gives the user a chance to edit or modify the tweet before sending it.

Users control whether an app is allowed to communicate with Twitter on their behalf using Settings. The
Twitter framework also works in conjunction with the Accounts framework (Accounts.framework) to access
the user’s account.

iOS 5.0
New Frameworks

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

47

For information about the classes of the Twitter framework, see Twitter Framework Reference . For information
about the Accounts framework, see “Accounts Framework” (page 48).

Accounts Framework
The Accounts framework (Accounts.framework) provides a single sign-on model for certain user accounts.
Single sign-on improves the user experience, because apps no longer need to prompt a user separately for
login information related to an account. It also simplifies the development model for you by managing the
account authorization process for your app. In iOS 5.0, apps can use this framework in conjunction with the
Twitter framework to access a user’s Twitter account.

For more information about the classes of the Accounts framework, see Accounts Framework Reference .

Generic Security Services Framework
The Generic Security Services framework (GSS.framework) provides a standard set of security-related services
to iOS apps. The basic interfaces of this framework are specified in IETF RFC 2743 and RFC 4401. In addition to
offering the standard interfaces, iOS includes some additions for managing credentials that are not specified
by the standard but that are required by many apps.

For information about the interfaces of the GSS framework, see the header files.

Core Bluetooth
The Core Bluetooth framework (CoreBluetooth.framework) allows developers to interact specifically with
Bluetooth Low-Energy ("LE") accessories. The Objective-C interfaces of this framework allow you to scan for LE
accessories, connect and disconnect to ones you find, read and write attributes within a service, register for
service and attribute change notifications, and much more.

For more information about the interfaces of the Core Bluetooth framework, see the header files.

App Design-Level Improvements
The following sections describe new capabilities that you can incorporate into the model, view, and controller
layers of your app.

iOS 5.0
App Design-Level Improvements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

48

http://www.ietf.org/rfc/rfc2743.txt
http://tools.ietf.org/html/rfc4401

Document Support
Cocoa Touch now includes a UIDocument class for managing the data associated with user documents. If you
are implementing a document-based app, this class reduces the amount of work you must do to manage your
document data. In addition to providing a container for all of your document-related data, the UIDocument
class provides built-in support for a number of features:

 ● Asynchronous reading and writing of data on a background queue, allowing your app to remain responsive
to users while reading and writing operations occur.

 ● Support for coordinated reading and writing of documents, which is required for documents in iCloud
storage.

 ● Safe saving of document data by writing data first to a temporary file and then replacing the current
document file with it.

 ● Support for resolving conflicts between different versions of your document if a conflict occurs.

 ● Automatic saving of document data at opportune moments.

 ● Support for flat file and package file representations on disk.

 ● For apps that use Core Data to manage their content, there is also a UIManagedDocument subclass to
manage interactions with documents in the database.

If you are implementing an app that supports iCloud storage, the use of document objects makes the job of
storing files in iCloud much easier. Document objects are file presenters and handle many of iCloud-related
notifications that you might otherwise have to handle yourself. For more information about supporting iCloud
storage, see “iCloud Storage APIs” (page 39).

For information about the UIDocument class, see UIDocument Class Reference . For information about the
UIManagedDocument class, see UIManagedDocument Class Reference .

Data Protection Improvements
Introduced in iOS 4.0, data protection lets you store app and user data files on disk in an encrypted format so
that they can be accessed only when a user’s device is unlocked. In iOS 5.0, you now have more flexibility
regarding when your app can access protected files.

 ● Using the NSFileProtectionCompleteUnlessOpen option, your app can access a file while the device
is unlocked and, if you keep the file open, continue to access that file after the user locks the device.

 ● Using the NSFileProtectionCompleteUntilFirstUserAuthentication option, your app cannot
access the file while the device is booting or until the user unlocks the device. After the user unlocks the
device for the first time, you can access the file even if the user subsequently locks the device again.

iOS 5.0
App Design-Level Improvements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

49

You should protect files as soon as possible after creating them. For information about how to protect files,
see iOS App Programming Guide .

Custom Appearance for UIKit Controls
You can now customize the appearance of many UIKit views and controls to give your app a unique look and
feel. For example, you might use these customizations to make the standard system controls match the branding
for the rest of your app.

UIKit supports the following customizations:

 ● You can set the tint color, background image, and title position properties (among other) on a wide variety
of objects, including toolbars, navigation bars, search bars, buttons, sliders, and some other controls.

 ● You can set attributes of some objects directly, or you can set the default attributes to use for a class using
an appearance proxy.

An appearance proxy is an object you use to modify the default appearance of visual objects such as views
and bar items. Classes that adopt the UIAppearance protocol support the use of an appearance proxy.
To modify the default appearance of such a class, retrieve its proxy object using the appearance class
method and call the returned object’s methods to set new default values. A proxy object implements
those methods and properties from its proxied class that are tagged with the UI_APPEARANCE_SELECTOR
macro. For example, you can use a proxy object to change the default tint color (through the
progressTintColor or trackTintColor properties) of the UIProgressView class.

If you want to set a different default appearance based on how a given object is used in your app, you
can do so using the proxy object returned by the appearanceWhenContainedIn: method instead. For
example, you use this proxy object to set specific default values for a button only when it is contained
inside a navigation bar.

Any changes you make with a proxy object are applied, at view layout time, to all instances of the class
that exist or that are subsequently created. However, you can still override the proxy defaults later using
the methods and properties of a given instance.

For information about the methods for customizing the appearance of a class, see the description of that class
in UIKit Framework Reference .

Container View Controller Support
The UIViewController class now allows you to define your own custom container view controllers and
present content in new and interesting ways. Examples of existing container view controllers include
UINavigationController, UITabBarController, and UISplitViewController. These view controllers

iOS 5.0
App Design-Level Improvements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

50

mix custom content with content provided by one or more separate view controller objects to create a unique
presentation for app content. Container view controllers act as a parent for their contained view controllers,
forwarding important messages about rotations and other relevant events to their children.

For more information about view controllers and the methods you need to implement for container view
controllers, see UIViewController Class Reference .

Settings
Apps that deliver custom preferences can now use a new radio group element. This element is similar to the
multivalue element for selecting one item from a list of choices. The difference is that the radio group element
displays its choices inline with your preferences instead of on a separate page.

For more information about displaying app preferences using the Settings app, see “App-Related Resources”
in iOS App Programming Guide . For information about the property-list keys you use to build your Settings
bundle, see Settings Application Schema Reference .

Xcode Tools
The following sections describe the improvements to the Xcode tools and the support for developing iOS apps.
For detailed information about the features available in Xcode 4.2, see What's New in Xcode .

Xcode Improvements
Xcode 4.2 adds support for many features that are available in iOS 5.0.

 ● The LLVM compiler supports Automatic Reference Counting (ARC), and Xcode includes a menu item to
convert targets to use ARC. (For more information about ARC and about how to use it in your apps, see
“Automatic Reference Counting” (page 41).)

 ● The Interface Builder user interface provides support for creating storyboard files for your iOS apps. (For
more information about using storyboards in your iOS apps, see “Storyboards” (page 43).)

 ● In iOS Simulator, you can now simulate different locations for apps using the Core Location framework.

 ● You can download your app data from an iOS device and automatically restore that data when debugging
or testing in iOS simulator or on a device.

OpenGL ES Debugging
The debugging experience in Xcode has been updated to include a new workflow for debugging OpenGL ES
apps. You can now use Xcode to do the following for your OpenGL ES apps:

iOS 5.0
Xcode Tools

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

51

 ● Introspect OpenGL ES state information and objects such as view textures, shaders, and so on.

 ● Set breakpoints on OpenGL ES errors, set conditional OpenGL ES entry point breakpoints, break on frame
boundaries, and so on.

UI Automation Enhancements
The Automation instrument now includes a script editor and the ability to capture (record) actions into your
script as you perform them on a device. There are also enhancements to the objects that you use in the
Automation instrument to automate UI testing:

 ● The UIATarget object can now simulate rotate gestures and location changes.

 ● The UIAHost object supports executing a task from the Instruments app itself.

 ● The UIAElement object can now simulate a rotate gesture centered on the element.

 ● Several functions that were previously available only in UIAWindow and UIAPopover were moved to
UIAElement because they are common to all element objects.

 ● The UIAKeyboard object now supports performing a sequence of keyboard taps to simulate the typing
of a string.

For information about the enhancements to the Automation instrument, see Instruments New Features User
Guide . For information about the JavaScript objects and commands that you use in your scripts, see UI
Automation JavaScript Reference .

Instruments
The Instruments app in Xcode 4.2 adds several new instruments for iOS developers:

 ● System Trace for iOS—Uses several instruments to profile aspects of Mac OS X or iOS that could be affecting
app performance, such as system calls, thread scheduling, and VM operations.

 ● Network Connections instrument—Inspect how your app is using TCP/IP and UDP/IP connections. With
this instrument it is possible to see how much data is flowing through each connection and for each app.
You can also use it to display interesting statistics, such as round trip times and retransmission request
information.

 ● Network Activity (located in Energy Diagnostics)—Helps bridge the gap between networking (cellular and
WiFi) and energy usage. You use it to display device-wide data flow through each network interface
alongside energy usage level data that is taken directly from the battery.

For information about using these new instruments, see Instruments New Features User Guide

iOS 5.0
Xcode Tools

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

52

Additional Framework Enhancements
In addition to the items discussed in the preceding sections, the following frameworks have additional
enhancements. For a complete list of new interfaces, see iOS 5.0 API Diffs .

UIKit
The UIKit framework (UIKit.framework) includes the following enhancements:

 ● The UIViewController class can now be used to create custom container view controllers; see “Container
View Controller Support” (page 50).

 ● The UIKit framework provides support for loading and using storyboards; see “Storyboards” (page 43).

 ● Bars and bar button items can now be tinted and customized for your app; see “Custom Appearance for
UIKit Controls” (page 50).

 ● The UIPageViewController class is a new container view controller for creating page-turn transitions
between view controllers.

 ● The UIReferenceLibraryViewController class adds support for presenting a custom dictionary
service to the user.

 ● The UIImagePickerController class supports new options for specifying the quality of video recordings.

 ● The UIStepper class is a new control for incrementing a floating-point value value up or down within a
configurable range.

 ● View-based animations now support cross-dissolve, flip-from-top, and flip-from-bottom animations; see
UIView Class Reference .

 ● The UIApplication class now reports the language directionality of the running app.

 ● The UITableView class adds support for automatic row animations, moving rows and sections,
multiselection, and copy and paste behaviors for cells.

 ● The UIScreen class lets you specify overscan compensation behaviors for video delivered over AirPlay
or through an attached HDMI cable. You can also programmatically set a screen’s brightness.

 ● The UIScrollView class now exposes its gesture recognizers so that you can configure them more
precisely for your app.

 ● The UISegmentedControl class now supports proportional segment widths.

 ● The UIAlertView class now supports password-style text entry and special configurations for entering
text securely.

 ● The UIColor class includes support for Core Image and new methods to retrieve individual color values.

 ● The UIImage class includes support for Core Image, support for stretching an image by tiling part of its
content, and support for looping animations.

iOS 5.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

53

 ● TheUITextInputTraitsprotocol adds support for a Twitter-specific keyboard and separate spell-checking
behavior.

 ● The UIAccessibility protocol includes new interfaces that define the activation point within an element
and indicate whether an element is modal or contains hidden elements. There are also new notifications
that inform you of changes in system-provided accessibility features, such as zoom, audio status, and
closed captioning.

 ● The UIAccessibilityReadingContent protocol allows you to provide a continuous, page-turning
reading experience to VoiceOver users.

 ● The UIAccessibilityIdentification protocol allows you to uniquely identify elements in your app
so that you can refer to them in automation scripts.

 ● The UIWebView class automatically supports the presentation of multimedia content over AirPlay. You
can opt out of this behavior by changing the value in the mediaPlaybackAllowsAirPlay property of
the class. This class also exposes a scrollView property so that you can access the scrolling properties
of your web interfaces.

For information about the classes of the UIKit framework, see UIKit Framework Reference .

OpenGL ES
OpenGL ES (OpenGLES.framework) now includes the following new extensions:

 ● The EXT_debug_label and EXT_debug_marker extensions allow you to annotate your OpenGL ES drawing
code with information specific to your app. The OpenGL ES Performance Detective, the OpenGL ES
Debugger, and the OpenGL ES Analyzer tools provided by Xcode all take advantage of these annotations.

 ● The EXT_color_buffer_half_float extension allows 16-bit floating point formats to be specified for a frame
buffer's color renderbuffer.

 ● The EXT_occlusion_query_boolean extension allows your app to determine whether any pixels would be
drawn by a primitive or by a group of primitives.

 ● The EXT_separate_shader_objects extension allows your app to specify separate vertex and fragment
shader programs.

 ● The EXT_shadow_samplers extension provides support for shadow maps.

 ● The EXT_texture_rg extension adds one-component and two-component texture formats suitable for use
in programmable shaders.

As always, check for the existence of an extension before using it in your app.

iOS 5.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

54

http://www.khronos.org/registry/gles/extensions/EXT/EXT_debug_label.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_debug_marker.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_color_buffer_half_float.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_occlusion_query_boolean.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_separate_shader_objects.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_shadow_samplers.txt
http://www.khronos.org/registry/gles/extensions/EXT/EXT_texture_rg.txt

OpenAL
The OpenAL framework (OpenAL.framework) has two significant extensions:

 ● You can get notifications about source state changes and changes regarding the number of audio buffers
that have been processed.

 ● The Apple Spatial Audio extension in iOS 5.0 adds three audio effects that are especially useful for games:
reverberation, obstruction effects, and occlusion effects.

For information about the OpenAL interfaces, see the header files.

Message UI
The Message UI framework (MessageUI.framework) adds a new notification for tracking changes to the
device’s ability to send text messages. For information about the interfaces of the Message UI framework, see
Message UI Framework Reference .

Media Player
The Media Player framework (MediaPlayer.framework) includes the following enhancements:

 ● There is now support for displaying “Now Playing” information in the lock screen and multitasking controls.
This information can also be displayed on an Apple TV and with content delivered via AirPlay.

 ● You can detect whether video is being streamed to an AirPlay device using the airPlayVideoActive
property of the MPMoviePlayerController class.

 ● Apps can now use the framework to play content from iTunes University.

For information about the classes in the Media Player framework, see Media Player Framework Reference .

Map Kit
The Map Kit framework (MapKit.framework) supports the ability to use heading data to rotate a map based
on the user’s current orientation. As you can with the Maps app, you can configure your map view to scroll
the map according to the user’s current location. For example, a walking tour app might use this to show the
user their current location on the tour.

For information on the interfaces you use to implement map scrolling and rotation, see Map Kit Framework
Reference .

iOS 5.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

55

Note: If you are currently using Map Kit for geocoding, you should switch to using the Core Location
framework for that feature; see “Core Location” (page 58).

iAd
The iAd framework (iAd.framework) provides new callback methods for developers who use multiple ad
networks and want to be notified when a new ad is available. The bannerViewWillLoadAd:method (defined
in the ADBannerViewDelegate protocol) is called when a banner has confirmed that an ad is available but
before the ad is fully downloaded and ready to be presented. The interstitialAdWillLoad: method
(defined in the ADInterstitialAdDelegate protocol) offers similar behavior for interstitial ads.

For information about the classes of the iAd framework, see iAd Framework Reference .

Game Kit
The Game Kit framework (GameKit.framework) and Game Center now have the following features:

 ● The GKTurnBasedMatch class provides support for turn-based gaming, which allows games to create
persistent matches whose state is stored in iCloud. Your game manages the state information for the
match and determines which player must act to advance the state of the match.

 ● Your game can now adjust the default leaderboard (implemented by the GKLeaderboard class) shown
to each player. If your game does not change the default leaderboard for a player, that player sees the
leaderboard configured for your app in iTunes Connect.

 ● The GKNotificationBanner class implements a customizable banner similar to the banner shown to
players when they log in to Game Center. Your game may use this banner to display messages to the
player.

 ● When your game reports an achievement, it can automatically display a banner to the player using the
GKAchievement class.

 ● A GKMatchmakerViewController object can now add players to an existing match in addition to
creating a new match.

 ● The GKMatchDelegate protocol now includes a method to reconnect devices when a two-player match
is disconnected.

For information about the classes of the Game Kit framework, see Game Kit Framework Reference .

Foundation
The Foundation framework (Foundation.framework) includes the following enhancements:

iOS 5.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

56

 ● The NSFileManager class includes new methods for moving a file to a user’s iCloud storage.

 ● The new NSFileCoordinator class and NSFilePresenter protocol implement now locking support
and notifications when manipulating documents in iCloud.

 ● The new NSFileVersion class reports and manages conflicts between different versions of a file in iCloud.

 ● The NSURL class includes new methods and constants to support syncing items to a user’s iCloud storage.

 ● The new NSMetadataQuery class supports attributes for items synced to a user’s iCloud storage. Several
other metadata-related classes were also added, including NSMetadataItem,
NSMetadataQueryResultGroup, and NSMetadataQueryAttributeValueTuple.

 ● The new NSJSONSerialization class is a new class that supports back-and-forth conversions between
JSON data and Foundation types.

 ● The new NSLinguisticTagger class is a new class lets you break down a sentence into its grammatical
components, allowing the determination of nouns, verbs, adverbs, and so on. This tagging works fully for
English and the class also provides a method to find out what capabilities are available for other languages.

 ● This framework now includes the NSFileWrapper class for managing file packages—that is, files
implemented as an opaque directory.

 ● The new NSOrderedSet collection class offers the semantics of sets, whereby each element occurs at
most once in the collection, but where elements are in a specific order.

 ● Most delegate methods are now declared using formal protocols instead of as categories on NSObject.

For information about the classes of the Foundation framework, see Foundation Framework Reference .

External Accessory
Apps that use the External Accessory framework to communicate with external accessories can now ask to be
woken up if the app is suspended when its accessory delivers new data. Including the UIBackgroundModes
key with the external-accessory value in your app’s Info.plist file keeps your accessory sessions open
even when your app is suspended. (Prior to iOS 5, these sessions were closed automatically at suspend time.)
When new data arrives for a given session, a suspended app is woken up and given time to process the new
data. This type of behavior is designed for apps that work with heart-rate monitors and other types of accessories
that need to deliver data at regular intervals.

For more information about the UIBackgroundModes key, see Information Property List Key Reference . For
information about interacting with external accessories, see External Accessory Programming Topics .

Event Kit and Event Kit UI
The Event Kit framework (EventKit.framework) includes the following enhancements:

iOS 5.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

57

http://www.json.org/

 ● The class hierarchy has been restructured. There is now a common base class called EKObject and portions
of the EKEvent class have been moved into a new base class called EKCalendarItem.

 ● With the EKEventStore class, you can now create and delete calendars programmatically, fetch calendars
based on their identifier, save and remove events in batches, and trigger a programmatic refresh of calendar
data.

 ● The new EKSource class represents the source for creating new calendars and events.

 ● The EKCalendar class now provides access to a calendar’s UUID, source, and other attributes.

The Event Kit UI framework (EventKitUI.framework) now includes the EKCalendarChooser class, which
provides a standard way for selecting from the user’s iCal calendars.

For information about the classes of the Event Kit framework, see Event Kit Framework Reference . For information
about the classes of the Event Kit UI framework, see Event Kit UI Framework Reference .

Core Motion
The Core Motion framework (CoreMotion.framework) now supports reporting heading information and
magnetometer data for devices that have the corresponding hardware.

For information about the classes of the Core Motion framework, see Core Motion Framework Reference .

Core Location
The Core Location framework (CoreLocation.framework) now includes support for both forward and
reverse geocoding location data. This support allows you to convert back and forth between a set of map
coordinates and information about the street, city, country (and so on) at that coordinate.

For information about the classes of the Core Location framework, see Core Location Framework Reference .

Core Graphics
The Core Graphics framework (CoreGraphics.framework) includes some new interfaces to support the
creation of paths. Specifically, there are new interfaces for creating paths with an ellipse or rectangle and for
adding arcs to existing paths.

For more information about the Core Graphics interfaces, see Core Graphics Framework Reference .

Core Data
The Core Data framework includes the following enhancements:

iOS 5.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

58

 ● Core Data provides integration with the iOS document architecture and iCloud storage. The
UIManagedDocument class is a concrete subclass of UIDocument that uses a Core Data persistent store
for document data storage.

 ● For apps built for iOS 5.0 or later, persistent stores now store data by default in an encrypted format on
disk. The default protection level prevents access to the data until after the user unlocks the device for
the first time. You can change the protection level by assigning a custom value to the
NSPersistentStoreFileProtectionKey key when configuring your persistent stores. For additional
information about the data protection that are new in iOS 5.0, see “Data Protection Improvements” (page
49).

 ● Core Data formalizes the concurrency model for the NSManagedObjectContext class with new options.
When you create a context, you can specify the concurrency pattern to use with it: thread confinement,
a private dispatch queue, or the main dispatch queue. The NSConfinementConcurrencyType option
provides the same behavior that was present on versions of iOS prior to 5.0 and is the default. When
sending messages to a context created with a queue association, you must use the performBlock: or
performBlockAndWait:method if your code is not already executing on that queue (for the main queue
type) or within the scope of a performBlock... invocation (for the private queue type). Within the
blocks passed to those methods, you can use the methods of NSManagedObjectContext freely. The
performBlockAndWait: method supports API reentrancy. The performBlock: method includes an
autorelease pool and calls the processPendingChanges method upon completion.

 ● You can create nested managed object contexts, in which the parent object store of a context is another
managed object context rather than the persistent store coordinator. This means that fetch and save
operations are mediated by the parent context instead of by a coordinator. This pattern has a number of
usage scenarios, including performing background operations on a second thread or queue and managing
discardable edits, such as in an inspector window or view

Nested contexts make it more important than ever that you adopt the “pass the baton” approach of
accessing a context (by passing a context from one view controller to the next) rather than retrieving it
directly from the app delegate.

 ● Managed objects support two significant new features: ordered relationships, and external storage for
attribute values. If you specify that the value of a managed object attribute may be stored as an external
record, Core Data heuristically decides on a per-value basis whether it should save the data directly in the
database or store a URI to a separate file that it manages for you.

 ● There are two new classes, NSIncrementalStore and NSIncrementalStoreNode, that you can use
to implement support for nonatomic persistent stores. The store does not have to be a relational
database—for example, you could use a web service as the back end.

For more details about the new features in Core Data, see Core Data Release Notes for OS X v10.7 and iOS 5.0 .

iOS 5.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

59

Core Audio
The Core Audio family of frameworks includes the following changes in iOS 5.0:

 ● Audio-session routing information is now specified using dictionary keys. There are also new modes for
managing your app’s audio behavior:

 ● Voice chat mode optimizes the system for two-way voice conversation.

 ● Video recording mode configures the device for video capture.

 ● Measurement mode disables automatic compression and limiting for audio input.

 ● Default mode provides iOS 4.3.3 behavior.

 ● Core Audio adds seven new audio units for handling advanced audio processing features in your app,
such as reverb, adjustable equalization, and time compression and stretching. The new Sampler unit lets
you create music instruments, for which you can provide your own sounds. The new AUFilePlayer unit lets
you play sound files and feed them directly to other audio units.

 ● The 3D Mixer audio unit is enhanced in iOS 5.0 to provide reverb and other effects useful in game audio.

 ● You can automate audio unit parameters in an audio processing graph, which lets you build a music mixer
that remembers fader positions and changes.

 ● You can now use the advanced features of Apple Core Audio Format files in iOS. For example, you might
create new voices for the Sampler audio unit.

 ● There is now programmatic support for adjusting the audio input gain.

 ● Core Audio now supports 32-bit floating-point audio data for apps that need to provide high quality audio.

For information about the audio technologies available in iOS, see Multimedia Programming Guide . For
information about the new audio units, see Audio Unit Component Services Reference .

AV Foundation
The AV Foundation framework includes the following enhancements:

 ● There is automatic support for playing audio and video content over AirPlay. Apps can opt out of
transmitting video over AirPlay using the allowsAirPlayVideo property of the AVPlayer class.

 ● New properties on the AVPlayerItem class indicate whether the item supports fast-forwarding or
rewinding of the content.

For information about the classes of the AV Foundation framework, see AV Foundation Framework Reference .

iOS 5.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

60

Assets Library
The Assets Library framework includes the following enhancements:

 ● Support for accessing photo streams

 ● Support for creating new albums in the user’s photo library

 ● Support for adding assets to albums

 ● The ability to get an aspect ratio thumbnail for an asset

 ● The ability to modify saved assets

For information about the classes of the Assets Library framework, see Assets Library Framework Reference .

Address Book
The Address Book framework adds support for importing and exporting vCard data. It also adds new keys to
associate social network affiliations with a user record.

For more information about the new features in the Address Book framework, see Address Book Framework
Reference for iOS .

Security
The Security framework (Security.framework) now includes the Secure Transport interfaces, which are
Apple’s implementation of the SSL/TLS protocols. You can use these interfaces to configure and manage SSL
sessions, manage ciphers, and manage certificates.

For information about the Secure Transport interfaces, see the SecureTransport.h header file of the Security
framework.

iOS 5.0
Additional Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

61

This article summarizes the key developer-related features introduced in iOS 4.3. This version of the operating
system runs on all iOS-based devices. In addition to describing the key new features, this article lists the
documents that describe those features in more detail.

For the latest updates and information, you should also see iOS 4.3 Release Notes . For the complete list of new
APIs added in iOS 4.3, see iOS 4.3 API Diffs .

AirPlay Video Support
Support for playing video using AirPlay is included in the MPMoviePlayerController class. This support
allows you to play video-based content on AirPlay–enabled hardware such as Apple TV. When the
allowsAirPlay property of an active MPMoviePlayerController object is set to YES and the device is in
range of AirPlay–enabled hardware, the movie player presents the user with a control for sending the video
to that hardware. (That property is set to NO by default.) Supported formats include:

 ● H.264 video with AAC audio

 ● HTTP streaming, both live and on demand

 ● progressive download content

 ● local content

For web-based content, you can enable AirPlay Video in the QuickTime Plug-in or HTML5 video element as
follows:

 ● QTPlug-in:

 ● airplay="allow"

 ● airplay="deny" (Default)

For example: <embed src="movie.mov" width="320" height="240" airplay="allow">

 ● HTML5 video element:

 ● x-webkit-airplay="allow"

 ● x-webkit-airplay="deny" (Default)

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

62

iOS 4.3

For example: <video controls width="640" height="368" x-webkit-airplay="allow"
src="content/side_with_the_seeds.mov"> </video>

For more information about using the MPMoviePlayerController class to play video, see
MPMoviePlayerController Class Reference .

Framework Enhancements
The following sections highlight the significant changes to frameworks and technologies in iOS 4.3. For a
complete list of all new interfaces available in the system, see iOS 4.3 API Diffs .

AV Foundation
The AV Foundation framework includes the following enhancements:

 ● The AV Foundation framework added the AVPlayerItem, AVPlayerItemAccessLogEvent, and
AVPlayerItemErrorLogEvent classes for tracking network playback statistics.

 ● The AVMetadataItem class added support for loading key data asynchronously.

For information about the classes of the UIKit framework, see AV Foundation Framework Reference .

Core Audio Frameworks
The Audio Unit and Audio Toolbox frameworks include the following enhancements:

 ● The AudioUnitParameterHistoryInfo struct (in the Audio Unit framework) along with supporting
audio unit properties adds the ability to track and use parameter automation history.

 ● The ExtendedAudioFormatInfo struct (in the Audio Toolbox framework) lets you specify which codec
to use when accessing the kAudioFormatProperty_FormatList property.

 ● The kAFInfoDictionary_SourceBitDepth dictionary key and the
kAudioFilePropertySourceBitDepth property (in the Audio Toolbox framework) provide access to
the bit depth of an audio stream.

 ● The kAudioConverterErr_NoHardwarePermission result code (in the Audio Toolbox framework)
indicates that a request to create a new audio converter object cannot be satisfied because the application
does not have permission to use the requested hardware codec.

For information about the functions and types of the Audio Unit framework, seeAudioUnit Framework Reference .
For information about the functions and types of the Audio Toolbox framework, see Audio Toolbox Framework
Reference .

iOS 4.3
Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

63

iAd
The ADInterstitialAd class is controller that you can use to present full-screen banners in your content.
You present these banners in an existing view or as part of a transition from one page of content to another.
For example, you might use this object to incorporate full-page ads into a page-based magazine layout.

For more information about the classes of the iAd framework, see iAd Framework Reference .

Media Player
The Media Player framework includes the following enhancements:

 ● The MPMoviePlayerController class supports playback of video content using AirPlay; see “AirPlay
Video Support” (page 62).

 ● TheMPMovieAccessLog,MPMovieErrorLog,MPMovieAccessLogEvent, andMPMovieErrorLogEvent
classes allow you to track network playback statistics.

 ● The MPMoviePlayerController class now includes properties for accessing log information.

For more information about the classes of the Media Player framework, see Media Player Framework Reference .

UIKit
The UIViewController class added the disablesAutomaticKeyboardDismissal method, which you
can use to override the default input view dismissal behavior.

For more information about the classes of the UIKit framework, see UIKit Framework Reference .

iOS 4.3
Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

64

This article summarizes the key developer-related features introduced in iOS 4.2. This version of the operating
system runs on all iOS-based devices. In addition to describing the key new features, this article lists the
documents that describe those features in more detail.

For the latest updates and information, you should also see iOS 4.2 Release Notes . For the complete list of new
APIs added in iOS 4.2, see iOS 4.2 API Diffs .

Printing
iOS now incorporates support for wireless printing from iPhone and iPad applications. For the most part, the
objects provided by UIKit do all of the heavy lifting associated with printing. They manage the printing interfaces,
work with your application to render the printable content, and handle the scheduling and execution of print
jobs on the printer.

Print jobs submitted by your application are handed off to the printing system, which manages the actual
printing process. Print jobs from all applications on a device are queued and printed on a first-come, first-served
basis. Users can get the status of print jobs from the Print Center application and can even use that application
to cancel print jobs. All other aspects of printing are handled for you automatically by the system.

Note: Wireless printing is available only on devices that support multitasking. You can use the
UIPrintInteractionControllerobject to detect whether printing is available in your application.

To simplify the printing process, UIKit provides automatic support for some types of content to make printing
easier. Specifically, applications provide printable content in one of three ways:

 ● An application can hand images or PDF content directly to UIKit and let it manage the printing of those
items.

 ● An application can use print formatter objects to lay out specific types of content over multiple pages.
UIKit provides print formatters for plain text, HTML text, and some system views (web views, text views,
and map views).

 ● An application can choose to render the content itself using a print page renderer object. This option gives
you the most control over your printed content but also lets you use print formatters to assist with the
layout of parts of your content.

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

65

iOS 4.2

For information about how to incorporate the new printing support into your applications, see “Printing” in
Drawing and Printing Guide for iOS .

AirPlay
AirPlay is a technology that lets your application stream audio to Apple TV and to third-party AirPlay speakers
and receivers. AirPlay support is built in to the AV Foundation framework and the Core Audio family of
frameworks. Any audio content you play using these frameworks is automatically made eligible for AirPlay
distribution. Once the user chooses to play your audio using AirPlay, it is routed automatically by the system.

For information on how to play audio content, see Multimedia Programming Guide .

Core MIDI
The Core MIDI framework (CoreMIDI.framework) provides a standard way to communicate with MIDI devices,
including hardware keyboards and synthesizers. You use this framework to send and receive MIDI messages
and to interact with MIDI peripherals connected to an iOS-based device using the dock connector or network.

For more information about using this framework, see Core MIDI Framework Reference .

Weak Linking Support
Applications that link against iOS SDK 4.2 or later can now take advantage of new support for determining the
availability of Objective-C classes. System frameworks now tag their classes with availability information that
the compiler can use to link weakly to those classes as needed. This new tagging mechanism simplifies the
code you need to use to do runtime checking for the availability of the class. Whereas previously, you needed
to use the NSClassFromString function to determine whether a class was present, now you can simply
check for the existence the class directly using code similar to the following:

if ([UIPrintInteractionController class])

{

// Create an instance of the class and use it.

}

else

{

// The print interaction controller is not available.

iOS 4.2
AirPlay

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

66

}

In order to use this feature, you must do the following:

 ● Build your project using LLVM and Clang. (The standalone GCC compiler does not currently support this
feature.)

 ● Set your project’s deployment target to iOS 3.1 or later.

 ● Change the linking option for each framework you want to link weakly. To do this, open an inspector for
your application target and go to the inspector’s General tab to view the list of frameworks and libraries
linked against the target. For frameworks you want to link weakly, change the value in the Type column
from Required to Weak.

If the deployment target for your application is set to a version of iOS that does not contain a given
framework (because it was introduced in a later version), set the link type of that framework to Weak. For
most other frameworks, you should leave the link type set to Required.

For information about how to perform runtime availability checks for classes and methods, see SDK Compatibility
Guide .

Framework Enhancements
The following sections highlight the significant changes to frameworks and technologies in iOS 4.2. For a
complete list of all new interfaces available in the system, see iOS 4.2 API Diffs .

Core Location
The Core Location framework includes new interfaces for determining whether a device is authorized to use
location services and for detecting changes in the current authorization status. For more information about
how to use Core Location in your application, see Location Awareness Programming Guide .

Game Kit
The Game Kit framework includes a new GKFriendRequestComposeViewController class, which you can
present from your application and use to invite friends to play a game. For more information about how to
use Game Kit in your application, see Game Center Programming Guide .

iOS 4.2
Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

67

iAd
The iAd framework now supports banner ads sized appropriately for iPad devices. For more information about
how to incorporate ads into your applications, see iAd Programming Guide .

Media Player
The Media Player framework includes the following enhancements:

 ● The interface presented by the MPVolumeView class now includes a control for routing audio content to
AirPlay–enabled devices.

 ● The MPMediaItem and MPMediaItemCollection classes now descend from a common ancestor class:
MPMediaEntity. This change in hierarchy allows you to create collections that include both items and
other collections.

 ● Persistent IDs for more collection types are now available.

 ● Media queries now provide more information about how media items are grouped together.

For more information about the classes of the Media Player framework, see Media Player Framework Reference .

UIKit
The UIKit framework includes the following enhancements

 ● New accessibility constants allow “scroll by page” capabilities using VoiceOver.

 ● New classes to support printing; see “Printing” (page 65)

 ● The UIDevice class now provides the playInputClickmethod for playing the input-click sound directly.

 ● Application delegates can now use the application:openURL:sourceApplication:annotation:
method to receive information about URLs that are opened while the application is running in the
background.

 ● The UITextInputMode class now exposes the language in use for inputting text.

 ● The UIDocumentInteractionController class supports printing with the help of its delegate object.

For more information about the classes of the UIKit framework, see UIKit Framework Reference .

iOS 4.2
Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

68

This article summarizes the developer-related features introduced in iOS 4.1. This version of the operating
system runs on iPhone and iPod touch only and does not run on iPad. In addition to describing the new features,
this article lists the documents that describe those features in more detail.

Note: iOS 4.1 does not support iPad. It runs only on iPhone and iPod touch devices. You must use
a different version of the iOS SDK to develop iPad applications.

For the latest updates and information, you should also see iOS 4.1 Release Notes . For the list of API differences
between the iOS 4.1 and earlier versions of iOS, see iOS 4.1 API Diffs .

Game Center
Game Center is an extension to the Game Kit framework that provides support for the following features:

 ● Aliases allow users to create their own online persona. Users log in to Game Center and interact with other
players anonymously through their alias. Players can set status messages as well as mark specific people
as their friends.

 ● Leaderboards allow your application to post user scores to Game Center and retrieve them later. You
might use this feature to show the best scores among all users of your application.

 ● Matchmaking allows you to create multiplayer games by connecting players who are logged into Game
Center. Players do not have to be local to each other to join a multiplayer game.

 ● Achievements allows you to record the progress a player has made in your game.

The preceding features all contribute towards the experience users see in the Game Center application. For
information about the classes of the Game Kit framework, see Game Kit Framework Reference .

Framework Enhancements
The following existing frameworks and technologies include additional incremental changes. For a complete
list of new interfaces, see iOS 4.1 API Diffs .

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

69

iOS 4.1

AV Foundation
The AV Foundation framework includes the following enhancements:

 ● A new AVQueuePlayer class for playing a sequence of AVPlayerItem objects.

 ● A new AVAssetReader class for reading samples from media files.

 ● A new AVAssetWriter class for writing samples to a data file and optionally compressing them.

For more information about the classes of the AV Foundation framework, see AV Foundation Framework
Reference .

Assets Library
The Assets Library framework includes new methods to save images to a user’s photo album. These new
methods are declared in the ALAssetsLibrary class.

Core Text
The Core Text framework includes new functions for managing fonts. For more information about the functions
available in the Core Text framework, see Core Text Reference Collection .

System Configuration
The System Configuration framework contains new interfaces for identifying captive networks. For more
information about the functions available in the System Configuration framework, see System Configuration
Framework Reference .

UIKit
The UIKit framework includes the following enhancements:

 ● Additional constants for the UIImagePickerController class that allow you to obtain additional
information about an image.

 ● A decimal keyboard type that you can use for text entry. You can specify this keyboard type using the
UIKeyboardTypeDecimalPad constant.

For more information about the classes of the UIKit framework, see UIKit Framework Reference .

iOS 4.1
Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

70

This article summarizes the developer-related features introduced in iOS 4. This version of the operating system
runs on iPhone and iPod touch only and does not run on iPad. In addition to describing the new features, this
article lists the documents that describe those features in more detail.

Note: iOS 4 does not support iPad. It runs only on iPhone and iPod touch devices. You must use a
different version of the iOS SDK to develop iPad applications.

For the latest updates and information, you should also see iOS 4.0 Release Notes . For the list of API differences
between the iOS 4 and earlier versions of iOS, see iOS 4.0 API Diffs .

Multitasking
Applications built using iOS SDK 4 or later (and running in iOS 4 and later) are no longer terminated when the
user presses the Home button; instead, they now shift to a background execution context. For many applications,
this means that the application enters a suspended state of execution shortly after entering the background.
Keeping the application in memory avoids the subsequent launch cycle and allows an application to simply
reactivate itself, which improves the overall user experience. And suspending the application improves overall
system performance by minimizing power usage and giving more execution time to the foreground application.

Although most applications are suspended shortly after moving to the background, applications that need to
continue working in the background may do so using one of the following techniques:

 ● An application can request a finite amount of time to complete some important task.

 ● An application can declare itself as supporting specific services that require regular background execution
time.

 ● An application can use local notifications to generate user alerts at designated times, whether or not the
application is running.

Regardless of whether your application is suspended or continues running in the background, supporting
multitasking does require some additional work on your part. Background applications can still be terminated
under certain conditions (such as during low-memory conditions), and so applications must be ready to exit

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

71

iOS 4.0

at any time. This means that many of the tasks you used to perform at quit time must now be performed when
your application moves to the background. This requires implementing some new methods in your application
delegate to respond to application state transitions.

For more information on how to handle the new background state transitions, and for information on how to
continue running in the background, see iOS App Programming Guide .

Integration Technologies
The following sections describe the technologies you can use to enhance your application’s user experience.

Local Notifications
Local notifications complement the existing push notifications by giving applications an avenue for generating
the notifications locally instead of relying on an external server. Background applications can use local
notifications as a way to get a user’s attention when important events happen. For example, a navigation
application running in the background can use local notifications to alert the user when it is time to make a
turn. Applications can also schedule the delivery of local notifications for a future date and time and have those
notifications delivered even if the application is not running.

The advantage of local notifications is that they are independent of your application. Once a notification is
scheduled, the system manages the delivery of it. Your application does not even have to be running when
the notification is delivered.

For more information about using local notifications, see Local and Push Notification Programming Guide .

Event Kit
The Event Kit framework (EventKit.framework) provides an interface for accessing calendar events on a
user’s device. You can use this framework to get existing events and add new events to the user’s calendar.
Calendar events can include alarms that you can configure with rules for when they should be delivered. In
addition to using Event Kit for creating new events, you can use the view controllers of the Event Kit UI
framework (EventKitUI.framework) to present standard system interfaces for viewing and editing events.

For more information about the classes and methods of these frameworks, see Event Kit Framework Reference
and Event Kit UI Framework Reference .

iOS 4.0
Integration Technologies

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

72

Core Motion
The Core Motion framework (CoreMotion.framework) provides a single set of interfaces for accessing all
motion-based data available on a device. The framework supports accessing both raw and processed
accelerometer data using a new set of block-based interfaces. For devices with a built-in gyroscope, you can
retrieve the raw gyro data as well as processed data reflecting the attitude and rotation rates of the device.
You can use both the accelerometer and gyro-based data for games or other applications that use motion as
input or as a way to enhance the overall user experience.

For more information about the classes and methods of this framework, see “Event Delivery: The Responder
Chain” in Event Handling Guide for iOS .

Data Protection
Applications that work with sensitive user data can now take advantage of the built-in encryption available
on some devices to protect that data. When your application designates a particular file as protected, the
system stores that file on-disk in an encrypted format. While the device is locked, the contents of the file are
inaccessible to both your application and to any potential intruders. However, when the device is unlocked
by the user, a decryption key is created to allow your application to access the file.

Implementing data protection requires you to be considerate in how you create and manage the data you
want to protect. Applications must themselves be designed to secure the data at creation time and to be
prepared for changes in access to that data when the user locks and unlocks the device.

For more information about how to add data protection to the files of your application, see “App States and
Multitasking” in iOS App Programming Guide .

Core Telephony
The Core Telephony framework (CoreTelephony.framework) provides interfaces for interacting with
phone-based information on devices that have a cellular radio. Applications can use this framework to get
information about a user’s cellular service provider. Applications interested in cellular call events can also be
notified when those events occur.

For more information about using the classes and methods of this framework, see Core Telephony Framework
Reference .

iOS 4.0
Integration Technologies

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

73

iAd
You can use iAd (iAd.framework) to deliver banner-based advertisements from your application.
Advertisements are incorporated into standard views that you integrate into your user interface and present
when you want. The views themselves work with Apple’s ad service to automatically handle all the work
associated with loading and presenting the ad content and responding to taps in those ads.

For more information about using iAd in your applications, see iAd Framework Reference .

Graphics and Multimedia
The following sections describe the new graphics and media-related technologies you can incorporate into
your applications.

High-Resolution Screen Support
For the most part, applications running on devices with high-resolution screens should work with little or no
modifications. The coordinate values you specify during drawing or when manipulating views are all mapped
to a logical coordinate system, which is decoupled from the underlying screen resolution. Any content you
draw is automatically scaled as needed to support high-resolution screens. For vector-based drawing code,
the system frameworks automatically use any extra pixels to improve the crispness of your content. And if you
use images in your application, UIKit provides support for loading high-resolution variants of your existing
images automatically.

For detailed information about how to support high-resolution screens, see “Supporting High-Resolution
Screens In Views” in Drawing and Printing Guide for iOS .

Quick Look Framework
The Quick Look framework (QuickLook.framework) provides a direct interface for previewing the contents
of files your application does not support directly. This framework is intended primarily for applications that
download files from the network or that otherwise work with files from unknown sources. After obtaining the
file, you use the view controller provided by this framework to display the contents of that file directly in your
user interface.

For more information about the classes and methods of this framework, see Quick Look Framework Reference
for iOS .

iOS 4.0
Graphics and Multimedia

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

74

AV Foundation
The AV Foundation framework (AVFoundation.framework) is for applications that need to go beyond the
music and movie playback features found in the Media Player framework. Originally introduced in iOS 3.0, this
framework has been expanded in iOS 4 to include significant new capabilities, substantially broadening its
usage beyond basic audio playback and recording capabilities. Specifically, this framework now includes support
for the following features:

 ● Media asset management

 ● Media editing

 ● Movie capture

 ● Movie playback

 ● Track management

 ● Metadata management for media items

 ● Stereophonic panning

 ● Precise synchronization between sounds

 ● An Objective-C interface for determining details about sound files, such as the data format, sample rate,
and number of channels

The AV Foundation framework is a single source for recording and playing back audio and video in iOS. This
framework also provides much more sophisticated support for handling and managing media items.

For more information about the classes and methods of the AV Foundation framework, see AV Foundation
Framework Reference .

Assets Library
The Assets Library framework (AssetsLibrary.framework) provides a query-based interface for retrieving
a user’s photos and videos. Using this framework, you can access the same assets that are nominally managed
by the Photos application, including items in the user’s saved photos album and any photos and videos that
were imported onto the device. You can also save new photos and videos back to the user’s saved photos
album.

For more information about the classes and methods of this framework, seeAssets Library FrameworkReference .

iOS 4.0
Graphics and Multimedia

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

75

Image I/O
The Image I/O framework (ImageIO.framework) provides interfaces for importing and exporting image data
and image metadata. This framework is built on top of the Core Graphics data types and functions and supports
all of the standard image types available in iOS.

For more information about the functions and data types of this framework, see Image I/O Reference Collection .

Core Media
The Core Media framework (CoreMedia.framework) provides the low-level media types used by AV
Foundation. Most applications should never need to use this framework, but it is provided for those few
developers who need more precise control over the creation and presentation of audio and video content.

For more information about the functions and data types of this framework, see Core Media Framework
Reference .

Core Video
The Core Video framework (CoreVideo.framework) provides buffer and buffer pool support for Core Media.
Most applications should never need to use this framework directly.

Core Services
The following sections describe the new lower-level technologies and features you can incorporate into your
applications.

Block Objects
Block objects are a C-level language construct that you can incorporate into your C and Objective-C code. A
block object is essentially an anonymous function and the data that goes with that function, something which
in other languages is sometimes called a closure or lambda . Blocks are particularly useful as callbacks or in
places where you need a way of easily combining both the code to be executed and the associated data.

In iOS, blocks are commonly used in the following scenarios:

 ● As a replacement for delegates and delegate methods

 ● As a replacement for callback functions

 ● To implement completion handlers for one-time operations

 ● To facilitate performing a task on all the items in a collection

iOS 4.0
Core Services

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

76

 ● Together with dispatch queues, to perform asynchronous tasks

For an introduction to block objects and how you use them, see A Short Practical Guide to Blocks . For more
information about blocks, see Blocks Programming Topics .

Grand Central Dispatch
Grand Central Dispatch (GCD) is a BSD-level technology that you use to manage the execution of tasks in your
application. GCD combines an asynchronous programming model with a highly optimized core to provide a
convenient (and more efficient) alternative to threading. GCD also provides convenient alternatives for many
types of low-level tasks, such as reading and writing file descriptors, implementing timers, monitoring signals
and process events, and more.

For more information about how to use GCD in your applications, see Concurrency Programming Guide . For
information about specific GCD functions, see Grand Central Dispatch (GCD) Reference .

Accelerate Framework
The Accelerate framework (Accelerate.framework) contains interfaces for performing math, big-number,
and DSP calculations, among others. The advantage of using this framework over writing your own versions
of these libraries is that it is optimized for the different hardware configurations present in iOS–based devices.
Therefore, you can write your code once and be assured that it runs efficiently on all devices.

For more information about the functions of the Accelerate framework, see Accelerate Framework Reference .

Xcode Tools
The following sections describe the improvements to the Xcode tools and the support for developing iOS
applications.

Xcode Improvements
Xcode 3.2.3 introduces automatic device and provisioning-profile management in the Organizer window. With
automatic device provisioning enabled, you can install applications on your device for debugging and testing
without having to log in to your team portal to register the device and download a provisioning profile

iOS 4.0
Xcode Tools

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

77

Note: You still need to log in to your team portal to create provisioning profiles with specific
application IDs for in-app purchase and push notifications. However, once created, those provisioning
profiles will also be managed by Xcode if automatic device provisioning is enabled.

For more information about using Xcode, see Xcode User Guide .

UI Automation API
The Instruments application now provides support for automating the testing of your iOS applications. The
built-in Automation instrument works from scripts (written in JavaScript) that you provide to drive the simulation
of events in your application. These synthetic events are generated with the help of the accessibility interfaces
built into iOS and integrated into all existing UIKit views. You can use this instrument to improve your testing
process and deliver more robust applications.

For information about how to use the Automation instrument, see Instruments User Guide . For information
about the JavaScript objects and commands you use in your scripts, see UI Automation JavaScript Reference .

Framework Enhancements
The following existing frameworks and technologies include additional incremental changes. For a complete
list of new interfaces, see iOS 4.0 API Diffs .

UIKit Framework Enhancements
The UIKit framework includes the following enhancements:

 ● The UIApplication class and UIApplicationDelegate protocol include new methods for scheduling
local notifications and for supporting multitasking.

 ● Drawing to a graphics context in UIKit is now thread-safe. Specifically:

 ● The routines used to access and manipulate the graphics context can now correctly handle contexts
residing on different threads.

 ● String and image drawing is now thread-safe.

 ● Using color and font objects in multiple threads is now safe to do.

 ● The UIImagePickerController class includes methods for programmatically starting and stopping
video capture. It also includes options for selecting which camera you want to use on a device and for
enabling a built-in flash.

iOS 4.0
Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

78

 ● The UILocalNotification class supports the configuration of local notifications; see “Local
Notifications” (page 72).

 ● The UIView class includes new block-based methods for implementing animations.

 ● The UIWindow class has a new rootViewController property that you can use to change the contents
of the window.

 ● Media applications can now receive events related to the controls on an attached set of headphones. You
can use these events to control the playback of media-related items.

 ● Several new accessibility interfaces help you make some UI elements more accessible and allow you to
customize your application experience specifically for VoiceOver users:

 ● The UIAccessibilityAction protocol makes it easy for VoiceOver users to adjust the value of UI
elements, such as pickers and sliders.

 ● UIPickerViewAccessibilityDelegate protocol enables access to the individual components
of a picker.

 ● UIAccessibilityFocus protocol allows you to find out when VoiceOver is focused on an element,
so you can help users avoid making unnecessary taps.

 ● The UIAccessibilityTraitStartsMediaSession trait allows you to prevent VoiceOver from
speaking during a media session that should not be interrupted.

 ● New interfaces in UIAccessibility protocol allow you to specify the language in which labels and
hints are spoken, and provide announcements that describe events that don't update application UI
in way that would be perceptible to VoiceOver users.

 ● The UINib class provides a way to instantiate multiple sets of objects efficiently from the same nib file.

For information about the classes of the UIKit framework, see UIKit Framework Reference .

Foundation Framework Enhancements
The Foundation framework includes the following enhancements:

 ● Most delegate methods are now declared in formal protocols instead of as categories on NSObject.

 ● Block-based variants are now available for many types of operations.

 ● There is new support for creating and formatting date information in NSDate and NSDateFormatter.

 ● The NSDateComponents class added support for specifying time zone and quarter information.

 ● There is support for regular-expression matching using the NSRegularExpression, NSDataDetector,
and NSTextCheckingResult classes.

 ● The NSBlockOperation class allows you to add blocks to operation queues.

 ● You can use the NSFileManager class to mark files as protected; see “Data Protection” (page 73).

iOS 4.0
Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

79

 ● The NSFileWrapper class allows you to work with package-based document types.

 ● The NSOrthography class describes the linguistic content of a piece of text.

 ● The NSCache class provides support for storing and managing temporary data.

 ● The URL-related classes have been updated so that you can now pipeline URL requests and set request
priorities.

For information about the classes of the Foundation framework, see Foundation Framework Reference .

OpenGL ES Enhancements
The OpenGL ES framework includes the following enhancements:

 ● The APPLE_framebuffer_multisample extension enables full-scene anti-aliasing.

 ● The EXT_framebuffer_discard extension can be used to improve the performance of applications
that use depth buffers or multisample framebuffers.

 ● The APPLE_texture_max_level and EXT_shader_texture_lod extensions provide more control
over texture sampling.

 ● The OES_vertex_array_object (http://www.khronos.org/registry/gles/extensions/OES/OES_vertex_ar-
ray_object.txt) API allows caching of vertex array state, to decrease driver overhead.

 ● The OES_depth_texture extension enables rendering real-time shadows using shadow maps.

 ● The OES_texture_float (http://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt)
and OES_texture_half_float (http://www.khronos.org/registry/gles/extensions/OES/OES_tex-
ture_float.txt) extensions adds texture formats with floating point components to enable High Dynamic
Range rendering.

 ● The APPLE_rgb_422 (http://www.opengl.org/registry/specs/APPLE/rgb_422.txt) extension enables
texturing from some common video formats.

 ● Performance of texture creation and modification has been significantly improved.

 ● Driver performance has been generally improved.

Game Kit Enhancements
The Game Kit framework includes a beta implementation of a centralized service called Game Center. This
service provides game developers with a standard way to implement the following features:

 ● Aliases allow users to create their own online persona. Users log in to Game Center and interact with other
players anonymously through their alias. Players can set status messages as well as mark specific people
as their friends.

iOS 4.0
Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

80

http://www.khronos.org/registry/gles/extensions/OES/OES_vertex_array_object.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_vertex_array_object.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
http://www.khronos.org/registry/gles/extensions/OES/OES_texture_float.txt
http://www.opengl.org/registry/specs/APPLE/rgb_422.txt

 ● Leader boards allow your application to post scores to Game Center and retrieve them later.

 ● Matchmaking allows players to connect with other players with Game Center accounts.

Important: GameCenter is available to developers only in iOS 4. It is introduced as a developer-only feature
so that you can provide feedback as you implement and test Game Center features in your applications.
However, Game Center is not a user feature in iOS 4 and you should not deploy applications that use it to
the App Store.

For information about the classes of the Game Kit framework, see Game Kit Framework Reference .

Core Location Enhancements
The Core Location framework now supports the following features:

 ● A location monitoring service that tracks significant changes using only cellular information. This solution
offers a lower-power alternative for determining the user’s location.

 ● The ability to define arbitrary regions and detect boundary crossings into or out of those regions. This
feature can be used for proximity detection regardless of whether the application is running.

For information about the classes of the Core Location framework, see Core Location Framework Reference .

Map Kit Enhancements
The Map Kit framework includes the following enhancements:

 ● Support for draggable map annotations

 ● Support for map overlays

Draggable map annotations make it much easier to reposition those annotations after they have been added
to a map. The Map Kit framework handles most of the touch events associated with initiating, tracking, and
ending a drag operation. However, the annotation view must work in conjunction with the map view delegate
to ensure that dragging of the annotation view is supported.

Map overlays provide a way to create more complex types of annotations. Instead of being pinned to a single
point, an overlay can represent a path or shape that spans a wider region. You can use overlays to layer
information such as bus routes, election maps, park boundaries, and weather maps on top of the map.

For information about the functions and types of the Map Kit framework, see Map Kit Framework Reference .

iOS 4.0
Framework Enhancements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

81

Message UI Enhancements
The Message UI framework includes a new MFMessageComposeViewController class for composing SMS
messages. This class manages a standard system interface for composing and sending SMS messages. In
contrast with sending SMS messages using a specially formatted URL, this class allows you to create and send
the message entirely from within your application.

For more information about the classes of the Message UI framework, see Message UI Framework Reference .

Core Graphics Enhancements
The Core Graphics framework includes the following enhancements:

 ● The ability to embed metadata into PDF files using the CGPDFContextAddDocumentMetadata function

 ● Support for creating color spaces using an ICC profile

 ● Graphics context support for font smoothing and fine-grained pixel manipulation

For information about the functions and types of the Core Graphics framework, see Core Graphics Framework
Reference .

ICU Enhancements
The International Components for Unicode (ICU) libraries were updated to version 4.4. ICU is an open-source
project for Unicode support and software internationalization. The installed version of ICU includes only a
subset of the header files that are part of the broader ICU library. Specifically, iOS includes only the headers
used to support regular expressions.

For more information about using the functions of the ICU 4.4 library, see the documentation at http://site.icu-
project.org/.

Inherited Improvements
Although iOS 3.2 does not run on iPhone and iPod touch devices, many of the features introduced in that
version of the operating system are also supported in iOS 4. Specifically, iOS 4 supports:

 ● Custom input views

 ● Connecting external displays

 ● File-sharing support

 ● Gesture recognizers

iOS 4.0
Inherited Improvements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

82

http://site.icu-project.org/
http://site.icu-project.org/

 ● Core Text for text layout and rendering

 ● Text input through integration with the keyboard

 ● Custom fonts

 ● ICU Regular Expressions

 ● Document types

 ● PDF generation

 ● Xcode Tools changes

 ● UIKit framework changes

 ● Media Player framework changes

 ● Core Animation changes

 ● Foundation framework changes

iOS 4.0
Inherited Improvements

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

83

This table describes the changes to What's New in iOS .

NotesDate

Added information about new features in iOS 7.2013-06-10

Added new features introduced in iOS 6.1.2013-01-28

The links to the OpenGL ES extensions added in iOS 6 now point to the
final versions posted on the Khronos website.

2012-09-25

Updated to include features introduced in iOS 6.2012-09-19

Removed older articles containing changes in iOS 3.x.

Updated to include features introduced in iOS 5.1.2012-03-07

Updated to include features introduced in iOS 5.0.2011-10-12

Added features introduced in iOS 4.3.2011-02-28

Added features introduced in iOS 4.2.2010-11-15

Added features introduced in iOS 4.1.2010-08-17

Changed the title from "What's New in iPhone OS."2010-07-08

Added information about new features in iOS 4.0.2010-06-04

Moved the iOS 3.1 information to its own article and added a new article
covering features in iOS 3.2.

2010-03-24

Updated the iOS 3.0 article to reflect features introduced in all 3.x versions
of iOS.

2009-08-27

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

84

Document Revision History

NotesDate

Added new features related to the introduction of new iPhone hardware.2009-06-16

Document Revision History

2013-06-10 | Copyright © 2013 Apple Inc. All Rights Reserved. Apple Confidential Information.

85

Apple Inc.
Copyright © 2013 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AirPlay, Apple TV, Cocoa,
Cocoa Touch, iCal, Instruments, iPad, iPhone, iPod,
iPod touch, iTunes, Keychain, Mac, Mac OS,
Macintosh, Objective-C, OS X, Passbook,
QuickTime, Safari, and Xcode are trademarks of
Apple Inc., registered in the U.S. and other
countries.

AirDrop is a trademark of Apple Inc.

iAd and iCloud are service marks of Apple Inc.,
registered in the U.S. and other countries.

App Store is a service mark of Apple Inc.

Intel and Intel Core are registered trademarks of
Intel Corporation or its subsidiaries in the United
States and other countries.

Java is a registered trademark of Oracle and/or
its affiliates.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,

agent, or employee is authorized to make any
modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

	What's New in iOS
	Contents
	Introduction
	iOS 7.0
	User Interface Changes
	A New Design
	UIKit Dynamics
	Text Kit

	Multitasking Enhancements
	Games
	Sprite Kit Framework
	Game Controller Framework
	Game Center Improvements

	Maps
	AirDrop
	Inter-App Audio
	Peer-to-Peer Connectivity
	New Frameworks
	Additional Framework Enhancements
	UIKit Framework
	Store Kit Framework
	Security Framework
	Pass Kit Framework
	OpenGL ES
	MessageUI Framework
	Media Player Framework
	Map Kit Framework
	Image I/O Framework
	iAd Framework
	Game Kit Framework
	Foundation Framework
	Core Telephony Framework
	Core Motion Framework
	Core Location Framework
	Core Foundation Framework
	Core Bluetooth Framework
	AV Foundation Framework
	Accelerate Framework

	Objective-C
	Deprecated APIs

	iOS 6.1
	Map Kit Searches

	iOS 6.0
	Maps
	Social Framework
	Pass Kit
	Game Center
	Reminders
	In-App Purchase
	Collection Views
	UI State Preservation
	Auto Layout
	Data Privacy
	Additional Framework Enhancements
	UIKit Framework
	OpenGL ES
	Media Player Framework
	Image IO Framework
	iAd Framework
	Foundation Framework
	External Accessory Framework
	Event Kit Framework
	Core Video Framework
	Core Media Framework
	Core Location Framework
	Core Bluetooth Framework
	Core Audio
	AV Foundation Framework
	Ad Support Framework
	Accelerate Framework

	iOS 5.1
	Dictation Support in Text Input Views

	iOS 5.0
	iCloud Storage APIs
	iCloud Backup
	Automatic Reference Counting
	Storyboards
	Creating Storyboard Files
	Preparing to Transition to a New View Controller
	Presenting Storyboard View Controllers Programmatically

	Newsstand Support
	AirPlay Improvements
	New Frameworks
	GLKit Framework
	Core Image Framework
	Twitter Framework
	Accounts Framework
	Generic Security Services Framework
	Core Bluetooth

	App Design-Level Improvements
	Document Support
	Data Protection Improvements
	Custom Appearance for UIKit Controls
	Container View Controller Support
	Settings

	Xcode Tools
	Xcode Improvements
	OpenGL ES Debugging
	UI Automation Enhancements
	Instruments

	Additional Framework Enhancements
	UIKit
	OpenGL ES
	OpenAL
	Message UI
	Media Player
	Map Kit
	iAd
	Game Kit
	Foundation
	External Accessory
	Event Kit and Event Kit UI
	Core Motion
	Core Location
	Core Graphics
	Core Data
	Core Audio
	AV Foundation
	Assets Library
	Address Book
	Security

	iOS 4.3
	AirPlay Video Support
	Framework Enhancements
	AV Foundation
	Core Audio Frameworks
	iAd
	Media Player
	UIKit

	iOS 4.2
	Printing
	AirPlay
	Core MIDI
	Weak Linking Support
	Framework Enhancements
	Core Location
	Game Kit
	iAd
	Media Player
	UIKit

	iOS 4.1
	Game Center
	Framework Enhancements
	AV Foundation
	Assets Library
	Core Text
	System Configuration
	UIKit

	iOS 4.0
	Multitasking
	Integration Technologies
	Local Notifications
	Event Kit
	Core Motion
	Data Protection
	Core Telephony
	iAd

	Graphics and Multimedia
	High-Resolution Screen Support
	Quick Look Framework
	AV Foundation
	Assets Library
	Image I/O
	Core Media
	Core Video

	Core Services
	Block Objects
	Grand Central Dispatch
	Accelerate Framework

	Xcode Tools
	Xcode Improvements
	UI Automation API

	Framework Enhancements
	UIKit Framework Enhancements
	Foundation Framework Enhancements
	OpenGL ES Enhancements
	Game Kit Enhancements
	Core Location Enhancements
	Map Kit Enhancements
	Message UI Enhancements
	Core Graphics Enhancements
	ICU Enhancements

	Inherited Improvements

	Revision History

